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On March 2004, Anshel, Anshel, Goldfeld, and Lemieux introduced
the Algebraic Eraser scheme for key agreement over an insecure
channel, using a novel hybrid of infinite and finite noncommuta-
tive groups. They also introduced the Colored Burau Key Agreement
Protocol (CBKAP), a concrete realization of this scheme.
We present general, efficient heuristic algorithms, which extract
the shared key out of the public information provided by CBKAP.
These algorithms are, according to heuristic reasoning and accord-
ing to massive experiments, successful for all sizes of the security
parameters, assuming that the keys are chosen with standard dis-
tributions.
Our methods come from probabilistic group theory (permutation
group actions and expander graphs). In particular, we provide
a simple algorithm for finding short expressions of permutations
in Sn , as products of given random permutations. Heuristically,
our algorithm gives expressions of length O (n2 log n), in time and
space O (n3). Moreover, this is provable from the Minimal Cycle Con-
jecture, a simply stated hypothesis concerning the uniform distribu-
tion on Sn . Experiments show that the constants in these estima-
tions are small. This is the first practical algorithm for this problem
for n � 256.

Remark. Algebraic Eraser is a trademark of SecureRF. The variant of
CBKAP actually implemented by SecureRF uses proprietary distri-
butions, and thus our results do not imply its vulnerability.
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1. Introduction and overview

Starting with the seminal papers [1,16], several attempts have been made to construct and analyze
public key schemes based on noncommutative groups and combinatorial, or computational, group
theory. One motivation is that such systems may provide longer term security than existing schemes.
Another motivation, at present theoretical, is that unlike the main present day public key schemes,
these new schemes may be resistant to attacks by quantum computers. Already in the short run, these
connections between combinatorial group theory and cryptography lead to mathematical questions
not asked before, and consequently to new mathematical and algorithmic results.

In this paper, we study a scheme falling in the above category, whose cryptanalysis leads to an
algorithm with potential applicability beyond the studied scheme.

The Algebraic Eraser key agreement scheme was introduced by Anshel, Anshel, Goldfeld, and
Lemieux in the workshop Algebraic Methods in Cryptography held in Dortmund, Germany, on
March 2004, and in the special session on Algebraic Cryptography, at the Joint International Meeting
of the AMS, DMV, and ÖMG, held in Mainz, Germany, on June 2005. It was subsequently published
as [2].

Apart from its mathematical novelty, the Algebraic Eraser has a surprisingly simple concrete real-
ization, the Colored Burau Key Agreement Protocol (CBKAP), which consists of an efficient combination of
matrix multiplications, applications of permutations, and evaluations of polynomials at elements of a
finite field.

For four years since its introduction, no weakness in CBKAP was reported. On January 13, 2008,
Kalka and Tsaban have described the attack presented here in Bar-Ilan University’s CGC Seminar [9]. At
about the same time (on January 30, 2008), Myasnikov and Ushakov uploaded to the ArXiv eprint
server an independent attack, and subsequently published it [20]. Myasnikov and Ushakov use a
length based algorithm to break the Third Trusted Party (TTP) component of CBKAP, with excellent
success rates for the parameters proposed in [2]. They indicate that the success rates of their attack
drop if the parameters are increased. In his recent paper [15], Gunnells reproduces Myasnikov and
Ushakov’s attack, and concludes that as the key lengths increase, the attack quickly loses power, and
soon fails in all instances. Furthermore, he provides experiments suggesting that their attack is not ro-
bust against several easily implemented defenses. He concludes that “the success of the attack seems
mainly to be due to it being applied to short words” [15].

The security of the main ingredient of CBKAP is not addressed in [20]. Would fixing the TTP
component make the protocol secure? Moreover, in the recent work [3] it is shown that in many
scenarios, there is no need to make both groups A and B in the protocol public (details below). For
this variant, the attack presented in [20] does not seem applicable [15].

We present an efficient attack, which recovers the shared key out of the public information, even if
one of the involved groups mentioned above remains hidden, without attacking the TTP’s private key.
According to heuristic reasoning as well as massive experiments, the attack is efficient, and has 100%
success rates for all feasible sizes of the security parameters, assuming standard distributions on the
key spaces.2

The methods, which make the attack applicable to large security parameters, come from proba-
bilistic group theory, and deal with permutation groups. About half of the paper is dedicated to a
new heuristic algorithm for finding short expressions of permutations as words in a given set of ran-
domly chosen permutations. This algorithm solves efficiently instances which are intractable using
previously known, provable or heuristic, techniques.

We conclude this introduction with several general comments.

1.1. Construction versus analysis

Few schemes, not counting minor variations, have been proposed thus far in the context of com-
binatorial group theory: Mainly, those in [1,16], and the one from [2], which is studied here. Most

2 See the remark at the abstract, which applies to this paper as well as to [20,15].
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of the attempts thus far are on the side of analysis of the proposed schemes, rather than propos-
als of substantially new ones. Indeed, each of the mentioned schemes is in fact an infinite family of
possible schemes, with at least two degrees of freedom: Choosing the platform groups, and choosing
the distributions on the chosen platform group. There are at present no known attacks which are
guaranteed to succeed against all candidate groups (with standard distributions on them), or against
all distributions on certain groups (like the braid group) which can be sampled efficiently. Thorough
analyzes may give indication which choices may lead to secure schemes.

1.2. Key generation in infinite groups or monoids

There is a canonical distribution on infinite groups or monoids generated by finitely many gen-
erators g1, . . . , gk . This is defined by fixing a length parameter L, and then taking a product of L
elements gi , each chosen with uniform distribution from the set {g1, . . . , gk}.3 This is not a uniform
distribution on the group,4 but the distribution induced from the uniform distribution on the words
of length L in the free monoid. Since the distributions are not specified in [2], we (as well as Myas-
nikov and Ushakov [20] and Gunnells [15]) assume these natural distributions when finitely generated
groups or monoids are considered, and the uniform distribution when finite sets are considered. By
Gunnells result [15], the results of the present paper form the first cryptanalysis of CBKAP for these
distributions, which works for all key sizes.

