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ABSTRACT 
 
 
 

In recent years, adaptive or smart antennas have become a key 

component for various wireless applications, such as radar, sonar and 

cellular mobile communications including worldwide interoperability for 

microwave access (WiMAX). They lead to an increase in the detection range 

of radar and sonar systems, and the capacity of mobile radio communication 

systems. These antennas are used as spatial filters for receiving the desired 

signals coming from a specific direction or directions, while minimizing the 

reception of unwanted signals emanating from other directions.  

 

Because of its simplicity and robustness, the LMS algorithm has become 

one of the most popular adaptive signal processing techniques adopted in 

many applications, including antenna array beamforming. Over the last three 

decades, several improvements have been proposed to speed up the 

convergence of the LMS algorithm. These include the normalized-LMS 

(NLMS), variable-length LMS algorithm, transform domain algorithms, and 

more recently the constrained-stability LMS (CSLMS) algorithm and modified 

robust variable step size LMS (MRVSS) algorithm. Yet another approach for 

attempting to speed up the convergence of the LMS algorithm without having 

to sacrifice too much of its error floor performance, is through the use of a 

variable step size LMS (VSSLMS) algorithm. All the published VSSLMS 

algorithms make use of an initial large adaptation step size to speed up the 

convergence. Upon approaching the steady state, smaller step sizes are then 

introduced to decrease the level of adjustment, hence maintaining a lower 

error floor. This convergence improvement of the LMS algorithm increases its 

complexity from 2N  in the case of LMS algorithm to 9N  in the case of the 

MRVSS algorithm, where N  is the number of array elements.  

 
An alternative to the LMS algorithm is the RLS algorithm. Although higher 

complexity is required for the RLS algorithm compared to the LMS algorithm, 

it can achieve faster convergence, thus, better performance compared to the 

LMS algorithm. There are also improvements that have been made to the 
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RLS algorithm families to enhance tracking ability as well as stability. 

Examples are, the adaptive forgetting factor RLS algorithm (AFF-RLS), 

variable forgetting factor RLS (VFFRLS) and the extended recursive least 

squares (EX-KRLS) algorithm. The multiplication complexity of VFFRLS, 

AFF-RLS and EX-KRLS algorithms are 22.5 3 20N N+ + , 29 7N N+ , and 

3 215 7 2 4N N N+ + +  respectively, while the RLS algorithm requires 

22.5 3N N+ .  

 
All the above well known algorithms require an accurate reference signal 

for their proper operation. In some cases, several additional operating 

parameters should be specified. For example, MRVSS needs twelve 

predefined parameters. As a result, its performance highly depends on the 

input signal. 

 
In this study, two adaptive beamforming algorithms have been proposed. 

They are called recursive least square - least mean square (RLMS) algorithm, 

and least mean square - least mean square (LLMS) algorithm. These 

algorithms have been proposed for meeting future beamforming 

requirements, such as very high convergence rate, robust to noise and 

flexible modes of operation. The RLMS algorithm makes use of two individual 

algorithm stages, based on the RLS and LMS algorithms, connected in 

tandem via an array image vector. On the other hand, the LLMS algorithm is a 

simpler version of the RLMS algorithm. It makes use of two LMS algorithm 

stages instead of the RLS – LMS combination as used in the RLMS algorithm.  

 
Unlike other adaptive beamforming algorithms, for both of these algorithms, 

the error signal of the second algorithm stage is fed back and combined with 

the error signal of the first algorithm stage to form an overall error signal for 

use update the tap weights of the first algorithm stage.  

 
Upon convergence, usually after few iterations, the proposed algorithms 

can be switched to the self-referencing mode. In this mode, the entire 

algorithm outputs are swapped, replacing their reference signals. In moving 

target applications, the array image vector, F , should also be updated to the 
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new position. This scenario is also studied for both proposed algorithms. A 

simple and effective method for calculate the required array image vector is 

also proposed. Moreover, since the RLMS and the LLMS algorithms employ 

the array image vector in their operation, they can be used to generate fixed 

beams by pre-setting the values of the array image vector to the specified 

direction.  

 
The convergence of RLMS and LLMS algorithms is analyzed for two 

different operation modes; namely with external reference or self-referencing. 

Array image vector calculations, ranges of step sizes values for stable 

operation, fixed beam generation, and fixed-point arithmetic have also been 

studied in this thesis. All of these analyses have been confirmed by computer 

simulations for different signal conditions. Computer simulation results show 

that both proposed algorithms are superior in convergence performances to 

the algorithms, such as the CSLMS, MRVSS, LMS, VFFRLS and RLS 

algorithms, and are quite insensitive to variations in input SNR and the actual 

step size values used. Furthermore, RLMS and LLMS algorithms remain 

stable even when their reference signals are corrupted by additive white 

Gaussian noise (AWGN). In addition, they are robust when operating in the 

presence of Rayleigh fading. Finally, the fidelity of the signal at the output of 

the proposed algorithms beamformers is demonstrated by means of the 

resultant values of error vector magnitude (EVM), and scatter plots. It is also 

shown that, the implementation of an eight element uniform linear array using 

the proposed algorithms with a wordlength of nine bits is sufficient to achieve 

performance close to that provided by full precision. 
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CHAPTER 1   

 

INTRODUCTION 
 

 

 

1.1 Scope of the Thesis 

In recent years, adaptive antenna arrays or smart antennas have become 

a key component for cellular mobile communications [1] including worldwide 

interoperability for microwave access (WiMax) [2, 3] and long term evolution 

(LTE) system [4, 5]. Its use leads to an increase in the capacity of mobile 

radio communication systems, to fulfill the rapid growth in demand for wireless 

services. These antennas are used as spatial filters for receiving the desired 

signals coming from specific direction or directions while minimizing the 

reception of unwanted signals emanating from other directions. The ability of 

these antennas to track their target signals quickly and accurately depends 

largely on the performance of the beamforming algorithm employed. 

 
Among many different adaptive algorithms studied, the LMS algorithm 

offers simpler implementation and good tracking capability while the RLS 

algorithm provides relatively fast convergence [6, 7].  More recently, variants 

of these two algorithms have been investigated for enhancing the 

convergence speed and tracking ability in time varying operating 

environments. For the LMS algorithm family, there is always a trade off 

between the speed and the residual error floor when a given adaptation step 

size is used. Therefore, over the last three decades, several improvements 

have been proposed to speed up the convergence. Some recent examples 

are variable step size LMS algorithm (VSSLMS) [8], constrained-stability LMS 

(CSLMS) algorithm [9], and modified robust variable LMS (MRVSS) algorithm 

[10]. These algorithms make use of an initial large adaptation step size to 

speed up the convergence. Upon approaching the steady state, smaller step 
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sizes are then introduced to decrease the level of adjustment, hence 

maintaining a lower residual error floor.  

 

On the other hand, several modifications have been proposed to improve 

the tracking ability of the RLS family of algorithms. These include the adaptive 

forgetting factor RLS (AFF-RLS) [11], variable forgetting factor RLS (VFFRLS) 

[12], and the extended kernel recursive least square (EX-KRLS) algorithm 

[13]. 

 
The beamforming algorithm is expected to be computationally simple, 

numerically robust, fast convergent [14], robust to noise and able to work with 

a noisy reference signal. Unfortunately, none of the adaptive algorithms 

developed so far are able to fulfill all these requirements [14]. Therefore, this 

project aims to research into new algorithms that could fulfill as many of these 

requirements as possible. 

 

 

1.2 Objectives and Original Contributions 

The primary objectives of this research are: 

•  The development of a low complexity and flexible adaptive 

beamforming algorithm, which has fast convergence in conjunction 

with a low residual error. 

• The new algorithm should be tolerant to noisy reference signal while 

having good tracking capability. 

• Formulation of a Matlab baseband simulation platform for evaluating 

the performance of the proposed algorithm operating under various 

conditions. 

 

As a result of this study, a number of significant technical contributions 

have been made. These are briefly described as follows: 
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Two adaptive beamforming algorithms have been proposed in this thesis. 

They are called the recursive least square - least mean square (RLMS) 

algorithm, and the least mean square - least mean square (LLMS) algorithm. 

These algorithms have been proposed to meet future beamforming 

requirements, such as very high convergence rate, robustness to noise and 

flexible modes of operation. The RLMS algorithm makes use of two individual 

algorithm stages, based on the RLS and LMS algorithms, connected in 

tandem via an array image vector. The LLMS algorithm is a simpler version of 

the RLMS algorithm. It makes use of two LMS algorithm stages instead of the 

RLS – LMS combination as used in the RLMS algorithm. For both of these 

algorithms, the error signal of the second algorithm stage is fed back and 

combined with the error signal of the first algorithm stage to form an overall 

error signal used to update the tap weights of the first algorithm stage. 

Detailed analyses of the RLMS and LLMS algorithms are presented in 

Chapter 4 and Chapter 5 respectively.  

 
The new common architecture of the RLMS and LLMS algorithms offers 

the flexibility of two different modes of operation. Normally, each of these 

algorithms operates with an external reference signal. Moreover, once the 

algorithm has converged, often after only a few iterations, it can be switched 

over to operate with self-referencing. In this case, the output of the first 

algorithm stage is used as the reference for the second algorithm stage. At 

the same time, the output of the second stage is fed back to be used as the 

reference signal for the first algorithm stage. These two modes of operation 

are analysed in Sections 4.3 and 5.3 for the RLMS algorithm and the LLMS 

algorithm, respectively.  

 
Computer simulation results presented in Sections 4.7.3.1 to 4.7.3.4 for the 

RLMS algorithm, and in Sections 5.4.2.1 and 5.4.2.4 for the LLMS algorithm, 

confirm the superior performance of the proposed algorithms over the RLS, 

VFFRLS, LMS, CSLMS and MRVSS algorithms. The performance measures 

considered are the convergence rate, residual error floor, sensitivity to noisy 

reference signal, and tracking ability. Also, it is shown that the resulting steady 
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state mean square errors (MSE) of the RLMS and LLMS algorithms are quite 

insensitive to changes in input signal-to-noise ratio (SNR). 

Both the proposed algorithms also allow two different application modes of 

beamforming operation; namely fixed or adaptive beamforming. With the 

former, an accurate fixed beam can be provided by prior setting the elements 

of the array image vector with the prescribed values for the required direction. 

On the other hand, adaptive beamforming is obtained when the array image 

vector is allowed to continuously update and track the user direction. A simple 

but effective method of calculating the element values of the array image 

vector for adaptive beamforming is presented in Sections 4.5 and 5.3.4.1.  

 
The boundary values for the step sizes of the individual algorithm stages 

required to achieve stable operation have been derived analytically in 

Sections 4.3.1 and 4.4, Sections 5.3.3 and 5.3.4.2, for the proposed RLMS 

and LLMS algorithms, respectively. It is shown that a stable operation of the 

proposed algorithms could be achieved with a broad range of step size 

values. 

 

For implementation of the proposed algorithms, some practical issues have 

been considered and studied in Chapter 6. These include: 

� Practical implementations of the proposed algorithms are likely to 

make use of finite precision mathematical functions. As such, an 

analysis on the estimated overall MSE signal is presented in Section 

6.2 to determine the minimum numerical precision, in terms of binary 

wordlength, required for achieving an adequate performance.  It is 

shown in Section 6.2.3 that an eight element uniform linear array 

implemented with a wordlength of nine bits using either the RLMS or 

LLMS algorithm is able to achieve a performance close to that 

provided by full numerical precision.  

� The influence of variations in inter-element spacing and element gain 

of the array is studied in Section 6.3. It is shown in Sections 6.3.1, 
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6.3.2 and 6.3.3 that these practical imperfections tend to only raise 

the sidelobe level.  

� Finally, linear antenna arrays implemented with two and four elements 

are investigated in Section 6.4. It is observed that similar performance 

could be maintained when a slight reduction in the number of tap 

weights is used in the second algorithm stage of either the RLMS or 

LLMS algorithm.  

 

1.3 Structure of the Thesis 

This thesis is organized into seven chapters. 

 

Chapter 2 provides a background introduction to adaptive array 

beamforming. A survey of some of the common array geometries is 

presented, including discussions on array ambiguity and grating lobes 

associated with uniform linear arrays (ULA). Then, a typical beamforming 

example is provided to show how the weights are calculated for a given angle 

of arrival (AOA) of the desired signal. Finally, a brief description of the need 

for simultaneous multiple beam forming to serve multiple users is given. 

 
Next, in Chapter 3, a review of adaptive beamforming algorithms is 

presented with emphasis on the non-blind algorithms. A survey of blind 

algorithms is also provided, as well as the recently launched wireless 

communication systems such as WiMAX and LTE.  

 
In Chapter 4, a new approach to adaptive array beamforming using a 

combined RLS-LMS algorithm or RLMS algorithm is proposed. The fast 

convergence and robust operation of this new RLMS algorithm are verified 

through a detailed analytical study, followed by extensive computer 

simulations.  

 
The observations made in Chapter 4 provide an incentive to search for a 

simpler version of the RLMS algorithm while still maintaining its superior 
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performance. This leads to the replacement of the RLS algorithm in the 

RLMS algorithm with an LMS algorithm. The resultant scheme is referred to 

as the LLMS algorithm, which maintains the low complexity generally 

associated with an LMS algorithm. The LLMS algorithm is studied in detail in 

Chapter 5. 

Chapter 6 considers the effects on the operation of the RLMS and LLMS 

algorithms due to the use of finite numerical precision. This leads to the 

determination of the minimum wordlength, in terms of the number of binary 

bits, required to achieve a minimum degradation in performance when 

compared with an implementation using full numerical precision. Following 

this, the influence on the performance of the proposed algorithms due to 

tolerances in inter-element spacing and element gain is also examined. 

Furthermore, the performance of a linear antenna array implemented with 

either two or four elements is investigated.  

 
Finally, the major findings of this research are reviewed and recommend-

dations for future studies are made in Chapter 7. 
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CHAPTER 2   
 

FUNDAMENTALS OF ARRAY BEAMFORMING 

 

 

 

2.1 Introduction 

The demand for modern wireless communications systems is becoming 

progressively more complex. This is the result of attempting to meet ever 

growing demands for higher date rates, wider coverage and greater capacity, 

but without a corresponding increase in spectrum allocation. Therefore, 

adaptive or smart antennas have been introduced to exploit the spatial 

domain by minimizing interference in order to enhance system coverage and 

capacity. These antennas are able to automatically direct their beam patterns 

to the desired signals with nulls in the directions of interfering signals. An 

antenna array is a set of antenna sensors that are spatially distributed with 

reference to one of its elements. In the case of an antenna array used for 

transmission, the beam direction is steered by appropriately adjusting the 

phase and amplitude of the signal applied to each of the antenna elements. 

As a result, the angle of departure (AOD) of the main beam of the array can 

be steered towards the required direction. 

 
There are different types of antenna array geometries, the most common 

being the linear, circular and planar arrays. Linear arrays consist of antenna 

elements which are aligned along a straight line, while circular arrays have 

the elements arranged in a circle. A planar array has its elements lie on a 

plane surface. If the spacing between adjacent elements is equal, then the 

array is often referred to as a uniformly spaced array, such as the uniform 

linear array (ULA) [15, 16]. A linear array is simpler to implement than the 

other two geometries. However, its radiation pattern is symmetrical about the 

endfire1 axis, thus giving rise to direction ambiguity. On the other hand, both 

                                                 
 1

  Endfire is the direction that is parallel to the line joining the antenna elements in a linear 
array. 
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circular and planar arrays do not suffer from such a disadvantage [17]. 

 
The radiation pattern of an antenna array is dependent on a number of 

factors, such as, the type and number of antenna elements used and the way 

these elements are configured. In the case of isotropic radiating elements, 

the radiation pattern depends only on what is commonly known as the array 

factor (AF), which is governed by the inter-element spacing and feeding 

signals [15]. On the other hand, for non-isotropic elements, it is possible to 

determine total AF using the principle of multiplying the field of a single 

element positioned at the origin, and the array factor of an isotropic radiating 

element [16, 18], which will be described in greater detail in Section 2.4. 

 
This chapter provides a review of array geometries, including a discussion 

on array ambiguity and possible grating lobes associated with uniform linear 

arrays. Then, an example is introduced to show how the weights are 

calculated for achieving beamforming in a given direction.  Finally, a brief 

description on beamforming with multiple beams to cater for multiple users is 

also discussed. 

 
 

2.2 Uniform Linear Array 

As mentioned in Section 2.1, a ULA is composed of a number of equally 

spaced elements. Consider an array consisting of N  elements as shown in 

Figure 2.1, with an inter-element spacing of D  and the AOA of the desired 

signal is dθ . The array broadside is normal to the array axis, and element 1 is 

taken to be the reference element. 

 
Let ( )x t  be a signal emitted from far away and its wavefront impinges on 

the N  linear array of Figure 2.1. In this case, the signal received by element 

2 experiences a time delay of τ  with respect to element 1. The resulting 

output, ( )y t , of the array is given by [19] 

( ) ( ) ( )( ) ... ( )y t = x t + x t - x t - N - 1τ τ+ +                            (2.1) 
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D

x(t)

dθ

dθ

si
n d

D

 
 

Figure  2-1 A linear array consisting of N  identical omnidirectional antenna 

elements with the plane wavefront of ( )x t . 

 

 

where 
sin ( )d

c

θτ = D  with c being the velocity of light.  

 
The time delay, τ , in equation (2.1) corresponds to a phase shift of 

sind d
2πψ θ

λ
= D

 radians [20], where λ  is the carrier wavelength of frequency, 

cf ,  such that  

c

c

f
λ =                                                    (2.2) 

The output signal of the array, ( )y t , can also be expressed as 

( 1)

1

( ) ( ) d

N
j i

i

y t x t e ψ− −

=
=∑                                         (2.3) 

where j  is the complex operator defined as -1j = . 

 
Therefore, the directional pattern of the array, which defines the array 

sensitivity response to the received signal with an AOA of dθ , can be 

expressed as [20] 
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( 1)

1

( ) d

N
j i

d
i

AF e ψθ −

=
=∑                                         (2.4) 

Equation (2.4) can be normalized with the maximum value at unity, so that 

[16]  

( )
( 1)

2

sin
2

( )
sin

2

d

d
j N

d n
d

N

AF e
N

ψ
ψ

θ
ψ

−
 
 
 =
 
 
 

                               (2.5) 

 

Equation (2.5) indicates that ( )( )d n
AF θ  has the following characteristics 

[21]: 

• Maximum values occur when 0dψ = , i.e. at the broadside angle, 

2d i= nθ π∓ , where 0, 1, 2,...in = . 

• Nulls of the array occur when 2d i= n Nψ π∓ , where 1, 2, 3, ...in = , and  

, 2 , 3 ,...in N N N≠ . 

• The 3 dB beamwidth, 3 dBd,θ∆ , of the array factor can be obtained from 

[21] 

3 dB 0.866d, N

λθ∆ =
D

                                        (2.6) 

According to equation (2.6), the main beamwidth decreases as the 

number of array elements increases. 

 

As an example, consider a linear array which is made up of eight isotropic 

antenna elements with uniform inter-element spacing D  of 2λ . Figure 2-2 

shows the modulus of the normalized array factor, ( )n
( )dAF θ , computed 

using equation (2.5), when the array is steered towards either 0° , 60° , or 

30°− . It can be observed from Figure 2.2 that the main beam of the array is 

directed to the correct specified direction, dθ , and the width of the beam 

increases as the angle dθ  is deviating away from 0° .   
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Figure  2-2 The beam patterns ( )n
( )dAF θ  of an eight element linear array 

obtained for dθ  equal to either ,0 ,  60 or 30−� � � . The inter-element spacing 

D� is 2λ� . 

 

 

Next, when the inter-element spacing is varied, the resulting values of 

( )n
( )dAF θ  are evaluated over a range of 2 2d

π πθ− ≤ ≤ . These are shown 

in Figure 2-3 (a-c) for 4λ=D� , 2λ=D�  and λ=D� , respectively. From Figure 

2-3 (a-c), it is observed that the main beam width becomes larger when the 

inter-element spacing is reduced. On the other hand, when a larger element 

spacing is used, there will be an increase in the number of side lobes. 

 
 

2.3 Array Ambiguity and Grating Lobes 

From equation (2.5), the modulus of the normalised array factor, 

( )n
( )dAF θ , can be expressed as 

     ( )

( )

( )n

sin
sinsin

2
( )

sinsin sin
2

dd

d
d d

NN

AF

N N

π θψ
λ

θ
ψ π θ

λ

  
  

   = =
   
   
   

D

D �
                   (2.7) 
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(a) 4λ=D�  
 

 

(b) 2λ=D�  

 

 

(c) λ=D�  
 

Figure  2-3 The beam patterns of an eight element linear array obtained with 

dθ  set at 0o and the inter-element spacing D� is equal to (a) 4λ �, (b) 2λ� , 

and  (c) λ . 

 
 

According to equation (2.7), a maximum value of ( )n
( )dAF θ  occurs 

whenever i
d

n λθ = ±
D

 where 0, 1, 2,...in = . In this case, when the inter-element 
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spacing 
2

λ=D� , a beam occurs at the desired direction of 0dθ = � . In addition, 

it is noted that another beam also exits at 180o
dθ = ± , as shown in Figure 2-4. 

This additional beam, which gives rise to ambiguity in the beam direction, is 

often referred to as a grating lobe.  

 

 

 

Figure  2-4 The beam patterns of an eight element uniform linear array 

obtained with 2λ=D� . 

 

 

Now, for inter-element spacing larger than half wave length, i.e., 
2

λ>D� , 

more grating lobes may appear in addition to the desired main lobe. For 

instance, with an inter-element spacing of λ=D� , the main desired beam will 

appear at 0dθ = � , while grating lobes would occur at 90± � and 180± � , as 

shown in Figure 2-5a. In the case of 2λ=D� , grating lobes occur at 30± � , 

90± � , 150± � and 180± � , as shown in Figure 2-5b. The presence of grating 

lobes makes it ambiguous to know for certain which is the correct angle to 

associate with the desired signal [22]. As a result, the beamformer is not able 

to distinguish between signals coming from the desired main lobe direction 

and those from the directions of the grating lobes. 
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 (a) λ=D�  

 

 
 
 

(b) 2λ=D�  

 
Figure  2-5 The presence of grating lobes when an eight element uniform 

linear array is implemented with (a) λ=D�  and (b) 2λ=D� . 

 

 

Now, to steer the main beam of an ULA to an angle dθ θ= , the 

normalized array factor given in equation (2.7) can be rewritten as [22, 23] 
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( ) ( )

( ) ( )

sin sin
sin

( )
sin sin

sin

d

d

N

AF

N

π θ θ
λ

θ
π θ θ

λ

  −  
 
 =
  −  
 
 

D

D �

                         (2.8) 

From equation (2.8), the desired main lobe is pointed at an angle dθ , while 

the grating lobes are located at those angles θ , which make the denominator 

equal to zero, i.e.,  

sin( ) sin ( )d in
λθ θ− = ±
D

                                      (2.9) 

where 1, 2, 3, ...in = . 

 

A plot of equation (2.9) is shown in Figure 2-6. It shows that if either the 

element spacing or the wave length is changed, the angular locations where 

the grating lobes occur will also change. To illustrate the use of Figure 2-6, 

we consider the case of λ=D�  or 1λ =D . Under this condition, we observe 

that two curves intercept 1λ =D  to yield 1dsin - sinθ θ =  (blue curve), and 

2dsin - sinθ θ =  (green curve). This means that, if 0dθ = � , two grating lobes 

will appear at θ  corresponding to 90o and 180o. This observation is verified 

by the case as shown in Figure 2-5a. 

 

 

2.4 Planar Array  

According to [20, 24, 25], a planar array consists of antenna elements 

arranged in an x y−  plane. A common configuration of the planar array, the 

rectangular array, is shown in Figure 2-7. Such a planar array has an 

additional degree of control over a linear array. As a result, it is now possible 

to steer the elevation angle, θ , as well as the azimuth angle, φ , of the beam 

of a planar array to form a pencil beam. 
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Figure  2-6 The angular locations, θ , of the grating lobes, θ , for an array with 

inter-element spacing D� and wave length λ  when the desired main beam is 

directed to an angle dθ . 

 

 

As shown in Figure 2-7, the rectangular planar array is made up of xN  

rows and yN  columns of antenna elements, with a total of x yN N×  elements. 

Each row or column represents a linear array, with inter-element spacing of 

yD  and xD , respectively. 

 
Now, the phasor sum of the signals from each individual row of elements 

can be expressed as [20]  

 ( 1)

1

( ) ( )
x

x

N
j i

x
i

y t x t e ψ−

=
=∑                                      (2.10) 

and the array factor for each row becomes  

( 1)

1

x
x

N
j i

x
i

AF e ψ−

=
=∑                                          (2.12)        

 
The same applies to the phasor sum of the signals from each individual 

column of elements, so that the array factor for each column is given by   
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Figure  2-7 A rectangular planar array. 

 
 
 

( 1)

1

y
y

N
j i

y
i

AF e
ψ−

=
=∑                                          (2.13) 

 

According to the principle of array multiplication, the overall array factor for 

the planar array is given by [20] 

                           
( 1)( 1)

1 1

( , )
yx

yx

NN
j kj i

i k

AF e e
ψψθ φ −−

= =
=∑∑                              (2.14) 

where  
( ) ( )

( ) ( )

sin cos

sin sin

x
x

y
y

2

2

πψ θ φ
λ

π
ψ θ φ

λ

=

=

D

D
                                                            (2.15) 

 

Equation (2.15) shows that the array factor of a planar array is dependent 

on both the projected azimuth angle φ , and the elevation angle θ . Moreover, 

a planar array also suffers from array ambiguity and grating lobes, similar to 
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a linear array. Their occurrences depend on the inter-element spacings, xD  

and yD . Figure 2-8 shows the beam pattern obtained from a 8 8×  rectangular 

array with 2x y λ= =D D , and the beam is steered toward 0θ φ= = � . 

 

 

 

Figure  2-8 The beam pattern obtained with a rectangular planar array 

consisting of 8 8×  elements with 0θ φ= = �  and 2x y λ= =D D . 

 

 

 

2.5 Circular Array 

A circular array consists of N elements that are placed in a circular ring of 

radius R, as shown in Figure 2-9. For a uniform circular array (UCA), these 

elements are equally spaced [16]. When compared with an ULA of the same 

number of elements and inter-element spacing, the beam produced by a 

circular array is wider [25]. However, a UCA does not suffer from ambiguity in 

the beam direction and is able to provide a full azimuthal coverage [26]. This 

makes the UCA suitable for applications in surveillance and cellular 

communications where signals can arrive from any azimuth angle. On the 

other hand, circular arrays are normally associated with higher side lobe 

levels [24], and coupling between highly correlated multipath signals [26].  
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Figure  2-9 Geometry of an N-element circular array [24]. 

 

 

Now, consider the UCA of Figure 2-9. It has N  elements equally spaced 

over a circle of radius R in the x y−  plane. As shown, [ ]0,2πθ ∈   is the 

elevation angle measured from the z-axis, and [0,2π]φ ∈  is the azimuth angle 

measured counterclockwise from the x − axis on the x y−  plane [26]. The 

array factor is then given by [27] 

                        
2π

2π sin( )cos

1

( , )
R kN j

N
UCL

k

AF e
θ φ

λθ φ
 − 
 

=
=∑                            (2.16) 

 
If the elevation angle is π 2θ = , then the array factor in (2.16) becomes 

[24] 

                                   
2π

2π cos

1

( )
R kN j

N
UCL

k

AF e
φ

λφ
 − 
 

=
=∑                                (2.17) 
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Figure 2-10 shows an example of the normalized array factor, 

( )n
( )UCL dAF θ , obtained with an 8-element uniform circular array of radius 

R λ= , where the beam is steered toward 30θ = �  and 0φ = � . It is observed 

that the maximum side lobe amplitude is 0.73 that of the main beam. This 

side lobe level is higher than for the planar array of Figure 2-8, which 

indicates that maximum side lobe level is 0.29 of the main beam.  

 

 

 

Figure  2-10  The beam pattern obtained with an 8-element uniform circular 

array of radius R λ=  and the main beam is directing toward  30θ = � , 0φ = � . 

 

 

 

2.6 Beamforming and Spatial Filtering 

A beamformer is a signal processor which can be used in conjunction with 

the array elements to provide a flexible form of spatial filtering [15]. The 

signal samples collected spatially by individual antenna elements are 

appropriately weighed so that the resultant beam is directed to the AOA of 

the desired signal, with nulls occurring at the directions of the interfering 

signals. The resulting output of the beamformer thus contains the desired 
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signal with the interfering signals greatly suppressed irrespective of their 

frequency and time [28].  

 
In a mobile radio system, the AOA of a desired signal arriving at a base 

station is time varying. In this case, it requires that the individual weights of 

the beamformer to be automatically updated in order to adaptively steer its 

beam towards the desired direction. A detailed description on adaptive 

beamforming algorithms will be presented in Chapter 3.  

 
Now, consider the following example of a beamformer consisting of a 

three-element linear array with an inter-element spacing of 2λ  as shown in 

Figure 2-11. It is assumed that the desired signal, ( )s t , and two equal 

amplitude cochannel interfering signals, 1( )i t  and 2( )i t , are arriving from 0� , 

30�  and 60− � , respectively. The output from each of the three antenna 

elements is passed through a complex weight, i.e., 1w , 2w  and 3w .  The 

resultant output, ( )s t , is obtained by summing the outputs of the three 

complex weights.  Thus, the array output due to the desired signal can be 

expressed as 

( )2
1 2 3( ) cj f t

s sy t A e w w wπ= + +                                 (2.18)                      

where sA  is the signal amplitude, cf  is the frequency, and 1w , 2w  and 3w  

are the three complex weights of the beamformer. 

 

To recover the desired signal from (2.18), based on the null steering 

technique [18, 25, 29, 30], it is necessary that 

1 2 3 1w w w+ + =                                            (2.19) 

With respect to element 1, the interfering signals, 1( )i t  and 2( )i t , arrived at 

element 2 experience phase shifts of (30) 22 d sinπ λ π=  and 

( 60) 3 22 d sinπ λ π− = − , respectively. Similarly, 1( )i t  and 2( )i t  at element 3 

experience phase shifts of π  and 3π− , respectively. As a result, the array 

output due to 1( )i t  is  
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2( ) j ft
ss t A e π=
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2
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2

2( ) j ft
mi t I e π=

 

 
Figure  2-11  A three element array for interference suppression 
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m
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I e w jw w

π π π π π

π
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= + −
                (2.20)                      

and that due to 2( )i t  is 

( ) ( )

2 (2 3 2) (2 3 )
2 1 2 3

2
1 2 3

( )

0.9127 0.4086 0.6661 0.7458

j ft j ft j ft
i m m m

j ft
m

y t I e w I e w I e w

I e w j w j w

π π π π π

π

− −= + +

= + − − + +  

   (2.21) 

where mI  is the amplitude of 1( )i t  and 2( )i t . 
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In order to suppress both 1( )i t  and 2( )i t  in the array output, we need to 

set the weights of the beamformer such that 

1 2 3 0w jw w+ − =                                          (2.22) 

( ) ( )1 2 30.9127 0.4086 0.6661 0.7458 0w j w j w+ − − + + =              (2.23) 

Solving equations (2.19), (2.22) and (2.23) yields 

1 2

3

0.3034 0.1966, 0.3932 and

0.3034 0.1966

w j w

w j

= − =

= +
                         (2.24) 

 

 

 
Figure  2-12  The beam pattern obtained from a 3-element uniform linear 

array of inter-element spacing  2d λ= . The angles of arrival of the desired, 

and two interfering signals are 1 300 ,  θ θ= =� �
s i  and 1 60θ = − �

i , respectively. 

 

 

 

The beam pattern of the array beamformer based on the weights given in 

equation (2.24) is shown in Figure 2-12. As expected, the beamformer 

produces unity gain for the desired user and a null at each of the directions of 

the two interferers. Moreover, this example also shows this type of 
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beamformer does not produce the maximum gain at the direction of the 

desired signal. 

 

 

2.7 Summary 

This chapter provides an introduction to the basic principles of antenna 

arrays and digital beamforming. It begins with a description of a uniform 

linear array and its characteristics, including the array factor, array ambiguity, 

and grating lobes. This is followed by a brief discussion on both the planar 

array and circular array. The latter is used in applications where array 

direction ambiguity is undesirable. Finally, it is shown that an array of 

antenna elements can be combined with a beamformer to electronically steer 

the beam to the direction of the desired signal while at the same time 

producing null response for the interfering signals. A detailed literature review 

of the adaptive beamforming algorithms is presented in Chapter 3. 
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CHAPTER 3   

 

OVERVIEW OF ADAPTIVE BEAMFORMING 

ALGORITHMS 

 

 

 

3.1 Introduction 

During the past three decades, there has been much interest in adaptive 

systems. This led to the widespread use of adaptive techniques in various 

fields, such as wireless communications, signal processing, sonar, radar and 

biomedical engineering. An adaptive system is able to continuously adjust its 

system parameters in response to changes in the operating conditions so as 

to maintain its operation in an optimal manner following a reference signal.  

In the case of digital beamforming, the system parameters are the tap 

weights. Principally, the performance of an adaptive algorithm is highly 

dependent on the reference input and additive noise statistics. In the context 

of Wiener filter theory, there are assumptions of time invariance, linearity and 

Gaussian noise. Under these conditions, the mean square error criterion 

becomes an optimal cost function. These assumptions are often used to 

ease mathematical analysis, which often does not take into account the 

broader problems of non-Gaussian signals. 

 
In digital communication systems, efficient bandwidth utilisation is 

economically important for maximising profits for the service providers, while 

at the same time it must be able to still maintain the required performance 

and reliability. Innovative techniques are being introduced into modern 

cellular mobile communication systems to meet these varied requirements. 

This includes the use of adaptive antenna arrays at base stations to provide 

space division multiple access (SDMA) [31] as a mean to realise increased 

system capacity. This chapter reviews some of the algorithms which are 

commonly used in adaptive array beamforming. Among the many algorithms, 



 26 

the least mean square (LMS) based algorithms offer a relatively simple 

adaptive array beamforming solution. However, the performance of these 

algorithms often depends on the actual step size adaptation process. Also, 

since these algorithms make use of LMS processing, their operations are 

influenced by the characteristics of the input signals. On the other hand, 

adaptive beamformers based on recursive least square (RLS) algorithms 

tend to offer faster eigenvalue independent convergence. In other words, the 

convergence of the RLS algorithm, in term of the mean square error, is 

independent of the eigenvalues of the correlation matrix of the input signal 

vector [32-34]. Moreover, the proper operations of the LMS and RLS based 

algorithms require that a clean reference signal be provided.  

 
In general, beamforming algorithms can be categorized into two classes, 

as shown in Figure 3-1, namely non-blind and blind algorithms. In the case of 

non-blind adaptive algorithms, a reference signal is used in the process of 

adjusting the array weights. On the other hand, no reference signal is used in 

blind adaptive algorithms. However, when compared with their non-blind 

counterparts, these algorithms tend to be more computation intensive, and 

often provide lower accuracy and slower convergence rate [24, 35]. Adaptive 

array beamforming has been adopted in some recently launched cellular 

systems, such as worldwide interoperability for microwave access (WiMAX) 

[3], and long term evolution (LTE) [5]. For these systems, a reference signal 

is already available in the form of a pre-ample sequence [36]. As such, the 

use of a non-blind algorithm for the array beamformer is thus an appropriate 

choice.  

