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ABSTRACT

Coordination and Learning with a Partial Language

by Andreas Blume*

This paper explores how efficiency promotes the use of structure in language. It starts
from the premise that one of language’s central characteristics is to provide a means for
saying novel things about novel circumstances, its creativity. It is reasonable to expect
that in a rich and changing environment, language will be incomplete. This encourages
reliance on structure. It is shown how creative language use emerges form common
knowledge structures, even if those structures are consistent with an a priori absence of
a common language.

ZUSAMMENFASSUNG

Koordination und Lernen mit einer Partialsprache

In diesem Beitrag wird die Anwendung von Strukturen in einer Sprache aus
Effizienzsicht begründet. Der Artikel geht davon aus, daß eines der wichtigsten
Merkmale der Sprache in ihrer Kreativität zu sehen ist, d. h. als Mittel, um Neues über
neue Sachverhalte auszusagen. Es ist deshalb zu erwarten, daß in einer vielfältigen und
sich verändernden Umwelt die Sprache unvollständig bleiben wird. Dies fördert die
Anwendung von Strukturen. Es wird gezeigt, wie die kreative Sprachanwendung aus
allgemeinen Wissensstrukturen entsteht, auch dann, wenn diese Strukturen a priori noch
keine gemeinsame Sprache bilden.
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Drug ¯rms need to get their inventions on to the market quickly. That is
easier when researchers and factory designers talk to each other. ... As
competition grows even more ¯erce, more companies may try to make
sure that their bo±ns and factory designers talk to each other early on.
For the money it saves, it might even be worth paying for an interpreter.
[The Economist, November 9th 1996]

1 Introduction

This paper explores how e±ciency promotes the use of structure in language.
It starts from the premise that one of language's central characteristics is
to provide a means for saying novel things about novel circumstances, its
creativity (e.g. Aitchison [1993]). In a rich and changing environment, lan-
guage will necessarily be incomplete. This encourages reliance on structure.

We will examine the role of structure in the use of a partial language
and, more importantly, in learning a common language (i.e. in acquiring a
complete lexicon) from a partial language. Structure facilitates some coor-
dination tasks and may result in fast learning.

While we use the term \language" in a wider sense than \natural lan-
guage," natural language does have structure that both enhances its useful-
ness and learnability. Prominent examples are modularity (as appears in the
distinction of verbs and nouns, of word stem and su±x, etc.) and the use of
(spatial, temporal, causal, ... ) order. Meaningful communication depends
on contextual information that has to be learned in any new situation. The
sentence \Let's meet at 10:00 a.m. at the Rhetoric Building," and many
sentence like it, become meaningful only once a particular building is spec-
i¯ed (labeled) as the Rhetoric building. The process by which the sentence
acquires meaning relies both on the modular structure of natural language
and a shared understanding of a labeling rule. Thus, new situations are
characterized by languages that leave at least some objects unlabelled, and
learning a common language requires that these objects become labelled. In
this paper, we will emphasize this kind of novelty, and consider a world in
which labels for individual objects are entirely missing. The aim is to de-
velop a coherent framework for the evolution of language when agents lack
a common language, but have common knowledge of a structure and of a
labeling rule.

Formally, a language will be a collection of rankings (or labelings) of a
¯nite set of objects. If this collection is a singleton, then we say that there
is a common language. In this case, every object is labeled unambiguously.
If there are multiple rankings, there will be alternative labelings for at least
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some of the objects. To highlight the structural aspects of language, we
concentrate on the case where a language does not make any distinctions
among individual objects. Even in this case of absence of a common language
there will often be a partial language that facilitates coordination on sets of
objects and/or permits a common language to be learned quickly.

Two simple examples illustrate the role of a partial language for coor-
dination and learning. First, consider the problem of two agents trying to
coordinate on one of two projects and at the same time on the assignment
of one of two tasks within each project.1 Suppose that payo®s are positive if
and only if both agents pick the same project and di®erent tasks. If there is
symmetry among projects and among tasks, so that agents have no obvious
reason to choose one project (or task) over another, then one can argue that
the probability of coordination is one fourth. Now suppose that in addition
each agent has the option to divide her e®orts among two project-task com-
binations (she could for example pick one project and perform both tasks).
Let payo®s be positive if and only if for each project-task choice made by
one agent, the other agent makes a complementary choice (so, if one agent
performs the ¯rst task for the ¯rst project and the second task for the sec-
ond project, then the other agent must perform the second task for the ¯rst
project and the ¯rst task for the second project). Note that formally this
game is equivalent to one in which agents choose one- or two-element subsets
from a four-element set with the objective of choosing identical sets. De-
spite the symmetry of projects and of tasks, and even if the agents perceive
the categories \projects" and \tasks" symmetrically, there is not complete
symmetry among project-task pairs. There are only two pairs that include
both projects and both tasks, while there are four pairs that combine both
choices in one category with one in the other. If agents make use of this
asymmetry, they can raise the coordination probability to one half.

Second, consider a problem of tacit collusion. Let there be a stream of
public projects (one per period) that a small number, n; of ¯rms bid on.
The ¯rms may want to establish some form of bidding rotation.2

Without obvious criteria by which to rank ¯rms or with too many con-
°icting criteria, ¯rms will be symmetric, and establishing the order of rota-
tion is di±cult. Symmetry (i.e. indistinguishability) among ¯rms becomes

1There is an obvious generalization to any number of objects, tasks and agents.
2A classical example of the use of an elaborate bidding rotation is provided by the

\electric equipment conspiracies" of the 1950's (Fuller [1962]). The ¯rms involved made
use of the phases of the moon to coordinate their bids. In this case collusion was achieved
via explicit agreement.
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a source of strategic uncertainty and the ¯rms have to rely on the history of
their strategic interaction to break this symmetry.

Suppose that ¯rms learn optimally in the sense that their strategies are
e±cient subject to the constraint that after every history strategies respect
the remaining symmetries. Then collusion will be achieved as soon as all
symmetries have been removed. The time it takes to coordinate will then de-
pend on the initial degree of symmetry and on the information that becomes
available in each period's strategic interaction.

