15,212 research outputs found

    The variety generated by all the ordinal sums of perfect MV-chains

    Full text link
    We present the logic BL_Chang, an axiomatic extension of BL (see P. H\'ajek - Metamathematics of fuzzy logic - 1998, Kluwer) whose corresponding algebras form the smallest variety containing all the ordinal sums of perfect MV-chains. We will analyze this logic and the corresponding algebraic semantics in the propositional and in the first-order case. As we will see, moreover, the variety of BL_Chang-algebras will be strictly connected to the one generated by Chang's MV-algebra (that is, the variety generated by all the perfect MV-algebras): we will also give some new results concerning these last structures and their logic.Comment: This is a revised version of the previous paper: the modifications concern essentially the presentation. The scientific content is substantially unchanged. The major variations are: Definition 2.7 has been improved. Section 3.1 has been made more compact. A new reference, [Bus04], has been added. There is some minor modification in Section 3.

    Syntactic characterizations of classes of first-order structures in mathematical fuzzy logic

    Get PDF
    This paper is a contribution to graded model theory, in the context of mathematical fuzzy logic. We study characterizations of classes of graded structures in terms of the syntactic form of their first-order axiomatization. We focus on classes given by universal and universal-existential sentences. In particular, we prove two amalgamation results using the technique of diagrams in the setting of structures valued on a finite MTL-algebra, from which analogues of the Los--Tarski and the Chang--Los--Suszko preservation theorems follow

    Interval-valued algebras and fuzzy logics

    Get PDF
    In this chapter, we present a propositional calculus for several interval-valued fuzzy logics, i.e., logics having intervals as truth values. More precisely, the truth values are preferably subintervals of the unit interval. The idea behind it is that such an interval can model imprecise information. To compute the truth values of ‘p implies q’ and ‘p and q’, given the truth values of p and q, we use operations from residuated lattices. This truth-functional approach is similar to the methods developed for the well-studied fuzzy logics. Although the interpretation of the intervals as truth values expressing some kind of imprecision is a bit problematic, the purely mathematical study of the properties of interval-valued fuzzy logics and their algebraic semantics can be done without any problem. This study is the focus of this chapter

    Fuzzy inequational logic

    Full text link
    We present a logic for reasoning about graded inequalities which generalizes the ordinary inequational logic used in universal algebra. The logic deals with atomic predicate formulas of the form of inequalities between terms and formalizes their semantic entailment and provability in graded setting which allows to draw partially true conclusions from partially true assumptions. We follow the Pavelka approach and define general degrees of semantic entailment and provability using complete residuated lattices as structures of truth degrees. We prove the logic is Pavelka-style complete. Furthermore, we present a logic for reasoning about graded if-then rules which is obtained as particular case of the general result
    • …
    corecore