 

3.2 Non-Blind Algorithms 

With non-blind algorithms, the weights of the array beamformer are 

usually adapted according to a specified criterion, such as minimization of 

mean square error (MMSE), or maximization of the signal to interference plus 

noise signal (MSINR). An error signal, produced by comparing the output 

signal with a reference signal, is used to iteratively adjust the weights of the 

beamformer to their optimal values, optW , so as to obtain the minimum MSE 
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[37]. The trained algorithms could be classified according to their adaptive 

criterion: least-mean squares method (LMS), sample matrix inversion (SMI) 

or least-squares method (LS), and recursive least-squares method (RLS) [38, 

39]. 

 

 

 

 
Figure  3-1  General classification of adaptive algorithms with some examples 

 
 
 
 

3.2.1 LMS algorithm  

The LMS algorithm was first proposed by Widrow and Hoff in [40] as an 

implementation of the steepest-descent based approach [41] to estimate the 

gradient of the error signal. It is computationally efficient, but is a bit slow in 
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convergence [34]. Also, its convergence is dependant on the eigenvalue 

spread variation of the input signal [6]. When an LMS algorithm is adopted in 

the implementation of an N-element array, the computation cost is in the 

order of (2 1)O N +  multiplications [41].  

 
Consider the LMS adaptive array as shown in Figure 3-2 [42]. According 

to the method of steepest-descent, the updating of the weight vector is 

carried out in such a way that minimises the error signal, given by 

                                        ( ) ( ) ( )e n d n y n= −                                            (3.1) 

where ( )d n  is the zero-mean reference signal, and ( )y n  is the output 

signal of the beamformer, such that 

( ) ( ) ( )Hy n n n= W X                                          (3.2) 

 

( )d n
( )e n

1w

2w

Nw

1x

2x

Nx

( )y n

 

Figure  3-2  An LMS Adaptive Array 
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where ( )nX  is a N×1 complex vector of the received signal, which is 

assumed to have zero mean; ( )nW  is the complex weight vector having the 

same size as ( )nX , and ( )H
i  denotes the Hermitian (i.e., transpose and 

conjugate) matrix of ( )i . 

 
For the LMS algorithm, the weight vector ( )nW  is adjusted based on the 

minimization of the cost function 

2( ) E ( )n e nξ  =                                               (3.3) 

where [ ]E  stands for the expectation operator. 

 
Now, from equations (3.1) and (3.2), we can rewrite equation (3.3) as 

( ) ( )

( )( )

22

2

( ) E ( ) ( ) E ( ) ( ) ( )

E ( ) ( ) ( ) ( ) ( ) ( )

E ( ) ( ) ( ) ( ) ( ) ( ) ( )

H

H H

H H H

n d n y n d n n n

d n n n d n n n

d n n n n n n n

ξ

∗

  = − = −    

 = − −
 

 = − − +
 

W X

W X X W

Z W W Z W Q W

         (3.4)                  

where * stands for conjugate operator, ( )nZ  corresponds to the input 

signal cross-correlation vector given by  

( ) E ( ) ( )n d n n∗ =  Z X                                        (3.5) 

and ( )nQ  is an N N×  correlation matrix of the input signals, that is         

( ) E ( ) ( )Hn n n =  Q X X                                       (3.6) 

Equation (3.4) represents a quadratic cost function involving the weight 

vector W . Hence, for the cost function of equation (3.3) to be minimized, we 

differentiate equation (3.4) with respect to HW  to obtain  
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( ) 2
( ) E ( ) 2 2 optH
n e nξ ∂  ∇ = = − +

 ∂
Z QW

W
                        (3.7) 

As a result, the optimal W  is obtained when 

0opt− + =Z QW                                          (3.8) 

or equivalently 

opt =QW Z                                             (3.9) 

Equation (3.9) is called the Wiener-Hopf equation. Multiplying both sides of 

the equation (3.9) by -1Q , the inverse of the correlation matrix, we obtain the 

optimal weight vector as 

1
1opt

−=W Q Z                                             (3.10)                 

Equation (3.10) shows that the computation of the optimum weight vector 

optW  would require knowledge of the correlation matrix Q  of the input data 

vector ( )nX , and the cross-correlation vector Z , between the input data 

vector ( )nX  and the reference signal ( )d n . Moreover, the main 

disadvantage of using equation (3.10) to obtain the optimal weight vector is 

the complexity of obtaining the inverse of the covariance matrix Q , 

particularly for the case involving a large number of antenna elements. It is 

also possible that the covariance matrix Q  may be singular or ill-conditioned.  

 
A more attractive way to find optW  is to use an iterative approach, in which 

the weight vector is updated according to [19] 

( )( 1) ( ) ( )n n nµ ξ+ = −W W ∇∇∇∇                                  (3.11) 

where µ  is a small constant, usually referred to as the step size. 

By substituting equation (3.7) into equation (3.11), we obtain 

[ ]( 1) ( ) ( ) ( ) ( )n n n n nµ+ = − −W W Q W Z                          (3.12) 
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Until now, the correlation matrix Q  and the cross correlation Z  are assumed 

well known. In real world applications, the exact values of these quantities 

are not available. Therefore, these two quantities have to be estimated from 

available signals; i.e., based on current samples. The LMS criterion [43] 

makes use of simplified estimations of Q  and Z , such that 

( ) ( ) ( )

( ) ( ) ( )

Hn n n

n d n n∗

=

=

Q X X

Z X
                                       (3.13) 

With these approximations, equation (3.7) becomes 

( )

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

H

H

n n n n d n n

n n n d n

e n n

ξ ∗

∗

∗

= −

= −

= −

X X W X

X X W

X

∇∇∇∇

                   (3.14) 

Form equations (3.14) and (3.12), the LMS algorithm may be defined as 

*

( ) ( ) ( )

( ) ( ) ( )

( 1) ( ) ( ) ( )

Hy n n n

e n d n y n

n n e n nµ

=

= −

+ = +

W X

W W X

                               (3.15) 

 

 

3.2.2  LMS family of algorithms 

The low computation complexity and robustness of the LMS algorithm 

have made it very popular in various applications, including adaptive antenna 

arrays.  However, with an LMS algorithm, it is not possible to enhance both 

the convergence speed and lower the steady state error floor simultaneously 

[44]. This is due to the fact that when a larger step size is chosen, the 

algorithm converges quicker but with a larger residual error floor. On the 

other hand, the use of a smaller step will lead to slower convergence and 

lower steady state error floor. Since then, many modifications have been 

proposed in the literature to try to overcome the compromise between 

convergence speed and error floor of the conventional LMS algorithm. Most 
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of these modified LMS algorithms make use of some criteria to regulate the 

step size value. For example, an initial large adaptation step size could be 

used to speed up the convergence. When close to the steady state, smaller 

step sizes are then introduced to decrease the level of adjustment, hence 

maintaining a low error floor. Table 3-1 tabulates some of the modified 

algorithms belonging to the LMS family of algorithms, and the criteria used in 

calculating the step sizes.  

 

Table  3-1  Some of the LMS family of algorithms 

Category Algorithm Reference Step Size Criteria 
Complexity of 

Step size 
calculation 

Conventional 
LMS LMS [45] Constant Step Size N multiplications 

Transform 
Domain DCT and DFT [46, 47] 

Ortho-transformation of 
X  

N multiplications 

NLMS [41, 48-51] 2( )x nσ and 2 ( )W nσ  
N+2 multiplications 

5 divisions 
4 additions  

KLMS [48] 2( )x nσ and ( )e n  
N+1 multiplications 

2 divisions 
1 additions 

Adaptive Step 
Size 

Affine LMS [52, 53] 2( )x nσ , 2 ( )W nσ  and 2
nσ  N+2 multiplications 

1 divisions 

[54, 55] 2( )e n  
N+5 multiplications 

1 divisions 
1 additions 

[10, 56]  2( )eR n  8N multiplications 
3 additions 

[57] 
2( )eR n  for all N Lags 

errors 

8N multiplications 
3N additions 

Error based step 
size adaptation 

[58] ( ( ))sign e n  2N multiplications  
2 additions 

[59, 60] eX  N+2 multiplications 
1 additions  Error and Input 

Signal based 
step size 

adaptation [61-63] 
( ) ( 1)

( 1) ( )H

e n e n

n n

− ×

−X X
 N+3 multiplications 

1 additions  

Error, Input 
Signal, and 

Weights based 
step size 

adaptation 

[9] 

( ) ( )

( 1)

n n

n

δ =
− −

W W

W
 

[ ] [ ]

[ ]
( ) ( )

( 1)

n n

n

e n e n

e n

δ =

− −
 

N multiplications  
1 divisions 
2 additions  
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3.2.2.1 Normalized least mean square algorithm 

In normalized least mean square algorithm (NLMS) [64], the step size µ  

is adjusted in accordance with the input signal power, which is estimated 

according to the power of the input signal through the autocorrelation of the 

signal [49, 50]. In [41, 48], the step size µ  at thn  iteration is given by  

 N
2

( )
( ) ( )H

n
n n

γµ =
X X

                                      (3.16) 

where Nγ  is a convergence factor in the range (0,1) introduced to insure 

the stability of the algorithm.  

 

Another form of the NLMS to improve the convergence rate of the 

algorithm is presented in [51]. In this case, the convergence factor, Nγ , is 

updated according to 

N,max N N,max

N N,min N N,min

N

( 1)

( 1) ( 1)

( 1)

if n

n if n

n otherwise

γ γ γ
γ γ γ γ

γ

′ + >
 ′+ = + <
 ′ +

                     (3.17) 

where N,max 1γ =  is chosen to assure fast convergence, N,minγ  is a fixed 

value specified to avoid too slow a convergence, and N ( 1)nγ ′ +  is calculated 

for the first element, 1x , of the input signal vector, ( )nX , as 

N 2
1

( 1)
( 1)

( 1)

2
eyR n

n
x n

γ
+

′ + =
+

                                      (3.18)   

 where 2
eyR  is the square of the cross-correlation between the output 

signal, ( )y n , and the error signal, ( )e n . ( 1)2
eyR n + and 2

1 ( 1)x n +  are updated 

according to 

2
N( 1) ( ) ( ) ( )2 2

ey eyR n R n e n y nη ε+ = +                              (3.19) 

 2 2 2
1 N 1 1( 1) ( ) ( )x n x n x nη ε+ = +                                  (3.20) 
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where ε  and Nη  are constants, the values of which are related to the 

number of the signal snapshot, k . For example, 1
kε = , and N 1η ε≤ − .  

 
In [48], yet another form of NLMS is proposed by combining the classical 

Kalman algorithm with the previous NLMS algorithm in an attempt to improve  

the stability of the latter. In this case, the step size is updated based on both 

the input signal and the weights variation, such that   

2 2

1
( )

( ) ( )x v W

n
n q n

µ
σ σ

=
+

,                                  (3.21) 

( )2 2 2 2( 1) ( ) 1 ( ) ( )W W x nn n n n Nσ σ µ σ σ+ = − +                        (3.22) 

where 2 H
xσ = X X ,  is the time varying estimation of the input signal 

power, 2
Wσ  is the weight variance, 2

nσ  is the AWGN noise power, and vq  is a 

constant.    

 
It is shown in [50] that the NLMS algorithm potentially converges faster 

than the conventional LMS algorithm because its parameters have been very 

carefully chosen, based on the statistics of a given input signal. Furthermore, 

the algorithm used for updating its step size, as given in equations (3.21) and 

(3.22), has a higher noise immunity than that presented earlier in equations 

(3.18) and (3.20). 

 
From equations (3.16), (3.19), (3.20), (3.21) and (3.22), it is quite obvious 

that the convergence of the NLMS algorithm is highly influenced by the 

proper choice of many parameters [48]. In addition, it also performs poorly 

when the input signal power is low [48]. 

 

 

3.2.2.2 Affine combination of two LMS algorithms 

It is proposed in [52, 53] that the outputs of two LMS algorithm stages, 

operating in parallel but with two different step size values, are linearly 
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combined together to form a final output. In this way, the output is able to 

converge quicker while reducing the steady-state excess mean-square error 

(EMSE). One such scheme is shown in Figure 3-3, in which two LMS stages 

operate independently with two different fixed step sizes. As shown, the top 

LMS stage is operating with a large step size, tµ , and the bottom LMS stage 

makes use of a smaller step size, bµ . These step size values are obtained 

according to  

( ) 2
max

1
t

x

b r t

N
µ

µ σ

µ µ µ

=
+

=

                                        (3.23) 

where maxµ  represents the LMS step size for maximum convergence rate 

and rµ  controls the ratio between tµ  and bµ . Stable operation of the 

algorithm is achieved whenever 0 1rµ< <  [52]. 
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Figure  3-3   An affine combination of two LMS algorithm stages as proposed 

in [52] 
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The overall output, ( )y n ,  is the affine combination of the individual 

outputs 1( )y n  and 2( )y n  of the two LMS stages, such that 

1 2( ) ( ) ( ) 1 ( ) ( )p py n c n y n c n y n = + −                              (3.24) 

where ( )pc n  is a combination parameter that can be updated using either 

a stochastic gradient method or an error power based scheme [52]. 

 

• Stochastic gradient method for updating ( )pc n : 

With this method, ( )pc n  is updated based upon a stochastic 

gradient search for the optimal ( )pc n , so that 

( 1) ( ) ( ) ( ) ( ) ( ) ( )H H
p p c tb tbc n c n d n n n n nµ  + = + − 

ɶW X W X          (3.25) 

       where cµ  is the adaptation step size of the combination 

parameter, and 

( ) ( ) ( ) 1 ( ) ( )tb p t p bn c n n c n n = + − 
ɶW W W                      (3.26) 

where tW  and bW  are two different weight vector sets of 

length N  each. ( )tb nW  is given by 

 ( ) ( ) ( )tb t bn n n= −W W W                                  (3.27) 

Note that ( )pc n  obtained from the linear first order equation 

(3.25) is a scalar parameter. Moreover, a tradeoff between the 

stability and the tracking capability of the algorithm depends on 

the choice of cµ . With 1cµ < , the operation of the algorithm is 

stable. However, the use of such a small value of cµ  is not 

efficient to track the adaptation of ( )t nW  and ( )b nW . The step 

size, cµ , is also a function of the input signal to noise ratio 

(SNR), in which a larger SNR is associated with a larger cµ , and 
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vice versa. This suggests that a proper choice of cµ  can only be 

made when an accurate estimate of the noise power could be 

obtained [52]. 

 

• Error power based scheme for updating ( )pc n : 

As discussed earlier, the ability to accurately estimate the value 

of cµ  places a limit on the usefulness of the stochastic gradient 

method. In order to avoid the need for an accurate estimate of 

the noise power, which affects the choice of cµ , an error based 

method is used to update ( )pc n . In this case, ( )pc n  is 

calculated as a function of time averaged error powers of each 

of the two adaptive outputs, such that 

2

2

( )
( 1) k erf

( )
t

p
b

e n
c n

e n

   + =       

ɶ

ɶ
                              (3.28) 

  where ( )te nɶ  and ( )be nɶ  are the time average of the 

instantaneous error signals of the two individual LMS stages. The 

constants maxµ  and rµ  are as defined in equation (3.23), and k  

is a parameter given by 

 ( )k =1-
2 -1

r

r

µ
µ

                                      (3.29)     

Note that the errors teɶ  and beɶ  associated with equation (3.28) are 

readily available and do not need the estimation of the additive 

noise power.  

 

In general, the calculation of ( )pc n  with either equation (3.25) or equation  

(3.28) calls for at least 3 + 6N  multiplications, +1N  divisions and 8 additions, 

where N  is the number of array elements [65]. As such, the use of an affine 

combination of two LMS algorithm would require 2 + 7 +12N N  multiplications, 
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+ 2N  divisions and 2 +13N  additions. Furthermore, it is observed that the 

resultant MSE at steady state worsens with an increase in the number of 

elements, N  [65]. Moreover, the results presented in [52] show that the 

operation of the affine combination of two LMS algorithms is very sensitive to 

the choice of the combination parameter pc  used, which in turn is dependent 

on the real signal signatures. 

 
 

3.2.2.3 VSSLMS algorithms 

With variable step size LMS (VSSLMS) algorithms, a large step size is 

initially used to accelerate the convergence rate. Then, as the algorithm 

approaches closer to the steady state, the step size is gradually reduced in 

order to achieve a lower residual error floor [10]. The update of the step size 

during iterations is normally carried out according to some signal parameters, 

such as signal power, error signal magnitude, or cross correlation of the error 

and input signals [61]. The strategies adopted for updating the step size in 

some recently published VSSLMS algorithms are discussed next. 

 
The gradient adaptive VSSLMS algorithms proposed in [59, 60] make use 

of a time varying convergence parameter based on the cross-correlation 

between the input signal and the adaptation error, to adjust the step size 

value. A high correlation will result in a large step size and vice versa. For all 

these algorithms, the step size is updated a according to 

2
( 1) ( )f

x

s
n nµ ρ

σ
+ =                                          (3.30) 

and  

( )( ) ( 1) 1 ( ) ( )n n x n e nρ αρ α= − + − ɶ                               (3.31) 

where 2
xσ  is the input signal power as defined in equation (3.21), α   is a 

forgetting factor, fs  is the scaling factor, and ( )e n  is the error given in 
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equation (3.15), ( )x nɶ  is the average of the input signal samples obtained 

from all the N antenna elements, and is defined as  

1

1
( ) ( )

N

i
i

x n x n
N =

= ∑ɶ                                          (3.32) 

One major drawback of these algorithms is their complexity, that could 

become too high for use in some applications, such as array beamforming 

[65]. Therefore, in order to simplify the implementation of equation (3.30), 

Kwong and Johnston [54], modify the equation so that it is only based on the 

estimated error between the algorithm output and the reference signal. For 

example, the step size adaptation process is based on  

2( 1) ( ) ( )n n e nµ αµ γ+ = +                                       (3.33) 

     with 0 1γ< < , and 

max max

min min

; if ( 1)

( 1) ; if ( 1)

( 1)

n

n n

n

µ µ µ
µ µ µ µ

µ

+ >
+ = + <
 +

                              (3.34) 

where maxµ  and minµ  are the upper and lower bounds of the step size µ , 

respectively. Initially, the algorithm begins with the step size maxµ  , which is 

the maximum allowable value for the MSE to remain stable. maxµ is given in 

[66] as   

max
2

3 ( )tr
µ ≤

Q
,                                           (3.35) 

where ( )tr i  denotes the trace of the matrix ( )i . 

 

Note that equation (3.33) has the same form as equation (3.16). The two 

differ in that the former updates the step size based on the last step size 

value, while the latter, updates the step size based on the current signal 

information and the previous error.  
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The VSSLMS algorithm described above is highly sensitive to the additive 

noise, hence its performance deteriorates at low SNR [57]. Also, the 

performance of the algorithm is highly dependent on the choice of 

parameters, which in turn are influenced by input data [61]. Therefore, to 

overcome some of these limitations, another form of VSSLMS algorithm has 

been proposed in [61] that is less sensitive to sudden changes in the error 

level. In this case, step size adaptation is carried out based on the 

covariance of two successive error and input signal samples as given below: 

( 1) ( ) ( ) ( 1) ( 1) ( )Hn n e n e n n nµ µ α+ = + − −X X                      (3.36) 

 
From the results published in [61], the constant α  should be chosen 

within the range of 710−  to 410−  in order to ensure convergence of the 

algorithm. It is proposed in [62] that equation (3.36) may be simplified by 

taking only the real part of its second term to yield 

{ }( 1) ( ) ( ) ( 1) ( 1) ( )Hn n e n e n n nµ µ α+ = + ℜ − −X X                   (3.37) 

Despite the modifications, the algorithm is still suffering from degradation at 

high noise levels [57, 67]. At low SNR condition, it is necessary to keep the 

adaptation parameter α  used to update the step size small, and this in turn 

will slow down the convergence speed [44, 62]. 

 
In an attempt to overcome the slow convergence rate, Tyseer A. and K. 

Mayyas published in [56] a modification to the VSSLMS algorithm proposed 

by Kwong [54]. It involves the use of the square of a time-averaged estimate 

of the autocorrelation ( 2( )eR n ) of successive error samples, instead of 2( )e n , 

to control the step size, so that 

2( 1) ( ) ( )en n R nµ αµ γ+ = +                                     (3.38) 

( 1) ( ) (1 ) ( 1) ( )e eR n R n e n e nβ β+ = + − +                           (3.39) 

where the parameters α  and γ , which are as defined in equation (3.33), 

are constants chosen to be equal to 0.97, 310− , respectively, and 0.99β = ,  
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the same values as given in [56]. With this algorithm, it is assumed that the 

noise samples are non-correlated. However, for some applications, where 

the input data is correlated, the autocorrelation function between ( )e n  and 

( 1)e n −  is a poor indicator of convergence closeness. This may result in the 

use of a smaller step size, which will in turn affect the convergence rate [57]. 

Also, the steady state errors associated with the above algorithms tend to 

increase in the presence of uncertain measurement noise [68], thus limiting 

their applications [69]. 

 
The convergence rate and noise immunity of the above algorithm could 

be improved by calculating the autocorrelation of successive error samples 

based on all past M errors [57], such that 

[ ]2

1

( 1) ( ) (1 ) ( ) ( )
M

e e
i

R n R n e n e n iβ β
=

+ = + − −∑                       (3.40) 

The updating of the step size is the same as that of equation (3.38). Here, 

the values of α  and β  are as given in [54, 56], while γ  takes on the value of 

62 10−× . It is shown in [57] that the performance, in terms of convergence 

rate and excess MSE, of this algorithm is superior to that obtained in [54] and 

[56]. However, this is achieved at the expense of a large increase in 

computation complexity. 

 
More recently, the modified robust variable step size (MRVSS) algorithm, 

has been proposed in [10] to further improve both the noise immunity and 

tracking ability of the robust VSSLMS algorithms (RVSS) presented in [54] 

and [56]. In this case, the step size ,µ  is updated according to  

max max

min min

2

; if ( 1)

( 1) ; if ( 1)

( ) ( )e

n

n n

n R n

µ µ µ
µ µ µ µ

αµ γ

 + >


+ = + <
 +

                          (3.41) 

with  

( 1) (1 ( )) ( ) ( ) ( ) ( 1)e eR n e n R n e n e j e n+ = − + −ɶ ɶ                        (3.42) 
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and  

max max

min min

2

; if ( 1)

( 1) ; if ( 1)

( ) ( )e

e e n e

e n e e n e

e n e nη υ

 + >


+ = + <
 +

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ

                           (3.43) 

where 0 1,eη< <  and 0 1υ< < . eɶ  is the time average of  the square of the  

error signal with its upper and lower bounds given by maxeɶ  and mineɶ , 

respectively. It is used to control the effect of the instantaneous error 

correlation ( eR ). The use of the MRVSS algorithm requires five different 

parameters to be specified. The values of these parameters depend on 

particular system environments. 

  

For all the different versions of the VSS algorithm discussed above, the 

magnitude of the estimated error plays a significant role in the step size 

adaptation process. Moreover, in the sign variable step size (SVSS) 

algorithm proposed in [58] only the sign of the error signal, ( )e n , is 

considered for updating the step size, such that 

exp( 1) ( ) ( ( ))n n sign e nµ α µ γ+ = +                               (3.44) 

where expα  is an exponential forgetting constant with exp0 1α< < , and γ  is 

a small positive constant that governs the amount of the adaptation of the 

step size. According to equation (3.44), the step size will be increased by an 

amount of γ  in the case of a positive estimation error (underestimation), and 

vice versa. To ensure stability, the step size is only allowed to take on values 

within the range set by maxµ  and minµ . 

 

Thus far, we have shown that step size values are adapted in proportion 

to either the error signal or the input signal samples, or both. In the algorithm 

known as normalized square VSSLMS (NSVSSLMS) [69], however, the step 

size is adjusted based on the normalized square Euclidean norm of the 

smoothed gradient vector ( ( )nɶg ), given by 



 43 

{ }
2

2
2

2 2

( ) ( 1) (1 ) ( ) ( )

( )
( )

( ) ( )x

n n e n n

n
n

N e n n

α α

γ
µ

σ

= − + −

=
 + 

ɶ ɶ

ɶ

g g X

g                              (3.45) 

where 2
xσ  is the time varying estimation of the input signal power, 

2

2
i  

denotes the squared Euclidean norm operator, and α  and γ  are as defined 

in equation (3.44). The choice of α  and γ  depends on the input signal 

conditions. 

 
Since its steady state MSE is independent of noise, this algorithm is 

robust when operating in a nonstationary environment. However, on the other 

hand, its performance is highly dependent on the choice of α  used which in 

turns depends on the required error floor. The complexity of the algorithm is 

much higher than that of the conventional LMS algorithm. For each step size 

iteration, it requires 4 2+ + 2 + 7N N N  multiplications, one division and 2 + 2N  

additions, where N  is the number of antenna elements. 

 

 

3.2.2.4 Transform domain algorithms 

The convergence rate of the LMS based algorithms considered thus far 

will degrade when the input samples are highly correlated [46]. To overcome 

this problem and as an alternative method to achieve higher convergence 

speed, LMS based algorithms may be implemented in the frequency domain 

[47] using a unitary orthogonal transformation. There are many 

transformations discussed in the literature, such as discrete Fourier transform 

(DFT), discrete cosine transform (DCT) [47], and discrete Walsh transform 

(DWT) [46]. However, these transform based algorithms are significantly 

more complex than the conventional LMS algorithm [70]. However, the 

complexity may be reduced using a scheme of partial coefficient updates [71, 

72], which assumes that the output signal samples from the orthogonal 

transform are statistically independent. On the other hand, in the case of the 

transform domain LMS (TDLMS) algorithm, these samples could be highly 
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correlated. In this case, a high order hyperelliptic integral must be used which 

is going to lead to even greater complexity [73].  

 

An accurate stochastic model is presented in [73] to simplify the high 

order hyperelliptic integrals for use in the estimation of the inverse of the 

time-varying power normalization parameter matrix 1ˆ ( )n−D . Generally, for the 

TDLMS algorithm, the weight vector is updated according to 

1ˆ( 1) ( ) 2 ( ) ( ) ( )n n n e n nµ−+ = +W W D X                           (3.46) 

where the error ( )e n  is given by 

( ) ( ) ( ) ( ) ( )He n d n n n z n= − +W X                               (3.47) 

In equation (3.47), ( )z n  represents the measurement noise which is 

independent and identically distributed (iid) with zero mean and variance of 

2
zσ , and ˆ ( )nD  is given by 

2
0

2
1

ˆ 0
ˆ ( )

ˆ0

r

N r

n

σ ε

σ ε−

 +
 

=  
 + 

⋯

⋮ ⋱ ⋮

⋯

D                               (3.48) 

where 2ˆiσ  is the estimated power of the thi  output signal of the 

transformation block and rε  is a small positive constant (regularization 

parameter) which is used to avoid possible division by zero during the 

process of matrix inversion of ˆ ( )nD . 

 
It is noted in [73] that the computation of 1ˆ ( )n−D , the inverse of ˆ ( )nD , will 

require approximately 4 2+ + 4N N  multiplications. Moreover, the choice of 

the constant rε  is also becoming difficult when the input signal power is very 

low. Under such an operating condition, the output signal will not be a reliable 

estimate of the required signal. Also, from the results presented in [74], the 

beamwidth of the resultant beam pattern obtained with a transformed domain 

algorithm is wider than that of a standard LMS algorithm. This in turn will lead 
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to a decrease in signal to interference ratio (SIR) when the interfering signals 

are arriving from directions close to that of the desired signal. 

 

 

3.2.2.5 Variable tap weight length LMS algorithm 

Another way of reducing the complexity of VSSLMS algorithms is to vary 

the number of tap weights. However, an underestimate of the tap length may 

increase the error floor. It is therefore necessary to find an appropriate tap 

length which will result in a balanced trade off between complexity and error 

convergence [63]. In these kinds of algorithms, the length of the tap weights 

can be adjusted based on different criteria. For example, in the algorithm 

presented in [75], the tap length is divided into several segments, and the 

actual number of taps used is adjusted by adding or removing one segment 

at a time based on the error level. In this case, the step size used for weight 

update is fixed. Alternatively, for the algorithm presented in [63], both the 

step size and the tap length are updated simultaneously at each iteration. For 

this algorithm, the step size value is proportional to the ratio between the 

excess mean square error and the MSE. 

 

 

3.2.2.6 Constrained stability LMS algorithm (CSLMS) 

Another technique to improve the performance of an LMS algorithm, 

called the constrained stability LMS algorithm (CSLMS), has been proposed 

in [9] for enhancing the performance of the LMS algorithm. Similar to the 

NSVSSLMS, as represented by equation (3.45), CSLMS is also based on the 

minimization of the squared Euclidean norm of the weight vector under a 

stability constraint over the posterior estimation errors. This approach 

introduces a nonlinear relationship between the input data vector and the 

error sequence, rather than optimizing the step size for updating the weight 

vector. In other words, the adaptation process is used to arrive at a solution 

to a constrained optimization problem (to smooth the error sequences), by 

making use of Lagrangian formulation to minimize the norm of the difference 
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between two consecutive weight vectors ( ( )nδ W ). The weight adaptation 

process is based on the following: 

[ ]( )2
( 1) ( ) ( ) ( )

( )

n

cs

n n n e n
n

µ δ δ
δ ε

∗
+ = +

+
W W X

W
                 (3.49) 

where csε  is a small constant introduced to avoid possible division by 

zero. The variables ( )nδ W , ( )nδ X , [ ]( )ne nδ  and [ ]( )ke n  are given by 

( ) ( ) ( 1)n n nδ = − −W W W                                     (3.50) 

( ) ( ) ( 1)n n nδ = − −X X X                                      (3.51) 

[ ] [ ] [ ]( ) ( ) ( 1)n n ne n e n e nδ = − −                                   (3.52) 

[ ]( ) ( ) ( ) ( )k He n d n k n= −W X                                   (3.53) 

 
The adaptation process of the CSLMS algorithm is performed using the 

knowledge of the estimated error, weight and the input signal. Unlike the 

VSSLMS algorithms, the CSLMS algorithm does not require many 

parameters to be specified. On the other hand, however, it does require a 

large amount of memory for storing past weight and input signal vectors, as 

well as the past errors. 

 
 
 

3.2.2.7 Least mean square-least mean square (LLMS) algorithm 

A novel method for improving the convergence rate, as well as reducing 

the steady state error of a conventional LMS algorithm, is proposed in this 

thesis. This technique makes use of two LMS algorithm stages connected in 

series via an array vector. This new algorithm is called the LLMS algorithm. It 

will be described and analyzed in detail in Chapter 5. 
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3.3 Family of Recursive Least-Squares (RLS) Algorithms 

Unlike the LMS algorithm which makes use of the steepest descent 

method to obtain the complex weight vector, the recursive least-squares 

(RLS) algorithm uses the method of least squares to adjust the weight vector 

[34, 76]. With the method of least squares, the weight vector is chosen based 

on the recursive minimization of the cost function, which consists of the sum 

of error squares over a specified window [77]. For an RLS algorithm, the 

weight vector is obtained by minimizing the following cost function [78] 

2
RLS

1

( ) ( )
n

n i

i

n e n iξ α −

=
= −∑                                      (3.54) 

where ( )e n  is the error signal as defined in equation (3.1),  and 

RLS0 1α< ≤  is the exponential weighted factor called the forgetting factor, 

which gives exponentially less influence to the older error samples [78].  

 
Note that the process of minimizing the cost function given in equation 

(3.54) is equivalent to finding the derivative of equation (3.54) with respect to 

( )nW  and setting the result to zero. The final result is known as the normal 

equation [67] , which is expressed as 

1( ) ( ) ( )n n n−=W Q Z                                         (3.55) 

where ( )nQ  is the approximation at time n  of the input signal auto-

correlation matrix given by 

RLS
1

( ) ( ) ( )
n

n i H

i

n n nα −

=
=∑Q X X                                     (3.56) 

and ( )nZ  is the approximation at time n  of the cross-correlation vector 

between the input signal and the reference signal ( )d n∗   

RLS
1

( ) ( ) ( )
n

n i

i

n n d nα − ∗

=
=∑Z X                                       (3.57) 

The recursive expression for updating the least square solution for ( )nQ  and 

( )nZ  can be written as 
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RLS( ) ( 1) ( ) ( )Hn n n nα= − +Q Q X X                              (3.58) 

RLS( ) ( 1) ( ) ( )n n n d nα ∗= − +Z Z X                               (3.59) 

 
Applying the inversion lemma [79, 80] for equation (3.58), we obtain  

-2 -1 -1
-1 -1 -1 RLS

RLS -1 -1
RLS

( 1) ( ) ( ) ( 1)
( ) ( 1)

1 ( ) ( 1) ( )

H

H

n n n n
n n

n n n

αα
α

− −= − −
+ −
Q X X Q

Q Q
X Q X

          (3.60) 

where -1Q  is initialized by 1δ − I , with δ  being a small positive constant, 

and I  is an N N×  unity matrix. Substituting equations (3.59) and (3.60) in 

equation (3.55) yields 

( )
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        (3.61) 

Rearranging equation (3.61), yields 

( )
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RLS
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        (3.62) 

Using equation (3.55) to replace the first term on the right hand side (RHS) of 

equation (3.62) yields  

( ) ( 1) ( ) ( ) ( )n n n n e n= − +W W K X                               (3.63) 

where ( )nK  is the gain matrix given by 

-1 -1
RLS

-1 -1
RLS

( 1)
( )

1 ( 1) ( )H

n
n

(n) n n

α
α

−=
+ + −

Q
K

X Q X
                         (3.64) 

and ( )e n  is the a priori error such that 
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( ) ( ) ( 1) ( )He n d n n n∗= − −W X                                 (3.65) 

Equations (3.63), (3.64) and (3.65) form the updating procedure for the RLS 

algorithm. An explanation on how to use these equations for simulating the 

RLS algorithm is given in Appendix A.  

 
As shown in [81], the convergence speed of the RLS algorithm is about 

10 times faster than that of the LMS algorithm. However, this is achieved at 

the expense of much greater complexity for the RLS algorithm, involving 

24 4 2N N+ +  complex multiplications where N  is the number of antenna 

elements. Moreover, the superior performance of the RLS algorithm has 

motivated many researchers to search for ways to reduce the complexity of 

the RLS algorithm. Some of these techniques are: 

• A Fast A posteriori Error Sequential Technique (FAEST) for sequential 

least-squares (LS) estimation is presented by Carayannis et al [82]. In 

this algorithm, the alternative Kalman gain, ( )nK , and a posteriori 

errors are used for updating the weight vector, ( )nW , instead of the 

( )n∗K  and a priori errors as used in the original RLS algorithm. Such a 

modification reduces the complexity of the algorithm to only 7N  

multiplications.  