To appreciate the role of information, note that if all bids are revealed,
a single observation may su±ce to distinguish all ¯rms and thereby to es-
tablish collusion. If, in contrast, ¯rms are completely symmetric and only
the winning bid can be observed after each round, then a minimum of n¡ 1
observations is needed to achieve collusion.

To appreciate the role of structure, continue with the assumption that
only the winning bid is observed and consider the following three cases: (1)
¯rms can naturally be split into two equal sized groups, with no obvious
ranking of the groups or within the groups, (2) ¯rms can be split into two
groups and the groups can be ranked, but ¯rms within a group cannot, and
(3) there has been a history of rotation that was somehow interrupted (e.g.
through entry and subsequent exit of rival ¯rms) leaving no indication whose
turn it is next.

In none of the cases can collusion be guaranteed a priori. In the ¯rst
case n ¡ 2 observations are needed to achieve collusion. The number of
observations needed is the same in the second case, except that here ¯rst-
period competition can be reduced by having only ¯rms in the ¯rst group
bid. In the ¯nal case, while the ¯rms are a priori indistinguishable, it takes
only one observation to reinitiate the rotation.

In both examples the use of the available structure arises out of e±cient
equilibrium play subject to symmetry constraints. Following Crawford and
Haller [1990] (CH in the sequel), strategies that respect at each point in
time whatever symmetries remain in a game will be called attainable. The
e±cient strategies in this class will be referred to as e±cient attainable
strategies, and if the game is a coordination game, as optimal attainable
strategies. In a repeated coordination game environment, the use of optimal
attainable strategies is a form of optimal learning (to distinguish a priori
identical objects).

Two interpretations for the focus on optimal attainable strategies are
available, an evolutionary or learning interpretation and a mechanism design
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interpretation.3 Under the former there is evolutionary pressure on behav-
iors that depend on factors that are constant across novel circumstances.
The mechanism design interpretation on the other hand asks directly for
learning rules that cope e±ciently with novelty.

We follow CH's approach of modeling alternative descriptions of a set
of objects as permutations of some ranking of the set. Players' ignorance
about other players' descriptions is then expressed by their beliefs over the
set of alternative permutations. This approach permits us to model a partial
language in a standard Bayesian game setting.

CH considered the case where the set of descriptions consisted of all
permutations.4 We depart from CH by permitting sets of descriptions to be
nontrivial subsets of the set of all permutations.

For the set of descriptions to be common knowledge among players it
must be the case that players are unable to arrive at a simpler set via
introspection. There must not for example be a single description in the
set of descriptions that is distinct from all other members of the set. One
requirement for this to hold is uniformity of beliefs. Another is irreducibility
of the set of descriptions. We will show that irreducibility amounts to the
set of descriptions forming a subgroup (in the mathematical sense) of the
group of all permutations. This is quite natural given that irreducibility
expresses symmetry among the permutations in the set; no subset can be
singled out.

The next section formalizes the notion of attainable strategies, compares
our approach to CH's, and gives examples for creative language use, fast
learning and the role of subsets of the set of all permutations. In Section 3
we show that an irreducible set corresponds to a permutation group and that
absence of a common description is achieved by a transitive subgroup. In
Section 4 we show that even with absence of a common description a partial
language may aid certain coordination tasks. In Section 5 we show that

3Rubinstein [1996] calls the designer of a such a mechanism a \linguistic engineer."
4This is the assumption used in the body of CH's paper. In the appendix they consider

a more general formulation that is compatible with the approach in the present paper.
There the extent of a common description of a set of objects is expressed via a partition
of that set, with absence of a common description captured by the trivial partition. The
partition is re¯ned as a function of the history of play, where a very general form of history
dependence is possible. CH do not closely investigate the relation between histories and
partitions. For example, for two objects not to be commonly distinguished it must be the
case that the partitions they induce, if we exchange them in otherwise identical histories,
must be identical up to symmetry. The approach of the present paper ensures that this
is the case.
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learning preserves irreducibility, that absence of a common description is
compatible with fast learning and that, in a sense, fast learning is ubiquitous.
Section 6 explores the variety of fast learning phenomena when there is
absence of a common description. Section 7 discusses the related literature.
Section 8 concludes.

2 Strategies, Games and Examples

This section recalls CH's de¯nition of an attainable strategy, compares our
approach to CH's, and applies the concept of attainable strategy to settings
with creative language use and fast learning.

Let ­ denote a ¯nite set of objects for which players in a game lack a
common language. As part of the description of a game, ­ might represent
actions of players, some part of their private information, or even the players
themselves. Strategies, as usual, are functions that map the players' infor-
mation into their actions. The fact that players lack a common language
description of ­; formally appears as a restriction on their beliefs.

This approach permits us to model the absence of a common description
in a standard Bayesian game setting. Players' descriptions are drawn from
a common-knowledge distribution Á on the set of possible descriptions of ­;
where we take this set as the set of permutations of the elements of ­: The
description drawn by a player becomes that players' private information.

A player's strategy may well depend in great detail on the set ­: However
from the perspective of the other players it can only depend on those aspects
of ­ that have a common description. If therefore we adopt the convention
that a player's strategy expresses the beliefs other players hold about her
(see for example Aumann and Brandenburger [1995]), then lack of common
describability can be expressed in terms of restrictions on players' strategies.
Therefore we call a strategy attainable for a player if it satis¯es the condition
that any two pure strategies that di®er only in the treatment of elements of
­ that are not commonly distinguished are equally likely.

When considering coordination games, we are interested in those attain-
able strategies that maximize the players' ex ante payo®. These we call
optimal attainable strategies; in more general settings, one would look for
e±cient attainable strategies. Note that, like CH, we deliberately ignore
higher order coordination problems that may arise if there are multiple op-
timal attainable strategies. In the spirit of the introduction we think of
those multiplicities as being eliminated either by evolutionary pressures or
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by Rubinstein's [1996] \linguistic engineer."
Next we discuss two examples to illustrate the role of optimal attainable

strategies. The ¯rst example recalls CH's analysis and suggests how it might
be altered if players have a partial language. The second example illustrates
creative language use in a simple communication game and the multiple
roles of the set ­ in di®erent environments.

