14 research outputs found

    A RAKE structured SINR maximizing mobile receiver for the WCDMA downlink

    Full text link

    Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems

    Get PDF
    The capacity of a cellular system is limited by two different phenomena, namely multipath fading and multiple access interference (MAl). A Two Dimensional (2-D) receiver combats both of these by processing the signal both in the spatial and temporal domain. An ideal 2-D receiver would perform joint space-time processing, but at the price of high computational complexity. In this research we investigate computationally simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a beamfom1er is fed into a succeeding temporal processor to take advantage of both the beamformer and Rake receiver. Wireless service providers throughout the world are working to introduce the third generation (3G) and beyond (3G) cellular service that will provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA) has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake receiver can be an effective solution to provide the receivers enhanced capabilities needed to achieve the required performance of a WCDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical Circular channel model is considered, which is more suitable for array processing, and conductive to RAKE combining. The performances of the Beam former-Rake receiver are evaluated in this channel model as a function of the number of antenna elements and RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that, the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, we optimize and develop a mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR) of a Beam former-Rake receiver. In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA system for downlink. The performance is then compared with an omnidirectional antenna system. Simulation shows that the best perfom1ance can be achieved when all the mobiles with same Angle-of-Arrival (AOA) and different distance from base station are formed in one beam

    Successive DF relaying: MS-DIS aided interference suppression and three-stage concatenated architecture design

    No full text
    Conventional single-relay aided two-phase cooperative networks employing coherent detection algorithms incur a significant 50% throughput loss. Furthermore, it is unrealistic to expect that in addition to the task of relaying, the relay-station would dedicate further precious resources to the estimation of the source-relay channel in support of coherent detection. In order to circumvent these problems, we propose decode and-forward (DF) based successive relaying employing noncoherent detection schemes. A crucial challenge in this context is that of suppressing the successive relaying induced interference, despite dispensing with any channel state information (CSI). We overcome this challenge by introducing a novel adaptive Newton algorithm based multiple-symbol differential interference suppression (MS-DIS) scheme. Correspondingly, a three-stage concatenated transceiver architecture is devised. We demonstrate that our proposed system is capable of near-error-free transmissions at low signal-to-noise ratios

    Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems

    Get PDF
    The capacity of a cellular system is limited by two different phenomena, namely multipath fading and multiple access interference (MAl). A Two Dimensional (2-D) receiver combats both of these by processing the signal both in the spatial and temporal domain. An ideal 2-D receiver would perform joint space-time processing, but at the price of high computational complexity. In this research we investigate computationally simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a beamfom1er is fed into a succeeding temporal processor to take advantage of both the beamformer and Rake receiver. Wireless service providers throughout the world are working to introduce the third generation (3G) and beyond (3G) cellular service that will provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA) has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake receiver can be an effective solution to provide the receivers enhanced capabilities needed to achieve the required performance of a WCDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical Circular channel model is considered, which is more suitable for array processing, and conductive to RAKE combining. The performances of the Beam former-Rake receiver are evaluated in this channel model as a function of the number of antenna elements and RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that, the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, we optimize and develop a mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR) of a Beam former-Rake receiver. In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA system for downlink. The performance is then compared with an omnidirectional antenna system. Simulation shows that the best perfom1ance can be achieved when all the mobiles with same Angle-of-Arrival (AOA) and different distance from base station are formed in one beam

    Unbiased MMSE vs. Biased MMSE Equalizers

    Get PDF
    [[abstract]]We systematically analyze the biased and unbiased minimum mean square error (MMSE) equalizers of finite as well as infinite length, with and without decision feedback sections. New closed-form expressions of optimum equalizer weights, the MMSE, and symbol error probabilities (SEP), solely in terms of channel response parameters and noise power, are derived for the above receivers. These new expressions have not appeared in the literature and should be included for completeness. We also prove analytically that the biased and unbiased MMSE equalizers have the same optimum weights and that an infinitely long unbiased MMSE equalizer approaches the optimum minimum error probability equalizer. Performance curves are presented and compared for all the receivers discussed. Moreover, for all the infinite length equalizers presented, alternative error probability expressions are provided to best suit computer simulations.[[notice]]補正完畢[[incitationindex]]EI[[booktype]]紙

