770 research outputs found

    A GAP package for braid orbit computation, and applications

    Full text link
    Let G be a finite group. By Riemann's Existence Theorem, braid orbits of generating systems of G with product 1 correspond to irreducible families of covers of the Riemann sphere with monodromy group G. Thus many problems on algebraic curves require the computation of braid orbits. In this paper we describe an implementation of this computation. We discuss several applications, including the classification of irreducible families of indecomposable rational functions with exceptional monodromy group

    Solving equations in the relational algebra

    Full text link
    Enumerating all solutions of a relational algebra equation is a natural and powerful operation which, when added as a query language primitive to the nested relational algebra, yields a query language for nested relational databases, equivalent to the well-known powerset algebra. We study \emph{sparse} equations, which are equations with at most polynomially many solutions. We look at their complexity, and compare their expressive power with that of similar notions in the powerset algebra.Comment: Minor revision, accepted for publication in SIAM Journal on Computin

    Short expressions of permutations as products and cryptanalysis of the Algebraic Eraser

    Get PDF
    On March 2004, Anshel, Anshel, Goldfeld, and Lemieux introduced the \emph{Algebraic Eraser} scheme for key agreement over an insecure channel, using a novel hybrid of infinite and finite noncommutative groups. They also introduced the \emph{Colored Burau Key Agreement Protocol (CBKAP)}, a concrete realization of this scheme. We present general, efficient heuristic algorithms, which extract the shared key out of the public information provided by CBKAP. These algorithms are, according to heuristic reasoning and according to massive experiments, successful for all sizes of the security parameters, assuming that the keys are chosen with standard distributions. Our methods come from probabilistic group theory (permutation group actions and expander graphs). In particular, we provide a simple algorithm for finding short expressions of permutations in SnS_n, as products of given random permutations. Heuristically, our algorithm gives expressions of length O(n2logn)O(n^2\log n), in time and space O(n3)O(n^3). Moreover, this is provable from \emph{the Minimal Cycle Conjecture}, a simply stated hypothesis concerning the uniform distribution on SnS_n. Experiments show that the constants in these estimations are small. This is the first practical algorithm for this problem for n256n\ge 256. Remark: \emph{Algebraic Eraser} is a trademark of SecureRF. The variant of CBKAP actually implemented by SecureRF uses proprietary distributions, and thus our results do not imply its vulnerability. See also arXiv:abs/12020598Comment: Final version, accepted to Advances in Applied Mathematics. Title slightly change

    Voicing Transformations and a Linear Representation of Uniform Triadic Transformations (Preprint name)

    No full text
    Motivated by analytical methods in mathematical music theory, we determine the structure of the subgroup J\mathcal{J} of GL(3,Z12)GL(3,\mathbb{Z}_{12}) generated by the three voicing reflections. We determine the centralizer of J\mathcal{J} in both GL(3,Z12)GL(3,\mathbb{Z}_{12}) and the monoid Aff(3,Z12){Aff}(3,\mathbb{Z}_{12}) of affine transformations, and recover a Lewinian duality for trichords containing a generator of Z12\mathbb{Z}_{12}. We present a variety of musical examples, including Wagner's hexatonic Grail motive and the diatonic falling fifths as cyclic orbits, an elaboration of our earlier work with Satyendra on Schoenberg, String Quartet in DD minor, op. 7, and an affine musical map of Joseph Schillinger. Finally, we observe, perhaps unexpectedly, that the retrograde inversion enchaining operation RICH (for arbitrary 3-tuples) belongs to the setwise stabilizer H\mathcal{H} in Σ3J\Sigma_3 \ltimes \mathcal{J} of root position triads. This allows a more economical description of a passage in Webern, Concerto for Nine Instruments, op. 24 in terms of a morphism of group actions. Some of the proofs are located in the Supplementary Material file, so that this main article can focus on the applications

    Coordination and Learning with a Partial Language

    Get PDF
    This paper explores how efficiency promotes the use of structure in language. It starts from the premise that one of language’s central characteristics is to provide a means for saying novel things about novel circumstances, its creativity. It is reasonable to expect that in a rich and changing environment, language will be incomplete. This encourages reliance on structure. It is shown how creative language use emerges form common knowledge structures, even if those structures are consistent with an a priori absence of a common language. ZUSAMMENFASSUNG - (Koordination und Lernen mit einer Partialsprache) In diesem Beitrag wird die Anwendung von Strukturen in einer Sprache aus Effizienzsicht begründet. Der Artikel geht davon aus, daß eines der wichtigsten Merkmale der Sprache in ihrer Kreativität zu sehen ist, d. h. als Mittel, um Neues über neue Sachverhalte auszusagen. Es ist deshalb zu erwarten, daß in einer vielfältigen und sich verändernden Umwelt die Sprache unvollständig bleiben wird. Dies fördert die Anwendung von Strukturen. Es wird gezeigt, wie die kreative Sprachanwendung aus allgemeinen Wissensstrukturen entsteht, auch dann, wenn diese Strukturen a priori noch keine gemeinsame Sprache bilden.Language; Coordination; Optimal Learning; Common Knowledge
    corecore