2.1 Repeated Coordination Games

Here we recapitulate a central insight from the work of Crawford and Haller
and suggest how additional structure may lead to fast learning. Consider
the following game played on a ¯nite set of objects ­: Each of two players
chooses one element of ­; one object, simultaneously and independently.
If both make identical choices, then their payo®s equal 1, otherwise their
payo®s are equal to 0. Let this game be repeated in¯nitely often, and let
repeated game payo®s be equal to the discounted sum of stage game payo®s,
with a discount factor 0 < ± < 1: Let the players' uncertainty be represented
by a uniform distribution over all possible permutations of some ranking of
­: Also, let the players' positions be not distinguished, which forces them
to use identical strategies.

CH show that for #­ = 2; there is an essentially unique optimal at-
tainable strategy, according to which players randomize uniformly over the
two objects until they achieve a match, and then stick to the matching ob-
ject. With #­ ¸ 6 there is an optimal attainable strategy that requires
uniform randomization over all objects in the ¯rst period, and thereafter
continuation with the same object as soon as there is a match, and uniform
randomization over the two objects chosen in the ¯rst period as long as there
was no match.

Note that the expected coordination time is t̂ ¸ 2; that with positive
probability coordination will take more than two periods, and that even if
coordination is achieved, the players are in general far from having developed
a common language. In other contexts, as in our tacit collusion example,
learning a common language fully may be essential.

For a simple geometric example of fast learning, replace ­ by the set
of points on a sphere (with no further distinctions among those points).
Now the probability of coordination in the ¯rst round equals zero. However,
the strategy of picking the midpoint of the shortest distance between the
two ¯rst-round choices is attainable, and with probability one guarantees
coordination in the second round. In this case fast learning results because

6



acknowledging that locations are arranged on a sphere implicitly limits the
set of permutations to motions, i.e. all those permutations of points on the
sphere that leave distances invariant.

2.2 A Rudimentary Grammar

Consider the following game played repeatedly between two players, a sender
and a receiver. At the beginning of the game the sender learns his private
information and sends a message to the receiver. Upon receiving the message
the receiver takes an action. Payo®s depend only on the sender's private
information, his type, and the receiver's action.5 The payo® to both players
is one if the receiver's action matches the sender's type and zero otherwise.6

There is exactly one matching action for each type of the sender. Messages
do not a®ect payo®s directly. Assume that after each round the players
commonly observe the type drawn for that round, the message sent in that
round, and the action taken. The sender's private information is determined
anew in each round according to a uniform distribution.

Additional structure is provided by types and messages being strings.
To simplify the discussion let types be triples formed by rearrangements of
the letters A; B and C; e.g. (B;C;A); and let messages be triples as well,
formed by rearrangements of ¤;# and &: To rule out a priori focal points
we will assume that each players has a private description of these symbols.7

The ¯rst time the game is played, the sender and the receiver lack a
common-knowledge description of the types space and of the message space.8

According to our de¯nition of attainable strategy, each type randomizes
uniformly over all messages and the probability of a matching action being
taken is 1/6. In the following round however each player has observed two
triples that can be used to construct a bijection between type symbols and
message symbols. Using this bijection, every type can be uniquely identi¯ed
with a message. This means that there is an attainable strategy guaranteeing
successful communication in the second round and thereafter.

5WÄarneryd [1993], Blume, Kim and Sobel [1993] and Blume [1996] consider the evolu-
tion of meaning of a priori meaningless messages in sender-receiver games.

6If one is willing to consider e±cient attainable strategies, the example generalizes to
arbitrary incentive structures.

7The focal point notion was ¯rst proposed by Schelling [1960]. See Blume, DeJong,
Kim and Sprinkle [1998] for an example of the inducement of private descriptions in an
experimental setting.

8It would su±ce for the example if we let only the type space have a private description.
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Contrary to the ¯rst example, coordination is guaranteed from the sec-
ond period on and a common language is learned. Moreover players use their
language creatively in that in the second period they are likely to indicate
a novel type (not observed before) via a novel message (not sent before).
Batali [1996] has referred to similar structures as grammars, emphasized
the role of such grammars for the expression of novel meanings and inquired
into the evolution of such grammars.

3 Partial Languages

In this section, we will formally de¯ne a language, discuss irreducibility of
a language, and say what we mean by absence of a common language. A
language will be a set of rankings of a ¯nite set of objects. Irreducibility
will be seen to imply that the language induces a group action on the set of
objects, and absence of a common language will be captured by this group
action being transitive.

Given a ¯nite set ­ of objects, #(­) = n; we de¯ne a language to be a set
of rankings, R; of the elements of ­: Thus, a language is the set of labelings
of ­ that agents consider possible. We will assume that the language is
common knowledge among the players.9 Common knowledge of the language
requires that there is no structure in R that identi¯es an alternative set of
rankings that is in some way more e®ective (e.g. makes more distinctions
among objects, or permits a common language to be learned faster) than R:
Otherwise players could, at least in principle, rely on introspection to adopt
the more e®ective language. A language R must be internally irreducible, i.e.
there must be symmetry among the elements of R that prevents a nontrivial
subset of R from being singled out. The language must also be externally
irreducible, such that any ranking outside of R belongs to a language ~R that
is essentially equivalent to R:

We will formalize internal irreducibility; it turns out that internal ir-

9This is a simplifying assumption. Alternatively, one could examine situations in which
di®erent agents entertain di®erent languages, e.g. one agent may be capable of making
¯ner distinctions among objects than another agent. While this is beyond the scope of
the present paper, it should be noted that Bacharach's [1993] theory of \variable universe
games" seems to be an appropriate framework for modelling multiple possible languages,
or variable frames. In particular, Bacharach addresses the problem of players' beliefs
about each other's languages. One possibility is for example, that the beliefs of a player
with a relatively coarse language do not put any weight on another player having a ¯ner
language. Bacharach and Bernasconi [1997] test variable frame theory experimentally.
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reducibility of a language implies a natural form of external irreducibility.
Note that if we pick any ranking r in R as the standard in which we enu-
merate ­; then the others can be expressed as permutations of r: For R to
be symmetric, the resulting set of permutations must be independent of the
choice of standard r 2 R: For any given r; let H denote the set of permuta-
tions that generate R; i.e. R = Hr: Let r0 be another element of R and let
g 2 H be such that

g(r(!)) = r0(!) 8! 2 ­:

Then
R = Hr = Hg¡1r0:

Therefore our desired internal irreducibility condition is

Hg¡1 = H 8g 2 H:

One easily checks that this condition is equivalent to H being a subgroup
of the symmetric group S­ of all permutations of the set ­: The group H
acts naturally on the set of objects ­:10

Analogously, for any two rankings ~r and r̂ that are not in R and with
~g(r) = ~r and ĝ(r) = r̂; we have

R = Hr = H~g¡1~r = Hĝ¡1r̂:

Therefore ~r and r̂ are indistinguishable in terms of R if

H~g¡1 = Hĝ¡1:

If H forms a group, this is equivalent to

~g 2 ĝH:

This is a (left-) coset of H and it is well-known that the cosets of H partition
S­: Therefore, if H is a subgroup, we can partition the set of all possible
rankings into subsets that are permutations of R; and as a consequence
internal irreducibility implies external irreducibility.

To summarize, if R induces a subgroup H of S­; then the resulting
symmetries prevent agents from coordinating on any set of rankings that is
simpler than R: The elements of R are all symmetric to each other, and for

10For convenience, a few simple facts about groups are collected in the appendix. Rot-
man [1996] gives an elementary introduction to groups, and Dixon and Mortimer [1996]
o®er an up-to-date account of permutation groups.
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any ranking ~r outside of R; there exists a set of rankings that is symmetric
to R and contains ~r: From now on we will simply identify a language with
the corresponding group. A partial language is then a nontrivial proper
subgroup of S­; and a common language the trivial subgroup consisting of
the group identity alone.

Having resolved the issue of irreducibility of a language, we now turn to
the question of how a language distinguishes among objects. The answer
is that two objects are distinguished by a language if and only if the set of
labels assigned to the objects di®er. This can be formalized in terms of the
action of the group H (that represents the language) on the set of objects,
­:

Given any group G acting on ­; we can associate with any ! 2 ­ the
image of ! under the group action. De¯ne the orbit of ! under G acting on
­ as

O(!) := fg(!)jg 2 Gg ½ ­:

Then points ! and !0 can be distinguished if and only if they belong to
di®erent orbits. In that regard, it is useful to know that the set of orbits
forms a partition of ­ (e.g. Rotman [1996], p.122).

For any partial language, there will be at least one nontrivial subset of
the set of objects among which the agents cannot make common distinctions.
For any such subset the agents lack a common description, which limits their
ability to coordinate and forces them to learn to make such distinctions.
Since it is in the nature of a partial language that there is some lack of
a common description, we will focus on this aspect and for the most part
assume that agents can make no common distinctions among individual
objects.

We focus on the case of absence of a common description to emphasize
the role of structure in a partial language, as a benchmark and to emphasize
the contrast with CH. Formally, we have absence of a common description
when the language induces a single orbit. Then O(!) = ­ 8! 2 ­: In
this instance none of the elements of ­ can be distinguished from any other
element of ­: A group H; acting on ­; with only a single orbit is called
transitive (e.g. Dixon and Mortimer [1996], p.8). Thus transitivity of the
group action formalizes our intuitive notion of individual objects lacking
common distinctions. Note that even if a partial language makes some
distinctions among individual objects, i.e. has multiple orbits, the group
representing it acts transitively on each of its orbits; therefore transitivity
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will be an issue in any partial language.11

As an example, consider the following language, given by a set of six
possible rankings, corresponding to the columns below, of nine objects, cor-
responding to the rows.

1 4 7 1 4 7
2 5 8 3 6 9
3 6 9 2 5 8
4 7 1 4 7 1
5 8 2 6 9 3
6 9 3 5 8 2
7 1 4 7 1 4
8 2 5 9 3 6
9 3 6 8 2 5

This language induces two orbits and thus distinguishes the set of objects
with the potential labels 1,4 and 7 from the set that is associated with the
remaining six labels. Thus, in terms of the entire set, we do not have absence
of a common description. However, the inability to distinguish the elements
that belong to the same orbit is due to absence of a common description for
those elements. For future reference, note that labeling one of the objects
in the ¯rst set implicitly singles out a pair of rankings, namely the rankings
consistent with that labeling, whereas labeling one of the objects in the
second set identi¯es exactly one ranking.

4 Coordination with a Partial Language

A partial language that makes no distinctions among individual objects may
still aid certain coordination tasks.12 In the introduction we provided an
example that involved multiple, cross categorizations of objects in a set. In
that environment it was easier to coordinate on a nontrivial subset of the set
of objects than on an individual object, even though there are many more
subsets than objects. In this section we generalize this idea.

The usefulness of a partial language G on ­ in a game depends on the
role played by ­ in that game. For example, we can think of (1) a one-shot

11If we are interested in the role of structure in language in promoting coordination and
learning, then by restricting attention to the case of absence of a common description, we
are tying our hands. We are ruling out the obvious bene¯ts from having a language that
already makes some (even if only coarse) distinctions at the level of individual objects.
12I am grateful to a referee for alerting me to this fact.
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coordination game where the actions are single elements of ­; (2) a repeated
coordination game with the same action set, or (3) a one-shot coordination
game where the actions are m-element subsets of ­: A partial language that
is useless in (1) may still be useful in (2) or (3). Multiple categorizations,
as in our introductory example, are one source of partial languages with
this property. An ordering of the elements of ­ is another, provided there
is no maximal or minimal element, which in the ¯nite case amounts to the
ordering being cyclic.

For example, let G be the cyclic group generated by an n-cycle g 2 S­:
Then G acts transitively on ­ and thus individual objects are indistinguish-
able. However, G acts also on the set ­f2g of 2-element subsets of ­: The
action of G on ­f2g is by no means transitive. For example the orbit of an
adjacent pair consists entirely of adjacent pairs. Note that there are just as
many adjacent pairs as there are elements of ­: Therefore, with this partial
language G coordination on 2-sets is no more di±cult than coordination on

individual objects, even though #(­f2g) =

Ã
n
2

!
> n = #(­) for n > 3:

Indeed, in the case where n is even, coordination on 2-sets is easier than
coordination on singletons since there are only n

2 antipodal pairs. This ob-
servation can be generalized by asking when it is the case that coordination
on a k-set with k < n is easier than coordination on a singleton.