• The correlation matrix, ( )nQ , of the input signal is replaced by a 

diagonal matrix whose elements are equal to the diagonal of the 

correlation matrix [81]. As a result, the inverse of the matrix ( )nP  can 

be obtained from the inverse of its diagonal elements, i.e., 

( )X diag=D Q , where ( )diag  is the diagonal of the matrix. The 

modified algorithm is called the fast RLS algorithm (FRLS), which has 

a complexity comparable to that of the LMS algorithm. 

• Splitting the RLS algorithm into several independent RLS sub-

algorithms, as in the Hierarchical RLS (HRLS) algorithm proposed by 

Woo [83]. The idea here is to minimize the MSE of individual RLS sub 

algorithms. The complexity of the HRLS algorithm is equal to N ×  
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number of sub-groups, where the number of sub-groups is less than 

N . In [61], Minglu proposes the partial updating RLS algorithm 

(PURLS), which has even less complexity than the HRLS algorithm. 

With the PURLS algorithm, the adaptation blocks operate in an 

alternate fashion with each sub-group being updated partially, while 

those in the HRLS algorithm are operating simultaneously. As the 

adaptation process is being operated upon by only one of the sub-

groups, the computation complexity of PURLS is reduced even more. 

• The use of fast Euclidian direction search (FEDR) and recursive 

adaptive matching pursuit (RAMP) to arrive at a tradeoff between 

complexity and performance. For both the FEDR and RAMP 

algorithms, the updating process is performed for only one element of 

the weight vector at a time. The difference between these algorithms 

is in the way the index of the element of ( )nW  is being selected [84]. 

The complexity, however, depends on the number of elements used. 

  

FRLS algorithms are known to suffer from an instability problem due to 

finite numerical precision which may give rise to a sudden divergence of the 

error signal. Several techniques have been proposed to handle this problem. 

Kim and Powers [85] examined the sources of the numerical instabilities and 

statistical properties of the FRLS algorithms. They then proposed a modified 

FRLS algorithm with soft constrained initialization parameters. These 

parameters are: initialization of the input signal vector with zero value, and 

adding a small constant of δ I  to the correlation matrix with 0.0001δ = . 

 

By incorporating the various techniques in an attempt to reduce the 

complexity of the RLS algorithm, the resultant modified algorithms tend to 

yield lesser performance and may encounter possible numerical instability 

[83, 84]. Over the past two decades, various RLS based algorithms have 

been proposed and some of these algorithms are presented in [85-87]. 
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A drawback of the RLS algorithm is its lack of tracking ability [88]. To 

overcome this problem, Song and Sung [89] proposed a scheme called the 

adaptive forgetting factor RLS algorithm (AFFRLS) with which the weight 

vector is updated based on the gradient of the cost function with respect to 

the forgetting factor RLSα . The adaptation algorithm is based on equations 

(3.60) and (3.63) - (3.65) plus the following: 

RLS

1 ( ) ( ) 1 ( ) ( )
( ) ( 1) ( )
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H Hn n n n
n n n
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K X K X
S S P          (3.66) 
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RLS RLS( ) ( 1) ( 1) ( ) ( )Hn n e n n e n

α

α
α α γ ∗= − + ℜ − Xψψψψ                 (3.68) 

where -1( ) ( )n n=P Q  is the inverse of the covariance matrix, 
RLS

( )
( )

n
n

δ
δα

= P
S  

is a matrix of size ( N N× ), 
RLS

( )
( )

n
n

δ
δα

= Wψψψψ , and γ  is a small positive value 

used to govern the convergence rate of the forgetting factor. maxα  and minα  

denote the upper and lower limits of the adaptive forgetting factor. The 

AFFRLS algorithm shows improved tracking performance over the 

conventional RLS. This is achieved with an increase in complexity of 

22 3.5N N+  multiplications over the RLS algorithm. However, the AFFRLS 

algorithm suffers from a gradient noise amplification problem [90]. 

 

An improved AFFRLS algorithm has been proposed in [90]. It has been 

developed using the analogy between the NLMS and AFFRLS algorithms. 

Hence, it is known as the NAFFRLS algorithm. It makes use of the updating 

parameters associated with a new algorithm for updating the forgetting factor 

such that 
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{ } max
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H
n n n n e n
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    (3.69) 

As it can be seen in equation (3.69), the normalization will affect the 

estimated error. In addition, the complexity will increase to become 

24 6N N+ . 

 

Table  3-2    Summary of the updating parameters used in the NAFFRLS 

algorithm 

 LMS weight vector 
update equation 

AFFRLS forgetting 
factor update equation 

Update term ( )nW  ( )nα  

Step size µ  γ  

Gradient term ( ) ( )n e n∗X  ( 1) ( ) ( )H n n e n∗− Xψψψψ  

 

 

3.3.1 RLS and LMS combination 

As discussed in Section 3.3, the tracking ability of the RLS algorithm has 

been enhanced by adopting various schemes to make the forgetting factor 

adaptive. Such improvements have been achieved with increasing 

complexity, and this makes the RLS based algorithms less attractive for 

some applications such as array beamforming. In this thesis, a new way of 

making use of the RLS algorithm in conjunction with the LMS algorithm for 

beamforming is presented. Details of this new algorithm, called the RLMS 

algorithm, are described in Chapter 4. 

 

3.4 Blind Algorithms  

The algorithms described in Sections 3.2 and 3.3 require the use of a 

reference signal for their operation. In this section, we briefly consider the 
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case when the computation of the weight vector does not rely on the 

availability of a reference signal. In this case, a blind beamformer computes 

its weight vector based only on the received signal but without prior 

knowledge of the input signals or the channel [19, 24]. Some of these blind 

adaptive beamforming algorithms are described in this section. 

 
 

3.4.1  Constant modulus algorithm (CM) 

Some communication signals, such as phase-shift keying (PSK), 

frequency-shift keying (FSK), and analog frequency modulation (FM) signals, 

have a constant envelope. After transmitting through a channel, the constant 

envelope of the signal may become distorted. The constant modulus 

algorithm (CM) [91] computes its weight factor based on the minimization of 

the amplitude variation in the received signal. This can be carried out by 

adopting a positive cost function given by [19, 91] 

222( ) E ( ) E ( ) ( ) 1Hn e n n nξ
   = −      

= W X                       (3.70) 

where 

 
2

( ) ( ) 1e n y n= −                                           (3.71) 

 
Equation (3.70) represents the deviation of the output signal from the unit 

modulus condition. Minimizing equation (3.70) will yield an optimum weight 

vector that makes the output signal, ( )y n , have as constant an envelope as 

possible. Analytically, equation (3.70), being a fourth-order function, is 

difficult to compute [19]. However, an iterative approach may be used to 

search for the minimum ξ  in the same way as the LMS algorithm, i.e., by 

updating the weight vector W  in small steps following the negative gradient 

direction as given in equation (3.11) [19]. 

 
Expanding (3.70), we obtain 
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2 2
( ) E ( ) ( ) 1 ( ) ( ) 1H Hn n n n nξ    = − −      

X W W X                  (3.72) 

Then, calculating the gradient ( )( )nξ∇∇∇∇  from (3.72) yields 
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X                                  (3.73) 

The instantaneous estimate of equation (3.73) is  

 ( ) ( )2 *( ) 2 ( ) 1 ( ) ( )n y n n y nξ = − X∇∇∇∇                              (3.74) 

Substituting equation (3.74) in equation (3.11) yields 

( )2 *

* *

( 1) ( ) 2 ( ) 1 ( ) ( )

( ) 2 ( ) ( ) ( )

n n y n n y n

n e n y n n

µ

µ

+ = − −

= −

W W X

W X

                      (3.75) 

Thus the steepest-descent CM (SD-CM) algorithm can be summarized as  

( ) ( ) ( )Hy n n n= W X                                         (3.76) 

( )2
( ) ( ) 1e n y n= −                                          (3.77) 

*( 1) ( ) 2 ( ) ( )n n n e nµ+ = −W W X                                (3.78) 

From equation (3.77), it is observed that the error signal will be equal to zero 

under the following conditions [42]: 

• The magnitude of the array output is equal to unity. 

• The array output is equal to zero, a situation which is not likely to 

occur in practice due to the presence of noise. 
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Moreover, the solution of the CM cost function may lead to local minima 

[19]. This occurs if the beamformer produces a constant envelop output with 

weight vector being equal to optκW , where κ  is a constant. Therefore, more 

information on the source will need to be provided in order to remove this 

type of ambiguity. However, such ambiguity does not pose a problem for 

angle modulated signals [19]. In addition, CM algorithms suffer from the so 

called selectivity problem involving the presence of multiple signals having 

similar properties. Under such condition, it is difficult for a CM algorithm to 

differentiate between the various constant modulus signals. As a result, it is 

possible for a strong interfering signal instead of the desired signal to be 

captured [17, 91, 92]. Also, compared with the non-blind algorithms, the 

convergence rate of the CM algorithm is slow [93], and this has been 

demonstrated in the practical implementation presented in [94]. Furthermore, 

CM algorithms tend to encounter a phase rotation problem and larger steady 

state error [95]. In general, the performance of CM algorithms is poor, 

particularly when operating at low SNR [96] or with modulated signals having 

more than two levels.  

 
A modified CM (MCM) algorithm known as blind adaptive beamforming 

multi-modulus array (MMARY) is proposed in [92] for multi-modulus signals. 

This algorithm can be used to handle a non-constant envelop high order 

signal constellation, such as quadrature amplitude modulated (QAM) signals 

[97]. In this case, the algorithm operates on both the real and imaginary 

components of the signal separately, thus allowing both the modulus and the 

phase of the array output to be considered. In addition, a hybrid CM based 

algorithm has been proposed in [93] for handling QAM signals. This involves 

circular regions being defined around individual symbol points in a QAM 

signal constellation as shown in Figure 3-4. In other words, it introduces a 

radius-adjusted approach to QAM signal constellations, such that 

ˆ( ) ( ) ( )mR n s n y n= −                                        (3.79) 

where mR  is the radius of the specified region, and ŝ  is the estimated 

symbol point. The value of mR  is then used to specify the region, i , which is 
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then used to define the step size and the weighting factor, iw  based on a 

predefined table. 

 
In this case, the CMA error function given in equation (3.77) is modified to 

become [93] 

( ) ( ) ( )R Ie n e n je n= +                                        (3.80) 

with Re  and Ie  being the real and imaginary components of the error signal, 

defined as 

( )[ ]2 ˆ( ) ( ) ( ) ( ) 1 ( ) ( )R i R R m i Re n w y n y n R n w y n s n = − + − −                (3.81) 

( )[ ]2 ˆ( ) ( ) ( ) ( ) 1 ( ) ( )I i I I m i Ie n w y n y n R n w y n s n = − + − −                (3.82) 

where Ry  and Iy  are the real and imaginary components of the output y . 

 

 
 

Figure  3-4    Sample decision regions [93] 
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In an attempt to overcome some of their shortcomings, many blind 

algorithms have been operated with non-blind algorithms. For example, in 

[91], the initial weights of a CMA algorithm have been determined using a 

sample matrix inversion (SMI) algorithm. This initialization with the SMI 

algorithm could lead to an increase in the convergence rate of the CM 

algorithm. However, it could also give rise to false solutions particularly when 

the power of the interfering signal is larger than that of the desired signal. 

Also, Xu and Tsatsanis [98] combined the constrained minimum variance 

algorithm (CMV) with the LMS algorithm to form the CMV-LMS algorithm, 

and with the RLS to form the CMV-RLS algorithm. The CMV-LMS algorithm 

is simpler, but being an LMS-based algorithm its convergence is also slower 

than that of the CMV-RLS algorithm. Then Lei Wang and Rodrigo Lamare 

[98] combined the constrained constant modulus2 (CCM) and RLS algorithms 

to produce the CCM-RLS algorithm, which updates the array weights by 

optimizing a cost function based on the CM criterion. The RLS algorithm, part 

of the CCM-RLS algorithm, is used to update the inverse of the correlation 

matrix of the input signal, as represented by equation (3.60). However, this 

scheme is very sensitive to changes in the operating environments. Also, it 

suffers from a high complexity requirement, requiring 23 8 7N N+ +  

multiplications, which is significantly higher than that for the conventional 

RLS algorithm [99].  

 
The use of variable step size has also been considered in hybrid blind 

and non-blind algorithms in order to cater for different channel 

characteristics, such as time varying multipath channels. In [99], adaptive 

step size LMS and RLS algorithms are applied to track time-varying direct 

sequence code division multiple access (DS/CDMA) signals, with the 

signature waveform and timing being the only prior knowledge of the desired 

signal. In this paper, the effect of multipath distortion is neglected. However, 

in [100], the signal distortion caused by multipath transmission is considered 

for improving the interference cancellation capability in the algorithms 

                                                 
2 In this algorithm, the cost function is considered as the expected deviation from unity of 

the squared modulus of the array output under the constraint ( ) = 1H
dn AW . 
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proposed in [101]. A variance oriented approach (VOA) algorithm has also 

been proposed in [101], that uses the LMS algorithm to minimize the cost 

function for the same purpose. The principle of this algorithm is based on the 

concept that the cost function is formulated as a ratio between the despread 

output and the variance of the desired signal. The filtering of the input signal 

using spatial domain filters is another technique proposed in [102]. An 

example of such an approach is shown in Figure 3-5 [103].  Note that the 

input signal vector obtained from the N elements is first subjected to fast 

Fourier transform (FFT). Then, the most significant coefficient (MSC) of the 

FFT output is selected based on the index of the most significant coefficient, 

MSCK , given by 

( )

1

MSC

int

1
22 sin sin 2 tanh1

1
2

2 1

d d

N
N N j

K N

N

π θ π θ

π

−
    −
    − +
  = −   −

    
  −  

      (3.83) 

where [ ]int
x  represents the integer part of x . dθ  is the AOA of the desired 

signal. 
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Figure  3-5    Blind beamforming with pre-filtering process [24, 104] 
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The need for FFT-IFFT manipulations means that the complexity of this type 

of approach is very high.  

 
In general, all the blind/hybrid blind and non-blind algorithms mentioned 

above are able to improve both the convergence rate and error floor of the 

CM algorithm. However, these improvements result in increased complexity 

[104], for instance, as we mentioned earlier in this section, the hybrid RLS-

CM algorithm requires 23 8 7N N+ +  multiplications. More precisely, if the 

RLS-CM algorithm is used for systems involving orthogonal frequency-

division multiplexing (OFDM) signals, the complexity will become 

( )2
OFDM 3 6N N N+  where OFDMN  is the number of OFDM subcarriers [24].  

 
 

3.4.2  Decision directed algorithm 

As discussed in Section 3.4.1, the use of blind and non-blind combination 

algorithms can improve the MSE performance of the CM algorithm at the 

expense of its complexity. A decision directed (DD) algorithm is an alternative 

method to obtain initially a sufficiently low MSE, which could be used to 

further minimize the MSE of a CM algorithm [105].   

 
In a decision directed algorithm, based on hard threshold decision, the 

received signal is first demodulated to estimate the transmitted signal. Next, 

the resulting symbol stream is remodulated to generate an approximate 

reference signal [105], as shown in Figure 3-6. Using the regenerated 

reference signal, ( )d n , the error magnitude can then be obtained such that 

( ) ( ) ( ) ( )He n d n n n= −W X                                    (3.84) 

Once the error is initially estimated, the adaptation process to estimate the 

weights can be carried out using one of the blind algorithms mentioned 

earlier, such as the CM algorithm. 
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y(t) d(t)

 

Figure  3-6    Generation of the reference signal in a DD algorithm 

 

 

The performance of a DD algorithm is highly dependent on the quality of 

the initial estimation of the error, the noise, and the synchronization degree of 

the estimated reference signal [105]. Hence, the convergence of a DD 

algorithm is not guaranteed [106], i.e., the output of a beamformer employing 

a DD algorithm could be unreliable [107]. For this reason, the use of 

dedicated training signal to aid the initial reference signal estimation could 

overcome the reliability concern of a DD algorithm. Such an approach is 

referred to as soft decision directed (SDD) algorithm [108], which is also 

known as the semi-blind algorithm.  The complexity of the SDD algorithm 

published in [109] is equivalent to 12 29N +  multiplications, 14 21N +  additions 

and 4 exponentional functions [110].  

 
 

3.4.3  Higher-order cumulant algorithm (HoCA) 

The analysis presented in [111] shows that when the signal to noise ratio 

(SNR) is low and the signal sources are closely spaced, the CM based 

algorithms usually incur considerable performance degradation. It is well 

known that most current signal processing tasks have been based on the 

assumption that the signals involved follow second order statistics. This 

either explicitly or implicitly suggests that the signals are Gaussian [111-113]. 

Consequently, these signals could only be described by their mean and 

standard deviation values [114]. However, non-Gaussian processes, which 

contain more information, are not used in conventional array beamforming 

algorithms. The use of higher statistics, associated with non-Gaussian 

signals, could potentially offer the following advantages: 

• To separate non-Gaussian from the Gaussian noise/interference 

sources as well as statistically independent sources [114]. 
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• Provide a better estimation of the signal parameters, such as angle of 

arrival (AOA) and gain [109]. 

• Help to reveal phase information of the signals which can not be done 

using second order statistics [115]. 

It is noted in [116] that cumulant algorithms are blind to any kind of 

Gaussian processs. Many researchers have considered the study of these 

algorithms. For example, in [115] Chiang and Nikias developed a fourth order 

algorithm based on the eigen structure analysis, and they referred to it as 

estimating signal parameters via rotational invariance techniques (ESPRIT). 

Another example is the multiple signal classification (MUSIC)-like algorithm 

which depends on the eigen decomposition of the fourth-order cumulants 

[117]. Others, like Martin and Mansour [118-120], apply successfully the 

higher order statistics (fourth-order) in speech processing for blind separation 

of up to five different speech signals.  

 
In array beamforming applications, higher-order statistics (fourth-order 

cumulant) have been used to estimate the steering vector of non-Gaussian 

desired signals in the presence of Gaussian interference of unknown 

covariance structure [115]. In a comparison study between second and fourth 

order MUSIC algorithms, published in [115],  it is shown that as the order is 

increased from 2 to 4, the estimated AOA is more accurate, especially with 

small number of samples and noisy signals. However, the computation 

complexity employed by the higher order algorithm is significantly increased. 

Another drawback of a high order algorithm is its blindness to Gaussian 

noise, which makes its operation easily corrupted by noise [107]. It is shown 

in [121] that longer data samples may be used to overcome this problem, but 

this will result in lower convergence speed. Instead, it is proposed to combine 

second-order estimation of the signal covariance matrix using Capon’s 

minimum variance distortionless response (MVDR3) algorithm [122] in 

conjunction with a fourth order scheme. The use of the MVDR algorithm can 

                                                 
3 MVDR beamforming is an alternative approach for signal recovery, such as 

( )-1
I ( )d dy Aβ θ= Q X , where Iβ  is a gain constant. 
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now allow the Gaussian interference signals to be removed [123]. Such a 

combined algorithm normally starts with a higher-order statistics algorithm 

followed by MVDR algorithm, since the latter requires knowledge of the 

steering vector [123].  

 
To mitigate the performance degradation caused by multipath signals, 

Martone [124] proposed and implemented a high-order complex zero-mean 

fourth-order cumulants algorithm for a linear array system for use in a base 

station. The adaptive algorithm concerned is implemented by means of 

square-root decomposition of the cumulant matrix to provide the ability of 

tracking time-varying channels [125]. 

 
The main drawback of higher-order cumulant algorithms is the large 

increase in the complexity [122, 126]. For instance, the higher-order 

algorithm presented in [127] requires at least 3 28 46 30N N N+ +  

multiplications, 2N  reciprocals and N  square roots, where N  is the number 

of array elements. In addition, higher-order cumulants need an estimation 

which makes use of a longer data sequence than for second order methods 

in order to obtain a comparable MSE [128]. In other words, this means that 

higher order algorithms tend to have lower convergence rates. 

 
 

3.5 Comments on the Applications of Adaptive Beamformers 

As discussed in Section 3.1, smart antenna systems have the ability of 

forming the main beam in the direction of the desired signal while minimizing 

the gain in the direction of the interference. This results in better signal-to- 

interference ratio, which can improve the coverage area and the capacity. 

These antenna systems can be classified into two categories; switched and 

adaptive array systems. For the former, the beam is switched between 

predefined patterns according to the level of the received signal. On the other 

hand, an adaptive array system is able to track the signal. 

 
The complexity and hence the cost of a full adaptive beamformer is 

related to the number of antenna elements used [122] , and is higher than 
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that for a switched array system [123]. In order to reduce the cost, the 

authors in [123, 129] propose a hybrid adaptive antenna system that 

combines the advantages of both the adaptive and switched systems. With 

this hybrid scheme, only those elements having acceptable received signal 

power are chosen to perform the beamforming process. The system will 

continue to monitor the received signal level, and if required, change those 

current elements with those which have higher signal levels. This means that 

a smaller number of input signals are actually involved in the beamforming 

process, and this could lead to less complexity and lower implementation 

cost [123]. However, this hybrid scheme encounters two possible drawbacks. 

First, the beamwidth obtained is broader due to the use of less array 

elements, and this in turn suggests poorer suppression of close in interfering 

signals. Also, the element selection process may give rise to a wrong 

decision as it is possible that the power level used may come from the 

interfering rather than the desired signal [123]. 

 
As for the actual beamforming, the weights associated with the chosen 

elements are updated using a hybrid algorithm, such as the CM modified 

adaptive step size (CM-MASS) or CM time averaging adaptive step size 

(CM-TAASS) as proposed in [124]. The step sizes of the CM-MASS and CM-

TAASS algorithms are made adaptive according to:  

 
• CM- MASS algorithm 

( )2
( 1) ( ) ( ) 1n n y nµ αµ γ+ = + −                           (3.85) 

where ( )y n  is the algorithm output, and α  is the forgetting factor 

given by 0 1α< < . The limits of ( 1)nµ + are as defined in equation 

(3.34). 

• CM-TAASS algorithm 

In order to make an algorithm more robust to noise, the step size in 

the CM-TAASS algorithm is updated based on a time average 
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estimate of the correlation between ( )2
( ) 1y n −  and ( )2

( 1) 1y n − −  

such that 

2( 1) ( ) ( )n n v nµ αµ γ+ = +                                (3.86) 

where, 0 1β< < , 0γ > , and ( )v n  is defined as 

( ) ( )( )2 2
( ) ( 1) 1 ( ) 1 ( 1) 1v n v n y n y nβ β= − + − − − −              (3.87) 

 
Recently, Long Term Evolution (LTE) and WiMAX wireless 

communication technologies have been chosen as candidates for the so 

called 4G mobile communication systems [130, 131]. To achieve the required 

data rate and capacity, both WiMAX and LTE systems support multi-antenna 

technologies including beamforming, using up to 4 antenna elements, for 

multiple-input and multiple-output (MIMO) enhancement strategy [122, 125, 

126]. For instance, a clustered non-uniform linear array is considered in 

[127], where the antennas in each cluster form a ULA of 2 elements spaced 

half a carrier wavelength apart. An MMSE algorithm is used for the 

beamforming to update the weights. This adaptive beamforming is used to 

mitigate the interfering signals. In the advanced version of the LTE  system, 

called LTE-advanced, array beamforming techniques involving the use of 4 to 

8 elements in the base station are also proposed [128] to further enhance the 

system performance. Since orthogonal frequency division multiple access 

(OFDMA) is adopted in LTE and WiMAX systems, various OFDMA specific 

beamforming algorithms have also been proposed [132, 133]. 

 

 

3.6 Summary 

In this chapter, several types of adaptive algorithms, which are capable of 

producing the required vector needed for beam steering, are discussed in 

some details. These include the LMS family of algorithms, the RLS family of 

algorithms, blind algorithms and higher order algorithms. Among all these 
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algorithms, the LMS based algorithms are the simplest. As such, they have 

been reviewed in greater detail by considering their mathematical models 

together with their advantages and disadvantages. Over the years, several 

modifications have been introduced by various researchers in an attempt to 

improve the low convergence rate of the conventional LMS algorithm. 

However, the potential for fast convergence of these different modified LMS 

based algorithms depends on the application environments. These are 

further governed by the ability to properly choose the parameter values to 

suit each environment. 

 
On the other hand, the RLS based algorithms are also discussed. It is 

well known that the RLS algorithm is able to provide a much faster 

convergence over the LMS based algorithms. However, this is achieved at 

the expense of a higher computation complexity, stability and tracking ability. 

It is shown that the AFFRLS algorithm achieves its better tracking ability over 

the standard RLS algorithm, with an even higher degree of computation 

complexity. 

 
Blind algorithms have briefly been discussed in this chapter together with 

hybrid schemes involving the combination of blind and non-blind algorithms. 

The main problems of the blind algorithms are the selectivity problem and 

slow convergence rate. The latter may be improved through the use of the 

hybrid schemes. However, these schemes have even higher complexity.  

 
In addition, higher order blind algorithms are also briefly reviewed. It is 

found that the performance of these algorithms tends to improve as the order 

of these algorithms increases. However, such performance enhancements 

can lead to a large increase in complexity. Finally, the use of some of these 

algorithms in beamforming for mobile radio communications is discussed. 
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CHAPTER 4   
 

ADAPTIVE ARRAY BEAMFORMING USING A 

COMBINED RLS-LMS ALGORITHM 

 

 

 

4.1 Introduction 

As discussed in Section 3.2.1, the LMS algorithm offers simpler 

implementation and good tracking capability while the RLS algorithm 

provides relatively fast convergence [6, 7].  Also, variants of these two 

algorithms have been investigated aiming at enhancing the convergence, 

speed and tracking ability in a dynamic environment. For the LMS family of 

algorithms, there is always a trade off between the speed of convergence 

and the achievable residual error floor, when a given adaptation step size is 

used. As discussed in Section 3.2.2, several improvements have been 

proposed to speed up the convergence of the LMS algorithm. Examples of 

these modified LMS algorithms include the variable step size LMS algorithm 

(VSSLMS) [8], constrained-stability LMS (CSLMS) algorithm [9], and 

modified robust variable LMS (MRVSS) algorithm [10]. All of these algorithms 

make use of an initial large adaptation step size to speed up the 

convergence. Upon approaching the steady state, smaller step sizes are then 

introduced to decrease the level of adjustment, hence maintaining a lower 

error floor. 

 
On the other hand, some of the improvements made in the tracking ability 

of the RLS family of algorithms are discussed in Section 3.3.1. These include 

the adaptive forgetting factor RLS algorithm (AFF-RLS) [89], variable 

forgetting factor RLS (VFFRLS) [12] and the extended recursive least 

squares (EX-KRLS) algorithm [13]. For an N-element antenna array, the 

implementation of the VFFRLS, AFF-RLS and EX-KRLS algorithms will incur 
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22.5 3 20N N+ + , 29 7N N+  and 3 215 7 2 4N N N+ + +  complex multiplications, 

respectively [89]. This compares with 22.5 3N N+  complex multiplications for 

the conventional RLS algorithm [89]. As such, the improvement in tracking 

ability of the RLS algorithm is achieved at the expense of a large increase in 

computation complexity. 

 
In this chapter, a novel approach is adopted to achieve the desirable 

features of high convergence speed and superior tracking without introducing 

excessive computation complexity. The proposed algorithm is referred to as 

the RLMS algorithm. Details of this new RLMS algorithm will now be 

presented. 

 

4.2 RLMS Algorithm 

To achieve fast convergence and good tracking ability, the proposed 

RLMS algorithm combines the use of two algorithms, namely the RLS and 

LMS algorithms. As shown in Figure 4-1, the input signals picked up by the 

antenna elements are first processed by an RLS algorithm stage to yield an   

intermediate output signal, RLSy . This intermediate output signal is in turn 

multiplied by the array image vector, RF , which acts as a “spatial filter” for 

the desired signal. The resultant signal components are further processed by 

an LMS algorithm stage to obtain the final estimate of the desired signal, 

RLMSy . To enhance the convergence rate and tracking ability of the overall 

algorithm, the previous error sample, LMS( 1)e j − , from the LMS algorithm 

stage is fed back to combine with the current error sample, RLS( )e j , of the 

RLS algorithm stage to form the overall error signal, RLMS( )e j , for updating 

the tap weights of the RLS algorithm stage. In this way, the overall error 

signal, RLMSe , becomes smoother even though RLSe  and LMSe  may 

individually take on large values. This may improve the stability of the RLMS 

algorithm against sudden changes in the input signals. As shown in Figure 4-

1, a common external reference signal is used for both the RLS and LMS 

algorithm stages, i.e., RLSd  and LMSd . This mode of operation will from now 

on be referred to as the external referencing mode.  
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Figure  4-1   The proposed RLMS algorithm with an external reference signal, (Ref )d . 
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Now, let the input signal vector, ( )tX , of the RLS algorithm stage in 

Figure 4-1 be represented by 

1 2( ) [ ( ),  ( ),  ..., ( )] ( ) ( ) ( )T
N d d i it x t x t x t s t s t t= + +X = A A n                (4.1) 

where [ ]T
i  represents the matrix transpose; ( )ds t , and ( )is t  are the 

desired and interfering signals, respectively. dA  and iA  are the [ 1]N ×  

complex array vectors for the desired signal and the cochannel interference, 

respectively, and ( )tn  is the noise vector. With the first antenna element 

acting as the reference, then dA  and iA  are given by  

2 ( 1)[1,  ,  ,  ...,  ]d d dj j N j T
d e e eψ ψ ψ− − − −=A                             (4.2) 

2 ( 1)[1,  ,  ,  ...,  ]i i ij j N j T
i e e eψ ψ ψ− − − −=A                              (4.3) 

According to the far-field plane wave model,  

sin( )
2 d

d
θψ π

λ
 =  
 

D
                                         (4.4) 

 and 

 
sin( )

2 i
i

θψ π
λ

 =  
 

D
                                          (4.5) 

where D  is the array inter-element spacing, and λ  is the carrier 

wavelength.  

 
It will be shown in Section 4.3.2 that the proposed RLMS algorithm, which 

normally operates with a common external reference for both the RLS and 

LMS algorithm stages, can achieve convergence within a few iterations. As 

such, the output of the RLS algorithm stage, RLSy , which closely resembles 

the input desired signal, ( )ds t , may be used as the reference signal for the 

LMS algorithm stage. Also, the output of the LMS algorithm stage, RLMSy , will 

become the reference for the RLS algorithm stage. This feedforward and 

feedback arrangement enables the provision of self-referencing in the RLMS 
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algorithm, and allows the external reference to be discontinued after an initial 

few iterations. For stability considerations, it is necessary for the step size of 

the first stage, RLSµ , to be chosen such that the intermediate output, RLSy , is 

a sufficiently close estimate of the desired signal, ( )ds t . In fact, the values of 

RLSµ  and LMSµ  do not follow the same relationship in updating the weights. 

In this case, the weight update process of the LMS algorithm is dictated by 

LMSµ , whereas RLSµ  controls the updating process of the inverse correlation 

matrix ( P ) [134] as shown in equations (4.10) and (4.11).   

 
For the case of a moving target, it is necessary that the array image 

vector, RF ,  is made adaptive in order to follow the angle of arrival (AOA) of 

the desired signal. This adaptive RF  version of the RLMS algorithm will from 

here on be simply known as the RLMS algorithm in order to differentiate it 

from the scheme that makes use of fixed RF  with prescribed values for its 

individual elements. The latter will be referred to as the RLMS1 algorithm for 

fixed beamforming. 

 
 

4.3 Convergence Analysis of the Proposed RLMS Algorithm 

4.3.1 Analysis with an external reference 

As described in Section 4.2, the RLMS algorithm normally operates with a 

common external reference signal applied to the RLS and LMS algorithm 

stages. In this section, the convergence of the RLMS algorithm is analyzed 

based on the mean-square error (MSE) of the overall error signal, RLMSe . For 

the analysis, the following assumptions are made:  

(i) The propagation environment is time invariant. 

(ii) The input signal vector ( )nX  should be independent and identically 

distributed (iid). 

(iii) The individual elements of the input signal vector ( )nX  are spatially 

non-correlated. 
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(iv) All error signals are stationary with zero mean. 