    Efficient Robust Adaptive Beamforming Algorithms for Sensor Arrays

    Get PDF
    Sensor array processing techniques have been an important research area in recent years. By using a sensor array of a certain configuration, we can improve the parameter estimation accuracy from the observation data in the presence of interference and noise. In this thesis, we focus on sensor array processing techniques that use antenna arrays for beamforming, which is the key task in wireless communications, radar and sonar systems. Firstly, we propose a low-complexity robust adaptive beamforming (RAB) technique which estimates the steering vector using a Low-Complexity Shrinkage-Based Mismatch Estimation (LOCSME) algorithm. The proposed LOCSME algorithm estimates the covariance matrix of the input data and the interference-plus-noise covariance (INC) matrix by using the Oracle Approximating Shrinkage (OAS) method. Secondly, we present cost-effective low-rank techniques for designing robust adaptive beamforming (RAB) algorithms. The proposed algorithms are based on the exploitation of the cross-correlation between the array observation data and the output of the beamformer. Thirdly, we propose distributed beamforming techniques that are based on wireless relay systems. Algorithms that combine relay selections and SINR maximization or Minimum Mean-Square- Error (MMSE) consensus are developed, assuming the relay systems are under total relay transmit power constraint. Lastly, we look into the research area of robust distributed beamforming (RDB) and develop a novel RDB approach based on the exploitation of the cross-correlation between the received data at the relays and the destination and a subspace projection method to estimate the channel errors, namely, the cross-correlation and subspace projection (CCSP) RDB technique, which efficiently maximizes the output SINR and minimizes the channel errors. Simulation results show that the proposed techniques outperform existing techniques in various performance metrics

    Differential Interference Suppression Aided Three-Stage Concatenated Successive Relaying

    Full text link

    Técnicas de pré-codificação para sistemas multicelulares coordenados

    Get PDF
    Doutoramento em TelecomunicaçõesCoordenação Multicélula é um tópico de investigação em rápido crescimento e uma solução promissora para controlar a interferência entre células em sistemas celulares, melhorando a equidade do sistema e aumentando a sua capacidade. Esta tecnologia já está em estudo no LTEAdvanced sob o conceito de coordenação multiponto (COMP). Existem várias abordagens sobre coordenação multicélula, dependendo da quantidade e do tipo de informação partilhada pelas estações base, através da rede de suporte (backhaul network), e do local onde essa informação é processada, i.e., numa unidade de processamento central ou de uma forma distribuída em cada estação base. Nesta tese, são propostas técnicas de pré-codificação e alocação de potência considerando várias estratégias: centralizada, todo o processamento é feito na unidade de processamento central; semidistribuída, neste caso apenas parte do processamento é executado na unidade de processamento central, nomeadamente a potência alocada a cada utilizador servido por cada estação base; e distribuída em que o processamento é feito localmente em cada estação base. Os esquemas propostos são projectados em duas fases: primeiro são propostas soluções de pré-codificação para mitigar ou eliminar a interferência entre células, de seguida o sistema é melhorado através do desenvolvimento de vários esquemas de alocação de potência. São propostas três esquemas de alocação de potência centralizada condicionada a cada estação base e com diferentes relações entre desempenho e complexidade. São também derivados esquemas de alocação distribuídos, assumindo que um sistema multicelular pode ser visto como a sobreposição de vários sistemas com uma única célula. Com base neste conceito foi definido uma taxa de erro média virtual para cada um desses sistemas de célula única que compõem o sistema multicelular, permitindo assim projectar esquemas de alocação de potência completamente distribuídos. Todos os esquemas propostos foram avaliados em cenários realistas, bastante próximos dos considerados no LTE. Os resultados mostram que os esquemas propostos são eficientes a remover a interferência entre células e que o desempenho das técnicas de alocação de potência propostas é claramente superior ao caso de não alocação de potência. O desempenho dos sistemas completamente distribuídos é inferior aos baseados num processamento centralizado, mas em contrapartida podem ser usados em sistemas em que a rede de suporte não permita a troca de grandes quantidades de informação.Multicell coordination is a promising solution for cellular wireless systems to mitigate inter-cell interference, improving system fairness and increasing capacity and thus is already under study in LTE-A under the coordinated multipoint (CoMP) concept. There are several coordinated transmission approaches depending on the amount of information shared by the transmitters through the backhaul network and where the processing takes place i.e. in a central processing unit or in a distributed way on each base station. In this thesis, we propose joint precoding and power allocation techniques considering different strategies: Full-centralized, where all the processing takes place at the central unit; Semi-distributed, in this case only some process related with power allocation is done at the central unit; and Fulldistributed, where all the processing is done locally at each base station. The methods are designed in two phases: first the inter-cell interference is removed by applying a set of centralized or distributed precoding vectors; then the system is further optimized by centralized or distributed power allocation schemes. Three centralized power allocation algorithms with per-BS power constraint and different complexity tradeoffs are proposed. Also distributed power allocation schemes are proposed by considering the multicell system as superposition of single cell systems, where we define the average virtual bit error rate (BER) of interference-free single cell system, allowing us to compute the power allocation coefficients in a distributed manner at each BS. All proposed schemes are evaluated in realistic scenarios considering LTE specifications. The numerical evaluations show that the proposed schemes are efficient in removing inter-cell interference and improve system performance comparing to equal power allocation. Furthermore, fulldistributed schemes can be used when the amounts of information to be exchanged over the backhaul is restricted, although system performance is slightly degraded from semi-distributed and full-centralized schemes, but the complexity is considerably lower. Besides that for high degrees of freedom distributed schemes show similar behaviour to centralized ones