1.3. Provable security

Given a cryptographic scheme, it is desirable to have a simply stated (and apparently hard) algo-
rithmic problem such that, if the given scheme can be broken, then there is an efficient algorithm
for the problem. From a cryptographic point of view, there is no point in doing so when a scheme
can be cryptanalyzed, as is the case here. We believe, however, that cryptanalyses will improve our
understanding of schemes based on combinatorial group theory, and this may lead, eventually, to in-
troduction of schemes which look promising (i.e., resist known cryptanalyses). Then, establishing a
provable link between the security of the scheme and the difficulty of a simply stated and apparently
hard algorithmic problem would be an important task, which would help understanding better the
(potential) security of the scheme.

2. The Algebraic Eraser scheme

We describe here the general framework. The concrete realization will be described later.

2.1. Notation, terminology, and conventions

A monoid is a set M with a distinguished element 1 ∈ M , equipped with an associative multipli-
cation operation for which 1 acts as an identity. Readers not familiar with this notion may replace
“monoid” with “group” everywhere, since this is the main case considered here.

Let G be a group acting on a monoid M on the left, that is, to each g ∈ G and each a ∈ M , a unique
element denoted ga ∈ M is assigned, such that:

(1) 1a = a;
(2) gha = g(ha); and
(3) g(ab) = ga · gb

for all a,b ∈ M , g,h ∈ G .

3 In the case of a group, we first extend the list of generators, if necessary, so that for each g in the list, g−1 is also in the
list.

4 Since the group or monoid is countably infinite, there is no uniform distribution on it.
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M × G , with the operation

(a, g) ◦ (b,h) = (
a · gb, gh

)
,

is a monoid denoted M � G , and called the semi-direct product of M and G .
Let N be a monoid, and ϕ : M → N a homomorphism. The Algebraic Eraser operation is the function

� : (N × G) × (M � G) → (N × G) defined by

(a, g) � (b,h) = (
aϕ

(gb
)
, gh

)
. (1)

M � G acts on the right on N × G , that is, the following identity holds

(
(a, g) � (b,h)

)
� (c, r) = (a, g) �

(
(b,h) ◦ (c, r)

)
(2)

for all (a, g) ∈ N × G , (b,h), (c, r) ∈ M × G .
Submonoids A, B of M � G are �-commuting if

(
ϕ(a), g

)
� (b,h) = (

ϕ(b),h
)
� (a, g) (3)

for all (a, g) ∈ A, (b,h) ∈ B . In particular, if A, B �-commute, then

ϕ(a)ϕ
(gb

) = ϕ(b)ϕ
(ha

)
for all (a, g) ∈ A, (b,h) ∈ B .

2.1.1. Didactic convention
Since the actions are superscripted, we try to minimize the use of subscripts. As a rule, whenever

two parties, Alice and Bob, are involved, we try to use for Bob letters which are subsequent to the
letters used for Alice (as is suggested by their names).

2.2. The Algebraic Eraser key agreement scheme

2.2.1. Public information
(1) The group G and the monoids M , N .
(2) A positive integer m.
(3) �-Commuting submonoids A, B of M � G , each given in terms of a generating set of size k.
(4) Element-wise commuting submonoids C , D of N .

Remark 1. For clarity of exposition, we assume that m,k are public, and identical for Alice’s and
Bob’s parts. However, this assumption is not required for the scheme to work, nor for its cryptanalysis
described below.

2.2.2. The protocol
(1) Alice chooses c ∈ C and (a1, g1), . . . , (am, gm) ∈ A, and sends

(p, g) = (c,1) � (a1, g1) � · · · � (am, gm) ∈ N × G

(the �-multiplication is carried out from left to right) to Bob.
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(2) Bob chooses d ∈ D , (b1,h1), . . . , (bm,hm) ∈ B , and sends

(q,h) = (d,1) � (b1,h1) � · · · � (bm,hm) ∈ N × G

to Alice.
(3) Alice and Bob compute the shared key:

(cq,h) � (a1, g1) � · · · � (am, gm) = (dp, g) � (b1,h1) � · · · � (bm,hm).

We will soon explain why this equality holds.

For the sake of mathematical analysis, it is more convenient to reformulate this protocol as follows.
The public information remains the same. In the notation of Section 2.2.2, define

(a, g) = (a1, g1) ◦ · · · ◦ (am, gm) ∈ A;
(b,h) = (b1,h1) ◦ · · · ◦ (bm,hm) ∈ B.

By Eqs. (2) and (1), Alice and Bob transmit the information

(p, g) = (c,1) � (a1, g1) � · · · � (am, gm) = (c,1) � (a, g) = (
cϕ(a), g

);
(q,h) = (d,1) � (b1,h1) � · · · � (bm,hm) = (d,1) � (b,h) = (

dϕ(b),h
)
.

Using this and Eq. (3), we see in the same manner that the shared key is

(cq,h) � (a, g) = (
cqϕ

(ha
)
,hg

)
= (

cdϕ(b)ϕ
(ha

)
,hg

) = (
dcϕ(a)ϕ

(gb
)
, gh

)
= (

dpϕ
(gb

)
, gh

) = (dp, g) � (b,h). (4)

2.3. When M is a group

In the concrete examples for the Algebraic Eraser scheme, M is a group [2]. Consequently, M � G
is also a group, with inversion

(a, g)−1 = (g−1
a−1, g−1)

for all (a, g) ∈ M � G .

3. A general attack on the scheme

We will attack a stronger scheme, where only one of the groups A or B is made public. Without
loss of generality, we may assume that A is known. A is generated by a given k-element subset.
Let (a1, s1), . . . , (ak, sk) ∈ M � G be the given generators of A. Let S = {s1, . . . , sk}. S±1 denotes the
symmetrized generating set {s1, . . . , sk, s−1

1 , . . . , s−1
k }.
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3.1. Assumptions

3.1.1. Distributions and complexity
Alice and Bob make their choices according to certain distributions. Whenever we mention a prob-

ability, it is meant with respect to the relevant distribution. All assertions made here are meant to
hold “with significant probability” and the generation of elements must be possible within the avail-
able computational power. We will quantify our statements later.

Assumption 2. It is possible to generate an element (α,1) ∈ A with α �= 1.

Assumption 2 is equivalent to the possibility of generating (α, g) ∈ A such that the order o of g
in G is smaller than the order of (α, g) in M � G . Indeed, in this case (α, g)o is as required.

Assumption 3. N is a subgroup of GLn(F) for some field F and some n.