 

From Figure 4-1, the overall error signal for the RLMS algorithm at the nth 

iteration is given by 

RLMS RLS LMS( ) ( ) ( 1)e n e n e n= − −                                  (4.6)                                        

with  

RLS RLS RLS

RLS RLS

( ) ( ) ( )

( ) ( ) ( )H

e n d n y n

d n n n

= −

= −W X
                               (4.7) 

and   

LMS LMS RLMS

LMS LMS LMS

( ) ( ) ( )

( ) ( ) ( )H

e n d n y n

d n n n

= −

= −W X
                            (4.8) 

where (٠)H denotes the Hermitian matrix of (٠); and  

LMS R RLS R RLS( ) ( ) ( ) ( )Hn y n n n= =X W XF F                          (4.9) 

with RF  being the image of the array vector. A simple method of estimating  

RF  is given in Section 4.5. RLSW  and LMSW  are the weight vectors of the 

RLS and LMS algorithm stages, respectively, which are updated according to 

[34], 

RLS RLS RLS RLS( 1) ( ) ( ) ( 1) ( )n n e n n nµ+ = + +W W P X                   (4.10) 

  LMS LMS LMS LMS LMS( 1) ( ) ( ) ( )n n e n nµ+ = +W W X                      (4.11) 

where LMSµ  and RLSµ  are the respective step sizes for the LMS and RLS 

algorithm stages, and ( )∗  represents the complex conjugate. ( )nP  is a 

symmetric positive definite matrix given by 

1
1 1 RLS

RLS RLS 1
RLS

( ) ( 1) ( 1) ( )
( 1) ( )

1 ( 1) ( ) ( 1)

H

H

n n n n
n n

n n n

αα α
α

−
− −

−
+ ++ = −

+ + +
P X X P

P P
X P X

          (4.12) 
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( )nP  is initialized by 1δ − I , with δ  being a small positive constant, and I  is 

an N N×  unity matrix. N  is the number of antenna elements, and RLSα  is a 

forgetting factor and is related to RLSµ , such that [80] 

RLS RLS1µ α= −                                            (4.13) 

Convergence in mean-square error, RLMSξ , of the RLMS algorithm can be 

analyzed by observing the expected value of 2
RLMSe , so that 

                   
2

RLMS RLS RLS RLS LMS
1

( ) E ( ) ( ) ( ) ( 1)
n

n i H

i

n d i n i e iξ α −

=

 = − − −  
∑ W X                

    
{

}

2
RLS R R RLS

1

R RLS RLS R RLS

E ( ) E ( ) ( ) ( )

      ( ) ( ) ( ) ( ) ( ) ( )

n
n i H

i

H H

D i D i i n

D i n i n n n

α −

=

∗

  = −  

+ +

∑ X W

W X W Q W

               (4.14) 

where x  signifies the modulus of x ; 

R RLS LMS( ) ( ) ( 1)D n d n e n= − − ,                                (4.15) 

and R ( )nQ  is the estimation of the input correlation matrix given by 

R RLS
1

( ) ( ) ( )
n

n i H

i

n n nα −

=
=∑Q X X                                  (4.16) 

Now, consider the first and second terms on the right hand side (RHS) of 

equation (4.14) separately. The first RHS term of equation (4.14) can be 

expressed as: 

{ } { }

{
}

22
RLS R RLS RLS LMS

1 1

2
RLS RLS RLS LMS

1

2
RLS LMS LMS

E ( ) E ( ) ( 1)

E ( ) E ( ) ( 1)

( ) ( 1) E ( 1)

n n
n i n i

i i

n
n i

i

D i d i e i

d i d i e i

d i e i e i

α α

α

− −

= =

− ∗

=

∗

   = − −
   

  = − − 

 + − + −  

∑ ∑

∑          (4.17) 
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The second term on the RHS of equation (4.17) is equal to zero, because 

RLS( )d i  and LMS( 1)e i −  are zero mean and uncorrelated based on the 

assumptions (i), (ii) and (iv). Therefore, equation (4.17) becomes 

{ } { }2 22
RLS R RLS RLS LMS

1 1

E ( ) E ( ) ( 1)
n n

n i n i

i i

D i d i e iα α− −

= =

   = + −
   ∑ ∑          (4.18) 

Furthermore, by applying equation (4.8) to the last term on the RHS of 

equation (4.18), we obtain 

{ } {

}

2 2
RLS LMS RLS LMS

1 1

2
RLMS LMS RLMS

LMS RLMS

E ( 1) E ( 1)

E  ( 1) E ( 1) ( 1)

                                   ( 1) ( 1)

n n
n i n i

i i

e i d i

y i d i y i

d i y i

α α− −

= =

∗

∗

   − = −
   

  + − − − − 

+ − − 

∑ ∑

    (4.19) 

The above derivation assumes the reference signals of the RLS and LMS 

algorithm stages are given by RLS( )d n  and LMS( )d n , respectively.  In the case 

of a common reference signal,  

RLS LMS( ) ( ) (Ref )d n d n d= ≡                                   (4.20) 

Also, RLMSy  is given by 

 RLMS RLMS
Hy = W X                                           (4.21) 

where  

RLMS LMS R RLS
H H HW = W WF                                       (4.22) 

Substituting equations (4.20), (4.21) and (4.22) in equation (4.19) yields 

{ } { }2 2
RLS LMS RLS LMS

1 1

RLMS R R RLMS

RLMS R RLMS

E ( 1) E ( 1)

                      ( 1) ( 1) ( 1) ( 1)

                      ( 1) ( 1) ( 1)

n n
n i n i

i i

H H

H

e i d i

n n n n

n n n

α α− −

= =

   − = −
   

− − − − − −

+ − − −

∑ ∑

W Z Z W

W Q W

     (4.23) 
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where R ( )nZ  corresponds to the estimation of the input signal cross-

correlation vector given by 

R RLS LMS
1

( ) ( ) ( )
n

n i

i

n n d nα − ∗

=
=∑Z X                                  (4.24) 

Substituting equation (4.23) in equation (4.18), we obtain the first term on the 

RHS of equation (4.14), such that 

{ } { }2 22
RLS R RLS RLS LMS

1 1

RLMS R R RLMS

RLMS R RLMS

          

E ( ) E ( ) ( 1)

( 1) ( 1) ( 1) ( 1)

  ( 1) ( 1)( 1)

n n
n i n i

i i

H H

H

D i d i d i

n n n n

n nn

α α− −

= =
=

− −

+

   + −
   

− − − −

− −−

∑ ∑

W Z Z W

W WQ

 (4.25) 

Using the definition of R ( )D j  given in (4.15), and applying the assumptions 

(ii), (iii) and (iv), the second term on the RHS of equation (4.14) can be 

written as 

( )

( )

RLS R RLS R RLS
1

RLS RLS LMS RLS
1

RLS LMS RLS

R RLS RLS R

E ( ) ( ) ( ) ( ) ( ) ( )

E ( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( )

( ) ( ) ( ) ( )

n
n i H H

i

n
n i H

i

H

H H

D i i n D i n i

d i e i i n

d i e i n i

n n j n

α

α

− ∗

=

−

=

∗ ∗

 + 

= − −

+ − −


= +

∑

∑

X W W X

X W

W X

Z W W Z

     (4.26) 

 
As a result, the mean square error, RLMSξ , as specified by equation (4.14) 

can be rewritten to include the results of equations (4.25) and (4.26). After 

taking into account the relationship as indicated by equation (4.20), we obtain 



 75 

{

}

2 2
RLMS RLS RLS LMS

1

RLMS R RLMS

RLS R RLS RLS R

RLMS R R RLS

R RLMS

E ( ) ( 1)

( 1) ( 1) ( 1)

( ) ( ) ( ) ( )

( 1) ( 1) ( ) ( )

( 1) ( 1)

( )

n
n i

i

H

H H

H H

H

d i d i

n n n

n n n n

n n n n

n n

n

ξ α −

=
=  + −

 

+ − − −

+ −

− − − −

− − −

∑

W W

W W W Z

W Z Z W

Z W

Q

Q                 (4.27) 

 
Differentiating equation (4.27) with respect to the weight vector RLS( )H nW  

then yields the gradient vector RLMS( )ξ∇∇∇∇ , such that 

RLMS R R RLS( ) 2 ( ) 2 ( ) ( )n n nξ = − +Z Q W∇∇∇∇                           (4.28)   

By equating RLMS( )ξ∇  to zero, we obtain the optimal weight vector, 
RLS

( )opt nW , 

given by 

RLS

1
R R( ) ( ) ( )opt n n n−=W Q Z                                     (4.29) 

This represents the Wiener-Hopf equation in matrix form. Therefore, the 

minimum mean square error (MSE) can be obtained from equations (4.29) 

and (4.27), such that 

{

( )}
RLS

2 2
RLMS,min RLS RLS LMS

1

R R RLMS

RLMS R R LMS

E ( ) ( 1)

( ) ( ) ( 1) ( 1)

( 1) ( 1) ( 1) 1

n
n i

i

H H
opt

H H

d i d i

n n n n

n n n

ξ α −

=

 = + −
 

− − − −

+ − − − −

∑

Z W Z W

W Z WF

              (4.30) 

Based on equations (4.29) and (4.30), and by dropping the index n, 

equation (4.27) becomes 

( ) ( )
RLS RLSRLMS RLMS,min RLS R RLS

H

opt optξ ξ= + − −W W Q W W              (4.31) 

Now, let us define the error of the weight vector of the RLS algorithm, RLSV ,  

as 
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( )
RLSRLS RLS opt−≜V W W                                      (4.32) 

so that equation (4.31) can be written as 

RLMS RLMS,min RLS R RLS
Hξ ξ= +V Q V                                (4.33) 

Differentiating equation (4.33) with respect to RLS
HV  will yield another form for 

the gradient [32], such that 

 RLMS R RLS( ( )) ( ) ( )n n nξ =∇∇∇∇ Q V                                  (4.34) 

Using eigenvalue decomposition (EVD) of RQ  in equation (4.34), we obtain 

1
R R R R R R R

H−= =Q q q q qΛ ΛΛ ΛΛ ΛΛ Λ                                  (4.35) 

where Rq  and RΛΛΛΛ  are the eigenvectors and the diagonal matrices of 

RQ respectively, i.e., 

R 1 2diag[ , , ................., ]NE E E=ΛΛΛΛ                              (4.36) 

Let,  

1
RLS R RLS

−′ ≜V q V                                            (4.37) 

then 

RLS R RLS′=V q V                                             (4.38) 

 
Based on equations (4.35) and (4.38), we can express the MSE of 

equation (4.33) as 

 RLMS RLMS,min RLS R RLS( ) ( ) ( ) ( )Hn n n nξ ξ ′ ′= +V VΛΛΛΛ                       (4.39) 

For steepest descent, the weight vector is updated according to 

RLS RLS RLS RLMS( 1) ( ) ( ( ))n n nµ ξ+ = − ∇∇∇∇W W                        (4.40) 
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where RLSµ  is the convergence constant that controls stability and rate of 

adaptation of the weight vector, and RLMS( ( ))nξ∇∇∇∇  is the gradient at the thn  

iteration. 

 

Subtracting 
RLSoptW  from both sides of equation (4.40) yields 

RLS RLSRLS RLS RLS RLMS( 1) ( 1) ( ) ( ) ( )opt optn n n n nµ ξ+ − + = − −W W W W ∇∇∇∇       (4.41) 

Applying equation (4.32) to equation (4.41) gives   

RLS RLS RLS RLMS( 1) ( ) ( ( ))n n nµ ξ+ = − ∇∇∇∇V V                          (4.42) 

Multiplying both sides of equation (4.42) by R
Hq  yields 

R RLS R RLS RLS R RLMS( 1) ( ) ( ( ))H H Hn n nµ ξ+ = − ∇∇∇∇q V q V q                (4.43) 

Now, RLMS( ( ))nξ∇∇∇∇  in equation (4.43) can be replaced by equation (4.34) to 

obtain 

R RLS R RLS RLS R R RLS( 1) ( ) ( )H H Hn n nµ+ = −q V q V q Q V                  (4.44) 

With the correlation matrix, RQ , in equation (4.44) replaced by equation 

(4.35), we can simplify equation (4.44), such that 

 R RLS R RLS RLS R R RLS( 1) ( ) ( )H H Hn n nµ+ = −q V q V q VΛΛΛΛ                  (4.45) 

Using the relationship of equation (4.38), the above equation can be rewritten 

as 

( )RLS RLS R RLS( 1) ( )n nµ′ ′+ = −V I VΛΛΛΛ                              (4.46) 

Equation (4.46) can also be expressed as 

( )RLS RLS R RLS( ) (0)
n

n µ′ ′= −V I VΛΛΛΛ                               (4.47) 

where RLS(0)′V  is the initial value given by 
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RLSRLS RLS(0) (0) opt′ ′ ′= −V W W                                   (4.48) 

Substituting equation (4.47) in equation (4.39), the mean square error 

becomes 

( ) ( )RLMS RLMS,min RLS RLS R R RLS R RLS( ) (0) (0)
n nHnξ ξ µ µ= + − −V I Q Q I Q V    (4.49) 

where 1
RLS R RLS(0) (0)−=V q V .  

 
Following Appendix B, the step size boundaries of the RLS algorithm 

stage, RLSµ , can be analyzed to obtain 

RLS
RLS

20 Eµ< <                                         (4.50) 

where RLSE  is the maximum eigenvalue of RΛΛΛΛ . 

 
In the limit, we have 

 

[ ]

( ) ( )

( ) ( ){ }

RLMS

RLMS,min RLS RLS R R RLS R RLS

RLMS,min RLS RLS R R RLS R RLS

lim ( )

lim (0) (0)

(0) lim (0)

n

n nH

n

n nH

n

nξ

ξ µ µ

ξ µ µ

→∞

→∞

→∞

 = + − −
 

 = + − −
 

V I Q Q I Q V

V I Q Q I Q V

(4.51) 

Under the condition that ( )RLS R 1µ− <I Q , the second RHS term of equation 

(4.51) vanishes. As a result, the mean square error converges to a minimum 

value, such that 

RLMS RLMS,minlim ( )
n

nξ ξ
→∞

=                                    (4.52)    

 

 

4.3.2 Analysis of the self-referencing scheme 

After the RLMS algorithm has converged, usually within a few iterations, 

the external common reference signal may be replaced by the intermediate 
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output, RLSy , of the RLS algorithm stage and the output of the LMS algorithm 

stage, RLMSy , so that  

RLS RLMS( ) ( 1)d n y n= −                                       (4.53) 

and       LMS RLS( ) ( )d n y n=                                          (4.54)  

This mode of operation of the RLMS algorithm is referred to as self-

referencing. With these changes and observing that LMS LMS RLMSe d y= − , then 

we can redefine R ( )D n  in equation (4.15) as 

R RLMS RLS( ) 2 ( 1) ( 1)D n y n y n= − − −                             (4.55) 

 
Based on the above modification, we reanalyze the MSE expression of 

equation (4.14), as described in Appendix C, to obtain 

RLMS RLS R RLS R RLS

RLS R RLS R RLS

( ) ( 1) ( 1) ( 1) ( ) ( )

( ) ( ) ( ) ( ) ( )

H H

H H

n n n n n n

n n n n n

ξ ′= − − − −

′− +

W Q W Z W

W Z W Q W
          (4.56) 

where R ( )n′Z  corresponds to the input signal cross-correlation vector 

given by 

R R( ) E ( ) ( )n n D n∗ ′ =  Z X                                     (4.57) 

It is shown in Appendix C that the rest of analysis is similar to that of the 

previous case involving the use of an external reference. We can conclude 

that the RLMS algorithm will continue to converge using these internally 

generated signals as reference signals for the RLS and LMS algorithm 

stages.  

 

 

4.4 Mean Weight Vector Convergence 

In this section, we determine the values of the step sizes, RLSµ  and LMSµ , 
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required for stable operation of the RLMS algorithm. To simplify the analysis, 

we assume convergence of the RLMS algorithm when both the RLS and 

LMS algorithm stages have converged. As such, we can treat each of the 

RLS and LMS algorithm stages separately. 

 

For the RLS algorithm stage, the value of RLSµ  for updating the weights 

in equation (4.11) is specified in (4.50) to be within the range of   

RLS
RLS

20 Eµ< <                                          (4.58) 

For the LMS algorithm stage, let the error signal in equation (4.10) be given by 

[68, 135] 

         LMS LMS LMS LMS( ) ( ) ( ) ( )He n e n n n′′= − X V                             (4.59) 

where LMSe′′  is a zero mean measurement noise, independent from the 

signal, and LMSV  is the weight vector error, such that 

LMS LMS 0 LMS( ) ( ) ( ) n n n= −V W W                                 (4.60) 

Let the time-varying weight vector be modeled by a random walk process 

[68], so that 

0 LMS 0 LMS LMS( 1) ( ) ( )  n n n+ = +W W r                               (4.61) 

where 0 LMS( ) nW is the optimal weight vector of the LMS algorithm stage, 

and LMS( )nr  is a zero mean white sequence vector with diagonal correlation 

matrix 2
R,rσ I  and 2

R,rσ  being the weight variance.  

 
Now, subtract equation (4.61) from equation (4.10) to yield 

LMS LMS LMS LMS LMS LMS( 1) ( ) ( ) ( ) ( )n n e n n nµ+ = + −V V X r               (4.62) 

Substituting equation (4.59) into equation (4.62) and applying the unitary 
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transformation R
Hq  in equation (4.35) to both sides of equation (4.62) gives 

LMS LMS LMS LMS LMS

LMS LMS LMS LMS

( 1) [ ( ) ( )] ( )

( ) ( ) ( )

Hn n n n

e n n n

µ

µ

+ = −

′′+ −

ɶ ɶ

ɶ ɶ

v I X X v

X r
                  (4.63) 

where  

LMS R LMS

LMS R LMS

LMS R LMS

( ) ( ),

( ) ( ),

and ( ) ( )

H

H

H

n n

n n

n n

=

=

=

ɶ

ɶ

r q r

X q X

v q V

                              (4.64) 

 

To determine the condition for convergence, we consider the expected 

values on both sides of equation (4.63). This leads to the second and third 

RHS terms of equation (4.63) vanishing as both LMS( )e n′′  and LMS( )nɶX  are 

uncorrelated. As a result, we obtain 

[ ] { } [ ]LMS LMS LMS LMS LMSE ( 1) E ( ) ( ) E ( )Hn n n nµ  + = −  
ɶ ɶv I X X v           (4.65) 

With LMS LMS LMS( ) E ( ) ( )Hn n n =  
ɶ ɶR X X , equation (4.65) can be rewritten as 

 [ ] { } [ ]LMS LMS LMS LMSE ( 1) ( ) E ( )n n nµ+ = −v I R v                    (4.66) 

where the general coefficients of the matrix LMS( )nR  can be expressed as 

( ), , RLS, RLS, ,
,

, , RLS, RLS,

E

E

N

r ka r k l l m m r a
l m

N

r k r a l l m m
l

r w x x w

w x x w

∗ ∗ ∗

∗ ∗ ∗

 
 =    

 

 
 =   

 

∑

∑

F F

F F

                      (4.67) 

 

Based on the assumption (i), as stated in Section 4.3.1, the elements of 

the matrix ( ),r kar  in equation (4.67) may be rewritten as 

2
, , , , , RLSE

N

r ka r k r a l l r k r a
l

r y y σ∗ ∗ ∗ = = ∑F F F F                         (4.68) 
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where 2
RLSσ  is the variance of the output of the RLS algorithm stage.  

 

Note that the products l mx x∗  and RLS, RLS,l mw w∗  are non-zero only for m l= , 

according to the Kronecker delta function, i.e., 
0

1
m
l

m l

m l
δ

≠
=  =

. 

 

In a matrix form, equation (4.68) can be expressed as  

2
LMS RLS R R( ) Hj σ=R F F                                      (4.69) 

where LMSR  is a complex matrix, with a rank equal to one. Substituting 

this  in equation (4.66) and analyzing using eigenvalue decomposition (EVD) 

[136], we have 

[ ] ( ) [ ]

( ) [ ]

2
LMS LMS RLS 2 LMS

12
LMS RLS 2 LMS

E ( 1) E ( )

   E (0)

H

n+ H

n nµ σ

µ σ

+ = −

= −

v U I U v

U I U v

ΛΛΛΛ

ΛΛΛΛ
              (4.70) 

where U  is an N-by-N unitary matrix and 2ΛΛΛΛ  is the diagonal matrix of 

eigenvalues of the array matrix ( R R
H

F F ). In this case, 

R,2diag[ ,0,0,.........,0]λ2 =ΛΛΛΛ , provided that this matrix has only one eigenvalue 

(i.e., it is singular of rank 1). Since RF  is a normalized vector, then 

2
R N=F , so that this eigenvalue is equal to N , that is                                 

R,2 R Rtrace( )H Nλ = =F F                                    (4.71) 

From equation (4.70), the condition for convergence can be satisfied if 

2
LMS RLS R 21 1µ σ λ− <, . Therefore, for the LMS algorithm stage to converge, it 

requires that the step size used for updating the weights is within the range 

given by 

LMS 2
RLS

20
N

µ
σ

< <                                        (4.72) 
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Thus, in order to achieve convergence for the RLMS algorithm, the values of 

the step sizes, RLSµ  and LMSµ , must satisfy both equations (4.58) and (4.72). 

 

4.5 Estimation of the Array Image Vector RF  

For self-adaptive beamforming, it requires that the array image vector, 

RF , be adjusted automatically to always track the AOA of the desired signal. 

A simple method for estimating RF  is now described.  

Rearranging equation (4.1), in element form, gives 

, ,( ) ( ) ( ) ( )k d k d i k i kx t A s t A s t n t= + +                              (4.73) 

where ,d kA  is the thk  element of dA  with 1,2,..., .k N=  

The outputs of the individual taps of the RLS algorithm stage, RLS,( )kw  are 

given by 

RLS, 1,( ) ( )k k kx t w x t′ =                                        (4.74) 

When the RLS algorithm stage converges, the output RLSy  tends to approach 

( )ds t  with both the interference ( )is t  and noise ( )kn t  being suppressed. Thus, 

let 

 RLS( ) ( )dy t s t≃                                            (4.75) 

and taking the expectation of both sides of equation (4.73), we have  

1, , , RLSE[ ( )] E[ ( )] E[ ( )]k d k d d kx t A s t A y t= ≈                          (4.76) 

Assume that, after convergence, we can approximate  

RLS RLSE[ ( )] ( )y t y t≈                                        (4.77) 

Thus, equation (4.76) can be rewritten as 

1, , RLSE[ ( )] ( )k d kx t A y t≈                                     (4.78) 
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By assuming both the input signal and the RLS algorithm weights are 

independent, the expectation of equation (4.74) can be written as 

RLS, 1,E[ ( )] E[ ] [ ( )].k k kx t w E x t′ =                                 (4.79) 

From equations (4.78) and (4.79), we can estimate the array vector elements 

as 

,
RLS, RLS

E[ ( )]
( )

E[ ] ( )
k

d k
k c

x t
A t

w y t ε
′

+
≃                                 (4.80) 

where cε  is a small constant introduced to prevent overflow produced by 

a possible divide by zero condition in equation (4.80). Its value is chosen 

such that  

N
RLS

RLS, 
k=1

c k

y
w

N
ε ∑≪                                       (4.81) 

For the computer simulations described in this chapter, cε  has been set 

to 0.0044. It follows that the instantaneous values of the elements of dA  can 

be expressed as 

,
RLS, RLS

( )
( )

( ) ( )
k

d k
k c

x t
A t

w t y t ε
′

+
≃                                 (4.82) 

Thus, equation (4.82) provides a mean of calculating the array image vector 

RF  for use in the RLMS algorithm. 

 

 

4.6 Fixed Beamforming using the RLMS Algorithm 

According to Figure 4.1, the input stage of the RLMS scheme is based on 

the RLS algorithm with its weight vector given in equation (4.11). Therefore, 

the output of the RLS algorithm stage at the thn iteration can be expressed as  

                                                 
4 This constant has been obtained based on the smallest quantization step size associated 

with a wordlength of 8 bits. 
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RLS RLS( ) ( ) ( )Hy n n n= W X                                      (4.83) 

Based on this intermediate output signal, the input signal vector for the LMS 

algorithm stage can be obtained, such that  

LMS R RLSy=X F                                           (4.84) 

Finally, the output of the RLMS beamformer is given by  

RLMS LMS LMS LMS RLS R
H Hy y= =W X W F                             (4.85) 

 
Equation (4.85) indicates the central role played by the array image 

vector RF  in beamforming using the RLMS algorithm. Now, by prescribing 

the individual elements of RF  with values corresponding to the required 

AOA, the resulting output will contain only those signal components 

“selected” by RF . For example, by setting R (at 30 )d dθ= = �AF , a fixed beam 

pointing in the direction of 30dθ = �  is thus obtained. With this scheme, 

variations in operating condition and component tolerance are compensated 

through adaptive adjustments of the tap weights in the RLS and LMS 

algorithm stages. 

 
In order to differentiate the two modes of operation of the proposed 

algorithm, the term RLMS1 algorithm is used to associate with a fixed 

beamforming using the RLMS algorithm.  

 

 

 

4.7 Computer Simulations 

4.7.1 Introduction 

The performance of the proposed RLMS algorithm, with either external 

reference or self reference, has been evaluated by means of extensive 

computer simulations. These simulations study the rate of convergence of 
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the RLMS algorithm under different input signal-to-noise ratios, SNR5. Also, 

the stability of the algorithm as a function of the step sizes, RLSµ  and LMSµ , 

used is investigated. Furthermore, the simulations are used to verify the 

tracking performance and robustness to noisy reference of the RLMS 

algorithm. In addition, the flexibility of the algorithm in realizing fixed 

beamforming is demonstrated. For comparison purposes, adaptive 

beamformers using the conventional RLS and LMS algorithms as well as 

other published algorithms, such as VFFRLS, CSLMS and MRVSS 

algorithms, which have been reviewed in Chapter 3, are also simulated. 

These simulations have been carried out with the mathematical functions 

implemented using the full numerical precision of the computer. However, 

finite numerical precision is more likely to be used for practical 

implementation. As such, the influence of quantization and rounding errors 

introduced by the use of finite wordlength on the operation of a given 

algorithm has also been considered. The latter will be described in Section 

6.2.1. 

 

4.7.2 Simulation setup 

For the simulations carried out with full numerical precision, a given 

algorithm is assumed to operate under the following environment: 

• A linear array consisting of 8 isotropic antenna elements spaced half a 

wavelength apart. 

• A desired binary phase shift keying (BPSK) arrives at an angle 0dθ = � . 

• An AWGN channel. 

• All weight vectors are initially set to zero. 

• Two BPSK interference signals arrive at 30iθ = − �  and 45iθ = �  have 

the same amplitude as the desired signal.  

                                                 

5 Signal-to-noise ratio (SNR) is defined as the ratio of the average signal power to AWGN 

power, determined over the signal bandwidth. The signal power is obtained from averaging 

over 16 M symbols.  
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Appendix A gives the procedure used in the simulations of the RLMS1, 

RLMS, CSLMS, MRVSS, RLS, VFFRLS and LMS algorithms. For the CSLMS 

algorithm, the parameter csε  is a small positive constant which has been 

adjusted to yield the best possible performance. In the case of the MRVSS 

algorithm, its step size µ  is updated using a value within the upper and lower 

boundary values of maxµ  and minµ , respectively. Also, α , η ,  γ  and υ  are 

the parameters required by the MRVSS algorithm and these are given in 

Table 4-1. In addition, the parameters maxeɶ  and mineɶ  are the upper and lower 

bounds of the time averaged error square signal, eɶ , of the MRVSS algorithm. 

 

Table 4-1 shows the numerical values of the various constants adopted 

for the simulations of the seven different adaptive algorithms. The parameter 

values for the MRVSS algorithm operating in an AWGN channel are those 

given in [10, 54, 56]. All other values adopted here for the MRVSS and 

CSLMS algorithms have been chosen for obtaining the best performance out 

of these algorithms. The step size values, RLSµ  and LMSµ , associated with 

the RLMS1 and RLMS algorithms have been chosen to yield a low error floor. 

 
Often, performance comparison between different adaptive beamforming 

schemes is made in terms of the convergence errors and resultant beam 

patterns. Moreover, for a digitally modulated signal, it is also convenient to 

make use of the error vector magnitude (EVM) as an accurate measure of 

any distortion introduced by the adaptive beamforming scheme on the 

received signal at a given signal-to-noise ratio (SNR). It is shown in [137] that 

EVM is more sensitive to variations in SNR than bit error rate (BER). EVM is 

defined as [138] 

2
RMS RLMS

1

1
( ) ( ) ,

K

n

EVM y n x n
kP =

= −∑ɶ                           (4.86) 

where k  is the number of symbols used, RLMS( )y n  is the thn  output of the 

beamformer, and ( )x n  is the thn  transmit symbol. Pɶ  is the average power of 

all the symbols involved for the given modulation.  
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Table  4-1  Values of the constants used in the simulations. 

Algorithm AWGN Channel Rayleigh Fading Channel 

LMS 0.05µ =  0.01µ =  

RLS RLS 0.05µ =  RLS 0.01µ =  

VFFRLS 
VFFRLS max VFF

8
VFF

0.05, 1, 1.5,

6, , 10 , 1k k kα β α

µ λ γ

ε δ−

= = =

= = = =
 

VFFRLS max VFF

8
VFF

0.01, 1, 1.5,

6, , 10 , 1k k kα β α

µ λ γ

ε δ−

= = =

= = = =
 

CSLMS 0.05, 0.05csε µ= =  1, 0.01csε µ= =  

MRVSS 

4
max min

4
max min

max

4

1, 0, 5 10

0.2, 10

Initial , 0.97

4.8 10 , 0.97

e e υ

µ µ
µ µ α

γ η

−

−

−

= = = ×

= =
= =

= × =

ɶ ɶ

 

Same as column 2 except for: 

max

4
min

Initial 0.1, 0.05

10

µ µ

µ −

= =

=
 

RLMS1 RLS LMS0.03, 0.02µ µ= =  RLS LMS0.1, 0.01µ µ= =  

RLMS RLS LMS0.05, 0.05µ µ= =  RLS LMS0.1, 0.01µ µ= =  

 

 

4.7.3 Simulation results 

Computer simulations based on Matlab have been carried out to evaluate 

and compare the performances of the RLMS and RLMS1 algorithms with the 

other five algorithms, namely the CSLMS, MRVSS, RLS, VFFRLS and LMS 

algorithms. The performance indicators adopted are error convergence 

obtained with either an ideal or noisy reference signal, signal tracking ability, 

EVM and scatter plot. 

 

 

4.7.3.1 Error convergence with an ideal external reference  

First, the convergence performance of a beamformer implemented using 

one of the seven algorithms given is evaluated in the presence of an ideal 

external reference signal. In each case, the ensemble average squared error 
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( )2eɶ  is obtained from 100 individual simulation runs with each run consisting 

of 128 iterations. This has been carried out for three different input signal-to-

noise ratios. 

 
Figures 4-2(a)–(c) show the convergence behaviours of the seven 

adaptive schemes for SNR values of 5, 10, and 15 dB, respectively. For the 

proposed RLMS1 algorithm, which makes use of the prescribed values for the 

individual elements of the image array vector RF , the theoretical 

convergence error calculated using equation (4.27) for an SNR of 10 dB is 

also shown in Figure 4-2b. It is observed that under the given conditions, the 

two variants of the proposed RLMS algorithm converge much faster than the 

other five schemes. Furthermore, their error floors are less sensitive to 

variations in the input SNR, even for an input SNR as small as 5 dB. Also, as 

shown in Figure 4-2b, there is a close agreement between the simulated and 

theoretical error curves for the proposed RLMS and RLMS1 algorithms. This 

validates the method for estimating RF  for the RLMS algorithm as described 

in Section 4.4. Among the other five algorithms, the RLS and VFFRLS 

algorithms outperform the MRVSS, CSLMS, and LMS algorithms for all the 

three SNR values considered. As expected, the conventional LMS algorithm 

is the slowest among the seven algorithms. Moreover, both the RLMS1 and 

RLMS algorithms have almost identical convergence performance for all the 

three SNR values considered.  

 

Next, the sensitivity of the RLMS1 and RLMS algorithms to the step sizes 

used is considered. In this case, the channel is assumed to be free from 

noise and interference. Also, the step size of the RLS algorithm stage, RLSµ , 

is set to three different values (0, 0.07, 0.1). Figure 4-3 shows the mean 

square value of the overall error signal, RLMSe , measured after 128 iterations 

as a function of the step size, LMSµ , used in the LMS algorithm stage. From 

Figure 4-3, it is observed that the use of any one of the three different values 

of RLSµ  has very little or no effect on the stability of the RLMS1 and RLMS 

algorithms. 
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(a) SNR=5dB 

 

(b) SNR=10 dB 

 

(c) SNR=15 dB 

Figure  4-2   The convergence of RLMS, RLMS1, CSLMS, MRVSS, RLS, 

VFFRLS and LMS algorithms with the parameters given in the 2nd column of 

Table 4-1, for three different values of input SNR. 
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Moreover, the operation of the RLMS1 and RLMS algorithms will remain 

stable provided  LMSµ  is less than 1.7 and 1.9, respectively. It is also noticed 

from Figure 4-3, that for very small values of LMSµ , the MSE values are high. 

This is due to the fact that under such conditions, the contribution to overall 

error from the LMS algorithm stage becomes negligible.    

 

 

Figure  4-3   Mean square value of the overall error signal as a function of the 

step size, LMSµ , achieved with the RLMS1 and RLMS algorithms for 3 

different RLSµ  values (0, 0.07 and 0.1). 

 
 

As shown in Figure 4-3, the upper bounds of LMSµ  for the RLMS1 and 

RLMS algorithms are approximately 1.7 and 1.8, respectively. These 

observations have been verified by plotting, in Figure 4.4, the theoretical step 

size boundaries of LMSµ  given in equation (4.72) for RLS 0.07µ = . In this case, 

the upper limit given in equation (4.72) is plotted against the number of 

iterations. It is observed that, the upper limit value of LMSµ  for both the RLMS 

and RLMS1 algorithms is approximately 1.73, which is in very close 

agreement with the maximum value allowed for LMSµ , as indicated in Figure 

4-3.  
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Figure  4-4   The theoretical upper limit of LMSµ  used in the RLMS1 and RLMS 

algorithms versus the number of iterations with RLSµ  set at 0.07. 

 

 

4.7.3.2 Performance with self-referencing 

As shown in Figure 4-2, both the RLMS1 and RLMS algorithms are able to 

converge rapidly in less than ten iterations. This suggests that upon 

convergence, the output of the RLS algorithm stage, RLSy , will closely 

resemble the desired input signal ( )ds t . As such, this output can be used as 

the reference signal for the next iteration of the LMS algorithm stage in the 

RLMS1 and RLMS algorithms. As the LMS algorithm stage converges, its 

output, RLMSy , becomes the estimated ( )ds t , and may be used as the 

reference for the RLS algorithm stage. This feedforward and feedback 

arrangement enables the provision of self-referencing in the RLMS1 and 

RLMS algorithms, and allows the external reference signal to be discontinued 

after an initial few iterations.  

 
For proper operation with self-referencing, the step size, RLSµ , has to be 

chosen such that this stage converges quicker than the LMS algorithm stage. 

This yields a sufficiently accurate output to be used as a reference signal for 
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the following LMS algorithm stage. For this reason, the values of the step 

sizes as listed in the second column of Table 4-1 for the RLMS1 and RLMS 

algorithms have been modified to RLS 0.02µ =  and LMS 0.01µ =  for use in this 

simulation. The ability of the RLMS1 and RLMS algorithms to maintain 

operation with the internally generated reference signals is demonstrated in 

Figure 4-5 for the case with an input SNR of 10 dB. In this experiment, the 

external reference is switched off after an initial 5 iterations. From there on, 

both the RLMS1 and RLMS algorithms continue to operate with the internally 

generated reference signals. On the other hand, the LMS, RLS, VFFRLS, 

MRVSS and CSLMS algorithms will not converge without the use of the 

correct reference signal.  

 

 

 

Figure  4-5   The convergence of the RLMS1 and RLMS algorithm with self-

referencing at an input SNR of 10 dB. For comparison, the other four 

algorithms fail to converge when the reference signal is switched off. 

 

 

4.7.3.3 Performance with a noisy reference signal 

The operations of the RLMS1, RLMS, CSLMS, MRVSS, RLS, VFFRLS 

and LMS algorithms have also been investigated when the reference signal 
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used is corrupted by additive white Gaussian noise (AWGN). This is done by 

observing the resultant mean square error, RLMSξ , of the overall error signal, 

RLMSe , when the noise level in the reference signal is changed. Figure 4-6 

shows the ensemble average of the mean square error, RLMSξ , obtained 

from 100 individual simulation runs, as a function of the ratio of the rms noise 

level, nσ , to the amplitude of the reference signal.  

 

 

 

Figure  4-6   The influence of noise in the reference signal on the mean 

square  error, RLMSξ , when operating with the parameters given in the second 

column of Table 4-1  for an input SNR of 10 dB. 

 

 

It is interesting to note that the LMS, CSLMS and MRVSS algorithms are 

quite sensitive to the presence of noise in the reference signal. The RLS and 

VFFRLS algorithms on their own can still tolerate the presence of low noise 

level. However, when the RLS and LMS algorithms are incorporated to form 

the RLMS algorithm, the resulting scheme becomes very tolerant to noisy 

reference signals. As shown in Figure 4-6, the values of RLMSξ  associated 

with the RLMS1 and RLMS algorithms remain very small even when the rms 

noise level becomes as large as the reference signal. 
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4.7.3.4 Tracking performance 

The ability of the RLMS, RLMS1, CSLMS, MRVSS, RLS, VFFRLS and 

LMS algorithms to track sudden interruptions in the input signal is 

investigated by examining the behaviour of their respective error signal. For 

this investigation, the input signal is interrupted periodically for 25 out of 100 

iterations. In the mean time, the weight vector updating process continues to 

operate without any interruption. Figure 4-7 shows that in the case of the 

RLMS1 and RLMS algorithms, the mean square error, RLMSξ , of the overall 

error, RLMSe , changes very rapidly each time the input signal is switched on 

or off. This verifies the fast response of these algorithms to sudden changes 

in the input signal. Unlike the responses for the other five algorithms, as 

shown in Figure 4-7 for comparison purposes, the values of the mean square 

error, RLMSξ , associated with the RLMS1 and RLMS algorithms remain low 

despite the interruption in the input signal.  