    Adaptive antenna array beamforming using a concatenation of recursive least square and least mean square algorithms

    Get PDF
    In recent years, adaptive or smart antennas have become a key component for various wireless applications, such as radar, sonar and cellular mobile communications including worldwide interoperability for microwave access (WiMAX). They lead to an increase in the detection range of radar and sonar systems, and the capacity of mobile radio communication systems. These antennas are used as spatial filters for receiving the desired signals coming from a specific direction or directions, while minimizing the reception of unwanted signals emanating from other directions.Because of its simplicity and robustness, the LMS algorithm has become one of the most popular adaptive signal processing techniques adopted in many applications, including antenna array beamforming. Over the last three decades, several improvements have been proposed to speed up the convergence of the LMS algorithm. These include the normalized-LMS (NLMS), variable-length LMS algorithm, transform domain algorithms, and more recently the constrained-stability LMS (CSLMS) algorithm and modified robust variable step size LMS (MRVSS) algorithm. Yet another approach for attempting to speed up the convergence of the LMS algorithm without having to sacrifice too much of its error floor performance, is through the use of a variable step size LMS (VSSLMS) algorithm. All the published VSSLMS algorithms make use of an initial large adaptation step size to speed up the convergence. Upon approaching the steady state, smaller step sizes are then introduced to decrease the level of adjustment, hence maintaining a lower error floor. This convergence improvement of the LMS algorithm increases its complexity from 2N in the case of LMS algorithm to 9N in the case of the MRVSS algorithm, where N is the number of array elements.An alternative to the LMS algorithm is the RLS algorithm. Although higher complexity is required for the RLS algorithm compared to the LMS algorithm, it can achieve faster convergence, thus, better performance compared to the LMS algorithm. There are also improvements that have been made to the RLS algorithm families to enhance tracking ability as well as stability. Examples are, the adaptive forgetting factor RLS algorithm (AFF-RLS), variable forgetting factor RLS (VFFRLS) and the extended recursive least squares (EX-KRLS) algorithm. The multiplication complexity of VFFRLS, AFF-RLS and EX-KRLS algorithms are 2.5N2 + 3N + 20 , 9N2 + 7N , and 15N3 + 7N2 + 2N + 4 respectively, while the RLS algorithm requires 2.5N2 + 3N .All the above well known algorithms require an accurate reference signal for their proper operation. In some cases, several additional operating parameters should be specified. For example, MRVSS needs twelve predefined parameters. As a result, its performance highly depends on the input signal.In this study, two adaptive beamforming algorithms have been proposed. They are called recursive least square - least mean square (RLMS) algorithm, and least mean square - least mean square (LLMS) algorithm. These algorithms have been proposed for meeting future beamforming requirements, such as very high convergence rate, robust to noise and flexible modes of operation. The RLMS algorithm makes use of two individual algorithm stages, based on the RLS and LMS algorithms, connected in tandem via an array image vector. On the other hand, the LLMS algorithm is a simpler version of the RLMS algorithm. It makes use of two LMS algorithm stages instead of the RLS – LMS combination as used in the RLMS algorithm.Unlike other adaptive beamforming algorithms, for both of these algorithms, the error signal of the second algorithm stage is fed back and combined with the error signal of the first algorithm stage to form an overall error signal for use update the tap weights of the first algorithm stage.Upon convergence, usually after few iterations, the proposed algorithms can be switched to the self-referencing mode. In this mode, the entire algorithm outputs are swapped, replacing their reference signals. In moving target applications, the array image vector, F, should also be updated to the new position. This scenario is also studied for both proposed algorithms. A simple and effective method for calculate the required array image vector is also proposed. Moreover, since the RLMS and the LLMS algorithms employ the array image vector in their operation, they can be used to generate fixed beams by pre-setting the values of the array image vector to the specified direction.The convergence of RLMS and LLMS algorithms is analyzed for two different operation modes; namely with external reference or self-referencing. Array image vector calculations, ranges of step sizes values for stable operation, fixed beam generation, and fixed-point arithmetic have also been studied in this thesis. All of these analyses have been confirmed by computer simulations for different signal conditions. Computer simulation results show that both proposed algorithms are superior in convergence performances to the algorithms, such as the CSLMS, MRVSS, LMS, VFFRLS and RLS algorithms, and are quite insensitive to variations in input SNR and the actual step size values used. Furthermore, RLMS and LLMS algorithms remain stable even when their reference signals are corrupted by additive white Gaussian noise (AWGN). In addition, they are robust when operating in the presence of Rayleigh fading. Finally, the fidelity of the signal at the output of the proposed algorithms beamformers is demonstrated by means of the resultant values of error vector magnitude (EVM), and scatter plots. It is also shown that, the implementation of an eight element uniform linear array using the proposed algorithms with a wordlength of nine bits is sufficient to achieve performance close to that provided by full precision
    corecore