We do not make any assumption on the field F.
Alice generates an element (a, g) ∈ A, and in particular she generates g in the subgroup of G

generated by S .

Assumption 4. Given g ∈ 〈S〉, g can be explicitly expressed as a product of elements of S±1.

3.2. The attack

3.2.1. First phase: Finding d and ϕ(b) up to a scalar
By �-commutativity of A and B , and since (b,h) ∈ B , we have that for each (α,1) ∈ A,

ϕ(α)ϕ(b) = ϕ(b)ϕ
(hα

)
. (5)

By Assumption 2, we can generate such equations with α known, so that only ϕ(b) is unknown.
Now, q = dϕ(b) is a part of the transmitted information. Substituting ϕ(b) = d−1q in Eq. (5), we

obtain

dϕ(α) = (
qϕ

(hα
)
q−1)d,

where only d is unknown. Moreover, as C, D commute element-wise, we have that

dγ = γ d (6)

for all γ ∈ C .
Even for just one nontrivial α and one γ ∈ C , we obtain 2n2 equations on the n2 entries of d. Thus,

if standard distributions were used to generate the keys, we expect, heuristically, that the solution
space will be one-dimensional. (As this is a homogeneous equation and the matrices are invertible,
the solution space cannot be zero-dimensional.) If it is accidentally not, we can generate more equa-
tions in the same manner.5

More formally, let d, d̃ be solutions to Eqs. (5) and (6), say for (α1,1), . . . , (αr,1) ∈ A, and
γ1, . . . , γs ∈ C . Then

5 In the case of CBKAP (the concrete realization described below), one equation of each type was enough in all experiments
we have conducted. Except for few exceptions in tiny parameter settings, where exhaustive search of the key can be carried out
easily.
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d̃d−1 = d̃ϕ(αi)
(
dϕ(αi)

)−1 = (
qϕ

(hαi
)
q−1)d̃

((
qϕ

(hαi
)
q−1)d

)−1

= (
qϕ

(hαi
)
q−1)d̃d−1(qϕ

(hαi
)
q−1)−1

,

and thus d̃d−1 commutes with qϕ(hαi)q−1, for each i ∈ {1, . . . , r}.
Moreover, d̃d−1 commutes with all elements of C , and thus is in the centralizer of

{
qϕ

(hα1
)
q−1, . . . ,qϕ

(hαr
)
q−1} ∪ {γ1, . . . , γs}.

Similarly, we have that d−1d̃ is in the centralizer of

{
ϕ(α1), . . . ,ϕ(αr)

} ∪ {γ1, . . . , γs}.

Our precise assumption is that for some, not large, numbers r, s, we have that with high probability,
(at least) one of these centralizers is one-dimensional. Since C is, by assumption, a group of matrices,
this means that this centralizer is not larger than the centralizer of the full matrix group GLn(F), i.e.
the scalar matrices. (Observe that d−1d̃ is scalar if and only if d̃d−1 is.)

If one can find a small generating set {γ1, . . . , γs} for C ,6 then the assumption tells that the cen-
tralizer of

{
ϕ

(hα1
)
, . . . ,ϕ

(hαr
)} ∪ q−1Cq

or of

{
ϕ(α1), . . . ,ϕ(αr)

} ∪ C

is one-dimensional.
Thus, heuristically, we assume that we have found xd for some unknown scalar x ∈ F. Now use

our knowledge of q = dϕ(b) to compute

(xd)−1q = 1

x
d−1q = 1

x
ϕ(b).

In summary: We know xd and x−1ϕ(b), for some unknown scalar x ∈ F.

3.2.2. Second phase: Generating elements with a prescribed G-coordinate and extracting the key
Using Assumption 4, find i1, . . . , i� ∈ {1, . . . ,k} and ε1, . . . , ε� ∈ {1,−1} such that

g = sε1
i1

· · · sε�

i�
.

Compute

(δ, g) = (ai1 , si1)
ε1 ◦ · · · ◦ (aid , si� )

ε� ∈ A.

δ may or may not be equal to a.

6 Indeed, in CBKAP, described below, C is cyclic.
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Remark 5. If M is finitely generated as a monoid, the expression in Assumption 4 should be as a
product of elements of S . In the cases discussed later in this paper, G = Sn and the methods of
Section 5 can be adjusted to obtain positive expressions (Remark 10).

By �-commutativity of (δ, g) and (b,h), ϕ(b)ϕ(hδ) = ϕ(δ)ϕ(gb), and thus we can compute

x−1ϕ
(gb

) = ϕ(δ)−1(x−1ϕ(b)
)
ϕ

(hδ
)
.

We are now in a position to compute the secret part of the shared key, using Eq. (4):

(xd)p
(
x−1ϕ

(gb
)) = dpϕ

(gb
)
.

The attack is complete.

4. Cryptanalysis of CBKAP

Anshel, Anshel, Goldfeld, and Lemieux propose in [2] an efficient concrete realization which they
name Colored Burau Key Agreement Protocol (CBKAP). We give the details, and then describe how our
cryptanalysis applies in this case.

4.1. CBKAP

CBKAP is the Eraser Key Agreement scheme in the following particular case. Fix positive integers
n and r, and a prime number p.

(1) G = Sn , the symmetric group on the n symbols {1, . . . ,n}. Sn acts on M = GLn(Fp(t1, . . . , tn)) by
permuting the variables {t1, . . . , tn}.

(2) N = GLn(Fp).
(3) M � Sn is the subgroup of GLn(Fp(t1, . . . , tn))� Sn , generated by (x1, s1), . . . , (xn−1, sn−1), where

si is the transposition (i, i + 1), and

x1 =

⎛
⎜⎜⎝

−t1 1
0 1

. . .

1

⎞
⎟⎟⎠ ; xi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1 0 0
ti −ti 1
0 0 1

. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for i = 2, . . . ,n − 1. Only the ith row of xi differs from the corresponding row of the identity
matrix. A direct calculation shows that (xi, si) commutes with (x j, s j) when |i − j| > 1, and that

(xi, si)(xi+1, si+1)(xi, si) = (xi+1, si+1)(xi, si)(xi+1, si+1).