 

 

 

Figure  4-7   Tracking performance of the RLMS1 and RLMS algorithms 

compared with the RLS, VFFRLS, LMS, CSLMS, MRVSS algorithms 

implemented using the parameters given in the second column of Table 4-1 

for an input SNR of 10 dB. 
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4.7.3.5 Performance in the presence of multiple interfering 

signals 

Consider a desired signal that arrives at 10dθ = �  and is corrupted by both 

cochannel interference and AWGN. In this case, we assume a signal-to-noise 

power ratio (SNR) of 10 dB, in the presence of four cochannel interfering 

signals. These four interference signals arrive at angles of -10o, -30o, -50o and 

45o, and each has an amplitude equal to that of the desired signal. The 

resultant beam patterns obtained with the RLMS1 and RLMS algorithms in the 

presence of these extraneous signals are shown in Figure 4-8. It is observed 

that the beam patterns obtained with the RLMS1 and RLMS algorithms have 

almost identical gain at the angle of arrival (AOA) of the desired signal. On the 

other hand, each of the interfering signals is being suppressed by a minimum 

of close to 50 dB.  

 

 

Figure  4-8   The beam patterns obtained with the RLMS, RLMS1, CSLMS, 

MRVSS, RLS, VFFRLS and LMS algorithms for an SNR of 10 dB in the 

presence of four equal-amplitude interfering signals arriving at 

1 50 ,iθ = − �
2 30 ,iθ = − �  3 10iθ = − �  and 4 45 .iθ = �  

 

For comparison purposes, the beam patterns obtained using the LMS, 

RLS, VFFRLS, CSLMS and MRVSS algorithms, are also plotted in Figure 4-



 97 

8. When compared with the RLMS and RLMS1 algorithms, all these five 

algorithms suffer from a loss in gain of up to 10 dB at the AOA of the desired 

signal. Also, they achieve a lower suppression at the four angles of arrival of 

the interfering signals. Table 4-2 shows the suppression values for all 

algorithms under test. It shows that the RLMS and RLMS1 algorithms have 

the largest interference attenuation values among all the algorithms 

considered. Also, Table 4-2 shows the interference attenuations for the LMS, 

RLS, VFFRLS, CSLMS and MRVSS algorithms, which are less than those for 

the RLMS and RLMS1 algorithms. Note that the RLS and VFFRLS algorithms 

achieved larger interference suppression compared to the LMS, CSLMS and 

MRVSS algorithms. 

 

Table  4-2  Suppression of the interfering signals with respect to the desired 

signal expressed in dB. 

 

 AOA of the four interference signals  

Algorithm -10o -30o -50o 45o 

LMS 22 30 33 34 

RLS 39 49 50 51.5 

VFFRLS 39.2 45.9 50.5 57 

CSLMS 23 31 34 36 

MRVSS 25.5 32 34.5 37 

RLMS1 49.3 53 58.5 58.5 

RLMS 50.3 52.5 53 64 

 
 
 

4.7.3.6 Fixed beamforming 

To demonstrate that the RLMS1 algorithm is capable of realizing accurate 

fixed beamforming, the individual elements of the array vector, RF , are 

assigned values pre-calculated using equation (4.2) for the desired direction. 

In this simulation, we consider an input signal with an SNR of 10 dB is 

arriving at an angle dθ  corresponding to o20− , o0 , o20 , o40  or o60 . The 
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resultant fixed beam patterns are plotted in Figure 4-9, which shows that the 

main lobe in each case is accurately located at the specified desired 

direction. Except for the case of dθ  of o60 , which suffers from the grating 

lobe problem6, the beam patterns are almost identical, with a worst case side 

lobe suppression of -13 dB.  Although not shown, the same observation can 

be made when a desired signal is arriving from an angle of o20 , o0 , o20− , 

o40−  or o60− . 

 

 

Figure  4-9   The beam patterns achieved with the RLMS1 algorithm for five 

relatively large angles of dθ  ( o o o o20 , 0 , 20 , 40−  and o60 ) at an input SNR=10 

dB using the parameters given in the second column of Table 4-1. 

 

 
Furthermore, the beam resolution that could be achieved with this fixed 

beamforming scheme is also investigated. The resulting beam patterns 

achieved for the desired direction set at either o o o2 ,  0 ,  1−  or o5 are shown in 

Figure 4-10. These results indicate that it is possible to differentiate very 

small differences in beam direction. The same beam resolution can also be 

achieved when the desired signal arrives from a larger angle of around 30o, 

as shown in Figure 4-11. 
                                                 

6 The grating lobe problem is discussed in Section 2.3 
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Figure  4-10   The beam patterns achieved with the RLMS1 algorithm for four 

small angles of dθ  ( o o o2 ,  0 ,  1−  and o5 ) at an input SNR of 10 dB using the 

parameters given in the second column of Table 4-1. 

 
 

 

Figure  4-11   The beam patterns achieved with the RLMS1 algorithm for four 

closely spaced angles of dθ  ( o o o32 ,  -30 ,  -29−  and o-25 ) at an input SNR of 

10 dB using the parameters given in the second column of Table 4-1. 
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4.7.3.7 EVM and scatter plot 

The performances of the seven algorithms, namely RLMS, RLMS1, 

CSLMS, MRVSS, RLS, VFFRLS and LMS, based on the root mean square 

(rms) value of the error vector magnitude (EVM) computed using equation 

(4.86), for values of input SNR ranging from 0–30 dB in steps of 5 dB are 

shown in Figure 4-12. These EVM values have been calculated after each 

adaptive algorithm has converged. It is observed that the proposed RLMS 

algorithm achieves the lowest EVM values with those obtained from the 

RLMS1 algorithm being slightly larger. This suggests that the RLMS algorithm 

may be able to better readjust itself to the operating environment due to the 

use of an adaptive array image vector. On the other hand, all the other five 

algorithms suffer from much larger EVM values, particularly for SNR smaller 

than 10 dB. This further confirms the observation made from Figure 4-2 

showing that the operations of the RLMS1 and RLMS algorithms are very 

insensitive to changes in input SNR.  

 

 

Figure  4-12   The EVM values obtained with the RLMS, RLMS1, CSLMS, 

MRVSS, RLS, VFFRLS and LMS algorithms at different values of input SNR. 

 
 
 

Next, the scatter plots of the BPSK signal recovered using the adaptive 

beamformer, based on the RLMS1, RLMS, CSLMS, MRVSS, RLS, VFFRLS 
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and LMS algorithms are shown in Figures 4-13(a)–(f), respectively. The 

scatter plots, obtained from 8192 signal samples, are based on the algorithm 

operating at an input SNR of 10dB and signal to interference ratio (SIR) of -

6dB. Again, the scatter plots of the RLMS1 and RLMS algorithms show the 

least spreading among the seven algorithms, indicating their ability to retain 

the signal fidelity. 

 

4.7.3.8 Operation in a flat Rayleigh fading channel 

The ability of an adaptive beamformer to operate in a fast changing signal 

environment is examined by subjecting the input signal to undergo flat 

Rayleigh fading. In this case, the rms EVM is again used as the performance 

metric for comparison between the different adaptive beamforming 

algorithms. The following conditions are considered in the performance 

evaluation: 

• The signals arriving at each antenna element, for both the desired and 

interfering signals, undergo independent flat Rayleigh fading. A typical 

Rayleigh flat fading envelope observed on the first antenna element is 

shown in Figure 4-14. 

• Two interfering signals, each with the same amplitude as the desired 

signal, are emanating from o30−  and o45 .   

• The parameters as tabulated in column 3 of Table 4-1 are adopted for 

the different algorithms. Note that the parameter values have been 

adjusted somewhat to suit the new channel environments when 

compared with the values used in the case of AWGN.  

• Each simulation involves a run of 16 Mbits. 

• A Doppler frequency df  of 60 Hz, corresponding to a mobility of 72 km/h 

at 900 MHz, is used in the simulation. 

The resultant EVM values achieved at different input SNR for the cases of 

with and without co-channel interference are plotted in Figure 4-15a and 

Figure 4-15b, respectively. From these figures, the following observations are 

made: 
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(a) LMS algorithm 

 
(b) RLS algorithm 

 
(c) VFFRLS algorithm 

 
(d) CSLMS algorithm 

 
(e) MRVSS algorithm 

 
(f) RLMS1 algorithm 

 
(f) RLMS algorithm 

Figure  4-13   The scatter plots of the recovered BPSK signal obtained with 

(a) LMS, (b) RLS, (c) VFFRLS, (d) CSLMS, (e) MRVSS, (f) RLMS1, and (g) 

RLMS algorithms for input SNR=10 dB and SIR= -6 dB. 
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Figure  4-14   The Rayleigh flat fading envelope observed at the first antenna 

element of the array. 

 

 

• With the exception of the MRVSS algorithm, all the other algorithms 

considered seem to be able to operate in the presence of Rayleigh 

fading. As the EVM values are calculated after each algorithm has 

achieved convergence, the interfering signals emanating from the 

unwanted directions would have been suppressed. Consequently, the 

resultant EVM values, as shown in Figure 4-15a and Figure 4-15b, are 

similar for the case with and without the interfering signals, respectively.  

• Irrespective of whether interfering signals are present or not, the RLMS 

and RLMS1 algorithms outperform the other four algorithms.  

• The RLMS algorithm is the least affected by interference. 
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(a) In the presence of fading and co-channel interference 

 

 

 (b) In the presence of fading but without interference 

 

Figure  4-15   The EVM values obtained with the RLMS, RLMS1, CSLMS, 

MRVSS, RLS, VFFRLS and LMS algorithms for different values of input SNR 

in the presence of Rayleigh fading: (a) signal-to-interference ratio (SIR) of -6 

dB, and (b) without co-channel interference. 
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4.8 Summary 

A new array beamforming algorithm, called the RLMS algorithm, is 

presented in this chapter. It incorporates an RLS algorithm stage connected 

in series with an LMS algorithm stage via an array image vector, RF . This 

algorithm adopts a different approach compared with earlier algorithms, such 

as the CSLMS and MRVSS algorithms, which make use of step size 

adaptation to enhance their performance. For proper operation, those LMS 

algorithms, modified to make use of variable step size to enhance 

convergence speed, often require many input signal dependent parameters 

to be specified. As noted in [139], it is difficult in practice to obtain the exact 

values simultaneously for all these parameters. On the other hand, 

modifications introduced to improve the tracking ability of an RLS algorithm 

tend to increase significantly the computation complexity. Examples of these 

modified RLS algorithms are the AFF-RLS [89], VFFRLS [12] and EX-KRLS 

algorithms [13]. 

 
As discussed in Section 4.2, with the proposed RLMS algorithm, it is 

possible to make use of the array image vector to provide a flexible means of 

achieving either fixed or adaptive array beamforming. The former mode of 

operation is referred to, in this chapter, as the RLMS1 algorithm, and it can 

provide an accurate fixed beam by prior setting the elements of RF  with the 

prescribed values for the required direction. Alternatively, RF  may be made 

adaptive to automatically track the target signal. This adaptive version of the 

algorithm is described simply as the RLMS algorithm. A simple and effective 

method has been proposed in Section 4.5 for calculating the element values 

of RF  adaptively. This involves the use of the signal at the output of the RLS 

algorithm stage in conjunction with its tap weights. 

 
The convergence of the RLMS algorithm, operating in either the fixed or 

adaptive mode, has been analyzed assuming the use of an external 

reference signal. The analysis is then extended to cover the case that makes 

use of self-referencing. The boundary values for the step sizes, RLSµ  and 

LMSµ , used in the respective RLS algorithm and LMS algorithm stages have 
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been derived analytically. It is shown that a stable operation of the RLMS 

algorithm can be achieved using a broad range of values for RLSµ  and LMSµ . 

 
As discussed in Section 4.8.1, both the RLMS1 and RLMS algorithms are 

shown to have rapid convergence, typically within a few iterations, as well as 

good signal tracking ability. Also, the resulting steady state MSE is quite 

insensitive to changes in input SNR. Furthermore, unlike the conventional 

LMS, RLS, VFFRLS, CSLMS and MRVSS algorithms, the proposed RLMS1 

and RLMS algorithms are able to operate with noisy reference signals. Once 

initial convergence is achieved, usually within a few iterations, both the 

RLMS1 and RLMS algorithms can maintain their operation through self-

referencing. Moreover, the resultant EVM values and scatter plots, obtained 

for operation in an AWGN channel or fast changing Rayleigh fading 

environment, further demonstrate the superior performance of the RLMS1 

and RLMS algorithms over the other five published algorithms considered in 

this chapter.  

 
It is to be noted that the superior performance of the proposed RLMS 

algorithm is achieved with a complexity only slightly larger than the 

conventional RLS algorithm scheme, i.e., equivalent to 22.5 5 1N N+ +  

complex multiplications for an N-element array. Moreover, its complexity is 

significantly lower than some of the RLS based algorithms, such as VFFRLS, 

AFF-RLS and EX-KRLS algorithms, which have been proposed for improving 

the tracking performance of the RLS algorithm. 
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CHAPTER 5   
 

ADAPTIVE ARRAY BEAMFORMING USING A 

COMBINED LMS-LMS ALGORITHM 

 

 

 

5.1 Introduction 

It is well known that the LMS algorithm is simple to implement and robust 

in operation. For this reason, the LMS algorithm has become one of the most 

popular adaptive signal processing techniques adopted for many applications 

including antenna array beamforming. Moreover, as reviewed in Section 

3.2.2, there is always a tradeoff between the speed of convergence and 

achievable residual error floor when a given adaptation step size is used with 

an LMS algorithm.  This observation has led to several improvements being 

proposed over the last three decades to speed up the convergence of an 

LMS algorithm. Some of these modified LMS algorithms, such as  the 

constrained-stability LMS (CSLMS) algorithm [9] and modified robust variable 

step size LMS (MRVSS) algorithm [10] have been reviewed in Chapter 3.  

 
In Chapter 4, a new approach to adaptive array beamforming using a 

combined RLS-LMS algorithm has been proposed. The fast convergence 

and robust operation of this new RLMS algorithm have been verified through 

a detailed analytical study and extensive computer simulations, as described 

in Chapter 4. However, the complexity of the RLS algorithm, which is used in 

the first stage of the RLMS algorithm, remains quite high when compared 

with a conventional LMS algorithm. This observation provides an incentive to 

search for a simpler replacement for the RLS algorithm while still being able 

to maintain the superior performance of the RLMS algorithm.  

 
In this chapter, it is proposed that an LMS algorithm stage is used to 

replace the RLS algorithm stage in the RLMS algorithm. The resultant 

scheme is referred to as the LLMS algorithm, which maintains the low 
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complexity generally associated with an LMS algorithm. It can be shown that 

an N-element antenna array employing the LLMS algorithm involves 4N+1 

complex multiplications and 3N complex additions, i.e., slightly doubling the 

computational requirements of a conventional LMS algorithm scheme. 

 

In the following section, we will analyze and study the performance of the 

proposed LLMS algorithm. 

 

 

5.2 LLMS Algorithm 

With the proposed LLMS algorithm, as shown in Figure 5-1, the 

intermediate output, LMS1y , yielded from the first LMS algorithm or LMS1 

stage, is multiplied by the array image vector, LF , of the desired signal. The 

resultant “filtered” signal is further processed by the second LMS algorithm or 

LMS2 stage. For the adaptation process, the error signal of the LMS2 

algorithm stage, 2e , is fed back to combine with that of the LMS1 algorithm 

stage, to form the overall error signal, LLMSe , for updating the tap weights of 

the LMS1 algorithm stage. As shown in Figure 5.1, a common external 

reference signal ( )d n  is used for both the LMS1 and LMS2 algorithm 

sections, i.e., 1d  and 2d . Moreover, this external reference signal may be 

replaced after a few initial iterations by LMS1y  in place of 2d , and LLMSy  for 1d  

to produce a self-referenced version of the LLMS algorithm scheme. This will 

be discussed in Section 5.3.2. 

 

As in the case of the RLMS algorithm, described in Chapter 4, it is 

possible for the array image vector, LF , used in the LLMS algorithm to be 

made adaptive in order to follow the angle of arrival (AOA) of the wanted 

signal. This adaptive LF  version will from here on be simply known as the 

LLMS algorithm, in order to differentiate it from the scheme that makes use of 

a prescribed LF . The latter will be referred to as the LLMS1 algorithm. 
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Figure  5-1   The proposed LLMS algorithm with an external reference signal. 
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A detailed analysis of the proposed LLMS algorithm, operating with either 

an external reference or self reference, will be presented in the next section. 

The analysis follows the same approach as described in Section 4.3 for the 

RLMS algorithm. Again, the boundary values of the step sizes used in the 

LMS1 and LMS2 algorithm stages are derived in Section 5.3.4.2.  

 
 
 

5.3 Convergence of the Proposed LLMS Algorithm 

 

5.3.1 Analysis for operation with an external reference 

The convergence of the proposed LLMS1 algorithm, which employs a 

prescribed array image vector, LF , is analyzed with the same assumptions 

that are used in Section 4.3.1 

 
First, we consider the case when an external reference signal is used. 

From Figure 5-1, the overall error signal for updating the LLMS algorithm at 

the thn  iteration is given by 

LLMS 1 2( ) ( ) ( 1)e n e n e n= − −                                      (5.1) 

with the individual error signals 

( ) ( ) ( ) ( )H
i i i ie n d n n n= −W X                                     (5.2) 

 where the subscript i takes on the value of 1 and 2 for the LMS1 and the 

LMS2 algorithm stages respectively; ( )i ⋅X  and ( )i ⋅W  represent the input 

signal and weight vectors respectively, and ( )H
i  denotes the Hermitian 

matrix of ( )i . 

 
The input signal of the LMS2 algorithm stage is derived from the LMS1 

algorithm, such that 

2 L LMS1 L 1 1( ) ( ) ( ) ( )Hn y n n n= =X W XF F                            (5.3) 
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where LF  is the image of the array vector of the desired signal as defined 

in equation (4.9) and is assumed fixed for this analysis. The weight vector 

( )i ⋅W  for the thi  LMS algorithm section is updated according to [34], 

( 1) ( ) ( ) ( ) 0i i i i i i ln n e n nµ µ µ+ = + < <W W X                     (5.4)       

where iµ  is the step size with the subscript i as defined in equation (5.2), 

and lµ  is a positive value that is inversely proportional to the input signal 

power.  

 
Convergence performance of mean-square error, LLMSξ , for the LLMS 

algorithm can be analyzed in terms of the expected value of 2
LLMSe , such that 

2 2
LLMS LLMS 1 2

2
L 1 1 1

L 1 1 L 1 1

E ( ) E ( ) ( 1)

E ( ) ( ) ( ) ( )

  E ( ) ( ) ( ) ( ) ( ) ( )

H

H H

e n e n e n

D n n n n

D n n n D n n n

ξ

∗

   = − −    

 = +
 

 − + 

≜

W Q W

X W W X

                (5.5)                     

where [ ]E ⋅  denotes expectation; i  signifies modulus; * stands for 

conjugate operator;  

L 1 2( ) ( ) ( 1)D n d n e n= − −                                        (5.6) 

and 1Q  is the correlation matrix of the input signals given by  

1 1 1E ( ) ( )Hn n =  Q X X                                         (5.7) 

From Appendix D, the final form of equation (5.5) is derived as 

2 2
LLMS 1 2

LLMS 1 LLMS L 1

LLMS L L LLMS

1 L 1 1 1

E ( ) E ( 1)

  ( 1) ( 1) ( 1) ( ) ( )

  ( 1) ( 1) ( 1) ( 1)

  ( ) ( ) ( ) ( ) ( )

H H

H H

H H

d n d n

n n n n n

n n n n

n n n n n

ξ =

+

   + −
   

+ − − − −

− − − − − −

−

W Q W Z W

W Z Z W

W Z W Q W

               (5.8) 
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It follows from Appendix D that the minimum mean square error (MSE) of 

equation (5.5) becomes 

{ }

2 2
LLMS,min 1 2

L 1 L LLMS

LLMS L L 2

E ( ) E ( 1)

( ) ( ) ( 1) ( 1)

( 1) ( 1) ( 1) 1

H H
opt

H H

d n d n

n n n n

n n n

ξ    = + −
   

− − − −

+ − − − −

Z W Z W

W Z WF

                     (5.9) 

where LZ  corresponds to the input signal cross-correlation vector given 

by  

L 1 2E ( ) ( )n d n∗ =  Z X                                        (5.10) 

Based on the same analysis carried in equations 4.31 to 4.39, the weight 

vector is updated according to 

1 1 1 LLMS( 1) ( ) ( )n n nµ ξ+ = −W W ∇∇∇∇                                (5.11)  

where 1µ  is the convergence constant that controls the stability and the 

rate of adaptation of the weight vector, and LLMS ( )nξ∇∇∇∇  is the gradient at the 

thn  iteration. 

 

We may rewrite equation (5.11) in the form of a linear homogeneous vector 

difference equation following the same procedure given in equations 

equation (4.42) to equation (4.45), to yield 

1 1 1 1 1( 1) ( ) ( )n n nµ+ = −V V Q V                                   (5.12) 

Alternatively, equation (5.12) can be written as 

( )
( )

1 1 1 1 1 1 1 1

1 1 1 1 1

( ) ( 1)

(0)

H H

n H

n nµ

µ

= − −

= −

V q q q q V

q I q V

ΛΛΛΛ

ΛΛΛΛ
                            (5.13)                  

By using similar steps in (4.49), the MSE at the thn  iteration is given by 
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( )( ) ( )

LLMS LLMS,min

1 1 1 1 1 1 1 1 1 1 1 1 1(0) (0)
Hn nH H H H

ξ ξ

µ µ

=

+ − −V q I q q q q I q VΛ Λ ΛΛ Λ ΛΛ Λ ΛΛ Λ Λ
      (5.14) 

Rearranging equation (5.14) yields 

( )( ) ( )LLMS LLMS,min 1 1 1 1 1 1 1 1 1(0) (0)
Hn nH Hξ ξ µ µ= + − −V q I I q VΛ Λ ΛΛ Λ ΛΛ Λ ΛΛ Λ Λ       (5.15) 

From equation (5.15), the asymptotic value of LLMSξ  becomes zero since 

( )1 1lim 0
n

n
µ

→∞
− =I ΛΛΛΛ . With the term ( )1 1µ−I ΛΛΛΛ  converging, (as will be 

discussed in Section 5.3.3), the mean square error will finally approach its 

minimum value, such that 

LLMS LLMS,minlim
n

ξ ξ
→∞

=                                        (5.16)    

 

 

5.3.2 Analysis of the self-referencing scheme 

After the convergence of the LLMS algorithm, usually within few 

iterations, the external reference of the LMS1 algorithm stage can be 

replaced by the internally generated output signal, LLMSy , and the reference 

signal for the LMS2 algorithm stage may be replaced by the output LMS1y , so 

that 

1 LLMS( ) ( 1)d n y n= −                                         (5.17) 

   and 

 2 LMS1( ) ( )d n y n=                                           (5.18)    

This mode of operation of the LLMS algorithm is referred to as self-

referencing. With these changes and observing that 

 2 2 LLMS( ) ( ) ( )e n d n y n= −                                     (5.19) 

then we can redefine L ( )D n  in equation (5.6) as 
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L LLMS LMS1( ) 2 ( 1) ( 1)D n y n y n= − − −                             (5.20) 

Based on the definition of equation (5.20), and following the same procedure 

steps in Appendix D, we reanalyze the MSE as defined in equation (5.5) to 

yield 

2
LLMS L L 1

1 L 1 1 1

E ( ) ( )

( ) ( ) ( ),

H

H H

D n n

n n n

ξ   ′= −
 

′− +

Z W

W Z W Q W

                           (5.21) 

where L ( )n′Z  corresponds to the input signal cross-correlation vector 

given by  

L L 1E ( ) ( )D n n∗ ′ =  Z X                                       (5.22) 

The error values obtained from equation (5.21) are plotted as the theoretical 

curve in Figure 5-4.  

 

The minimum MSE ( LLMS,minξ ) of equation (5.21) can be obtained 

following the same analyzing steps in Appendix C to obtain a similar formula 

to that given in equation (5.9). This is followed by finding the weight error 

vector similar to that in equation (5.12). Then using this weight error, the 

convergence of MSE in equation (5.21) to that obtained in equation (5.16) 

can be verified. Therefore, based on these steps, it can be shown that the 

proposed LLMS algorithm will converge under the condition of self-

referencing. 

 

5.3.3 Mean weight vector convergence 

This section derives the values of the step sizes, 1µ   and 2µ  required to 

ensure stable operation of the LLMS algorithm. To simplify the analysis, we 

use the concept that once the two individual LMS algorithm sections that 

make up the LLMS algorithm are converging, the LLMS algorithm as a whole 

is also converging. This enables the range of allowed step size values to be 
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separately determined for the LMS1 and LMS2 algorithms. Those values that 

overlap these two ranges of step sizes are then considered valid for use in 

the LLMS algorithm to ensure its convergence.  

 
In equation (5.4), we define the error ie  as [135, 140] 

( ) ( ) ( ) ( ),H
i i i ie n e n n n′′= − X V                                    (5.23) 

where ( )ie n′′  is a zero mean measurement noise and iV  is the weight 

vector error. Then, let the time-varying weight vector be modeled by a 

random walk process [68], such that 

0 0( 1) ( ) ( ),i i in n n+ = +W W r                                    (5.24) 

   where 0iW  is the optimal weight vector of the thi  LMS algorithm section, 

( )nr  is a zero mean white sequence vector with diagonal correlation matrix 

2
L,rσ I , and 2

L,rσ  is the weight variance. Also, let the weight error vector be 

0( ) ( ) ( )i i in n n= −V W W                                       (5.25) 

From equations (5.4), (5.24) and (5.25), we obtain  

( 1) ( ) ( ) ( ) ( )i i i i i in n e n n nµ+ = + −V V X r                             (5.26) 

Substituting equation (5.23) into equation (5.26) and multiplying both sides of 

equation (5.26) by ,H
iq  which defines the eigenvector matrix for the thi  LMS 

algorithm stage, gives 

( 1) ( ) ( ) ( )

    [ ( ) ( )] ( ) ( ) ( )

i i i i i i

H
i i i i i i i i

n n e n n

n n n e n n

µ

µ µ

+ = + −

′′= − + −

ɶ

ɶ ɶ ɶ ɶ

v v X r

I X X v X r
               (5.27)                       

where  

( ) ( ),

( ) ( )

( ) ( )

H
i i i

H
i i i

H
i i i

n n

n n

n n

=

=

=

ɶ

ɶ

r q r

X q X

v q V

                                    (5.28) 
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To find the condition for convergence, we take the expected value of 

equation (5.27). This leads the second and third right hand side (RHS) terms 

of equation (5.27) to vanish as both ie′′  and ( )i nɶX  are uncorrelated. As a 

result, we obtain 

[ ] { } [ ]E ( 1) E ( ) ( ) E ( )H
i i i i in n n nµ  + = −  

ɶ ɶv I X X v                     (5.29) 

For the LMS1 algorithm stage, using the eigenvalue decomposition of 1Q , 

and using similar definition in equation (4.35), equation (5.29) can be 

rewritten as 

[ ] ( ) [ ]

( ) [ ]

( ) [ ]

( ) [ ]

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1

1 1 1

E ( 1) E ( ) ( ) E ( )

E ( )

E ( )

E (0)

H H

H

H H

n

n n n n

n

n

µ

µ

µ

µ

 + = −  

−

= −

= −

v I q X X q v

= I q Q q v

I q q q q v

I v

ΛΛΛΛ

ΛΛΛΛ

                   (5.30)                        

Using the definition given in equation (4.70) for the first stage of the LLMS 

algorithm, i.e., the LMS1 algorithm stage, convergence can be satisfied if 

1 max1 1Eµ− < . This gives 

1
max

20 Eµ< <                                            (5.31) 

where maxE  is the largest eigenvalue of 1Q .  

 
For the LMS2 algorithm stage, equation (5.29) is rewritten as 

[ ] { } [ ]2 2 2 2E ( 1) ( ) E ( )n n nµ+ = −v I R v                            (5.32) 

where 2 2 2( ) E ( ) ( )Hn n n =  R X X  is the cross-correlation matrix of 2X   and 

its general coefficient can be expressed as 

, , , 1, 1,
,

E
N

l ka l k l a l l m m
l m

r w x x w∗ ∗ ∗ =  ∑F F                               (5.33) 

where ,l kF  and ,l aF  are the thk  and tha  elements of FL.  



 117 

According to the assumptions (ii) and (iii) as stated in Section 4.3.1, we 

conclude that, equation (5.33) is nonzero only when l m= . Therefore, 

equation (5.33) can be rewritten as  

2
, , , , , 1El ka l k l a l l l k l ar y y σ∗ ∗ ∗ = = F F F F                              (5.34) 

where 2
1σ  is the variance of the output of the LMS1 algorithm stage. In 

matrix form, equation (5.34) can be expressed as 

2
2 1 L L( ) Hn σ=R F F                                          (5.35) 

where 2R  is a complex matrix having a rank of one, that can be analyzed 

according to equation (5.32) using EVD [136], such that 

                      
[ ] ( ) [ ]

( ) [ ]

2
2 2 1 2 2

12
2 1 2 2

E ( 1) E ( )

                   E (0)

H

n+ H

n nµ σ

µ σ

+ = −

= −

v U I U v

U I U v

ΛΛΛΛ

ΛΛΛΛ
                     (5.36)    

where U  is an N-by-N unitary matrix, and L,2diag[ ,0,0,.....,0]λ2 =ΛΛΛΛ  is the 

diagonal matrix of eigenvalues of the array matrix ( L L
H

F F ).  

Since this matrix is singular of rank 1, it has only one eigenvalue. With 

2
L N=F , this eigenvalue is equal to N  so that L,2 L Ltrace( )H Nλ = ⋅ =F F . 

From equation (5.36), the convergence of the LMS2 algorithm can be 

satisfied if 2
2 1 2 1µ σ− <I ΛΛΛΛ . This gives 

2 2
1

20
N

µ
σ

< <                                           (5.37) 

Thus, to ensure convergence of the LLMS algorithm, the step size values of 

1µ  and 2µ  must satisfy equations (5.31) and (5.37), respectively.  

 

 

5.3.4 LLMS algorithm with adaptive array image vector LF  

It will be shown that the LLMS algorithm can be used for self-adaptive 
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beamforming in the same way as the RLMS algorithm, as described in 

Section 4.5. Also, the boundary values for the step size, 2µ , required for 

stable operation of the LLMS algorithm in this adaptive mode will also be 

derived.  

 

 

5.3.4.1 Estimation of the array image vector LF   

Self-adaptive beamforming requires that the array image vector LF  be 

adjusted automatically to always tracking the AOA of the desired signal. This 

can be achieved following the same procedure as that described for the 

RLMS algorithm in Section 4.5. In this case, the array image vector, LF , is 

estimated based on the weights, 1W , and the output, LMS1y , of the LMS1 

algorithm stage.  

 

Recalling equation (4.73), the output of the kth antenna element is given 

by 

1, , ,( ) ( ) ( ) ( )k d k d i k i kx t A s t A s t n t= + +                              (5.38) 

where ,d kA , and ,i kA  are the thk  element of the complex array vectors for 

the desired signal and the cochannel interference, respectively. kn  is the 

additive white Gaussian noise associated with the thk  array element  with 

1,2,...,k N= . 

  
The outputs of the individual LMS1 algorithm tap weights, 1,kw , can be 

expressed as 

1, 1, 1,( ) ( )k k kx t w x t′ =                                          (5.39) 

Following the reasoning presented in Section 4.5 for the RLMS algorithm, the 

array vector elements are estimated as 
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1,
,

1, LMS1

E[ ( )]
( )

E[ ] ( )
k

d k
k c

x t
A t

w y t ε
′

≈
+

                                 (5.40) 

where LMS1( )y t  is the output of the LMS1 algorithm stage, and is assumed 

to approach ( )ds t  when the LMS1 algorithm stage converges. 

 

The value of the constant, cε , introduced to avoid a possible division-by-

zero condition, is chosen such that  

N
LMS1

1,
k=1

c k

y
w

N
ε ∑≪                                        (5.41) 

For the computer simulations described in this chapter, cε  has been set 

to the same value as in Section 4.7. It follows that the instantaneous values 

of the estimated array image vector for the kth element can be calculated 

from  

1,
,

1, LMS1

( )
( )

( ) ( )
k

d k
k c

x t
A t

w t y t ε
′

≈
+

                                 (5.42) 

 

 

5.3.4.2 Range of step size, 2µ  values for the LLMS algorithm 

For the adaptive LLMS algorithm scheme, the convergence of the LMS1 

follows the same condition given by equation (5.31). However, the allowable 

step size values, 2µ , for the LMS2 algorithm stage differ somewhat from 

those of equation (5.37). This is because the array image vector LF  

calculated using equation (5.40) is highly correlated with the difference 1( )nV , 

between the estimated and actual tap weights, for the LMS1 algorithm stage.  

The correlation coefficient between 1, ( )kx t  in equation (5.38) and the error of 

LMS1 algorithm, 1( )nV , in equation (5.26) is defined as 
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[ ]
1, 1

1, 1

1, 1 1, 1
,

E ( ) ( ) E ( ) E ( )
( )

k

k

k k
x

x

x n n x n n
nρ

σ σ
   −   =V

V

V V
                  (5.43)   

where 
1,kxσ and 

1
σV  are the standard deviations of the input signal, 1, ( )kx n ,  

and 1( )nV , respectively. 