Let ­fkg denote the set of all k-element subsets of ­; and let x 2 ­fkg:
The di±culty of coordinating on ­fkg is then measured by the size of the
minimal orbit of G acting on ­fkg: We want to know which k minimizes the
di±culty of coordination. To answer this question, it helps to note a few
simple properties of orbits and stabilizers: For any x 2 ­fkg; we have

#(O(x)) =
jGj
jGxj

;

which is known as the orbit-stabilizer property and is a simple consequence
of Lagrange's theorem. It follows that jGxj and O(x) are divisors of jGj:
Moreover, if G is generated by an n-cycle and k < n; we have jGj = n and
jGxj < n: Therefore the smallest orbit cannot be smaller than the smallest
prime divisor of n; denoted by p(n): To see that in fact the size of the
smallest orbit is equal to p(n); consider the set

f!; gp(n)(!); g2p(n)(!) : : :g:
The orbit of this set has exactly p(n) elements. Thus we have the following
observation.
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Proposition 1 If the language G on ­; with #(­) = n; is generated by an
n-cycle and p(n) is the smallest prime divisor of n; then among all k-sets
with k < n it is easiest to coordinate on one that has k = n

p(n) elements.

Thus far we have shown that sometimes there are partial languages for
which players are better o® choosing k-sets with k > 1 than choosing sin-
gletons. Partial languages do not always help. If G is for example the
alternating group of degree four, then coordination on any k-set is just as
hard as without any language at all. There is however a weak general result
that guarantees a role for a partial language in coordination on k-sets if that
language helps with coordination on sets of lesser size, as long as k < n=2:
Say that G \facilitates coordination on m-sets" if G has multiple orbits on
­fmg:

Proposition 2 If G is a language on ­; then for 0 · m · k; and m + k ·
#(­); if G facilitates coordination on m-sets, it does so on k-sets.

Proof. This result is an immediate consequence of Theorem 9.4A in
Dixon and Mortimer [1996], who also provide references for the history of
this result. 2

5 Learning to Coordinate with a Partial Language

In this section, we investigate how agents use observations of sets of ob-
jects to learn a common language from a partial language. One application
is learning to coordinate in repeated two-player coordination games when
players share a partial language on the set of actions ­. This generalizes
the work of Crawford and Haller, who studied the case of learning without
any a priori language.

In a dynamic setting players can use their observations of objects to label
these objects and thus re¯ne their language. At a minimum, the observed
objects themselves become distinct from the others. In general however,
with a partial language H already in place, the observation of a set of ob-
jects induces further distinctions. This is the case in the introductory tacit-
collusion example: With a history of rotation, and without knowing where
to start, a single observation of a winning bid su±ces to label all ¯rms, not
just the winner.

In addition to common knowledge of a structure on the set of objects, we
will require common knowledge of a labeling rule. In the case of singleton
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observations, a plausible labeling rule would be to assign to each newly
observed object the lowest remaining number that is available for that object
given the partial language at that point in time. This just uses the ordering
of the natural numbers. More generally, we will assume that there are
commonly known orderings of the sets of subsets of f1; : : : ; ng of a given
size, e.g. an ordering of all the pairs, an ordering of all the triples, etc.. A
possible labeling rule based on such a collection of orderings would assign to
any observed set ¢ the lowest numbered set of labels that remain available
for ¢; according to the partial language at that point in time.13

As an example, let there be n objects n ¡ 3 of which have already been
labeled at time t, and the partial language that prevails at time t permits all
possible assignments of the labels 3, 7, and 9 to the remaining three objects.
If a pair of unlabeled objects is observed, the labeling rule determines a set
of labels out of f3; 7g; f3; 9g, and f7; 9g; e.g. f3; 7g: As a result the one
unobserved object receives the label 9, and there is a pair of objects, for
which it is not yet known which object receives the label 3 and which the
label 7.

Besides labeling objects, observations distinguish rankings. In the ex-
ample there are two rankings that permit the set of labels f3; 7g for the
observed pair of objects. If in addition the partial language at time t ex-
presses a circular order on the three remaining unobserved objects (while
making no distinctions among these objects), then there is only one ranking
that permits the labels 3 and 7 for the observed pair.

In general, if a set ¢ is observed, the labeling rule determines not only
which labels to assign to ¢ but also singles out the rankings that label ¢
in this way. If we make any of these rankings the standard, this amounts
to selecting those permutations that ¯x ¢: Therefore the evolution of a
language due to observations can be expressed (a) in terms of the labeling
of observed sets of objects, and (b) the selection of permutations that in an
appropriate sense ¯x the observed sets of objects.

The elements of H which are thus identi¯ed by an observation ¢ ½ ­

13Common knowledge of a labeling rule is a further simplifying assumption, in addition
to common knowledge of structure on the set of objects. These assumptions help us to fo-
cus on one type of constraint on the learning process, namely novelty of individual objects.
The assumption of common knowledge of a labeling rule is more plausible in some contexts
than in others. It is implicit in CH's focus on optimal attainable strategies, when they
assume that following coordination, players will stick to the coordinating action, rather
than switch to another uniquely distinguished action. There are other instances where a
particular rule may be focal. For example, the rule proposed for singleton observations
does appear prominent.
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are the setwise stabilizer Hf¢g of ¢: It is well known that if H is a group,
then for any ¢; the corresponding setwise stabilizer is a subgroup of H:
Therefore we have the following observation.

Proposition 3 Given a language H · S­; an observation ¢ ½ ­ preserves
irreducibility by inducing a language Hf¢g.

Thus, learning a language amounts to using observations to construct
ever smaller subgroups from a given group, or partial language. If this
sequence converges to the group identity, we say that a common language
has been learned.