Thus, the colored Burau group M � Sn is a representation of Artin’s braid group Bn , determined by
mapping each Artin generator σi to (xi, si), i = 1, . . . ,n − 1.7

(4) ϕ : M → GLn(Fp) is the evaluation map obtained by replacing each variable ti by a fixed ele-
ment τi ∈ Fp .

7 Additional details on the colored Burau group can be found in, e.g., [18].
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(5) C = D = Fp(κ) is the group of nonzero matrices of the form

�1κ
j1 + · · · + �rκ

jr ,

with κ ∈ GLn(Fp) a matrix of order pn − 1, �1, . . . , �r ∈ Fp , and j1, . . . , jr ∈ Z.

Remark 6. Let f (x) be the characteristic polynomial of κ . Then x 
→ κ induces an isomorphism from
Fpn = F[x]/〈 f (x)〉 onto C = D , that is, C and D are the image of F

∗
pn in GLn(Fp), or in other words,

the nonsplit torus in GLn(Fp).

Commuting subgroups of M � G are chosen once, by a trusted party, as follows:

(1) Fix I1, I2 ⊆ {1, . . . ,n−1} such that for all i ∈ I1 and j ∈ I2, |i − j| � 2. |I1| and |I2| are both � n/2.
(2) Define L = 〈σi: i ∈ I1〉 and U = 〈σ j: j ∈ I2〉, subgroups of Bn generated by Artin generators.
(3) L and U commute element-wise. Add to both groups the central element �2 of Bn .
(4) Choose a random z ∈ Bn .
(5) Choose w1, . . . , wk ∈ zLz−1, v1, . . . , vk ∈ zU z−1, each a product of t generators (t is a parameter

of the scheme). Transform them into Garside left normal form, and remove all even powers of �.
Reuse the names w1, . . . , wk, v1, . . . , vk for the resulting braids.

(6) Let ρ : Bn → M � Sn be the colored Burau representation function. A, B are the subgroups of
ρ(zLz−1),ρ(zU z−1) generated by ρ(w1), . . . , ρ(wk), and by ρ(v1), . . . , ρ(vk), respectively.

(7) w1, . . . , wk, v1, . . . , vk are made public.

To carry out our attack, it suffices to assume that the image in the colored Burau group of one of the
sets {w1, . . . , wk} or {v1, . . . , vk}, is given.

4.1.1. Parameter settings and efficiency
These issues are discussed in detail in [2]. For the parameters proposed there, it is shown that

CBKAP can be implemented efficiently, even on small devices as RFID tags. However, we are interested
in the more general question, whether some parameters may make CBKAP secure. E.g., CBKAP can be
implemented on standard PC-s with parameters much larger than those proposed in [2], and still be
more efficient than the ordinary schemes based on RSA, Diffie–Hellman in Z

∗
p , or elliptic curves. We

will show that even for such large parameters, CBKAP can be broken.

4.2. The attack

Assumption 3, that N is a subgroup of GLn(F) for some field F, is a part of the definition of CBKAP.
We consider the remaining ones.

4.2.1. Regarding Assumption 2
This assumption amounted to: It is possible to generate, efficiently, an element (α,σ ) ∈ A such

that the order o of σ is smaller than that of (α,σ ).
In the notation of Section 4.1, {i, i + 1: i ∈ I1} decomposes to a family I of maximal intervals

[i, �] = {i, i + 1, . . . , �}, and
∑

[i,�]∈I � − i + 1 � n/2. Now

U = 〈
�2〉 ⊕ ⊕

[i,�]∈I

B�−i+1.

Each considered s is a permutation induced by the braid �2mzwz−1 with w ∈ L. Let π : Bn → Sn be
the canonical homomorphism. Then

s = π
(
�2mzwz−1) = π

(
�2)m

π(z)π(w)π(z)−1 = π(z)π(w)π(z)−1,
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is conjugate to π(w). On each component, this is a product of many random transpositions, and
is therefore an almost uniformly-random permutation on that component. We therefore have the
following:

(1) U/〈�2〉 decomposes into a direct product of braid groups, whose indices do not sum up to more
than n/2.

(2) π(U ) decomposes into a direct product of symmetric groups, whose indices do not sum up to
more than n/2.

(3) For generic8 (a, s) ∈ A, π(z)−1sπ(z) is generic on each part of the mentioned decomposition.

The probability that the order of a random permutation in Sn is � n is O (1/ 4
√

n ) [6]. Thus, we can
find an element (a, s) ∈ A with s of order � n by generating (roughly 4

√
n ) elements (a, s) ∈ A, until

the order of s is as required.
On the other hand, the element (a, s) is a representation of an element of the braid group, which

is known to be torsion-free [19]. While it may be that the representation used here is not faithful,9 it
is very unlikely that (a, s) could have finite order.

The remainder of this paper is dedicated to Assumption 4.

5. Membership search in generic permutation groups

For the second phase of our attack, we need to find a short expression of a given permutation
from G in terms of given “random” permutations. In CBKAP, the group G typically has the form
π−1 Hπ � Sn , where π ∈ Sn , H is Sn/2 or An/2, and H is embedded in Sn in a natural way (supported
by the n/2 higher indices). The conjugation is just relabeling of the indices 1, . . . ,n. Thus, we may
reduce the problem to the case G = Sn . Modifications of the algorithm can be made, that will make
it applicable to any (conjugation of) direct product of groups of the form An or Sn .

For concrete generators, the problem of finding short expressions for given permutations is well
known, and in similar form occurs in the analysis of the Rubik’s cube and other puzzles. The best
known heuristics for solving it in these cases are based on Minkwitz’s algorithms [17], and are in-
capable of managing Problem 7 for random s1, . . . , sk ∈ Sn where n is large (say, n � 128), as our
experiments below show.

Problem 7. Given random s1, . . . , sk ∈ Sn and s ∈ 〈s1, . . . , sk〉, express s as a short product of elements
from {s1, . . . , sk}±1.

In Problem 7, short could mean of polynomial length, or of length manageable by the given compu-
tational power as explained above. In any case, the length is the number of letters in the expression,
and not the length of a compressed version of the expression. This limitation comes from the in-
tended application, where elements of the infinite monoid require storage space which grows with
multiplication, and circumventing this problem by performing one � multiplication for each letter in
the word makes it impossible to square in a single operation. If the word is too long (e.g., of the form
a(264) for a single generator a), the second phase of the attack becomes infeasible.