 

As 1, ( )kx n  and 1( )nV  are highly correlated and almost zero mean, the first 

RHS of equation (5.43) becomes 

1, 11, 1E ( ) ( )
kk xx n n σ σ  ≈  VV                                     (5.44) 

so that equation (5.43) is approximated as 

[ ]
1, 1

1, 1

1, 1
,

E ( ) E ( )
( ) 1

k

k

k
x

x

x n n
nρ

σ σ
  ≈ −V

V

V
                             (5.45) 

Using the similar estimation in equation (4.78) of the RLS algorithm stage of 

the RLMS algorithm, equation (5.45) can be rewritten as 

[ ]
1, 1

1, 1

, LMS1 1
,

( ) ( )E ( )
( ) 1

k

k

d k
x

x

A n y n n
nρ

σ σ
= −V

V

V
                          (5.46) 

Rewriting equation (5.46) to obtain , ( )d kA n , such that 

( )
[ ]

1, 1 1, 1,

,
LMS1 1

1 ( )
( )

( )E ( )
k kx x

d k

n
A n

y n n

σ σ ρ−
=

V V

V
                              (5.47) 

Since 2, , LMS1k d kx A y= , the element form of 2R  in equation (5.32) can be 

written as 

*
2, 2, 2,

* *
, LMS1 LMS1 ,

22
LMS1 ,

( ) E ( ) ( )

E

E E

k k k

d k d k

d k

R n x n x n

A y y A

y A

 =  

 =  

  =
    

                              (5.48) 
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Substituting equation (5.47) in the above equation gives 

                            1, 1 1, 1

22 2
,2

2, LMS1 2 2
LMS1 1

1 ( )
( ) E

E E ( )

k kx x

k

n
R n y

y V n

σ σ ρ−
 =
     

  

V V
                                     

 1, 1 1, 1

22 2
,

2
1

1 ( )

E ( )

k kx x n

V n

σ σ ρ−
=

 
 

V V
                               (5.49) 

Now, multiply both sides of equation (5.30) by 1
i
−q  and introducing the 

maximum eigenvalue, max,E  yields 

[ ] [ ]1 1 max 1E ( 1) [1 ]E ( )V n E V nµ+ = −                              (5.50) 

Substituting equation (5.50) in equation (5.49), gives  

1, 1 1, 1

22 2
,

2, 22
1 max 1

1 ( )
( )

[1 ] E ( )

k kx x

k

n
R n

E V n

σ σ ρ

µ

−
=

 −
 

V V
                              (5.51) 

Finally, from equation (5.32), the condition for convergence of the LMS2 

algorithm stage is given by 

  1, 1 1, 1

222 2
,

2 22
1 max 1

1 ( )
1 1

[1 ] E ( )

k kx x n

E V n

σ σ ρ
µ

µ

−
− <

 −
 

V V
                            (5.52) 

This leads to 

1, 1 1, 1

22
1 max 1

2 22 2
,

[1 ] E ( )
0 2

1 ( )
k kx x

E V n

n

µ
µ

σ σ ρ

 −
 < <

−V V

                             (5.53) 

where 
1,kxσ  and 

1
σV  are as defined in equation (5.43).  
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5.4 Computer Simulation 

 

5.4.1 Introduction 

The convergence of the proposed LLMS algorithm, operating with either 

an external reference or self referencing, has been established analytically in 

the previous section. In this section, the performance of the LLMS algorithm 

will be further evaluated by means of computer simulations. Included in the 

evaluations are the two versions of the algorithm, namely the LLMS1 

algorithm which makes use of a fixed image array vector, LF , and the LLMS 

algorithm with an adaptive LF . Also, we consider three other LMS based 

algorithms, including the conventional LMS, CSLMS and MRVSS algorithms, 

for performance comparison.     

 
For the simulations, carried out using full numerical precision, the antenna 

array beamformer is assumed to operate under similar conditions to those 

adopted in Chapter 4 for the RLMS algorithm. For clarity, these conditions 

are restated as follows: 

• A linear array of 8 isotropic antenna elements, spaced half carrier 

wavelength apart. 

• A desired binary phase shift keying (BPSK) arrives at an angle of 0 ,�  or 

if specified at either 20− �  or 10 .�  

• An AWGN channel. 

• All weight vectors are initially set to zero. 

• A BPSK interference signal with the same amplitude as the desired 

signal arrives at 45iθ = � .  

• For operation in a Rayleigh fading channel, the maximum Doppler 

frequency is equal to 60 Hz. In this case, both the desired and 

interference signals that arrive at each antenna element undergo 

independent Rayleigh fading.  

 
The values of the parameters required for the five algorithms are 

tabulated in Table 5-1. These values have been chosen in order to obtain as 

good a performance out of these algorithms as possible.  
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Table  5-1   Values of the constants used in the simulations 

Algorithm AWGN Channel Rayleigh Fading Channel 

LMS 0.05µ =  0.01µ =  

CSLMS 0.05, 0.05ε µ= =  1, 0.05ε µ= =  

MRVSS 

4
max min

4
max min

max

4

1, 0, 5 10

0.2, 10

Initial , 0.97

4.8 10 , 0.97

β β υ

µ µ
µ µ α

γ η

−

−

−

= = = ×

= =
= =

= × =

 

Same as column 2 except for: 

max

4
min

Initial 0.1, 0.05

10

µ µ

µ −

= =

=
 

LLMS1 1 2 0.05µ µ= =  

LLMS 0.08, 0.051 2µ µ= =  1 2 0.01µ µ= =  

 
 
 

5.4.2 Simulation results 

Computer simulated results, obtained using Matlab, for the LLMS1, LLMS, 

CSLMS, MRVSS and LMS algorithms are presented. As adopted in the 

previous chapter for the RLMS algorithm, the performance metrics used here 

are MSE, beam pattern, EVM, scatter plot and SINR. Wherever possible, the 

simulated results are compared with the theoretical values derived from the 

analyses presented earlier in Section 5.3.1.  

 

 

5.4.2.1 Error convergence with an ideal external reference 

First, the performance of a beamformer implemented using one of the five 

given algorithms is evaluated in the presence of an ideal external reference 

signal. The convergence behaviour of each of these algorithms is studied 

based on the ensemble average squared error, 2,eɶ  of the overall error signal 

obtained from 100 individual simulation runs. The effects of AWGN on the 

convergence have been considered for the different values of step sizes, 1µ  

and 2µ , used. 

Figures 5-2(a)–(c) show the convergence behaviours of the five adaptive 

schemes for SNR values of 5, 10, and 15 dB, respectively. For the proposed 

LLMS1 algorithm scheme, the theoretical convergence error calculated using 
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equation (5.5) for SNR of 10 dB is also shown in Figure 5-2b. It is observed 

that under the given conditions, the two variants of the proposed LLMS 

algorithm converge much faster than the other three schemes. Furthermore, 

their error floors are less sensitive to variations in the input SNR, even for an 

input SNR as small as 5 dB. Also, as shown in Figure 5-2b, there is a close 

agreement between the simulated and theoretical error curves for the 

proposed LLMS and LLMS1 algorithms. This validates the method used for 

estimating LF  for the LLMS algorithm as described in Section 5.3.4.1. As for 

the CSLMS and MRVSS algorithms, they share the same performance for all 

the three SNR values considered. As expected, the conventional LMS 

algorithm achieves the slowest convergence among the five algorithms 

considered. It is observed that both of the two modes of operation of the 

proposed LLMS algorithm achieve very similar performance compared with 

their counterparts based on the RLMS algorithms described in Section 4.5. 

 

Next, we consider the influence of the step sizes, 1µ  and 2µ , on the 

stability of the proposed LLMS1 and LLMS algorithms, operating with either a 

fixed LF  or adaptive LF . It is verified that to ensure convergence, the values 

of the step size used have to fall within the bounds given in equations (5.31) 

and (5.37) for the LLMS1 algorithm, and equations (5.31) and (5.53) for the 

LLMS algorithm.  

 

For an 8-element array operating with an input SNR of 10 dB, the 

required bounds are 10 0.8µ< <  and 20 0.7µ< <  for the LLMS1 algorithm, 

and 10 0.8µ< <  and 20 0.26µ< <  for the LLMS algorithm. When the step 

sizes are chosen to be well within their limits, such as for the values used in 

Figure 5-2, both versions of the LLMS algorithm are able to converge within a 

few iterations to a low error floor. However, the LLMS1 algorithm shows some 

sign of instability when operating with step sizes close to their upper limits. 

Such instability in convergence behaviour of the LLMS1 algorithm is shown in 

Figure 5-3 for two cases that make use of 1 0.008µ =  and 2 0.6µ = , and 

1 0.7µ =  and 2 0.08µ = .  
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(a) SNR=5 dB 

 

(b) SNR=10 dB 

 

(c) SNR=15 dB 

Figure  5-2   The convergence of the LLMS, LLMS1, CSLMS, MRVSS and 

LMS algorithms implemented using the parameters as tabulated in the 2nd 

column of Table 5-1, for three different values of input SNR. 
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As discussed in Sections 5.3.3 and 5.3.4.2, the limits of the step size, 2µ , 

for the LLMS algorithm are different from those for the LLMS1 algorithm. This 

is due to the fact that the calculation of the array image vector in the LLMS 

algorithm is correlated with the output of its first LMS algorithm stage. The 

allowable upper limits of 1µ  and 2µ  for the LLMS algorithm are demonstrated 

in Figure 5-3, for the two cases involving the use of 1 0.7µ =  and 2 0.005,µ =  

and 1 0.08µ =  and 2 0.23µ = , respectively. 

 

 

Figure  5-3   The convergence behaviours of the LLMS1 and LLMS algorithms 

at SNR=10 dB for step size values set at their upper limits. 

 

 

 

For the LLMS algorithm, the array image vector, LF , is being determined 

adaptively, which in turn has an effect on its convergence behaviour. As 

shown in Figure 5-3, the resulting error floors achieved when the LLMS 

algorithm is operating with one of its two step sizes, (either 1µ  or 2µ ), close 

to the upper limit, tend to first diverge before finally converging.  

Consequently, this results in a longer convergence time. 
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5.4.2.2 Performance with self-referencing 

As shown in Figure 5-2 and Figure 5-3, both the LLMS1 and LLMS 

algorithms are able to converge within ten iterations. Once this occurs, the 

intermediate output, LMS1y , tends to resemble the desired signal ( )ds t , and 

may then be used in place of the external reference, 2d , for the current 

iteration of the LMS2 algorithm stage. As the LMS2 algorithm section 

converges, its output, LLMSy , becomes the estimated ( )ds t . As a result, 

LLMSy  may be used to replace 1d  as the reference for the LMS1 algorithm 

stage. This feedforward and feedback arrangement enables the provision of 

self-referencing for the proposed LLMS algorithm. If needed, this allows the 

external reference signal to be discontinued after an initial four iterations. The 

ability of the LLMS algorithms to maintain operation with the internally 

generated reference signals is demonstrated in Figure 5-4. Furthermore, it 

clearly shows that the traditional LMS, CSLMS, MRVSS algorithms are 

unable to converge without the use of an external reference signal. For 

comparison, the theoretical convergence errors calculated from equation 

(5.21) are also plotted in Figure 5-4. 

 

Figure  5-4   The convergence of the LLMS and LLMS1 algorithms with self-

referencing when operating with the parameters as tabulated in column 2 of 

Table 5-1 for SNR=10 dB.  An external reference is used for the initial four 

iterations before switching to self-referencing. 
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5.4.2.3 Performance with a noisy reference signal 

The effects of the use of a reference signal corrupted by AWGN on the 

operation of the LLMS, LLMS1, CSLMS, MRVSS and LMS algorithms have 

also been investigated. This is done by examining the resultant mean square 

error ξ  of the overall error signal, LLMSe , when the noise level in the 

reference signal is varied. Figure 5-5 shows the ensemble average of the 

mean square error, ξ , obtained from 100 individual simulation runs, as a 

function of the ratio of the rms noise nσ  to the amplitude of the reference 

signal.  

 

 

 

Figure  5-5  The influence of noise in the reference signal on the mean square 

error ξ  when operating using the parameters given in column 2 of Table 5-1. 

 

 

It is interesting to note that the conventional LMS, CSLMS and MRVSS 

algorithms are quite sensitive to the presence of noise in the reference 

signal. On the other hand, both the LLMS1 and LLMS algorithms are very 

tolerant to noisy reference signals. As shown in Figure 5-5, the values of ξ  

associated with the LLMS and LLMS1 algorithms remain very small even 

when the rms noise becomes as large as the reference signal. The effect of 

noise is even less pronounced on the LLMS algorithm due to the fact that its 
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array image vector LF  is being continuously updated rather than being fixed 

at the prescribed values. 

 
Next, Figure 5-6 shows the resulting beam patterns obtained with the five 

given algorithms when the reference signal used is corrupted by AWGN. In 

this case, the desired signal is arriving at an angle, dθ , of -20o.  From Figure 

5-3a and Figure 5-3b, it is observed that both the LLMS1 and LLMS 

algorithms are able to maintain their correct beam patterns, when the ratios 

of the rms noise to the reference signal amplitude are -3dB and -9dB, 

respectively. However, in both cases, the LLMS1 algorithm with a fixed 

prescribed LF  suffers from a drop in gain. When the reference used is free 

from AWGN, then all the five algorithms are able to achieve similar 

beamforming performance, as shown in Figure 5-6c. Moreover, as noise in 

the reference signal increases, the beam pattern of the LLMS algorithm tends 

to deviate slightly from its designated direction as a result of the use of the 

estimated values for the array image vector LF .  

 
 

5.4.2.4 Tracking performance of the LLMS algorithm 

The ability of the LLMS and LLMS1 algorithms in tracking sudden 

interruptions in the input signal is investigated by examining the behaviour of 

the overall error signal, LLMSe . For this study, the input signal is assumed to 

be periodically interrupted for 25 out of 100 iterations. The resulting tracking 

performances of the LLMS and LLMS1 algorithms are shown in Figure 5-7, 

which shows their respective values of mean square errors ξ  are increasing 

very rapidly when the input signal is switched on or off. This indicates the fast 

response of the LLMS and LLMS1 algorithms to sudden interruptions in the 

input signal. Both the LLMS1 and LLMS algorithms behave in similar manner. 

Unlike the responses for the LMS, CSLMS and MRVSS algorithms, which 

are also included in Figure 5-7 for comparison purposes, the mean square 

errors ξ  associated with both the LLMS1 and LLMS algorithms remain low 

when the input signal is interrupted.  
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 (a) ( )dB
3dBN RSσ = −  

 

(b) ( )dB
9dBN RSσ = −  

 

(c) Without noise 

Figure  5-6   The beams patterns obtained with the LLMS, LLMS1, CSLMS, 

MRVSS and LMS algorithms when the reference signal is contaminated by 

AWGN. The desired signal arrives at o20 .dθ = −  
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Figure  5-7   Tracking performance comparison of the LLMS, LLMS1, CSLMS, 

MRVSS and LMS algorithms operating with 1 2 0.5µ µ µ= = =  and an input 

SNR of 10 dB. 

 
 
 
 

5.4.2.5 EVM and scatter plot 

The performances of the five algorithms, based on the rms EVM 

computed using equation (4.86), for values of input SNR ranging from 0–30 

dB in steps of 5 dB, are shown in Figure 5-8. These EVM values have been 

computed after each of the adaptive algorithms has converged. It is observed 

that the two lowest EVM values are being achieved with the proposed LLMS 

and LLMS1 algorithms. In fact, through the use of adaptive LF , the LLMS 

algorithm is able to achieve slightly smaller EVM than its counterpart, the 

LLMS1 algorithm at lower input SNR. The superior performance of the LLMS 

algorithm among the five algorithms considered becomes even more 

pronounced at lower values of input SNR. This further confirms the 

observation made from Figure 5-2 showing that the operations of the LLMS1 

and LLMS algorithms are very insensitive to changes in input SNR. 
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Figure  5-8   The EVM values obtained with the LLMS, LLMS1, CSLMS, 

MRVSS and LMS algorithms at different input SNR. 

 
 

 

Next, the scatter plots of the BPSK signal recovered through the use of an 

adaptive beamformer, based on the LMS, CSLMS, MRVSS, LLMS1 and 

LLMS algorithms, are shown in Figures 5-9(a)–(e), respectively. These 

scatter plots have been obtained from 100 signal samples after each of the 

adaptive algorithms has converged. In each case, the input SNR is 10 dB 

with two cochannel interfering signals, arriving at angles of -30o and 450, 

having similar amplitude to the desired signal. Again, the scatter plots with 

the LLMS1 and LLMS algorithms show the least spreading, indicating their 

ability to retain the signal fidelity, and suppress interference arriving from 

outside the main beam width of the array. 
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(a) LMS algorithm (b) CSLMS algorithm 

(c) MRVSS algorithm 

 

(d) LLMS1 algorithm 

 

(e) LLMS algorithm 

 

Figure  5-9   The scatter plots of the recovered BPSK signal obtained with (a) 

LMS, (b) CSLMS, (c) MRVSS, (d)  LLMS1, and (e) LLMS algorithms obtained 

with an input SNR of 10 dB and an SIR of -6 dB. 
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5.4.2.6 Operation in flat Rayleigh fading channel 

The ability of an adaptive beamformer to operate in a fast changing signal 

environment is examined by subjecting the input signals to flat Rayleigh 

fading.  In this case, the rms EVM is again used as the performance metric 

for comparison between the different adaptive beamforming algorithms. The 

same operating conditions, as stated in Section 4.7.3.8 for the RLMS 

algorithm, are adopted here for the performance evaluation of the LLMS 

algorithm by computer simulation: 

 
Figure 5-10a and Figure 5-10b show the resultant EVM values as a 

function of the input SNR achieved for the cases with and without 

interference, respectively. From these figures, the following observations are 

made: 

• With the exception of the MRVSS algorithm, the other four algorithms 

are able to operate in the presence of Rayleigh fading.  

• Irrespective of whether interfering signals are present or not, both the 

LLMS and LLMS1 algorithms perform best among the algorithms 

considered.  

• The LLMS algorithm, operating with an adaptive array image vector, is 

the least affected by interference. 

 

 

5.4.2.7 Influence of the AOA, iθ , of the interference 

The effect of the AOA of an interfering signal on the desired signal 

recovered at the output of an adaptive beamformer is also investigated. In 

this study, the desired signal is arriving at either dθ  of 0o, (bore-side), or dθ  of 

90o, (end-fire), with three different input SNR values, i.e., 5 dB, 10 dB or 15 

dB. The interference has the same power as that of the desired signal, i.e., 

SIR=0 dB, and is arriving over a range of AOA from -90o to 90o. The 

performance measure is the output signal-to-noise plus interference ratio, 

oSINR , obtained with a given algorithm after convergence has been 

achieved. In each case, the output signal-to-noise plus interference ratio, at 
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the 

 

(a) In the presence of fading and cochannel interference 

 

 
(b) In the presence of fading but without interference 

 

 

Figure  5-10   The EVM values obtained with the LLMS, LLMS1, CSLMS, 

MRVSS and LMS algorithms for different values of input SNR in the 

presence of Rayleigh fading: (a) signal-to-interference ratio (SIR) of -6 dB, 

and (b) without cochannel interference. 
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the thn  iteration, is computed according to 

o
( )

SINR ( )
( ) ( )

d

i n

P n
n

P n P n
=

+
                                    (5.54) 

where oSINR  is the ensemble average output SINR  obtained from 30 

simulation runs, 

2 2( ) ( ) 2H
d d SP n n V= W A                                    (5.55) 

 
2 2( ) ( ) 2H

i i iP n n V= W A                                    (5.56) 

   and  
22( ) ( )H

n nP n nσ= W                                    (5.57) 

are the average output powers, at the thn iteration, of the desired signal, the 

interference signal and the AWGN, respectively. The input amplitudes of the 

desired and interfering BPSK signals are sV  and iV , respectively, while nσ  is 

the rms noise voltage. The weights, at the thn  iteration, associated with a 

given algorithm are represented by ( )H nW . 

 

Figure 5-11 and Figure 5-12 show how the angle of arrival of an 

interfering signal is affecting the oSINR  of the desired signal under three 

different values of input SNR, i.e., 5, 10 and 15 dB. As expected, the 

interference has little effect on the oSINR  when its AOA is outside the main 

beam of the array. This is true for both the bore-side and end-fire cases. 

Among the cases considered, the beamformers based on the LLMS and 

LLMS1 algorithms achieve higher values of oSINR , and show less 

fluctuations in oSINR  when the interference is arriving outside the 

beamwidth. The latter is the result of the lower side lobes associated with the 

LLMS and LLMS1 algorithms.  
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(a) SNR=5 dB 

 

(b) SNR = 10 dB 

 

(c) SNR = 15 dB 

Figure  5-11  Influence of AOA of the interference on the output oSINR  for 

three different values of input SNR. The desired signal arrives at o90dθ =  

(end-fire). 
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(b) SNR = 5 dB  

 

(d) SNR = 10 dB 

 

(f) SNR = 15 dB 

Figure  5-12  Influence of AOA of the interference on the output oSINR  for 

three different values of input SNR. The desired signal arrives at o0dθ =  

(bore-side). 
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5.5 Comparison Between RLMS and LLMS Algorithms 

In this section, the proposed RLMS and LLMS beamforming algorithms are 

compared on the basis of their resulting mean square errors and beam patterns. The 

operating parameters of the RLMS and LLMS algorithms are as given in Table 4-1 

and Table 5-1, respectively. It is assumed that the signal of interest is arriving 

at o10dθ = , together with four co-channel interfering signals having angles of 

arrival of 50 ,  30 ,  10 ,  and 45 .iθ = − − −� � � �  All the four interfering signals have 

the same amplitude as the desired signal, with SNR of 10 dB and dθ  of 10o.  

Figure 5-13 and Figure 5-14 show the error convergence and the beam 

patterns obtained based on an SNR of 10 dB. From these figures, the 

following observations are made: 

• The two variants of the RLMS algorithm converge slightly faster than the 

two LLMS algorithm schemes, while they share similar error floor.  

• The resultant beam patterns obtained with both variants of the RLMS and 

LLMS algorithms have almost identical gain at the angle of arrival of the 

desired signal. Moreover, the two variants of the RLMS algorithms are 

able to achieve a greater suppression of all the four interfering signals. 

 

Figure  5-13 The rate of convergence of the RLMS, RLMS1, LLMS and LLMS1 

algorithms operating with an SNR of 10 dB in the presence of four-equall-

amplitude interfering signals arriving at 1 2 350 , 30 , 10i i iθ θ θ= − = − = −� � �  and 

4 45 .iθ = �  
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Figure  5-14 The beams patterns obtained with the RLMS, RLMS1, LLMS and 

LLMS1 for an SNR of 10 dB in the presence of four-equal-amplitude 

interfering signals arriving at 1 50 ,iθ = − �
2 30 ,iθ = − �  3 10iθ = − �  and 4 45 .iθ = �  

The desired signal arrives at o10 .dθ =  

 
 

5.6 Summary 

In this chapter, a new algorithm, called the LLMS algorithm, is proposed 

to reduce the complexity of the RLMS algorithm discussed in Chapter 4. In 

this case, the RLS algorithm stage of the RLMS algorithm is being replaced 

by another LMS algorithm stage. Consequently, the LLMS algorithm makes 

use of two concatenated LMS algorithm stages separated by an array image 

vector, LF . With this modification, a linear N-element adaptive beamformer 

implemented with the LLMS algorithm will require only 4 1N +  complex 

multiplications as opposed to 22.5 5 1N N+ +  complex multiplications for the 

RLMS algorithm. Unlike the previously published LMS based algorithms, 

such as the CSLMS and MRVSS algorithms, which require many input signal 

dependent parameters to be specified, the proposed LLMS algorithm 

depends for its operation only on two step size values, one for each of the 

two LMS algorithm stages. This makes the LLMS algorithm attractive for 
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practical applications.  

 
As discussed in Section 5.2, the proposed algorithm makes use of the 

array image vector LF  to interface between the two LMS algorithm stages. In 

this way, an accurate fixed beam can be obtained by prior setting of the 

elements of LF  with the prescribed values for the required direction. 

Alternatively, LF  may be made adaptive to automatically track the target 

signal. The same simple and effective method as described in Section 4.5 

can also be adopted for calculating the element values of LF , based on the 

estimated output signal of the first LMS algorithm section and its tap weights.  

 
The convergence of the two versions of the LLMS algorithm, i.e., the 

LLMS1 and LLMS algorithms, has been analyzed assuming the use of an 

external reference signal. This is then extended to cover the case that makes 

use of self-referencing. The convergence behaviours of these two LLMS 

algorithms with different step size combinations of 1µ  and 2µ  have been 

demonstrated by means of computer simulations under different input SNR 

conditions. Also, the boundary values of 1µ  and 2µ  for stable operation have 

been derived analytically in Sections 5.3.3 and Section 5.3.4.2. Operations 

with these values have been verified by computer simulations.   

 
It is shown that the simpler LLMS algorithm performs very similar to the 

RLMS algorithm. For example, the two variants of the LLMS algorithm are 

able to have rapid convergence, typically within a few iterations. Also, the 

resulting steady state MSE is quite insensitive to input SNR. Furthermore, 

they are able to operate with noisy reference signals. Once initial 

convergence is achieved, usually within a few iterations, both the LLMS1 and 

LLMS algorithms can maintain their operation through self-referencing. 

Furthermore, the resultant EVM values and scatter plots, obtained for 

operation in the presence of Rayleigh fading further demonstrate the superior 

performance of LLMS and LLMS1 algorithms over the other three LMS-based 

algorithm schemes in a fast changing signal environment. From the study of 

the influence of the AOA of the interference on the desired signal at the 
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output of an adaptive beamformer, it is observed that the proposed LLMS 

algorithm schemes outperform the other three algorithms. 

 

Based on the comparison, presented in Section 5.5, between the LLMS 

and RLMS algorithms, it is observed that the latter performs only slightly 

better in terms of convergence as well as suppression of the co-channel 

interference. Moreover, the LLMS algorithm is much less complex than the 

RLMS algorithm. 
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CHAPTER 6   
 

PRACTICAL CONSIDERATIONS 
 
 
 
 

6.1 Introduction 

The proposed RLMS and LLMS algorithms have been described and 

analyzed in Chapter 4 and Chapter 5, respectively. Also, their performances 

when used in digital array beamforming have been investigated by means of 

extensive computer simulations with the various mathematical functions 

represented in full numerical precision. However, it is envisaged that finite 

numerical arithmetic will be used for real-time implementations of these 

algorithms. In addition, any practical implementation of an array beamformer 

is likely to encounter random error sources caused by tolerances in inter-

element spacing and element gain. These error sources could affect the array 

gain, beam pattern and null depth at the interference direction in an 

unpredictable manner. 

 

In this chapter, we begin by considering the effect on the operation of the 

RLMS and LLMS algorithms due to the use of finite precision arithmetic. This 

leads to the determination of the minimum word length, in terms of the 

number of binary bits, required to achieve an acceptable degradation in 

performance when compared with a full precision implementation. Following 

this, we will examine tolerances in inter-element spacing and element gain on 

the resulting beam pattern. Finally, the performance of a linear antenna array 

with two or four elements is investigated.  

 

6.2 Finite Precision Arithmetic 

In this section, the convergence behaviours of the RLMS and LLMS 

algorithms due to the use of finite numerical precision in their implementation 

are analyzed. Analytical expressions for the estimation of the quantization 
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error associated with the overall error signals, RLMSe  and LLMSe  for the RLMS 

and LLMS algorithms, respectively, have been derived.  

 
In the following analysis, the same assumptions applied in Chapters 4 

and 5 are also adopted here. These are: 

• The propagation environment is time invariant. 

• The components of the signal vector ( )nX  are independent and identically 

distributed (iid). 

• All signals are zero mean and statistically stationary at least to the second 

order. 

 

6.2.1 Error convergence of the RLMS algorithm 

The RLMS algorithm is depicted in Figure 4-1. It shows that the overall 

error signal, RLMSe , at the thn  iteration is given by equation (4.6), which is 

repeated here as  

RLMS RLS LMS( ) ( ) ( 1)e n e n e n= − −                                  (6.1) 

 
where  

RLS RLS( ) ( ) ( ) ( )He n d n n n= −W X ,                                 (6.2) 

is the error signal of the RLS algorithm stage, while that of the LMS algorithm 

stage is  

LMS LMS LMS( ) ( ) ( ) ( )He n d n n n= −W X .                              (6.3) 

( )nX  and LMS( )nX  are the input signal vectors of the RLS and LMS 

algorithm stages, respectively, and ( )d n  is the external reference signal. 

Substituting equations (6.2) and (6.3) into equation (6.1) gives 

RLMS RLS LMS LMS( ) ( ) ( 1) ( ) ( ) ( 1) ( 1)H He n d n d n n n n n= − − − + − −W X W X         (6.4) 
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Now, with the RLMS algorithm being implemented using finite numerical 

precision, the results of the various mathematical calculations will be affected 

by round-off and truncation errors. The influence of these errors on the 

operation of the RLMS algorithm is analyzed as follows.  

 
First, the signal terms expressed in finite numerical precision are 

represented by primed symbols to differentiate them from their corresponding 

counterparts in full numerical precision. For example, the input signal and 

weight vectors in finite numerical precision can be expressed as 

( ) ( ) ( )n n n′ = +X X αααα                                          (6.5) 

( ) ( ) ( )n n n′ = +W W ρρρρ                                          (6.6) 

 where ( )nαααα  and ( )nρρρρ  are the corresponding quantization error vectors. 

The elements of ( )nαααα  and ( )nρρρρ  are assumed to be independent of ( )nX  and 

( )nW  respectively, and both are white sequences with zero mean and 

variance of 2
qσ . For a signal of 1 V±  amplitude range represented by an Nb–

bit wordlength, the resulting variance of the quantization error is given by (see 

Appendix F) [141] 

2(1 )2 2 12bN
qσ −=                                             (6.7) 

Substituting equations (6.5) and (6.6) in equation (6.1), we obtain the overall 

error signal in finite numerical precision, RLMSe′ , as 

RLMS RLS LMS LMS

RLS LMS LMS RLS RLS

LMS LMS RLS LMS

( ) ( ) ( 1) ( ) ( ) ( 1) ( 1)

( ) ( ) ( 1) ( 1) ( ) ( )

( 1) ( 1) ( ) ( 1)

H H

H H H

H

e n d n d n n n n n

n n n n n n

n n n nη η

′ = − − − + − −

− + − − −

+ − − − + −

W X W X

X X W

W

ρ ρ αρ ρ αρ ρ αρ ρ α

αααα

       (6.8) 

 
 where RLS( )nη  and LMS( 1)nη −  are the truncation and round-off errors 

associated with the RLS and LMS algorithm stages, respectively. Both 

RLS( )nη  and LMS( 1)nη −  have approximately the same variance, i.e., 

2 2
q qcησ σ= ,                                                (6.9) 
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where the constant qc  depends on how the inner product of a vector 

manipulation is implemented. In our case, the inner product is performed with 

both the signal and weights vectors quantized. In this case, qc N= , where N  

is the number of array elements [141].  

Since the first four terms on the right hand side of equation (6.8) are the same 

as those for RLMSe  given in equation (6.4), we can rewrite equation (6.8) as 

RLMS RLMS RLS LMS LMS

RLS RLS LMS LMS

RLS LMS

( ) ( ) ( ) ( ) ( 1) ( 1)

( ) ( ) ( 1) ( 1)

( ) ( 1)

H H

H H

e n e n n n n n

n n n n

n nη η

′ = − + − −

− + − −

− + −

X X

W W

ρ ρρ ρρ ρρ ρ

α αα αα αα α           (6.10) 

 
Rearranging equation (6.10) and performing the expectation on both sides 

yields 

[ ]

]

RLMS RLMS LMS LMS RLS

RLS RLS LMS LMS

RLS LMS

E ( ) ( ) E ( 1) ( 1) ( ) ( )

( ) ( ) ( 1) ( 1)

( ) ( 1)

H H

H H

e n e n n n n n

n n n n

n nη η

′ − = − − −

− + − −

− + −

X X

W W

ρ ρρ ρρ ρρ ρ

α αα αα αα α      (6.11) 

 
Based on the assumptions used in (6.5) and equations (6.6), αααα  and ρρρρ  

are independent of X  and W , and they are white sequences with zero 

mean. As such, equation (6.11) can be simplified to become 

[ ] [ ]RLMS RLMS LMS RLS

LMS RLS

E ( ) ( ) E ( 1) ( )

( 1) ( )

e n e n n n

n n

η η

η η

′ − = − −

= − −
                 (6.12) 

 

From equation (6.12), it is noted that the overall error, RLMSe′ , converges 

to a value larger than RLMSe  by an amount given by the difference between 

the truncation and round-off error of the two algorithm stages. Also, RLSη  and 

LMSη  are approximately the same. Under these conditions, the expectation of 
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the difference between RLMSe′  and RLMSe  given in equation (6.12) will tend to 

be zero. This observation has been verified by the simulation results as 

shown in Figure 6-3 for a wordlength greater than 8 bits. However, for lower 

numerical precision, the quantizing step becomes larger and this gives rise to 

a larger difference between RLMSe′  and RLMSe . 

 
 

6.2.2 Error convergence of the LLMS algorithm 

In the case of the LLMS algorithm, as depicted in Figure 5.1, the overall 

error signal, LLMSe , is given by equation (5.1), which is repeated here as 

LLMS 1 2( ) ( ) ( 1)e n e n e n= − −                                    (6.13) 

with  

( ) ( ) ( ) ( )H
i i ie n d n n n= −W X                                    (6.14) 

where ( )i ⋅X  and ( )i ⋅W  represent the input signal and weight vectors of the 

thi  LMS algorithm stage, respectively. The terms associated with the first and 

second LMS algorithm stages are denoted with the subscripts 1i =  and 2i = , 

respectively. After obtaining 1( )e n  and 2( 1)e n − from equation (6.14), we can 

substitute them into equation (6.13) to yield 

LLMS 1 1 2 2( ) ( ) ( 1) ( ) ( ) ( 1) ( 1)H He n d n d n n n n n= − − − + − −W X W X          (6.15) 

 
Now, the same notations for the input signal and weight vectors in finite 

numerical precision, as expressed in equations (6.5) and (6.6) respectively, 

are adopted here. By substituting equations (6.5) and (6.6) in equation (6.13), 

we can obtain the overall error signal in finite numerical precision, LLMS ( )e n′ , 

for the LLMS algorithm as given by  

LLMS 1 1 2 2

1 1 2 2 1 1

2 2 1 2

( ) ( ) ( 1) ( ) ( ) ( 1) ( 1)

( ) ( ) ( 1) ( 1) ( ) ( )

( 1) ( 1) ( ) ( 1)

H H

H H H

H

e n d n d n n n n n

n n n n n n

n n n nη η

′ = − − − + − −

− + − − −

+ − − − + −

W X W X

X X W

W

ρ ρ αρ ρ αρ ρ αρ ρ α

αααα

         (6.16) 
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where 1( )nρρρρ , 2( )nρρρρ , 1( )nαααα , 2( 1)n −αααα , 1( )nη  and 2( 1)nη −  are as previously 

defined in equations (6.5), (6.6) and (6.8).  

 
As the first four terms on the right hand side of equation (6.16) are the 

same as those for LLMSe  given in equation (6.15), we can rewrite equation 

(6.16) as 

LLMS LLMS 2 2 1 1

1 1 2 2 1 2

( ) ( ) ( 1) ( 1) ( ) ( )

     ( ) ( ) ( 1) ( 1) ( ) ( 1)

H H

H H

e n e n n n n n

n n n n n nη η

′ = + − − −

− + − − − + −

X X

W W

ρ ρρ ρρ ρρ ρ

α αα αα αα α
       (6.17) 

After rearranging equation (6.17) and performing the expectation on both 

sides of the equation, we obtain 

 

[ ]LLMS LLMS 2 2 1 1

1 1 2 2 1 2

E ( ) ( ) E ( 1) ( 1) ( ) ( )

( ) ( ) ( 1) ( 1) ( ) ( 1)

H H

H H

e n e n n n n n

n n n n n nη η

′ − = − − −

− + − − − + − 

X X

W W

ρ ρρ ρρ ρρ ρ

α αα αα αα α
        (6.18) 

 
Based on the same considerations in the assumptions used in (6.5) and 

(6.6) discussed in Section 6.2.1, the expectation value for the RHS of 

equation (6.18) will also approach to zero when the LLMS algorithm has 

converged. Again, this observation is verified by the simulation results plotted 

in Figure 6-3 for a numerical precision equivalent to equal or better than 8 

bits.  When a smaller wordlength is used, the expectation of the difference 

between RLMSe′  and RLMSe  follows the same trend as that of the RLMS 

algorithm as shown in Figure 6-3. 