At this point one might ask whether agents might prefer to update the
support of their beliefs based on ­n¢ rather than ¢: For that purpose note
that when a group G acts on ­; then each function g(¢) is a bijection since
its inverse is simply g¡1(¢); where g¡1 is the inverse of g in the group G: It
is easily seen that if each g(¢) is a bijection, then

Hf¢g = Hf¢Cg 8¢ ½ ­:

Thus, observing a set is equivalent to observing its complement.14

Next, we reexamine the question of how hard it is to solve two-player
coordination problems when there is absence of a common language. CH
focussed on the case where the players' initial beliefs take the form of a uni-
form distribution over all possible permutations.15 Then each observation
identi¯es merely the observation itself, and does not lead to any further dif-
ferentiation of the set ­: Moreover, once coordination is achieved, at most
three sets of actions are identi¯ed, the coordinating action, the unsuccess-
ful action and the unused actions.Thus the optimal coordinating process is
limited in scope. No common distinction among unused messages arises;
players do not use their language creatively.

Our examples of a rudimentary grammar and coordination on spheres
show that absence of a common description is consistent with rapid coordi-
nation and learning of a common language. Our next result examines the

14This also explains why Crawford and Haller note that in coordination games with three
actions, and without any prior language, if players do not coordinate in the ¯rst round,
then it is optimal for them to continue with the one unused action. The observation of
the set of two actions which did not lead to coordination is equivalent to an observation
of the complement of that set (I owe this observation to Scott Page). Blume and Gneezy
[1998] ¯nd some experimental evidence for this form of learning in three-location games.
15In an appendix they consider a general formulation using partitions but do not inves-

tigate optimal learning in this case.
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intuition underlying these examples formally, in a ¯nite setting. Since the
result deals only with n-cycles on ­; it is worth noting that cycles are the
natural representation of order in the ¯nite setting when there is no maxi-
mal (minimal) element.16 Furthermore, it is straightforward to use cycles as
building blocks for a whole panoply of partial languages (be they transitive
or not).

When positions in a two-player simultaneous-move game are not distin-
guished, then observations of the two players' simultaneous actions are not
distinguished and therefore we must consider the corresponding setwise sta-
bilizers. We will refer to observations of k-element sets as \k-observations."
The next result on the e®ect of two-observations is applicable to two-player
games in which players' positions are not distinguished; the generalization
to more than two players is straightforward.

Proposition 4 Let G =< g > where g is an n-cycle and consider the
natural action of G on ­: Then

1. G expresses absence of a common description;

2. if n is odd, then every two-observation induces a common description
of all elements of ­; and,

3. if n is even, then a proportion n
n+1 of all possible two-observations

induce a common description of all elements of ­:

Proof. For (1) to hold, G must have a single orbit. The de¯nition of an
n-cycle implies immediately that G does indeed have a single orbit.

For (2) let n be odd and consider, without loss of generality, the two-
observation f!1; !2g: Since g is an n-cycle, e is the unique element h 2 G
such that h(!1) = !1: To derive a contradiction, suppose that Gff!1;!2gg is
not a singleton. Then there must be numbers k; l; 0 · k; l · n¡1 such that

gk(!1) = gl(!2);

and
gk(!2) = gl(!1);

which can be restated as gk¡l(!1) = !2 and gk¡l(!2) = !1: Therefore
g2(k¡l)(!2) = !2: Let k ¸ l without loss of generality. Then, since g is an n-
cycle by assumption, n must be a divisor of 2(k ¡ l) and since 2(k ¡ l) < 2n;

16See Rubinstein [1996] for the role of order in natural language.
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it must be the case that 2(k ¡ l) = n: This implies that n is even, thus
generating a contradiction. Therefore Gff!1;!2gg must be a singleton.

The argument that we just gave to show that Gff!1;!2gg must be a sin-
gleton whenever n is odd, clearly does not work for the case where n is even,
and indeed the claim is not true when n is even. However, it remains true
that any two-observation f!1; !2g whose stabilizer is not a singleton satis¯es

g
n
2 (!1) = !2:

There are n
2 such two-observations. The total number of two-observations

is n + n(n¡1)
2 ; consisting of n pairs with identical observations, and n(n¡1)

2
pairs with distinct observations (where we divide by 2 because order does
not matter). Therefore the proportion of two-observations which lead to a
common description is

n + n(n¡1)
2 ¡ n

2

n + n(n¡1)
2

=
n

n + 1
:

2

Consider for example four locations that are positioned symmetrically
on a wheel that has a direction. If two players choose locations indepen-
dently, there are three types of choice pairs that can arise: four pairs with
identical choices, four pairs with adjacent choices, and two pairs with an-
tipodal choices. Given the direction on the wheel, there exists a labeling rule
(e.g. assign the label \1" to the left element of each pair, where possible,
and label the remaining locations consecutively) that identi¯es a common
language for all two-observations that are not antipodal. The proportion of
two-observations that are not antipodal is 4=5:

When positions are distinguished in a two-player simultaneous-move
game, the two players' simultaneous actions become separate singleton ob-
servations. If the game in question is a simple coordination game and we
are interested in how players achieve coordination through repeated play,
then learning with distinguished positions is essentially trivial; since posi-
tions are distinguished, we can simply assign the (commonly known) label
\player one" to one of the players. There is then an attainable strategy pro-
¯le in which player one repeats his ¯rst-round action in subsequent rounds
and player two uses a best reply to player one's action in all rounds follow-
ing the ¯rst round. This is independent of which subgroup of the symmetric
group S­ expresses the players' uncertainty at the beginning of the repeated
game.
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Learning with distinguished positions becomes less trivial if we alter the
game. For example, consider a game in which, as before, players receive a
positive payo® if and only if they meet in some location but once a locations
has served as a meeting place it cannot do so again until at least k rounds
have passed, where 1 < k · n¡1: Also, simplify by letting only player one's
action be commonly observable after each round. If the initial uncertainty
is described by S­; then locations become identi¯ed only by player one's
choice of those locations. Successful coordination on some location in the
¯rst period, for example, does not guarantee coordination in subsequent
periods because that location cannot be revisited for some time and because
for the other locations any kind of common description is still lacking.

