research

Voicing Transformations and a Linear Representation of Uniform Triadic Transformations (Preprint name)

Abstract

Motivated by analytical methods in mathematical music theory, we determine the structure of the subgroup J\mathcal{J} of GL(3,Z12)GL(3,\mathbb{Z}_{12}) generated by the three voicing reflections. We determine the centralizer of J\mathcal{J} in both GL(3,Z12)GL(3,\mathbb{Z}_{12}) and the monoid Aff(3,Z12){Aff}(3,\mathbb{Z}_{12}) of affine transformations, and recover a Lewinian duality for trichords containing a generator of Z12\mathbb{Z}_{12}. We present a variety of musical examples, including Wagner's hexatonic Grail motive and the diatonic falling fifths as cyclic orbits, an elaboration of our earlier work with Satyendra on Schoenberg, String Quartet in DD minor, op. 7, and an affine musical map of Joseph Schillinger. Finally, we observe, perhaps unexpectedly, that the retrograde inversion enchaining operation RICH (for arbitrary 3-tuples) belongs to the setwise stabilizer H\mathcal{H} in Σ3J\Sigma_3 \ltimes \mathcal{J} of root position triads. This allows a more economical description of a passage in Webern, Concerto for Nine Instruments, op. 24 in terms of a morphism of group actions. Some of the proofs are located in the Supplementary Material file, so that this main article can focus on the applications

    Similar works