 

 

6.2.3 Performance evaluation by computer simulation 

In Chapters 4 and 5, the operations of the RLMS and LLMS beamforming 

algorithms have been evaluated under various channel conditions, including 

in the presence of additive white Gaussian noise and cochannel interference. 

These earlier results are based on the algorithms being implemented with full 

numerical precision. In this section, we examine the influence on the 



 149 

performance of the RLMS and LLMS algorithms when they are implemented 

using finite precision arithmetic. The performance evaluation includes the two 

modes of operation of the algorithm, namely operating with an adaptive array 

vector F  (referred to as the RLMS, or LLMS algorithm), as well as with a 

fixed prescribed  F  (referred to as the RLMS1 or LLMS1 algorithm). 

 

An adaptive uniform linear array consisting of eight isotropic antenna 

elements spaced half a wavelength apart is simulated. To emulate the 

adaptation process of the algorithm operating with finite numerical precision, 

the quantization models of Figure 6-1 and Figure 6-2 have been adopted for 

the RLMS and LLMS algorithms, respectively. In each case, the input signal 

vector is first normalized with the largest component taking on an amplitude 

range of 1±  Volt in order to make full use of a given word length. Furthermore, 

the inputs to every arithmetic function, such as multiplication and addition, are 

expressed with the same specified numerical precision. The result of each 

arithmetical operation is then rounded to the specified wordlength. 

 
 

6.2.3.1 MSE performance obtained with a finite wordlength 

In an attempt to determine an acceptable numerical precision required for 

implementing the RLMS and LLMS algorithms, we consider how their 

convergence behaviours are affected through the use of a different 

wordlength in a noise free condition. First, the values of MSE of the overall 

error signals, (i.e., RLMSe′ , obtained with the RLMS or RLMS1 algorithm, and 

LLMSe′  associated with the LLMS and LLMS1 algorithms), for a given 

wordlength are obtained from computer simulation. These MSE values are 

obtained after 1024 iterations to ensure complete convergence of the 

algorithm. The values of the step sizes used for simulating the RLMS, RLMS1, 

LLMS1 and LLMS algorithms are tabulated in Table 6-1 for operation with 

wordlength ranging from 7 to 12 bits. Moreover, when operating with a 

wordlength of 6 bits, lower values of MSE could be achieved by adjusting 

somewhat the step size values for the RLMS, RLMS1, LLMS1 and LLMS 

algorithms as tabulated in Table 6-2.  
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Figure  6-1 Quantization model used for evaluating the RLMS algorithm with finite numerical precision. 
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Figure  6-2 Quantization model used for evaluating the LLMS algorithm with finite numerical precision.
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Table  6-1  Values of the constants adopted for operation with the wordlength, 

NB, in the range of 7 to 12 bits. 

Algorithm Parameters for operation in a noise free channel 

RLMS1 RLS LMS0.01, 0.08µ µ= =  

RLMS RLS LMS0.01, 0.15µ µ= =  

LLMS1 1 20.2, 0.1µ µ= =  

LLMS 1 20.2, 0.3µ µ= =  

 

 

The MSE values obtained when the RLMS, RLMS1, LLMS1 and LLMS 

algorithms are operating with wordlengths bN  ranging from 6 to 12 bits are 

plotted in Figure 6-3. From the results, it is observed that a minimum 

numerical precision equivalent to a wordlength of 8 bits is considered 

adequate to yield an acceptable MSE performance for the RLMS, RLMS1, 

LLMS1 and LLMS algorithms. 

 

 

Table  6-2   Values of the constants adopted for operation with a 6-bit 

wordlength. 

Algorithm Noise Free Channel 

RLMS1 RLS LMS0.01, 0.12µ µ= =  

RLMS RLS LMS0.01, 0.15µ µ= =  

LLMS1 1 20.2, 0.05µ µ= =  

LLMS 1 20.2, 0.1µ µ= =  
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Figure  6-3   Residual MSE as a function of the wordlength used to implement 

the RLMS, RLMS1, LLMS and LLMS1 algorithms in a noise free channel. 

 

 

The theoretical overall error signals, RLMSe′ , for the RLMS and RLMS1 

algorithms have been computed from equation (6.8) for a wordlength of 8 bits. 

These are plotted in Figure 6-4. For comparison, the overall error signals, 

RLMSe , computed from equation (6.4) with full numerical precision are also 

plotted in Figure 6-4 for the two versions of the RLMS algorithm. It is 

observed that the values of RLMSe′  are only slightly larger than the 

corresponding RLMSe  values during their transition to convergence. The 

difference becomes insignificant beyond 30 iterations. This confirms the 

asymptotic behaviour of the RLMS algorithm operating with finite numerical 

precision, as predicted by equation (6.8). Similar observations can be made 

for the LLMS and LLMS1 algorithms by referring to Figure 6-5. In the case of 

the LLMS algorithm, the theoretical values for LLMSe′  based on 8-bit numerical 

precision, and LLMSe  are computed using equation (6.16) and (6.15), 

respectively.  Figure 6-4 and Figure 6-5 show that the convergence speeds of 

the RLMS and LLMS algorithms achieved with an 8-bit precision are only 
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marginally slower than the version implemented with full precision. Also, the 

RLMS algorithm convergences slightly faster than the of LLMS algorithm.  

 

 

Figure  6-4   The theoretical values of MSE of the RLMS and RLMS1 

algorithms obtained with full numerical precision and 8-bit precision. 

 

 

 

Figure  6-5   The theoretical values of MSE of the LLMS and LLMS1 

algorithms obtained with full numerical precision and 8-bit precision. 
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Next, the rates of convergence of the RLMS, RLMS1, LLMS and LLMS1 

algorithms have been simulated using an 8-bit wordlength. The resulting 

curves are plotted as shown in Figure 6-6. The simulated results compare 

well with the theoretical curve presented in Figure 6-4 for the RLMS and 

RLMS1 algorithms, and in Figure 6-5 for the LLMS and LLMS1 algorithms. It 

may be observed from Figure 6-6 that the RLMS, RLMS1, LLMS1 and LLMS 

algorithms converge much quicker than the other four algorithms, which have 

also been implemented with the same numerical precision.  

 

 

Figure  6-6   The rates of convergence of the RLMS, RLMS1, LLMS, LLMS1, 

CSLMS, MRVSS, RLS and LMS algorithms based on 8-bit precision. 

 

 

6.2.3.2 EVM and scatter plot 

The influence of finite numerical precision on the fidelity of the received 

signal is investigated based on the EVM as expressed in equation (4.86). 

The EVM values are calculated after 1024 iterations to make sure that final 

convergence is achieved for a given algorithm. This has been carried out for 

the RLMS1, RLMS, LLMS1, LLMS, LMS, RLS, MRVSS and CSLMS 

algorithms with a different precision ranging from 6 to 12 bits. The values of 
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the parameters used for simulating the RLS, LMS, CSLMS and MRVSS 

algorithms are tabulated in Table 6-3. The results are plotted in Figure 6-7, 

which clearly shows that the proposed RLMS, RLMS1, LLMS1 and LLMS 

algorithms can cope better with the use of finite precision among the eight 

schemes considered. 

 

Table  6-3   Values of the constants adopted for operation with the 

wordlength, NB for RLS, LMS, CSLMS and MRVSS algorithms. 

Algorithm Parameters for operation in a noise free channel 

RLS 0.01µ =  

LMS 0.02µ =  

CSLMS 0.02, 0.02CSε µ= =  

MRVSS 
4 4

max min max min

4
max

1, 0, 5 10 , 0.2, 10

Initial , 0.97, 4.8 10 , 0.97

β β υ µ µ
µ µ α γ η

− −

−

= = = × = =

= = = × =
 

 

 

To demonstrate how well the signal fidelity is retained, the scattered plots 

of the recovered BPSK signal obtained for the eight algorithms, based on an 

8-bit implementation, are shown in Figure 6-8. Each of these scatter plots is 

obtained from 5012 signal samples after the convergence of a given 

algorithm. Ideally, a BPSK signal has only two states, namely, -1 and +1. It is 

observed that the use of finite precision is causing spreading of these two 

states. Among the eight algorithms considered, the scattered plots of the 

RLMS, RLMS1, LLMS and LLMS1 algorithms show the least spreading. This 

observation is verified by the low values of EVM achieved with these four 

algorithms. 
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Figure  6-7   The EVM values of the RLMS1, RLMS, LLMS1, LLMS , LMS, 

CSLMS and MRVSS algorithms implemented with different wordlengths. 

 

 

6.2.3.3 Beam pattern performance 

Figure 6-9 and Figure 6-10 show the beam patterns obtained through the 

use of the RLMS1, RLMS, LLMS1, LLMS, LMS, RLS, CSLMS and MRVSS 

algorithms implemented with 8-bit and 9-bit accuracy, respectively. For this 

simulation, the desired signal arrives at an angle of 10� , while the two 

cochannel interfering signals of equal amplitude as the desired signal are 

coming from 30− �  and 45� . 

 

It is observed that all the eight algorithms achieve almost the same gain in 

the direction of the desired signal when implemented with 9-bit precision. The 

gain difference is only barely noticeable when the algorithms are implemented 

with 8-bit precision. Moreover, the RLMS, RLMS1, LLMS1 and LLMS 

algorithms provide greater rejection to the interfering signals arriving at an 

angle ( iθ ) of 30− �  and 45� . This suggests that the use of 8-bit precision is 

sufficient to maintain the effectiveness of these four proposed algorithms in 

rejecting interfering signals emanating from outside their main lobes.  
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(a) LMS algorithm 

 

(b) RLS algorithm 

(c) MRVSS algorithm 

 

(d) CSLMS algorithm 

(e) RLMS1 algorithm 

 

(f) RLMS algorithm 

 

(g) LLMS1 algorithm 
 

(h) LLMS algorithm 

Figure  6-8  The scatter plots of the recovered BPSK signal obtained with all 

the eight algorithms being implemented in 8-bit precision. 
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Figure  6-9   The beam patterns obtained with the LMS, RLS, CSLMS, 

MRVSS, RLMS1, RLMS, LLMS1 and LLMS algorithms using an 8-bit 

wordlength. 

 

 

 

Figure  6-10   The beam patterns obtained with the LMS, RLS, CSLMS, 

MRVSS, RLMS1, RLMS, LLMS1 and LLMS algorithms using a 9-bit 

wordlength. 

 



 160 

6.3 Tolerances in Array Element Spacing and Gain 

As discussed in Section 4.2, the antenna array vector of size N  is 

expressed as 

2 ( 1)[1, , ,..., ]d d dj j N j T
d G e e eψ ψ ψ− − − −=A                            (6.19) 

where  

sin( )
2 d

d
θψ π

λ
 =  
 

D
                                       (6.20) 

with D  being the array inter-element spacing, λ  is the carrier wavelength 

and G  is the array element gain. 

 

Ideally, both the inter-element spacing, D , and gain, G , are assumed to 

be uniform among all the individual array elements. However, variations in 

D  and G  between elements are likely to be introduced due to 

implementation tolerances. The effects of these variations on the performance 

of a beamforming algorithm are investigated in this section.  

 Let the maximum tolerance in the inter-element spacing of the array be 

restricted to maxϒ± . Now, with the first element acting as the reference, we 

represent the element spacing and gain as shown in Figure 6-11. In this 

case, the values of the element spacing can be expressed as 

( )i i ϒ= +D D                                             (6.21) 

where 1, 2, ..., 1i N= − , and ϒ  takes on a random value in the range of 

max maxϒ ϒ ϒ− ≤ ≤ , with maxϒ  being the maximum tolerance. 

 

In a similar manner, the gains of the individual elements can be 

expressed as 

( ) (1 )rG i G g= × +                                         (6.22) 
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where 1, 2, ...,i N= , and rg  takes on a random value in the range of 

max maxrg g g− ≤ ≤ , with maxg  being the maximum deviation in gain with 

respect to the nominal gain G . 

 

(1)G

(1)D
(2)D

(3)D
(4)D

(5)D
(6)D

(7)D

(2)G (3)G (4)G (5)G (6)G (7)G (8)G

 

Figure  6-11 Modelling tolerances in inter-element spacing and element gain 

for an 8-element array. 

 

 

After accounting for tolerances in the element spacing and gain, the 

antenna array vector of size N  is given by 

(1)sin( ) (2)sin( )2 2

( 1)sin( )2

(1), (2) , (3) ,

..... , ( )

d d

d

j j

d

T
Nj

G G e G e

G N e

θ θπ πλ λ

θπ λ

   − −      

− −   


= 






A
D D

D

            (6.23) 

 
 

6.3.1 Effects of tolerance in the array inter-element spacing  

The influence of tolerance in the inter-element spacing on the resulting 

EVM and beam pattern of an adaptive beamformer is investigated. In this 

experiment, the EVM values and beam pattern are obtained in a noise free 

channel after 1200 iterations to ensure complete convergence of a given 
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beamforming algorithm. The maximum tolerance, maxϒ , for each element is 

assumed to be ±10% of the nominal inter-element spacing, D , which is 

taken to be half a  carrier wavelength. The investigation is carried out for the 

proposed RLMS1, RLMS, LLMS1, LLMS algorithms. For comparison 

purposes, we also consider the RLS and CSLMS algorithms. In each case, 

the desired signal is assumed to arrive at an angle, dθ , of 10� , and a 

cochannel interfering signal of equal amplitude as the desired signal is 

coming from an angle, iθ , of 45� . Table 6-4 shows the values of the various 

constants adopted for the computer simulations involving five different 

scenarios of tolerance in the element spacing as tabulated in Table 6-5. 

 

Table  6-4   Values of the constants adopted for operation with array 

spacing and gain tolerances. 

Algorithm Noise Free Channel 

RLS 0.01µ =  

CSLMS 0.02, 0.05csε µ= =  

RLMS1 RLS LMS0.01, 0.05µ µ= =  

RLMS RLS LMS0.01, 0.25µ µ= =  

LLMS1 1 20.5, 0.05µ µ= =  

LLMS 0.5, 0.251 2µ µ= =  

 

 

The array vector for each case of tolerance in the inter-element spacing is 

calculated using equation (6.23). Case 1 corresponds to the scenario where 

each element is precisely spaced half a wavelength apart, and is used here 

as the reference for performance comparison. The second and third cases 

represent random spacing deviation within the specified range encountered 

by each individual element. The last two cases may be considered as the 

worst case scenario with the adjacent elements, each experiencing 
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maximum tolerance in the opposite direction. The resulting EVM values and 

beam patterns obtained for each of the five cases of tolerance in the element 

spacing are plotted in Figure 6-12(a-e) and Figure 6-13(a-e), respectively. 

 

Table  6-5   Five different scenarios of tolerances in the inter-element 

spacing. 

Element Spacing 
Cases 

(1)D  (2)D  (3)D  (4)D  (5)D  (6)D  (7)D  

1 D  2D  3D  4D  5D  6D  7D  

2 0.93D  1.92D  3D  4.1D  5.03D  6.02D  6.94D  

3 1.1D  2.03D  3.02D  4D  4.94D  5.93D  6.9D  

4 0.9D  2.1D  2.9D  4.1D  4.9D  6.1D  6.9D  

5 1.1D  1.9D  3.1D  3.9D  5.1D  5.9D  7.1D  

 

 

From Figure 6-12, it is observed that the EVM performance of each of the 

six beamforming algorithms considered is hardly affected by the presence of 

a maximum ±10% tolerance in the element spacing. This is due to the fact 

that the only source of the cochannel interference, which in this case is 

arriving from an angle, o45 ,iθ = has been greatly suppressed by the null 

response correctly produced by each of the four beamformers, as shown in 

Figure 6-13.  

Also, according to the beam patterns as shown in Figure 6-13, the array 

is still able to direct its main beam towards the correct direction of the desired 

signal with a null response at the direction of the interfering signal. However, 

the sidelobes of the array are affected somewhat by the displacements in the 

locations of the various elements. As a result, the sidelobe suppression is 

reduced especially for responses at the two ends of the array. The same 

observations hold true for all the six algorithms considered. 
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(a) Case 1 – Precise inter-
element spacing 

 

 

(b) Case 2 – Random spacing 
deviation (i)  

 

 

(c) Case 3 – Random spacing 
deviation (ii) 

 
(d) Case 4 –Worst case 

spacing deviation (i)  
 

 
(e) Case 5 – worst case 

spacing deviation (ii)  
 

 

Figure  6-12   The EVM values obtained with the RLS, CSLMS, RLMS1, 

RLMS, LLMS1 and LLMS algorithms under five different scenarios of 

tolerance in the inter-element spacing. The maximum allowable tolerance, 

maxϒ , is ±10% of the nominal inter-element spacing, D . 
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(a) Case 1 – Precise inter-
element spacing 

 

 

(b) Case 2 – Random 
spacing deviation (i)  

 

 

(c) Case 3 – Random 
spacing deviation (ii) 

 

(d) Case 4 –Worst case 
spacing deviation (i)  

 

 

(e) Case 5 – worst case 
spacing deviation (ii)  

 

 

Figure  6-13   The beam pattern obtained with the RLS, CSLMS, RLMS1, 

RLMS, LLMS1 and LLMS algorithms under five different scenarios of 

tolerance in the inter-element spacing. The maximum allowable tolerance, 

maxϒ , is ±10% of the nominal inter-element spacing, D . 
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6.3.2 Effects of tolerance in the array element gain 

Next, we investigate how variations in the gain of individual elements are 

likely to affect the EVM performance and beam pattern of a linear array.  For 

this simulation, we follow the same procedures as adopted in Section 6.3.1 

but assume that the individual elements are correctly placed at their 

respective nominal locations. However, the gains of the individual elements 

are deviating from the nominal gain, G , according to equation (6.23). In this 

simulation, the maximum allowable gain deviation, maxg  is assumed to be 

equal to ±10% of the nominal gain. Again, we consider four different cases of 

gain variations in the elements, as tabulated in Table 6-6. The first two cases 

correspond to random gain variations of up to ±10% of the nominal gain, 

while the last two cases correspond to the worst-case conditions.  

 

Table  6-6   Five different scenarios of tolerances in the element gain. 

Element Spacing 
Cases 

(1)G  (2)G  (3)G  (4)G  (5)G  (6)G  (7)G  (8)G  

1 G  0.93G  0.92G  G  1.1G  1.03G  1.02G  0.94G  

2 1.1G  1.03G  1.02G  G  G  0.94G  0.93G  0.92G  

3 1.1G  0.9G  1.1G  0.9G  1.1G  0.9G  1.1G  0.9G  

4 0.9G  1.1G  0.9G  1.1G  0.9G  1.1G  0.9G  1.1G  

 

 

Figure 6-14 show the EVM performance obtained with these four cases of 

element gain variations when an 8-element linear array is implemented using 

the RLMS, RLMS1, LLMS, LLMS1, RLS and CSLMS algorithm. When 

compared with the ideal case represented by the EVM values of Figure 6-

12a, it is observed that gain variations of the order of ±10% of the nominal 

gain will not significantly affect the EVM performance of each of the six 

algorithms considered. This is because under the given operating conditions, 

the array can still maintain almost the same gain in the desired direction 
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while providing a null in the direction of the cochannel interference, as shown 

in Figure 6-15. Also, it is observed that the beam patterns of Figure 6-15 are 

less affected by element gain variations than displacements in the element 

locations. 

 

 

(a) Case 1 – Random gain 

deviation (i)  

 

 

(b) Case 2 – Random gain 

deviation (ii) 

 
(c) Case 3 –Worst case gain 

deviation (i)  

 

 
(d) Case 4 – worst case gain 

deviation (ii)  

 

 

Figure  6-14   The EVM values obtained with the RLS, CSLMS, RLMS1, 

RLMS, LLMS1 and LLMS algorithms for different random variations in 

element gain. The maximum allowable gain variation is ±10% of the nominal 

gain. 
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(a) Case 1 – Random gain 

deviation (i)  

 

 

(b) Case 2 – Random gain 

deviation (ii) 

 
(c) Case 3 –Worst case gain 

deviation (i)  

 

 
(d) Case 4 – worst case gain 

deviation (ii)  

 

 

Figure  6-15   The beam pattern obtained with the RLS, CSLMS, RLMS1, 

RLMS, LLMS1 and LLMS algorithms for different random variations in 

element gain. The maximum allowable gain variation is ±10% of the nominal 

gain. 

 
 

6.3.3 Combined variations in element spacing and element gain 

As described in Sections 6.3.1, and 6.3.2, when random variations in 

element gain are kept within ±10% of the nominal gain, they have little effect 



 169 

on the beam patterns. On the other hand, the presence of a maximum ±10% 

tolerance in inter-element spacing will result in a reduced level of sidelobe 

suppression. Moreover, these two forms of practical imperfections, when 

occurring separately, do not affect the ability of the array to correctly direct its 

main lobe to the desired signal, while maintaining a null response in the 

direction of the interfering signal. As a result, the EVM performance is shown 

to be barely affected by the occurrence of these imperfections. These 

observations are equally applicable to all the six algorithms considered.    

 

Next, we investigate the influence on the beam patterns when variations 

are present in both the element spacing and element gain. For this study, we 

consider two rather severe cases of combined variations in element spacing 

and element gain. The first set of imperfections is made up of case (4) of 

Table 6-5 combined with case (3) of Table 6-6, while the second set is a 

combination of case (5) of Table 6-5 and case (4) of Table 6-6. The resultant 

beam patterns are shown in Figure 6-16 (a) and (b), which demonstrate 

similar behaviours to those observed in Sections 6.3.1 and 6.3.2. 

 

As expected, the maximum gain of the array remains pointing towards the 

direction of the desired signal. Also, a null is still occurring at the angle of 

arrival of the interfering signal. When compared with the beam patterns of the 

previous two sections, the side lobe levels have increased, particularly at 

angles towards the two ends of the array. From the last two sections, no 

clear effect has been noticed on the EVM values. However, the beam 

patterns have been more affected by element-gain tolerances, resulting in 

their higher side lobes. Moreover, the gain as well as the null response in the 

direction of the interfering signal are not noticeably affected. This confirms 

that variations of ±10% in both the inter-element spacing and element-gain 

tolerances have little effect on the received signal. 
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(a) Case (4) of Table 6-5 combined with Case (3) of Table 6-6 
 

 

 

(b) Case (5) of Table 6-5 combined with Case (4) of Table 6-6. 
 

Figure  6-16   The beam patterns obtained with RLS, CSLMS, RLMS1, RLMS, 

LLMS1 and LLMS algorithms for two different sets of combined variations in 

inter-element spacing and element gain. 

 
 
 

6.4 Arrays with Two and Four Elements 

Up to now, we have only considered a linear array with 8 elements. It may 

be beneficial to study the influence of the number of elements on the array 

performance for the proposed RLMS and LLMS algorithms. The use of a 

smaller number of array elements will also lead to lesser tap weights being 

required for a given algorithm. This will then result in a simpler 

implementation. For this reason, we will consider the performance, in terms 

of EVM and beam patterns, of arrays with two and four elements.   
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First, we consider applying the same parameter values of Table 6-4 which 

were previously used for the 8-element array, in an array with two and four 

elements. The results obtained for the RLMS, RLMS1, LLMS and LLMS1 

algorithms in an interference free channel are shown in Figure 6-17. In this 

case, the desired signal is arriving from an angle of 10o. It is observed from 

Figure 6-17 and Figure 6-13a for an 8-element array that the number of side 

lobes is, as expected increased with the number of array elements used. 

Also, the EVM values converge faster and to a lower floor when a larger 

number of array elements are used. 

 

(a) 2-element array 

(b) 4-element array 

 

Figure  6-17   The EVM values and beam patterns obtained for a (a) 2-tap, 

and (b) 4-tap array in an interference free channel. 

 

 

Next, cochannel interference emanating from an angle of 45o is 

introduced into the channel. The resultant EVM values and beam patterns for 

an array with two and four elements are shown in Figure 6-18. As in the case 
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of an 8-element array (see Figure 6-13a), the array is able to direct correctly 

the main lobe to the desired signal, while the channel interference is 

suppressed with a null response in the direction of the interfering signal. 

However, the 2-element array suffers an approximately 1.3 dB loss in gain in 

the direction of the desired signal. As a result, its EVM performance is 

degraded slightly when compared with Figure 6-17a for the case with no 

interference.  

 

(a) 2-element array  

(b) 4-element array 

Figure  6-18   The EVM values and beam patterns obtained for a (a) 2-tap, 

and (b) 4-tap array in the presence of cochannel interference emanating from 

an angle of 45o. 

 

 

Unlike other algorithms, the proposed RLMS and LLMS algorithms make 

use of two sets of tap weights in cascade. This offers a unique opportunity to 

examine the possibility of adopting a smaller number of tap weights in the 

second algorithm stage as an attempt to further reduce the implementation 
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complexity. For example, in the case of a 4-element array implemented using 

the RLMS and LLMS algorithms, one may halve the number of tap weights 

used in the second algorithm stage. The results of this modification are 

shown in Figure 6-19. When compared with Figure 6-18b, it is observed that 

a reduction in the number of tap weights used in the second algorithm stage 

of an RLMS and LLMS algorithms has little effect on the beam pattern. 

However, with this modification, the EVM performance of Figure 6-19 shows 

a significant reduction in the convergence speed for the RLMS and LLMS 

algorithms. This can be corrected by adjusting the step sizes of the RLMS 

and LLMS algorithms. For example, Figure 6-20 shows the EVM values and 

beam patterns achieved through the use of step sizes tabulated in Table 6-7. 

It shows there is no visible change in the beam patterns but the EVM 

convergence speed has improved markedly. This further suggests that when 

the step size values are chosen correctly, it is possible to maintain the 

performance of the proposed RLMS and LLMS algorithms, while lessening 

the computational complexity with a reduced number of tap weights in the 

second algorithm stage.  

 

 

Table  6-7   Values of the constants adopted for operation in a 4-

element array with only 2 tap weights in the second algorithm stage. 

Algorithm Noise Free Channel 

RLMS1 RLS LMS0.01, 0.2µ µ= =  

RLMS RLS LMS0.01, 2µ µ= =  

LLMS1 1 20.8, 0.25µ µ= =  

LLMS 1 20.8, 2µ µ= =  
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Figure  6-19   The EVM values and beam patterns obtained with RLMS1, 

RLMS, LLMS1 and LLMS algorithms for a 4-element array with only two tap 

weights in the second algorithm stage. 

 

 

Figure  6-20   The EVM values and beam patterns obtained with RLMS1, 

RLMS, LLMS1 and LLMS algorithms for a modified 4-element array using the 

parameters given in Table 6-7. 

 
 
 

6.5 Summary  

In this chapter, the effects of some practical constraints, which are likely to 

be encountered in the implementation of the proposed RLMS and LLMS 

algorithms have been examined. These include the use of finite wordlength, 

tolerances in array element spacing and element gain, and the array size. 

First, the convergence behaviours of the RLMS and LLMS algorithms, based 

on the minimum mean square error, have been analyzed for operation with 
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finite numerical precision. It is shown that the implementation of an eight 

element uniform linear array using the RLMS and LLMS algorithms with a 

wordlength of eight bits is sufficient to achieve performance close to that 

provided by full numerical precision.  Comparisons based on various 

performance measures, such as residual MSE, rate of convergence, error 

vector magnitude, and beam pattern, show that the RLMS, RLMS1, LLMS and 

LLMS1 algorithms outperform four other previously published algorithms, 

namely, least mean square (LMS), recursive least square (RLS), modified 

robust variable step size (MRVSS) and constrained stability LMS (CSLMS).  

 
Furthermore, tolerances in the element spacing and element gain tend to 

raise the sidelobe level but show no visible effect on the resulting EVM 

values. The latter may be explained by the fact that such practical 

imperfections do not seem to influence the ability of the array in directing 

correctly towards the desired signal, while at the same time producing a null 

in the direction of an interfering signal. It is shown that the proposed RLMS, 

RLMS1, LLMS and LLMS1 algorithms outperform both the RLS and CSLMS 

algorithms when tolerances are present in the element spacing and gain.  

 
As expected, the beam pattern of a linear array implemented using the 

proposed RLMS and LLMS algorithm contains a smaller number of side lobes 

when the number of elements used is reduced. It is observed that a linear 

array with a smaller number of elements tend to converge a bit slower and to 

a slightly higher floor value.  

 
Furthermore, it is shown that the RLMS and LLMS algorithms can 

maintain the same performance when the number of tap weights used in the 

second stage is reduced. This observation is likely to simplify the 

implementation of an adaptive antenna array which makes use of the 

proposed RLMS and LLMS algorithms. 
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CHAPTER 7   
 

CONCLUSIONS AND FUTURE WORK 
 
 
 

7.1 Conclusions 

The main contribution of this research has been the development of a 

novel approach in combining the use of two well known algorithms, namely 

the recursive least square (RLS) and least mean square (LMS) algorithms, in 

a new adaptive architecture for antenna beamforming. As a result, two new 

algorithms, which can simultaneously achieve rapid convergence as well as 

low steady state error, have been proposed and analyzed. The first 

algorithm, called the RLMS algorithm incorporates a RLS algorithm stage 

and a LMS algorithm stage connected in series via an array image vector, 

F . In this case, the array image vector, which could be made either fixed7 or 

adaptive, is used as a “spatial filter” for the desired signal. This results in the 

convergence rate being increased without the need to use step size 

adaptation, while an improved tracking ability is achieved with only a slight 

increase in computation complexity. Such an arrangement maintains a 

complexity generally associated with a conventional RLS algorithm.  

 

Initially, it appears logical to make use of the RLS algorithm, which 

generally converges faster than a LMS algorithm, in the first stage of the 

RLMS algorithm. Moreover, the complexity of the RLS algorithm may still be 

considered too high for some applications. This observation motivates the 

search for a simpler alternative to replace the RLS algorithm while still 

keeping the superior performance of the RLMS algorithm. The proposed 

flexible architecture of the RLMS algorithm offers a rather obvious possibility 

to replace the more complicated RLS algorithm with a simpler LMS 

algorithm. The resultant scheme is referred to as the LLMS algorithm, which 

retains the low complexity generally associated with an LMS algorithm. 

                                                 
7
 When a fixed array is used, the resultant algorithm is referred to as the RLMS1 algorithm. 
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With the proposed RLMS and LLMS algorithms, the intermediate output, 

estimated using the first algorithm stage, is multiplied by the array image 

vector of the desired signal. The resultant signal is further processed by the 

second algorithm stage. To enhance the convergence rate of the overall 

algorithm, the error of the second algorithm stage is then fed back to 

combine with the error of the first stage to form the overall error signal for 

updating the tap weights of the first algorithm stage.   

 
The proposed RLMS and LLMS algorithms have been described and 

analyzed in detail in Chapter 4 and Chapter 5, respectively. Also, their 

performance when used in digital array beamforming has been investigated 

by means of extensive computer simulations with the various mathematical 

functions represented in full numerical precision. In Chapter 6, some practical 

considerations, such as finite wordlength, and tolerances in inter-element 

spacing and element gain have also been studied. 

 

The followings are the main conclusions of this research: 

 

� Chapter 2 provides an introduction to the fundamentals of antenna 

array beamforming. The array configurations discussed include 

linear, circular and planar arrays. This is followed by a literature 

review, in Chapter 3, on digital signal processing algorithms 

applicable for array beamforming. Emphasis has been directed to 

the simpler non-blind algorithms, particularly the LMS and RLS 

based families of algorithms. 

� The development of the RLMS algorithm is presented in Chapter 4. 

The RLMS algorithm follows a different approach to achieve 

simultaneously fast convergence and good tracking. Mathematical 

derivations have been made, in Section 4.3.1, for the mean square 

error convergence employing an external reference. Simulation 

results given in Section 4.7.3.1 have shown that both the RLMS1 

and RLMS algorithms can converge rapidly in 7 iterations. Also, the 
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resulting steady state MSE is quite insensitive to variations in input 

SNR. On the other hand, the same array beamforming realized with 

the conventional RLS algorithm converges after 20 iterations, and 

with a steady state MSE which is 2.5 times larger than that of the 

proposed RLMS algorithm.  

The superior performance of the RLMS algorithm has also been 

verified through the use of error vector magnitude (EVM) and scatter 

plots, as shown in Section 4.7.3.7.  

� The boundary values for the step sizes, RLSµ  and LMSµ , used in the 

respective RLS stage and LMS stage, have been derived in 

Sections 4.3.1 and 4.4, for operation with either fixed or adaptive 

array image vector. It is shown in Section 4.7.3.1 that stable 

operation of the RLMS algorithm can be achieved with a broad 

range of values for RLSµ  and LMSµ .  

� It is shown in Section 4.3.2, that once initial convergence is 

achieved, usually within a few iterations, both the RLMS1 and RLMS 

algorithms can maintain their operation through self-referencing. 

This mode of operation has been confirmed by the simulation results 

presented in Section 4.7.3.2. 

� A simple and effective method for calculating adaptively the element 

values of the array image vector, RF , has been proposed in Section 

4.5.  This is based on the output signal of the RLS algorithm stage in 

conjunction with its tap weights. This adaptive version of the 

algorithm is described simply as the RLMS algorithm, which is able 

to automatically track the target signal. 

For fixed array beamforming, the elements of the array image vector 

can be prescribed with values for the required direction. For this 

mode of operation, the algorithm is referred to as the RLMS1 

algorithm, in order to differentiate it from the adaptive version of the 
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RLMS algorithm. It has been shown in Section 4.7.3.6 that the 

RLMS1 algorithm can provide an accurate fixed beam pointing 

towards the prescribed direction. 

� Unlike the conventional LMS, RLS, and more recently published 

VFFRLS, CSLMS and MRVSS algorithms, the proposed RLMS and 

RLMS1 algorithms are able to operate with a noisy reference signal. 

It is shown in Section 4.7.3.3 that the residual MSE associated with 

the two versions of the proposed algorithm remain very small, even 

when the rms noise level becomes as large as the reference signal. 

� The original RLS algorithm is known to suffer from slow tracking 

ability. The results in Section 4.7.3.4 show that both the RLMS1 and 

RLMS algorithms are capable of fast response to sudden changes 

in the input signal. Unlike the RLS, VFFRLS, LMS, CSLMS and 

MRVSS algorithms, the MSE values associated with the RLMS and 

RLMS1 algorithms remain low when the input signal is interrupted. 

� According to the beam patterns presented in Section 4.7.3.5, both 

the RLMS1 and RLMS algorithms show superior suppression of co-

channel interference when compared with beamformers realized 

using the RLS, VFFRLS, LMS, CSLMS and MRVSS algorithms. For 

the 8-element uniform linear array under consideration in this study, 

the proposed algorithms are able to achieve a signal-to-interference 

ratio (SIR) of better than 10 dB over the best of the other four 

algorithms.  

�  In Section 4.7.3.8, the EVM values and scatter plots obtained for 

operation in either an AWGN channel or fast changing Rayleigh 

fading environment, further demonstrate the superior performance 

of the RLMS1 and RLMS algorithms when compared to the other 

four published algorithms, namely, the LMS, RLS, VFFRLS, CSLMS 

and MRVSS algorithms. Both the EVM and scatter plots are 
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commonly used to measure signal fidelity, for example, a low EVM 

value is generally associated with a low bit error rate. 