Especially for large n and k; coordination in the initial phase of the
game becomes quite tedious. Consider as an extreme case k = n ¡ 1: Then
sustained coordination is possible but in order to achieve it, the players
need to acquire a complete common description of the set of locations ­:
Even if the players cared about nothing else but achieving such a common
description as early as possible, it would still take n¡1 periods. Given, that
players discount the future and given that coordination is a chance event at
any location that is not yet commonly described, the expected time until a
full common description is achieved exceeds n ¡ 1: For example, if agents
do not coordinate in the ¯rst period, then discounting will induce them to
both visit player one's ¯rst period choice in the second period. Thus, no
new location is identi¯ed in the second period.

In this example the full description of ­ is acquired very slowly, one
observation at a time. This contrasts with the case where the initial uncer-
tainty is described by < (!1; !2; : : : ; !n) > and where therefore coordination
can be guaranteed in all rounds but the ¯rst round.

For the remainder of the paper we will concentrate on the case of sin-
gleton observations, as in the example with distinguished positions. For the
next result we will also focus on essential observations, that is ignore obser-
vations of objects that are already labeled. We are interested in how many
essential observations are needed to learn a common language.

De¯nition 1 Given a set of observations ¢0 ½ ­; an observation ! 2 ­
is essential if G(¢0) 6= G(¢0[f!)g: A set of observations ¢ is essential if
it can be arranged in an order !1; : : : ; !k; such that !j is essential given
f!1; : : : ; !j¡1g for all j = 1; : : : ; k:

De¯nition 2 Let G; a partial language on ­; be given. Then the maximum
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number of essential observations needed to learn a common language is equal
to k if

1. for any essential set ¢ ½ ­; with #(¢) = k; the pointwise stabilizer
G(¢) equals the group identity, and

2. there exists an essential set ¢0 ½ ­; #(¢0) = k ¡ 1; such that G(¢0)
di®ers from the group identity.

In the example at the end of section 3 there are three kinds of essential
sets, singleton sets that identify a common language (one of the objects as-
sociated with the labels 2, 3, 5, 6, 8 and 9), singleton sets that identify a pair
of possible common languages, and pairs of objects that identify a common
language. Hence, in the example, the maximum number of essential obser-
vations needed to learn a common language equals two, even though a single
observation of the right kind would su±ce to learn a common language.

Obviously, for #(­) = n the maximum number of essential observations
needed to learn a common language never exceeds n ¡ 1: Our previous ex-
amples show that it may be smaller. Indeed, the following result shows that
the case where n ¡ 1 essential observations are needed is in a certain sense
atypical. For any partial language that corresponds to a proper subgroup
G of S­; denoted G < S­; strictly less than n ¡ 1 essential observations are
needed to learn a common language.

Proposition 5 For any partial language G < S­ on ­; with #(­) = n;
the maximum number of essential observations needed to learn a common
language is strictly less than n ¡ 1:

Proof. If G is not transitive on ­; then we can partition ­ into the orbits
of G on ­ (e.g. Rotman [1996], p.122). Let there be r > 1 such orbits and
denote the ½0s orbit by O½: Then n =

Pr
½=1 #(O½): Any essential set includes

at most #(O½)¡1 observations from the ½'s orbit. Therefore the cardinality
of an essential set cannot exceed

Pr
½=1(#(O½) ¡ 1) = n ¡ r observations. It

follows that the maximum number of essential observations needed to learn
a common language is no larger than n¡r: The same argument works if for
some r > 1 and for every set ¢ of n¡ r essential observations the pointwise
stabilizer G(¢) fails to be transitive.

Assume therefore that we can ¯nd an essential set ¢ with #(¢) = n¡2
such that G(¢) is transitive on ­ n ¢: We will use the following relationship
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between orbits and stabilizers (e.g. Rotman [1996], p.123):

#(G!) =
#(G)

#O(!)
;8! 2 ­:

Thus, if G is transitive on ­; we have

#(G!) =
#(G)

n
;8! 2 ­:

For !0 2 ­ n ¢; let ¢0 := ¢ [ f!0g and l = #(¢0): It follows by induction
that

#(G(¢0)) =
#(G)

(n!=(n ¡ l)!)
;

and since l = n ¡ 1; we have

#(G(¢0)) =
#(G)

n!
:

However, since ¢0 contains n ¡ 1 observations, #(G(¢0)) = 1; so that it
must be the case that #(G) = n!: This is only possible if G = S­; which
contradicts G < S­: 2

Additional observations are likely to be essential in game settings where
agents control the arrival of new observations through their actions. In that
case, for a given language, our deterministic bound on the learning speed is
appropriate. More generally, one might be interested in the consequences
of a random selection of the language, and of observations being randomly
chosen.17 While detailed information about the general case is di±cult to
obtain, in can be noted that, as an immediate consequence of Proposition 5,
whenever observations are drawn from a ¯xed distribution with full support,
the expected time until a common language is learned is strictly less for G
than for S­; provided G < S­:

6 Fast Learning with Absence of a Common De-
scription

We are most interested in the case where an a priori absence of a common
description is compatible with fast learning, both because this is the most

17Even in the case where observations are controlled by players actions, there may be
randomness if choices are made simultaneously.
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di±cult case for fast learning, and because whenever there is no common
language on ­; there will be an absence of a common description on some
nontrivial subset of ­. So far we have shown that fast learning \is the rule"
and that sometimes it can indeed occur in conjunction with an a priori
absence of a common description. One may then be led to the conjecture
that there is a rich set of environments (subgroups of S­) with such a co-
occurrence. This section shows that this conjecture can be con¯rmed in a
quali¯ed sense.