Much work was carried out on this problem, by Babai, Beals, Hetyei, Hayes, Kantor, Lubotzky, Ser-
ess, and others (see [7,5,6] and references therein). The works of Babai, Beals, Hayes, and Seress [6,5]
imply that there is a Las Vegas algorithm for Problem 7, producing expressions of length n7(log n)O (1) .
This remarkable result solves our problem for moderately small values of n. However, for n � 128,
the resulting expression is too long to be practical. Our algorithm may be viewed as a (substantial)
heuristic simplification of the algorithms induced by their works.

A classical result of Dixon [10] tells that two random elements of Sn , almost always generate An (if
all generators are even permutations) or Sn (otherwise). Babai proved that getting An or Sn happens

8 By “generic” we mean a typical element with respect to the relevant distribution.
9 It is open whether the colored Burau representation is faithful, even without reduction of the integers modulo p.
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in probability 1− 1/n + O (1/n2) [4]. Moreover, experiments show that this probability is very close to
1 − 1/n even for small n, i.e., the O (1/n2) is negligible also for small n. This generalizes to arbitrary k,
as follows.

Theorem 8 (Dixon). The asymptotic probability that k random elements of Sn generate An or Sn is roughly
1 − n−k+1 .

Since we do not know of a reference for a proof, we include a proof, suggested to us by Dixon.

Proof of Theorem 8. In Section 4 of [11] it is shown that the probability that k random permutations
generate a transitive group is roughly 1 − n−k+1.

The proof of Lemma 2 in [10] can be modified to show that the proportion of pairs (x, y) with
x, y ∈ Sn which are contained in an imprimitive group (not necessarily generating the imprimitive
group) is at most 2−n/4. Hence, the proportion of k-tuples contained in an imprimitive group is
bounded by 2−n/4 for all k > 1.

Theorem 2.8 of Babai’s paper [4] states that the probability that k random permutations generate
a primitive group different from An or Sn is smaller than (n

√
n/n!)k−1 (generalizing his theorem when

k = 2), which is exponentially small. �
Given that we obtain An or Sn , the probability of the former case is 2−k . However, since k = 2 is

of classical interest, we do not neglect this case. Thus, for randomly chosen permutations Problem 7
reduces (with a small loss in probability) to the following one.

Problem 9.

(1) Given random s, s1, . . . , sk ∈ An , express s as a short product of elements from {s1, . . . , sk}±1.
(2) Given random s, s1, . . . , sk ∈ Sn with some si /∈ An , express s as a short product of elements from

{s1, . . . , sk}±1.

A solution of Problem 9(1) implies a solution of Problem 9(2): Let I = {i: si /∈ An}. I �= ∅. Fix i0 ∈ I ,
and for each i ∈ I , replace the generator si with the generator si0 si ∈ An . Then {si0 si: i ∈ I}∪ {si: i /∈ I}
is a set of k nearly random elements of An (cf. [6]). If s ∈ An , use (1) to obtain a short expression
of s in terms of the new generators. This gives an expression in the original generators of at most
double length. Otherwise, si0 s ∈ An and its expression gives an expression of s in terms of the original
generators.

Thus, in principle one may restrict attention to Problem 9(1). However, we do not take this ap-
proach, since we want to make use of transpositions when we can.

5.1. The algorithm

5.1.1. Conventions
(1) During the algorithm’s execution, the expressions of some of the computed permutations in terms

of the original generators should be stored. We do not write this explicitly.
(2) The statement for each τ ∈ 〈S〉 means that the elements of 〈S〉 are considered one at a time, by

first considering the elements of S±1, then all (free-reduced) products of two elements from S±1,
etc. (a breadth-first search), until an end statement is encountered.

(3) For s ∈ (S±1)∗ , len(s) denotes the length of s as a free-reduced word. s is identified in the usual
way with the permutation which is the product of the letters in s.

We are now ready to describe the steps of our algorithm. We do not consider the question of optimal
values for the parameters and other optimizations. This is left for future investigation.
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Input: G = Sn or An; generators s1, . . . , sk of G; s ∈ G .

Initialization:

c =
{

2, G = Sn,

3, G = An,

C is the set of c-cycles in a canonical expression of s as a product of c-cycles.

Step 1: Find a short c-cycle in 〈s1, . . . , sk〉.

For each τ ∈ 〈s1, . . . , sk〉:
If there is m ∈ {1, . . . ,n} such that τm is a c-cycle:
μ ← τm;
End Step 1.

The result μ of Step 1 is forwarded to the next step.

Step 2: Find short expressions for additional c-cycles.

A0 ← {μ};
For l = 1,2, . . . :

Al ← ∅;
For each i ∈ {1, . . . ,k}, each ε ∈ {−1,1}, and each a ∈ Al−1:

If s−ε
i asεi /∈ A0 ∪ · · · ∪ Al , add s−ε

i asεi to Al;
When C ⊆ A0 ∪ · · · ∪ Al:

End Step 2.

Final step: Find a short expression for s.

Use the expressions of the c-cycles in C to get an expression of s in terms of the original generators.

Remark 10 (Positive expressions). If one seeks for a positive expression for s in terms of {s1, . . . , sk}, we
can repeatedly activate Step 1, consider only words τ ∈ S∗ , to generate enough c-cycles to present s.
This algorithm is more time consuming this way.

6. Analysis of the generic membership search algorithm

6.1. Asymptotic analysis

We provide an asymptotic (in n) analysis of the time complexity and the final expression length,
for the generic membership search algorithm (Section 5.1), modulo a probabilistic conjecture, which
we later support by heuristic reasoning as well as extensive experiments.

6.1.1. Step 1
Conjecture 11 (Minimal Cycle Conjecture). Let S be a set of k elements of Sn, each chosen independently,
according to the uniform distribution on Sn. Let c = 3 if all elements of S are even, and 2 otherwise.

Consider the following list: The elements of S±1 , followed by all products of two of elements of S±1 , followed
by all products of three elements of S±1 , etc.

Then, almost always,10 there is among the first n2 elements of the list an element τ such that τm is a c-cycle,
for some m � n.

10 That is, with probability approaching 1 as n → ∞.
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In short, the Minimal Cycle Conjecture asserts that in Step 1, almost always, at most n2 permuta-
tions are considered.