� The superior performance of the proposed RLMS algorithm is 

achieved with a complexity only slightly larger than that of the 

original RLS algorithm. Moreover, this complexity is significantly 

lower than some RLS based algorithms, such as the VFFRLS, AFF-

RLS and EX-KRLS algorithms, which have been proposed for 

improving the tracking performance of the RLS algorithm. For 

example, an N -element uniform linear array will require 

computation complexity equivalent to 22.5 5 1N N+ +  multiplications 

for the proposed RLMS algorithm, and 22.5 3 20N N+ + , 29 7N N+  

and 3 215 7 2 4N N N+ + +  multiplications for the VFFRLS, AFF-RLS 

and EX-KRLS algorithms, respectively. 

� The complexity of the RLS stage in the RLMS algorithm remains an 

issue for some applications. This leads to another proposed 

algorithm being presented in Chapter 5, called the LLMS algorithm, 

in which the RLS algorithm stage in the RLMS algorithm is replaced 

with another LMS algorithm stage.  

� Since the two algorithms share the same architecture, both the 

LLMS and RLMS algorithms can operate in similar manner, i.e., 

both of them can operate with either a fixed or adaptive array image 

vector, and with either an external reference or self referencing. 

Again, the LLMS1 algorithm is referred to the version of the LLMS 

algorithm which makes used of a fixed array image vector.  

Following similar procedures as used for the analysis of the RLMS 

algorithm, the convergence of the LLMS algorithm has been 

established in Section 5.3.1 assuming the use of an external 

reference signal. This is then extended in Section 5.3.2 to cover the 

case that makes use of self-referencing. Mathematical derivations of 

the boundary values for the step sizes used in the two LMS 
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algorithm stages are presented in Sections 5.3.3 and 5.3.4.2, 

respectively. 

� Simulation results in Sections 5.4.2.1, 5.4.2.2, and 5.4.2.3 show that 

the LLMS algorithm performs similar to the RLMS algorithm, in 

terms of rapid convergence, steady state MSE, and robustness to 

noisy reference signal. Under these measures, the RLMS algorithm, 

which is significantly more complex, performs only slightly better 

than the LLMS algorithm. The LLMS algorithm with its ability to 

adapt to the operating conditions through the use of an adaptive 

array image vector shows a little better performance than the LLMS1 

algorithm. 

� In addition, it is shown in Sections 5.4.2.5 and 5.4.2.6 that the LLMS 

algorithm can retain the fidelity of the signal in the presence of 

Rayleigh fading, as indicated by the low EVM values. 

� The computation complexity of the LLMS algorithm is equivalent to 

only 4 1N +  complex multiplications as opposed to 22.5 5 1N N+ +  

complex multiplications for the RLMS algorithm, where N is the 

number of array elements. 

� It is shown in Section 5.4.2.1 that the LLMS1 and LLMS algorithms 

can operate with a wide range of step sizes, which are not too 

sensitive to changes in input SNR and noisy reference signal. 

Moreover, the convergence speed of the LLMS algorithm can be 

adjusted by varying the values of the two step sizes used. 

� The convergence behaviours of the RLMS and LLMS algorithms 

when implemented with finite numerical precision have been 

analyzed based on the MSE in Sections 6.2.1 and 6.2.2, 

respectively. For an eight element uniform linear array, it has been 

confirmed through simulations that an 8-bit numerical precision is 
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sufficient for either the RLMS or LLMS algorithm to achieve a 

performance close to that obtained with full numerical precision. 

� Simulation results presented in Section 6.3 show that deviations in 

inter-element spacing and gain tend to raise the sidelobe level by 5 

dB. However, these practical imperfections have little visible effect 

on the resulting EVM values. It is further observed that such practical 

imperfections do not seem to influence the ability of the array in 

directing its main beam correctly towards the desired signal, while at 

the same time producing a null in the direction of an interfering 

signal. 

�  In an attempt to further reduce the complexity of the RLMS and 

LLMS algorithms, simulations have been carried out in Section 6.4 

to investigate the possibility of operating with less tap weights in the 

second LMS algorithm stage. It is observed that by readjusting the 

step size values, it is possible to achieve similar performance using 

a lesser number of tap weights in the second algorithm stage. 

� Generally, the performance achieved with the LLMS algorithm under 

the various parameters considered in this study is very close to that 

obtained with the RLMS algorithm. This suggests that the simpler 

LLMS algorithm is more attractive than the RLMS algorithm for 

applications in adaptive beamforming. 

 

 

7.2 Recommendations for Future Work 

 The proposed LLMS and RLMS algorithms appear to be attractive 

candidates for use in adaptive beamforming. As such, it is 

recommended that the following topics be studied to further establish 

their potential for future adaptive signal processing.  

� Currently the two proposed algorithms have only been simulated 

using MATLAB code. It will be useful to verify the actual 
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computation complexity by implementing the algorithm using either 

a digital signal processor (DSP) chip or field programmable gate 

arrays (FPGA). 

� The geometry of the array that has been used in this study is limited 

to a uniform linear array (ULA). It remains interesting and worthwhile 

to examine how the proposed algorithms will perform when 

operating with different array geometry, such as a planar or circular 

array. 

� In this thesis, the beamforming algorithms are only used for the 

receiving mode. It will be a challenge to use, in the transmission 

mode, the same weight vector obtained in the receiving mode.  

� The modulation scheme used in this research study is simple binary 

phase shift keying (BPSK). However, higher order modulation 

schemes, such as OFDM and 64 QAM are used in modern cellular 

communications systems, such as LTE and WiMax systems. For the 

proposed algorithms to be applied in these systems, it is necessary 

to examine how they perform with high order modulated signals.  

� Both the LLMS and RLMS algorithms require a reference signal for 

their operation. This calls for an investigation of what is a good and 

effective way to provide such a signal. 

� This study has only considered a single-beam array. However, 

multiple beams are required for future cellular mobile 

communication systems. This should provide the necessary 

motivation in investigating how the proposed algorithms may be 

used to synthesize a multiple-beam pattern.  

� If necessary, the RLS algorithm stage in the proposed RLMS 

algorithm may be simplified through the use of a fast RLS algorithm 

[82, 142], which has been proposed to lower the complexity of the 

RLS algorithm. 
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APPENDIX A 
 

SUMMARY OF ALGORITHMS USED IN THE THESIS 
 
 
 
 

A.1 Introduction 

This appendix provides a summary of the proposed RLMS and LLMS 

algorithms together with those algorithms used for performance comparison 

in Chapters 4 and 5. These algorithms are, the LMS, RLS, VFFRLS, CSLMS 

and MRVSS algorithms, as given in [32], [13], [9], [12], [10], [143] and [144]. 

 

A.2 LMS Algorithm 

The LMS algorithm updates the beamformer tap weights so that the error, 

( )e n , is minimized in the mean-square sense. When the input vector data, 

( )nX , and the reference signal, d , are jointly stationary, this algorithm 

converges to a set of tap-weights, which are on average, equivalent to the 

Wiener-Hopf solution. The LMS algorithm is a practical scheme for realizing 

Wiener filters using the steepest descent method, without explicitly solving 

the Wiener-Hopf equation. It was first proposed by Widrow et. al. in [145].The 

LMS algorithm can be summarized as 

 
         Initialize (0) 0=W  

         Iterate for 1n ≥  

                                   ( ) ( ) ( ) ( )He n d n n n= −W X                                 

                                   ( 1) ( ) ( ) ( )n n n e nµ ∗+ = +W W X             

                Output:  

                             LMS( ) ( ) ( )Hy n n n= W X   

Definitions:     

                W ≡ Weight vector 



 185 

                X ≡ Input signal vector 

                 e≡ Error signal 

                µ ≡ Step size 

                d ≡ Reference signal 

            ( )i H
≡ Hermitian operator 

             ( )∗
i ≡ Conjugate operator 

 

 

A.3 RLS Algorithm 

Contrary to the LMS algorithm, which uses the steepest descent method 

to obtain the weight vector, the RLS algorithm uses the method of least 

squares. In this case, the weight vector, W  is updated by minimizing an 

exponentially weighted cost function. The standard RLS algorithm performs 

the following operations to update the weights of an adaptive beamformer: 

 
        Initialize (0) 0=W ,  1(0) δ −=P I  

         Iterate for 1n ≥  

                                  
( 1) ( )

( )
1 ( ) ( 1) ( )µ

−=
− + −H

n n
n

n n n

P X
K

X P X
                           

                                  
1

( ) ( 1) ( ) ( ) ( 1)
1 µ

 = − − − −
Hn n n n nP P K X P                

                                   ( ) ( ) ( ) ( )He n d n n n= −W X                                

                                   ( ) ( 1) ( ) ( )n n n e n= − +W W K                               

                Output:  

                             RLS( ) ( ) ( )Hy n n n= W X      

Definitions:     

                P ≡ Inverse of the input correlation matrix 

               K ≡ Kalman gain vector 

 

W , X , e , d , µ  and ( )i H
 are as defined in Appendix A.2 for this algorithm. 
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A.4 VFFRLS Algorithm 

The variable forgetting factor RLS algorithm is proposed in [12] for system 

identification. This algorithm updates the forgetting factor, λ , of the RLS 

algorithm. The adaptation of the forgetting factor is carried as follows: 

         Initialize maxλ , VFF
1

1
k Nβ

β = − , VFF
1

1
k Nα

α = −  

         Iterate for 1n ≥  

( ) ( ) ( 1) ( )= −Hq n n n nX P X     

2 2 2
VFF VFFˆ ˆ( ) ( 1) (1 ) ( )v vn n e nσ β σ β= − + −  

2 2 2
VFF VFFˆ ˆ( ) ( 1) (1 ) ( )e en n e nσ α σ α= − + −  

2 2 2
VFF VFFˆ ˆ( ) ( 1) (1 ) ( )q qn n q nσ α σ α= − + −                        

max VFF

max
VFF

ˆ ˆ; ( ) ( )

ˆ ˆ( ) ( )( )
min , ; otherwise

ˆ ˆ( ) ( )

λ σ γ σ
σ σλ

λ
ε σ σ

≤


 =   
  + −  

e v

q v

e v

n n

n nn

n n

                        

Definitions:     

               2σ̂ v ≡ Power of system noise. 

               2σ̂ e ≡ Power of the a priori error signal. 

                λ ≡ Forgetting factor. 

            VFFα ≡ Weighting factor with 2α ≥k . 

            VFFβ ≡ A constant given as VFF 1 1 ββ = − k N , and β α>k k . 

            maxλ ≡ Upper limit of the forgetting factor. 

            VFFγ ≡ A constant ( )1,2 . 

            VFFε ≡ A small positive constant for avoiding division by zero. 

X and P  are as defined in Appendix A.3 for this algorithm. 

 

 

A.5 CSLMS Algorithm 

Gόrriz et. al. [9] proposed the CSLMS algorithm for filtering speech 

sounds. The CSLMS algorithm is based on the minimization of the squared 
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Euclidean norm of the weight vector under a stability constraint over the a 

posteriori estimation error. This algorithm employs the following operations in 

order to update the weight vector: 

 

         Initialize (0) 0=W , ( 1) 0e − =  

         Iterate for 1n ≥  

                                   ( ) ( ) ( 1)n n nδ = − −W W W                                 

                                   ( ) ( ) ( 1)n n nδ = − −X X X                                  

                                   [ ]( ) ( ) ( ) ( )k He n d n k n= −W X                                

                                   [ ] [ ] [ ]( ) ( ) ( 1)n n ne n e n e nδ = − −                                

                                   [ ]( )2
( 1) ( ) ( ) ( )

( )

µ δ δ
δ ε

∗
+ = +

+
n

cs

n n n e n
n

W W X
W

       

                Output:  

                              CSLMS( ) ( ) ( )Hy n n n= W X      

 

  Definitions:     

               δ e ≡ Error signal difference. 

         [ ]( )ke n ≡ Error signal at the thn  iteration derived from the weight 

vector at thk  iteration; with >n k . 

               εcs≡ A small positive constant introduced to prevent division by 

zero. 

W and X  are as defined in Appendix A.2 for this algorithm. 

 

 

A.6 MRVSS Algorithm 

Zou Kun and Zhao Xiubing [10] proposed the MRVSS algorithm for 

improving the performance of the VSSLMS algorithms [54], and the RVSS 

algorithm [56]. The MRVSS algorithm makes use of the following steps: 

 

        Initialize (0) 0=W , maxµ , minµ , (0) 0eR = , (0) 0e =ɶ , (0) 0e =   
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         Iterate for 1n ≥  

                                   ( ) ( ) ( ) ( )He n d n n n= −W X  

                                   ( 1) ( ) ( ) ( ) ( )n n n n e nµ+ = +W W X                

                                  
max max

min min

2

; if ( 1)

( 1) ; if ( 1)

( ) ( )e

n

n n

n R n

µ µ µ
µ µ µ µ

αµ γ

 + >


+ = + <
 +

       

                                  ( 1) (1 ( )) ( ) ( ) ( ) ( 1)e eR n e n R n e n e j e n+ = − + −ɶ ɶ  

                                   
max max

min min

2

; if ( 1)

( 1) ; if ( 1)

( ) ( )e

e e n e

e n e e n e

e n e nη υ

 + >


+ = + <
 +

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ

                           

                Output:  

                               MRVSS( ) ( ) ( )Hy n n n= W X      

 

 

Definitions:     

                maxµ ≡ Upper bound of the step size. 

                minµ ≡ Lower bound of the step size. 

                   α ≡ A constant with 0α > . 

                   γ  ≡ A constant with 0γ > . 

                  eR ≡ Time averaged error correlation over two consecutive 

values. 

                    ɶe≡ Time averaged error square signal. 

                maxɶe ≡ Upper bounds of ɶe . 

                minɶe ≡ Lower bounds of ɶe . 

                  ηe ≡ A constant with 1η >e . 

                   υ ≡ A constant with 0υ > . 

 

W , X , e  and ( )i H
 are as defined in Appendix A.2 for this algorithm. 
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A.7 RLMS Algorithm 

RLMS algorithm is a new algorithm proposed in this thesis. It combines 

the use of a RLS algorithm stage followed by a LMS algorithm stage.  In this 

case, the intermediate output, RLSy , estimated using the RLS algorithm is fed 

to an LMS section after it has been multiplied by the array image vector, RF . 

The error signal, LMS( )e n , produced by the LMS algorithm stage, is fed back 

to combine with RLS( )e n to form the overall error signal, RLMS( )e n , for updating 

the RLS weights, RLS( )nW . The tap weights of the RLS and LMS algorithm 

stages are updated according to the following:: 

 

         Initialize RLS(0) 0=W , LMS(0) 0=W , 1(0) δ −=P I , LMS(0) 0e =  

         Iterate for 1n ≥  

                Input RLS stage: 

                      
RLS

( 1) ( )
( )

1 ( ) ( 1) ( )H

n n
n

n n nµ
−=

− + −
P X

K
X P X

 

                     
RLS

1
( ) ( 1) ( ) ( ) ( 1)

1
Hn n n j n

µ
 = − − − −

P P K X P  

                     RLMS RLS LMS( ) ( ) ( ) ( ) ( 1)He n d n n n e n= − − −W X  

                     RLS RLS RLMS( 1) ( ) ( ) ( )+ = +n n n e nW W K  

                Second stage input: 

                     LMS R RLS( ) ( ) ( )Hn n n=X W XF                                   

                Output LMS stage: 

                      LMS LMS LMS( ) ( ) ( ) ( )He n d n n n= −W X                               

                      LMS LMS LMS LMS LMS( 1) ( ) ( ) ( )n n n e nµ ∗+ = +W W X          

                Output:  

                      RLMS RLMS( ) ( ) ( )Hy n n n= W X  

 

 

Definitions:     

                RLMSe ≡ Overall error signal 
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                 RLSµ ≡ Step size of the RLS algorithm stage 

                 LMSµ ≡ Step size of the LMS algorithm stage 

                  LMSe ≡ Error signal of the LMS algorithm stage 

                RLSW  ≡ Weight vector of the RLS algorithm stage 

                LMSW ≡ Weight vector of the LMS algorithm stage 

                LMSX ≡ Input signal vector of the LMS algorithm stage 

                   RF ≡ Array image vector 

 

X , K  and P  are as defined in Appendix A.3 for this algorithm. 

 
 

A.8 LLMS Algorithm 

The LLMS algorithm is another new algorithm proposed in this thesis. It 

shares the same architecture as the RLMS algorithm but employs the LMS 

algorithm for both the two stages. The two weight 1W  and 2W  vectors of the 

LLMS algorithm are updated according to the following procedure: 

         Initialize 1(0) 0=W , 2(0) 0=W , 2(0) 0e =  

         Iterate for 1n ≥  

                First LMS algorithm stage: 

           LLMS 1 2( ) ( ) ( ) ( ) ( 1)He n d n n n e n= − − −W X                        

   1 1 1 LLMS( 1) ( ) ( ) ( )n n n e nµ ∗+ = +W W X                            

                Second stage input: 

                                  2 L 1( ) ( ) ( )Hn n n=X W XF                                   

                Second LMS algorithm stage: 

                                   2 2 2( ) ( ) ( ) ( )He n d n n n= −W X                                

2 2 2 2 2( 1) ( ) ( ) ( )n n n e nµ ∗+ = +W W X                            

                Output:  
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                             LLMS LLMS( ) ( ) ( )= Hy n n nW X  

 
 

Definitions:     

                LLMSe ≡ Overall error signal 

                     1µ ≡ Step size of the first LMS algorithm stage 

                     2µ ≡ Step size of the second LMS algorithm stage 

                      2e ≡ Error signal of the second LMS algorithm stage 

                    1W  ≡ Weight vector of the first LMS algorithm stage 

                    2W ≡ Weight vector of the second LMS algorithm stage 

                    2X ≡ Input signal vector of the second LMS algorithm stage 

                    LF ≡ Array image vector 
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APPENDIX B 
 

STEP SIZE BOUNDARY VALUES OF THE RLS 

ALGORITHM STAGE 

 

 

 

To ensure stable operation of the RLMS algorithm, the RLS algorithm 

stage is required to operate with a proper step size. This appendix provide an 

analysis for determining the boundary values for the step size based on the 

mean-square error (MSE) of the overall error signal, RLMSξ , of the RLMS 

algorithm. 

 
Recalling equation (4.49) 

( ) ( )RLMS RLMS,min RLS RLS RLS RLS( ) (0) (0)
n nHnξ ξ µ µ= + − −V I Q Q I Q V        (B.1)            

From equations (B.1) and (4.39), we obtain the asymptotic value of RLMS( )nξ  

as 

( ) ( ) 1
RLS 1 RLS 1 1lim lim

n n

n n
µ µ −

→∞ →∞
− = −I Q q I qΛΛΛΛ                        (B.2) 

 

Using equation (4.36), the RHS term of equation (B.2) becomes 

( ) ( ) ( ) ( )RLS 1 RLS 1 RLS 2 RLS N= diag[ 1 , 1 , ..., 1 ]
n n n n

E E Eµ µ µ µ− − − −I ΛΛΛΛ       (B.3) 

Now, if RLS1 max( ) 1iEµ− < ,  where 1,2,...,i N= ,  then 

RLS

RLS

1 1 max( ) 1

or 0 max( ) 2

µ

µ

− < − <

< <

i

i

E

E
                                   (B.4) 

where RLSE  is the maximum eigenvalue of 1ΛΛΛΛ .  
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From equation (B.4), the step size of the RLS algorithm stage, RLSµ , required 

for stable operation is given by  

RLS
RLS

20 Eµ< <                                            (B.5) 
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APPENDIX C 
 

DERIVATION AND PROOF OF CONVERGENCE OF 

EQUATION (4.56) 

 

 

 

In this appendix, the convergence of the RLMS algorithm is analyzed 

based on the mean-square error (MSE) of the overall error signal of the 

RLMS algorithm, RLMSξ , when the RLMS algorithm is operating in the self-

referencing mode. 

 

Recalling equation (4.56), we have 

{
}

2
RLMS RLS R R RLS

1

RLS R RLS R RLS

( ) E ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

n
n i H

i

H H

n D i n n

n n n n n

ξ α −

=

  ′= −
 

′− +

∑ Z W

W Z W Q W

                  (C.1) 

In the case of self-referencing, the reference signals for the RLS and LMS 

algorithm stages are given as 

RLS RLMS( ) ( 1)d n y n= −                                        (C.2) 

and      LMS RLS( ) ( )d n y n=                                           (C.3) 

 

Based on equations (C.1) and (C.3), we can redefine R ( )D n  in equation 

(4.15) as 

RLMS RLS( ) 2 ( 1) ( 1)D n y n y n= − − −                                (C.4) 

where  
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RLMS LMS LMS
Hy = W X                                          (C.5) 

By considering the asymptotic behaviour of the RLMS algorithm, we can 

approximate, after reaching the final convergence, that RLMSy  is 

approximately equals to RLSy . In this case, equation (C.5) can be rewritten as 

RLMS RLSy y=                                               (C.6) 

Based on equation (C.6), equation (C.4) becomes 

R RLS( ) ( 1)= −D n y n                                           (C.7) 

The only unknown term in equation (C.1) is the first term on the RHS. Using 

equation (C.7), this term can be rewritten as 

{ { }22
RLS R RLS RLS

1 1

E ( ) E ( 1)
n n

n i n i

i i

D i y iα α− −

= =

   = −
   ∑ ∑                   (C.8) 

Then, solving equation (C.8) yields 

{ { }2
RLS R RLS RLS RLS

1 1

E ( ) E ( 1) ( 1)
n n

n i n i

i i

D i y i y iα α− − ∗

= =

   = − −  ∑ ∑              (C.9) 

Using equation (C.6), equation (C.9) can be analyzed to become 

{ 2
RLS R RLS RLS

1

RLS RLS

RLS R RLS

E ( ) E ( 1) ( 1) ( 1) ( 1)

( 1)E ( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

n
n i H H

i

H H

H

D i n i i n

n i i n

n n n

α −

=

   = − − − −  

 = − − − − 

= − − −

∑ W X X W

W X X W

W Q W

    (C.10) 

where RQ  is as defined in equation (4.16). 

 
Now substituting equation (C.10) in equation (C.1), we obtain the overall 

MSE, such that 
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{

}

RLMS RLS RLS R RLS R RLS
1

RLS R RLS R RLS

( ) ( 1) ( 1) ( 1) ( ) ( )

( ) ( ) ( ) ( ) ( )

n
n i H H

i

H H

n n n n n n

n n n n n

ξ α −

=
′= − − − −

′− +

∑ W Q W Z W

W Z W Q W

  (C.11) 

Differentiating equation (C.11) with respect to the weight vector RLS( )H nW  then 

yields the gradient vector RLMS( )ξ∇∇∇∇ , given by 

RLMS R R RLS( ) ( ) ( ) ( )n n nξ ′= − +Z Q W∇∇∇∇                            (C.12)   

By equating RLMS( )ξ∇∇∇∇  to zero, we obtain a similar optimal weight vector to 

that given in equation (4.29). This is given by 

RLS

1
R R( ) ( ) ( )opt n n n− ′=W Q Z                                    (C.13) 

 

Now, substituting equation (C.13) into equation (C.11), we can express 

the MSE as 

{ }RLMS,min RLS RLS R RLS R RLS
1

( ) ( 1) ( 1) ( 1) ( ) ( )
n

n i H H

i

n n n n n nξ α −

=

′= − − − −∑ W Q W Z W (C.14) 

Substituting (C.14) in equation (C.11), and by dropping the index n , equation 

(C.11) becomes 

( ) ( )
RLS RLSRLMS RLMS,min RLS R RLS

H

opt optξ ξ= + − −W W Q W W             (C.15) 

 

Now, we repeat the steps from equation (4.32) to equation (4.52) as 

follows: 

Defining the error of the weight vector, RLSV ,  as 

( )
RLSRLS RLS opt−≜V W W                                     (C.16) 

so that equation (C.15) can be written as 



 197 

RLMS RLMS,min RLS R RLS
Hξ ξ= +V Q V                               (C.17) 

Differentiating equation (C.17) with respect to RLS
HV  yields 

 RLMS R RLS( )ξ = Q V∇∇∇∇                                        (C.18) 

where the EVD of RQ  in equation (C.18) is given as 

1
R R R R R R R

H−= =Q q q q qΛ ΛΛ ΛΛ ΛΛ Λ                                 (C.19) 

Also, defining 

1
RLS R RLS

−′ ≜V q V                                           (C.20) 

 

Based on equations (C.19) and (C.20), we can express the MSE of 

equation (C.17) as 

RLMS RLMS,min RLS R RLS( ) ( ) ( ) ( )Hn n n nξ ξ ′ ′= +V VΛΛΛΛ                      (C.21) 

For steepest descent, the weight vector is updated according to 

RLS RLS RLS RLMS( 1) ( ) ( ( ))n n nµ ξ+ = − ∇∇∇∇W W                        (C.22) 

where RLSµ  is the convergence constant that controls stability and rate of 

adaptation of the weight vector, and RLMS( ( ))nξ∇∇∇∇  is the gradient at the thn  

iteration. 

 

Subtracting 
RLSoptW  from both sides of equation (C.22) yields 

RLS RLSRLS RLS RLS RLMS( 1) ( 1) ( ) ( ) ( )opt optn n n n nµ ξ+ − + = − −W W W W ∇∇∇∇      (C.23) 

Multiplying equation (C.23) by R
Hq , we may rewrite equation (C.23) in the 

form of a linear homogeneous vector difference equation using the 

relationships of equations (C.16), (C.18), (C.19), and (C.20) to give 

( )RLS RLS R RLS( 1) ( )n nµ′ ′+ = −V I VΛΛΛΛ                             (C.24) 
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In another form, equation (C.24) can be written as 

( )RLS RLS R RLS( ) (0)
n

n µ′ ′= −V I VΛΛΛΛ                               (C.25) 

where RLS(0)′V  is the initial value given by 

RLSRLS RLS(0) (0) opt′ ′ ′= −V W W                                   (C.26) 

Substituting equation (C.25) into equation (C.21) yields 

( ) ( )RLMS RLMS,min RLS RLS R R RLS R RLS( ) (0) (0)
n nHnξ ξ µ µ= + − −V I Q Q I Q V  (C.27)        

The asymptotic value RLMS( )nξ  of equation (C.27) becomes  

( ) ( ) 1
RLS R R RLS R Rlim lim

n n

n n
µ µ −

→∞ →∞
− = −I Q q I qΛΛΛΛ                    (C.28) 

Following the same analyzing steps for equation (4.51), it is able to show that 

the MSE of the overall error signal can converge to a minimum value, such 

that  

RLMS RLMS,minlim ( )
n

nξ ξ
→∞

=                                   (C.29)    
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APPENDIX D 
 

DERIVATION OF EQUATION (5.8) 
 
 
 
 

In this appendix, the derivation of equation (5.5) in Chapter 5 is provided. 

In the analysis, we make use of the same assumptions to those given in 

Chapter 5, and these are 

(i) The propagation environment is time invariant. 

(ii)  The components of the signal vector 1( )nX  should be independent and 

identically distributed (iid). 

(iii)  All signals are zero mean and statistically stationary at least to the 

second order. 

 

Recalling equation (5.1), the overall error signal of the LLMS algorithm is 

expressed as 

LLMS 1 2( ) ( ) ( 1)e n e n e n= − −                                    (D.1) 

As given in (5.5), the expected values of 2
LLMSe  is  

           

2 2
LLMS LLMS 1 2

2

1 1 2

2
L 1 L 1

L 1 1 L 1 1

( ) E ( ) E ( ) ( 1)

( ) ( ) ( ) ( 1)

E ( ) ( ) ( ) ( )

  E ( ) ( ) ( ) ( ) ( ) ( ) ,

H
1

H

H H

n e n e n e n

E d n n n e n

D n n n n

D n n n D n n n

ξ

∗

   = − −    

 = − − −  

 = +
 

 − + 

≜

W X

W Q W

X W W X

             (D.2) 

Referring to Figure 5-1, the error ( )ie n  is given by 

( ) ( ) ( ) ( )H
i i i ie n d n n n= −W X  where 1i =  for the LMS1 algorithm, and 2 for the 

LMS2 algorithm; ( )i ⋅X , ( )i ⋅W  and ( )id n  represent the input signal, weight 
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vectors and reference signal associated with the thn  LMS algorithm section 

respectively, [ ]E ⋅  denotes expectation, •  signifies modulus, * stands for 

conjugate operator, ( )H
i  denotes the Hermitian matrix of ( )i , 

L 1 2( ) ( ) ( 1)D n d n e n= − − , and L ( )nQ  is the correlation matrix of the input 

signals given by L 1 1( ) E ( ) ( )Hn n n =  Q X X . 

 

Consider the first term on the right hand side (RHS) of (D2). It can be 

expressed as                                                   

2 2
L 1 2

2 2
1 2

1 2 1 2

E ( ) E ( ) ( 1)

E ( ) E ( 1)

  E ( ) ( 1) ( ) ( 1)

D n d n e n

d n e n

d n e n d n e n∗ ∗

   = − −
   

   = + −
   

 − − + − 

                   (D.3) 

where * stands for the complex conjugate operator. 

With 1( )d n  and 2( 1)e n −  being zero mean and uncorrelated based on the 

assumptions (ii) and (iii) of Chapter 5, the last RHS term of (D3) is therefore 

equal to zero. This gives 

2 2 2
L 1 2E ( ) E ( ) E ( 1)D n d n e n     = + −

     
                        (D.4) 

Using 2 2 2 2 LLMS( ) ( ) ( ) ( ) ( ) ( )H
2e n d n n n d n y n= − = −W X , the last RHS term of 

(D4) becomes 

  

22 2
2 2 LLMS

2 LLMS 2 LLMS

E ( 1) E ( 1) E ( 1)

E ( 1) ( 1) ( 1) ( 1)

e n d n y n

d n y n d n y n∗ ∗

    − = − + −
     

 − − − + − − 

        (D.5) 

 
Assume 2 1( ) ( )d n d n= , where 2d  is stationary so that 2 2( 1) ( )d n d n− = , and 

let LLMS LLMS 1
Hy = W X , where LLMS 2 L 1 ,H H HW = W WF  (D5) can be rewritten as 
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2 2
2 2 LLMS L

L LLMS LLMS L LLMS

E ( 1) E ( ) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1) ( 1)

H

H H

e n d n n n

n n n n n

   − = − − −
   

− − − + − − −

W Z

Z W W Q W

  (D.6) 

where L 1 2( ) E ( ) ( )n n d n∗ =  Z X  corresponds to the input signal cross-

correlation vector.  

Substituting (D6) in (D4), the first term on the RHS of (D2) becomes 

2 2
L 1 LLMS L

L LLMS LLMS L LLMS

2E ( ) E ( ) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1) ( 1)

H

H H

D n d n n n

n n n n n

= −

+

    − −
   

− − − − − −

W Z

Z W W Q W
       (D.7) 

Since 2 1( ) ( ),d n d n=  the last RHS term of (D2) may be written as 

L 1 1 L 1 1

L 1 1 L 2 1 1

1 2 1

E ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) E ( 1) ( ) ( )

( )E ( 1) ( )

H H

H H H

H

D n n n D n n n

n n n n e n n n

n e n n

∗

∗

 + = 

 + − − 

 − − 

X W W X

Z W W Z X W

W X

       (D.8)                             

 
Again, applying the assumptions (ii) and (iii) given in Chapter 5, the last 

two terms of (D8) are equal to zero, therefore (D8) becomes 

L 1 1 L 1 1 L 1 1 LE ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )H H H HD n n n D n n n n n n n∗ + = + X W W X Z W W Z  (D.9)                      

As a result, the mean square error LLMS ( )nξ  as specified by (D2) can be 

rewritten to include the results of (D7) and (D9) to become 

2 2
LLMS 1 2

LLMS L LLMS L 1

LLMS L L LLMS

1 L 1 L 1

( ) E ( ) E ( 1)

  ( 1) ( 1) ( 1) ( ) ( )

  ( 1) ( 1) ( 1) ( 1)

  ( ) ( ) ( ) ( ) ( )

H H

H H

H H

n d n d n

n n n n n

n n n n

n n n n n

ξ =

−

+

   + −
   

+ − − − −

− − − − −

−

W Q W Z W

W Z Z W

W Z W Q W

             (D.10) 

Differentiating (D10) with respect to the weight vector 1 ( ),H nW  and by 
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equating the results to zero, we obtain the optimal weight vector as 

1
1 L L( ) ( ) ( )opt n n n−=W Q Z                                     (D.11) 

where 1X  is well excited and LQ  could be considered as a full rank 

matrix. 

 

Substituting equation (D.11) in equation (D.10) and using 

LLMS 1 L 2
HW = W WF , gives 

2 2
LLMS,min 1 2

LLMS L 1 L 2 L 1

LLMS L L LLMS

1 L 1 L

( ) E ( ) E ( 1)

  ( 1) ( 1) ( 1) ( 1) ( ) ( )

  ( 1) ( 1) ( 1) ( 1)

  ( ) ( ) ( ) ( )

H H H
opt

H H

H H
opt opt

n d n d n

n n n n n n

n n n n

n n n n

ξ =

+

   + −
   

+ − − − − −

− − − − − −

−

W Q W W Z W

W Z Z W

W Z W Z

F
   (D.12) 

 
Simplification of equation (D.12) yields the minimum mean square error 

(MSE) such that   

{ }

2 2
LLMS,min 1 2

L 1 L LLMS

LLMS L 2

E ( ) E ( 1)

( ) ( ) ( 1) ( 1)

( 1) ( 1) ( 1) 1

H H
opt

H H

d n d n

n n n n

n n n

ξ    = + −
   

− − − −

+ − − − −

Z W Z W

W Z WF

                   (D.13) 
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APPENDIX E 
 

DERIVATION OF THE VARIANCE OF THE 

QUANTIZATION ERROR 

 
 
 
 

This appendix analyses the variance of the quantization error associated 

with linear amplitude quantization. For a uniformly distributed signal, ( )v n , 

,
2 2

q q
v

− ∈   
, where q  is the quantization step size. In this case, ( )v n  has a 

mean of zero, i.e., [ ]E 0v = , and the variance 2
qσ  of ( )v n  is given by 

[ ]( )22 2 2E ( ) E ( ) E ( )q v n v n v nσ    = − =                              (E.1) 

Since ( )v n  is uniformly distributed, its probability density function ( )VP v  is 

given as 

1 , 2
( )

0 , 2

V

qvq
P v

qv

 ≤
= 
 ≥

                                    (E.2) 

Therefore, the variance 2
qσ  in (E.1) can be obtained as 

3 22 2 2
2 2 2

22 2

1 1
( )

3 12

q q q

q V
qq q

v q
v P v dv v dv

q q
σ

−− −
= = = =∫ ∫                    (E.3) 

 
For a signal of 1 V± amplitude range, its quantization error using an Nb–bits 

wordlength is given by 

12
2

2 1
b

b

N

N
q

−= ≈
−

                                          (E.4) 

By substituting (E.4) in (E.3), the variance of the quantization error, 2
qσ , can 
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be obtained as 

( )2 1
2 2

12

bN

qσ
−

=                                               (E.5) 
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