Lemma 12. Given an element τ ∈ Sn, deciding whether there is m � n such that τm is a c-cycle can be done
in time O (n). Finding the minimal such m, if it exists, can be done in time O (n log n).

Proof. Let �1, �2, . . . , �k be the cycle lengths in the cycle decomposition of τ , which can be computed
in linear time. There is m as required if, and only if, there is a unique i � k such that �i = c, and for
each j � k different from i, � j is relatively prime to c, which can be verified in time O (log � j).11 As∑

j �=i log � j �
∑

j � j � n, the whole procedure is O (n).
The minimal power m, if it exists, is lcm(� j: j �= i). This can be computed by partitioning the list

into pairs, computing the lcm of each pair to obtain a half length list, and doing the same for this list.
After O (log k) steps, we obtain the lcm. Each step requires roughly

∑
log �i operations, and overall

we have (log k)
∑

log �i which is O (n log n). �
Corollary 13. Assume the Minimal Cycle Conjecture. Then, almost always, Step 1 produces a c-cycle μ, ex-
pressed as a product of O (n log n) elements of S±1 , in time and space O (n3) (or, alternatively, in time
O (n3 log n) and space O (n)).

Proof. To produce the list of n2 permutations, we have to compute n2 products of permutations (the
product of an already computed permutation and an element of S±1), each requiring n operations.
After each such multiplication, we check whether the result τ has the property that τm is a c-cycle
for some m � n. This is done by Lemma 12.

In summary, we have n2 steps, each consisting one multiplication of permutations, and one linear
time decision. Thus, the overall time complexity is O (n3).

If τ is among the first n2 elements of the sequence, then τ is a product of at most log2k(n
2) =

O (log n) elements of S±1, and therefore τm is expressed as a product of at most O (m log n), which is
O (n log n).

Alternatively, one can compute, for each new word in the generators, the whole product. This
increases the time complexity to O (n3 logn), but reduces the space complexity to O (n). �
6.1.2. Step 2

Let S be a set of k elements of Sn , each chosen independently, according to the uniform distribu-
tion on Sn . Consider the graph Gn,k,c with vertices all c-cycles, such that there is an edge between u, v
if and only if there is r ∈ S±1 with r−1ur = v . This graph has n!/(n − c)!c vertices and is 2k-regular.
In the worst case we have to compute in Step 2 all vertices of this graph before this procedure ter-
minates. For every a ∈ Al , l � 1, keeping track of its predecessor in Al−1, Step 2 computes a spanning
tree of this graph, rooted at μ. Let � be the value of l at the termination of Step 2. � is the height of
our tree, and the diameter d of this graph satisfies �� d � 2�.

For each a ∈ Al , 1 � l � � − 1, 2k − 1 conjugations are performed. Indeed for each a ∈ Al , by
considering which conjugator led to it, the inverse conjugator will not lead to anything new and is
thus not performed. Only for the root we perform 2k conjugations, but no one for all a ∈ A� . Thus,
the overall number of conjugations in this step is bounded above by

2k|A0| + (2k − 1)

�−1∑
l=1

|Al| = 1 + (2k − 1)

�∑
l=0

|Al| − (2k − 1)|A�| � (2k − 1)n!
(n − c)!c − 2k + 2.

Remark 14. In fact, as S generates G , it also generates it as a monoid, and thus it suffices to con-
sider conjugations by positive generators only, so that the overall number of conjugations is less than

11 Considering standard CPU operations as requiring constant time.
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(k − 1)n!/(n − c)!c − k + 2. Moreover, with high probability one can restrict attention to just two gen-
erators generating G , so the number of conjugations becomes less than n!/(n − c)!c < nc/c. Here, we
have to consider a digraph rather than a graph. The vertices are again all c-cycles and there is a di-
rected edge from u to v iff r−1ur = v for some r ∈ S . However, the diameter of this digraph is greater
or equal than that of Gn,k,c .

Corollary 15. The running time of Step 2 is O (n2) if G = Sn and O (n3) if G = An.

Proof. Let c = 2 if G = Sn and 3 if G = An . Each conjugation of a c-cycle requires c � 3 operations:

p(i j)p−1 = (
p(i) p( j)

)
,

p(i j k)p−1 = (
p(i) p( j) p(k)

)
.

Thus, the running time is a small constant times the number of conjugations, which is bounded by
(2k − 1)nc/c (or less if we work according to Remark 14). �

For each permutation σ encountered during our algorithm, let len(σ ) be the length of its expres-
sion as a product of the given permutations s1, . . . , sk and their inverses. Recall that μ is the output
of Step 1. Then for each c-cycle σ ∈ A0 ∪ · · · ∪ A� ,

len(σ ) � len(μ) + 2�.

Corollary 16. Using the above notation, the length of the obtained expression for s is smaller than n/(c − 1) ·
(len(μ) + 2�).

Proof. s is a product of at most n/(c − 1) c-cycles. �
The following theorem consists of Theorems 2.2 and 3.3 of [12].

Theorem 17.

(1) Fix k � 2, c � 1 and a real ε > 0.
Let S be a set of k elements of Sn, each chosen independently, according to the uniform distribution on Sn.
Let Dn,k,c be the digraph with whose vertices are the c-tuples of distinct elements of {1, . . . ,n}, and where
there is an arrow from (a1, . . . ,ac) to (b1, . . . ,bc) if and only if (b1, . . . ,bc) = (s(a1), . . . , s(ac)) for some
s ∈ S.
Then, almost always, Dn,k,c is an α-expander, for

α = (
(1 − ε)/2

)(
1 − (

√
2k − 1/k)1/(1+c)).

(2) The diameter of an α-expander with v vertices is smaller than 2(1 + log1+α v).

Corollary 18. For k � 2, c � 1, the diameter of the graph Gn,k,c is almost always bounded by 2(1 +
c log1+α(n)) with α = (1 − (

√
2k − 1/k)1/(1+c))/2.

Proof. Consider the equivalence relation ∼ on the set of c-tuples of distinct elements of {1, . . . ,n},
which identifies tuples if each is a cyclic rotation of the other. The quotient digraph Dn,k,c/ ∼ is
exactly the digraph mentioned in Remark 14. Thus, � is smaller than its diameter, which is smaller
than the diameter of Dn,k,c . By Theorem 17, the latter is smaller than

2
(
1 + log1+α

(
nc)) = 2(1 + c log1+α n). �
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Corollary 19. Assume the Minimal Cycle Conjecture. The length of the obtained expression for s is O (n2 logn).

Proof. By Corollary 16, the length of the obtained expression for s is O (n(len(μ) + 2�)). By Corol-
lary 13, len(μ) is O (n log n). By Corollary 18, the diameter of our graph Gn,k,c is O (log n), and in
particular so is �. �
6.2. Heuristic evidence and estimation

6.2.1. Step 1
The following terminology and lemma will make the proof of the subsequent theorem shorter.

The cycle structure of a permutation s ∈ Sn is the sequence (n1,n2, . . .) of lengths of cycles of s
which are not fixed points. Let σ n

(n1,...,nk)
denote the number of elements of Sn with cycle structure

(n1, . . . ,nk).

Lemma 20. For distinct n1, . . . ,nk: σ n
(n1,...,nk)

= n!
(n−(n1+···+nk))!·n1···nk

.

Proof. First choose the n1 + · · · + nk elements which will occupy the cycles and consider all their
permutations, and then divide out cyclic rotation equivalence, to get

(
n

n1 + · · · + nk

)
· (n1 + · · · + nk)! · 1

n1 · · ·nk
.

This is equal to σ n
(n1,...,nk)

. �
Proposition 21. Let c be 2 if G = Sn, and 3 if G = An. For random τ ∈ G, the probability that there is d ∈
{1, . . . ,n} such that τ d is a c-cycle is greater than 1/cn.

Proof. In fact, we give better bounds for most values of n. We consider the probabilities to have cycle
structures (n − d, c) or (n − d, e, c) for appropriate d, such that if τ has such a cycle structure, then
τn−d is a c-cycle. The restrictions on the cycle structures are as follows.

(1) c does not divide n − d; and
(2) e divides n − d (in the case (n − d, e, c)).

In the case G = An , we also must have that the cycle structure is possible in An:

(3) n − d is odd (in the case (n − d,3));
(4) n − d + e is even (in the case (n − d, e,3)).

Assuming these restrictions, we compute the probabilities of these cycle structures using Lemma 20.
In Sn , the probability for (n − d,2) is

1

|Sn| · σ n
(n−d,2) = 1

(d − 2)! · (n − d) · 2
>

1

(d − 2)! · 2n
.

In An , the probabilities for (n − d,3) and (n − d, e,3) are

1

|An| · σ n
(n−d,3) = 2

(d − 3)! · (n − d) · 3
>

2

(d − 3)! · 3n
,

1 · σ n
(n−d,e,3) = 2

>
2

,
|An| (d − e − 3)! · (n − d) · e · 3 (d − e − 3)! · 3en
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respectively. We now consider some possible cycle structure with at most one cycle of each length,
and describe the restrictions they pose on n and their probabilities.

For G = Sn , we have the following.

n mod 2 Cycle structure Prob. Accumulated probability

0 (n − 3,2) 1/2n
(n − 5,2) 1/12n 7/12n

1 (n − 2,2) 1/2n
(n − 4,2) 1/4n 3/4n

For G = A7, we can compute directly that the cycle structure (2,2,3) has probability 1/12, which
is greater than 1/3 · 7, as required. For all other n, we have the following.

n mod 6 Cycle structure Prob. Accumulated probability

0 (n − 5,3) 1/3n 1/3n

1 (n − 5,2,3) 1/3n
(n − 6,3) 1/9n 4/9n

2 (n − 3,3) 2/3n 2/3n

3 (n − 4,3) 2/3n
(n − 5,2,3) 1/3n 1/n

4 (n − 3,3) 2/3n
(n − 5,3) 1/3n
(n − 6,2,3) 1/3n 4/3n

5 (n − 4,3) 2/3n
(n − 6,3) 1/9n
(n − 7,2,3) 1/6n 17/18n

This completes the proof. �
Corollary 22. Let c be 2 if G = Sn, and 3 if G = An. Execute Step 1 with random elements τ ∈ G instead of
the enumerated ones. The probability that it does not end before considering λn permutations is smaller than
e−λ/c .

Proof. By Corollary 21, the probability of not obtaining a c-cycle for λn randomly chosen τ ∈ G is at
most

(
1 − 1

cn

)λn

=
((

1 − 1

cn

)cn) λ
c

<
(
e−1) λ

c = e− λ
c . �

Example 23. Let c be 2 if G = Sn , and 3 if G = An , and λ = cλ0 logn for some constant λ0. Then the
probability in Corollary 22 is smaller than

e− cλ0 logn
c = n−λ0 .

This shows that if we use, in Step 1 of our algorithm, random elements instead of the enumerated
ones, then, almost always, this step halts after the consideration of at most 3n log n permutations. This
is much smaller than the n2 in the Minimal Cycle Conjecture 11. We conjecture that this increase from
n log n to n2 remedies for the fact that in the conjecture, the considered elements are not independent.
Below, we provide experimental evidence for that.
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6.2.2. The expression’s length
Using Corollary 18, we can derive a rough upper bound on the average length of the expression

provided by the generic membership search algorithm, assuming the Minimal Cycle Conjecture 11.
According to this conjecture, Step 1 uses on average less than n2 permutations until finding a good
one τ . If τ is the n2th permutation in our breadth-first enumeration of 〈s1, . . . , sk〉, then its length d
as a word in the generators satisfies

(2k − 1)d−1 � 2k(2k − 1)d−2 � n2.

Thus

len(τ ) � 2

log(2k − 1)
· log n.

Then, μ is at most an nth power of τ . Thus on average,

len(μ) � 2

log(2k − 1)
· n log n.

By Corollary 18, � is on average much smaller than len(μ), and thus by Corollary 16, the average
length of the resulting expression is roughly bounded by

2

(c − 1) log(2k − 1)
· n2 logn =

{ 2
log(2k−1)

· n2 logn, G = Sn,

1
log(2k−1)

· n2 logn, G = An.

7. Experimental results

7.1. The full attack

We have implemented our full attack on CBKAP, and tested it against a large number of parameter
settings, including the suggested ones, smaller ones, much larger ones, and mixed settings (some
parameters are small and some are large). The full attack succeeded to extract the shared key out of
the public information correctly, in all tested cases, including those in which the generated subgroup
of Sn/2 was neither Sn/2 nor An/2.

7.2. The generic membership search algorithm

We then moved to a systematic examination of the generic membership search algorithm. This
algorithm worked efficiently and successfully in all experiments, and its time, space and length of
output were all surprisingly close to the estimations computed in the previous sections. The most
difficult case for this algorithm is where there are only k = 2 random generators s1, s2. Thus, we have
made a large battery of experiments for k = 2.

We make the following conventions. The constant c is 2 if G = Sn , and 3 if G = An . For each
n = 8,16,32,64,128,256, we have conducted at least 1000 independent experiments altogether. As
k = 2, in about 750 of these experiments 〈s1, s2〉 = Sn , and in about 250, 〈s1, s2〉 = An . The few cases
where neither Sn nor An were generated were ignored.

Each of these many samples suggests a value for the considered parameter. We thus present the
minimum, average, and maximum observed values (with the average boldfaced).
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Table 1
Ratios for the number of permutations in Step 1.

n 8 16 32 64 128 256

Sn 0.06 0.03 0.02 0.01 0 0
2.26 2.53 3.47 5.05 5.4 8.55

112.13 45.88 25.22 102.81 52.62 77.31

An 0.04 0.02 0.01 0.01 0.01 0
0.51 0.51 1.35 1.28 2.56 1.9
7.63 4.15 15.5 7.73 12.65 17.5

Table 2
Ratios for the length of the final expression.

n 8 16 32 64 128 256

Sn 0.07 0.11 0.10 0.08 0.1 0.1
0.31 0.45 0.52 0.62 0.63 0.68
1.14 0.97 0.98 1.06 0.99 0.95

An 0.11 0.08 0.08 0.03 0.02 0.03
0.4 0.4 0.53 0.54 0.62 0.59
0.78 0.87 1.07 0.86 0.9 0.87

Table 3
Expression lengths using the generic membership search algorithm.

n 8 16 32 64 128 256

Sn 16 148 674 2603 14 357 65 063
76 580 3331 19 078 91 120 450 450

275 1258 6344 33 015 143 344 631 306

An 13 54 248 504 1640 9258
48 261 1698 8328 44 739 195 534
94 564 3454 13 328 65 354 286 628

7.2.1. Step 1
The upper bound n2 in the Minimal Cycle Conjecture 11 turns out to be an over-estimation for

the number of permutations considered in Step 1. Indeed, except for few cases in n = 8, none of
our experiments exceeded this bound. Thus, we present in Table 1 the ratio between the number of
permutations actually considered in Step 1 and the estimation cn, which is what one would obtained
if the permutations were independent.

7.2.2. Length of the final expression
For k = 2, the average length of the final expression of the given permutation is estimated in

Section 6.2.2 to be, roughly, below

2

(c − 1) log(2k − 1)
· n2 logn =

{ 2
log 3 · n2 logn, G = Sn,

1
log 3 · n2 logn, G = An.

(log(3) ≈ 1.1). Table 2 shows that this estimation is surprisingly good, and that in fact, the true
resulting length is on average better than this bound.

The actual lengths of the expressions produced for the given permutations are given in Table 3.
For clarity, the average lengths are rounded to the nearest integer.

For comparison with earlier methods, we looked for expressions of permutations as short products,
using GAP’s [13] Schreier–Sims based algorithm (division off stabilizer chains), which uses optimiza-
tions similar to Minkwitz’s [17]. Here, we have 100 experiments for Sn and 100 experiments for An .
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Table 4
Expression lengths using previous heuristics (Schreier–Sims–Minkwitz).

n 8 16 24 28 32

Sn 5 102 432 1047 ∞
22 255 8039 345 272 ∞
42 418 350 846 32 729 135 ∞

An 0 95 549 913 ∞
18 238 4101 59 721 ∞
29 413 35 447 4 012 292 ∞

Already for n = 32, the routines went out of memory in about 1/3 of the cases for An , and in about
2/3 of the cases for Sn . Thus, we also checked n = 24 and n = 28 (n = 28 seems to be the largest
index which the routines handle well). The resulting lengths are shown in Table 4, where ∞ means
“out of memory in too many cases”.

We can see that Schreier–Sims methods are better than ours only for small values of n, and that
they are not applicable for large n, where our algorithm is easily applicable. Also, note the large
difference between the minimal and the maximal obtained lengths. Contrast this with the results in
Table 3.

8. Possible fixes of the Algebraic Eraser and challenges

As we have demonstrated, no choice of the security parameters makes the Algebraic Eraser im-
mune to the attack presented here, as long as the keys are generated by standard distributions.

A possible fix may be to change the group S into one whose elements do not have short expres-
sions in terms of its generators. This may force the attacker to attack the original matrices (whose
entries are Laurent polynomials in the variables ti ) directly, using linear algebraic methods similar to
the ones presented here. It is not clear to what extent this can be done.

The most promising way to foil our attacks, at least on a small fraction of keys, may be to use
very carefully designed distributions, which are far from standard ones. Following our attack, Dorian
Goldfeld and Paul Gunnels devised a distribution for which the equations in phase 1 of the attack
have a huge number of solutions, most of which not leading to the correct shared key [14].

Another option would be to work in semigroups, and use noninvertible matrices. This may foil the
first phase of our attack.

The generic membership search algorithm is of interest beyond its applicability to the Algebraic
Eraser. We have demonstrated, based on our Minimal Cycle Conjecture 11, that this algorithm easily
solves instances with random permutations, in groups of index which is intractable when using pre-
viously known techniques like those in [17]. Our extensive experiments, reported above, support this
assertion.

The most interesting direction of extending the present work is proving the Minimal Cycle Conjec-
ture, even with O (n2) instead of our n2. In fact, proving any polynomial bound would imply that the
diameter of Sn is almost always O (n2 log n), which would improve considerably the presently known
bound n7(log n)O (1) on the diameter. Alexander Hulpke has informed us that our methods are similar
to ones used for constructive recognition of Sn or An . This connection may be useful for the proposed
analysis.

Finally, we point out that even without changes, our algorithm applies in many cases not treated
here, as the experiments of the full attack reported above show.
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