We will deal with the quali¯cation ¯rst. Our ¯rst result in this section
focusses on a particular class of co-occurrences of fast learning and a priori
absence of a common description. These are learning patterns composed
of a period of incremental learning followed by a jump to a full common
description. Our result on this type of learning is essentially negative; there
are de¯nite restrictions on the nature of such co-occurrences. In particular,
we will show that for su±ciently large n and most l < n; there does not
exist a group G · S­ such that a common language on ­ can be learned
with l observations while G(¢) remains transitive on ­ n ¢ for all ¢ with
#¢ < l:

In order to prove this result we need to introduce a few additional con-
cepts from the theory of permutation groups. Call any 2-cycle a transposi-
tion. One can show (e.g. Rotman [1996], p.63) that for n ¸ 2 every g 2 S­
is a product of transpositions. If g can be factored into an even number of
transpositions, then g is called an even permutation. The set of all even per-
mutations in S­ forms a subgroup, A­; that is referred to as the alternating
group of degree n:

We also need the concept of a multiply transitive group. If G is a group
acting on ­; one can de¯ne an action on ­k by

g(!1; : : : ; !k) := (g(!1); : : : ; g(!k)):

Consider ­(k); that subset of ­k that is composed of all those k-tuples whose
elements are distinct; ­(k) is G-invariant for all G and for all k: G is called
k-transitive if G is transitive on ­(k):18

The following facts about k-transitive groups will be useful (e.g. Dixon
and Mortimer [1996], p.33, and Wielandt [1964], p.19). For k > 1; k-
transitivity implies (k ¡ 1)-transitivity. G is k-transitive on ­ if and only
if G! is (k ¡ 1)-transitive on ­ n !: G is transitive if and only if it is 1-
transitive. The alternating group A­ is (#­ ¡ 2)-transitive. Finally, in

18Multiply transitive groups made an early appearance in game theory in von Neumann
and Morgenstern's [1947] discussion of symmetry in games.
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addition to these elementary facts about multiply transitive groups, we will
make use of the following result by Wielandt [1960]19:

Theorem 1 (Wielandt) Let G · S­ be an 8-transitive group of ¯nite de-
gree. Then G ¸ A­:

Wielandt's proof of this result assumes what is known as the Schreier
Conjecture. The Schreier conjecture in turn can be established via the
classi¯cation of ¯nite simple groups. Actually, using this classi¯cation one
can strengthen the result further to show that unless a ¯nite permutation
group contains the alternating group, it is at most 5-transitive (e.g. Dixon
and Mortimer [1996], p.218).

Call an observation that identi¯es only the observed element itself an
incremental observation. At the other extreme are observations that lead
to a simultaneous identi¯cation of all the remaining elements of ­; those
observations will be referred to as revealing observations. Note that when
only two elements of ­ remain unidenti¯ed, then an additional observation
is automatically revealing. Given S­; for example, a common language is
learned with n ¡ 2 incremental observations, followed by one revealing ob-
servation. If g is an n-cycle, then given < g > a common language is learned
with zero incremental observations and a single revealing observation.

These two examples represent opposite ends of the spectrum of possible
learning speeds. What about the intermediate ranges of the spectrum?
Consider A4; the alternating group of degree four. The set of rankings
associated with A4 is

A4 =

1 2 3 4 1 1 2 2 3 3 4 4
2 1 4 3 4 3 3 4 2 1 1 2
3 4 1 2 2 4 1 3 4 2 3 1
4 3 2 1 3 2 4 1 1 4 2 3

If the element corresponding to the second row is observed and the la-
beling rule assigns the label \1", this singles out the set of rankings

2 3 4
1 1 1
4 2 3
3 4 2

19A statement, proof and discussion of this result can also be found in Dixon and
Mortimer [1996], p.218
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Note that with the exception of the object that is now called \1", this
collection of descriptions leaves every element unidenti¯ed. Formally, the
stabilizer of the element \1" is transitive on the complement of \1;" the
observation \1" is incremental. The properties of multiply transitive groups
imply straightforwardly that instead of \1" we could have considered any
other observation and would have obtained the same result. Thus, given
that A4 expresses the players' beliefs, the ¯rst observation is incremental.
Note further, that in the induced subgroup only the identity ¯xes any of the
remaining elements. Therefore, whatever the second observation, it will be
revealing.

In summary, in the case where ­ has four elements, we can ¯nd permuta-
tion groups such that all observations are either incremental or revealing and
where either the ¯rst observation is revealing (< g >; where g is a 4-cycle),
the second observations is revealing (A4), or the third observation is reveal-
ing (S4). Conditional on all observations being revealing or incremental, a
four-element set then permits the full range of possibilities. However, as
indicated before, this example is the exception when it comes to exhausting
the possibilities of combining incremental and revealing observations.

If G is a partial language on ­ that exhibits absence of a common de-
scription, and a common language can be learned with l incremental obser-
vations followed by one revealing one, we say that \­ can be learned with l
incremental observations." We saw that a four-element set could be learned
with either 0, 1, or 2 incremental observations, depending on which partial
language is in place; these are all the possibilities since the (n ¡ 1)st obser-
vations is always revealing. According to the next proposition this state of
a®airs is quite exceptional.

Proposition 6 If #­ ¸ 11; then a common language on ­ cannot be
learned with l incremental observations whenever 7 · l · #­ ¡ 4:

Proof. In order to arrive at a contradiction, suppose that #­ ¸ 11
and that ­ can be learned with l incremental observations where l is in the
speci¯ed interval. Then the group G that expresses the players' uncertainty
over ­ must be (l+1)-transitive, i.e. still transitive on the complement of the
observations after l observations, but not (l + 2)-transitive for otherwise at
least l+1 observations are needed to learn ­: Thus, if l ¸ 7; then G must be
8-transitive and therefore by Wielandt's theorem (Theorem 1), G contains
the alternating group. But then G is (#­ ¡ 2)-transitive and therefore the
pointwise stabilizer of a set ¢ with no more than #­ ¡ 3 elements is still
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transitive on ­ n ¢; contrary to the assumption that the l + 1st observation
is revealing (which is part of the assumption that ­ can be learned with l
incremental observations). 2

Note that since Theorem 1 can be strengthened, the bounds on \learning
with l incremental observations" could be tightened as well.20

Despite the last result, one can show that there is indeed a large set of
scenarios in which an a priori absence of a common description is compatible
with the possibility of fast learning. Of course, the previous result tells us
that incremental observations do not play an important role in such learn-
ing. Most observations will be \partially revealing," i.e. besides identifying
the observed object itself, they introduce identifying distinctions among the
other objects that have not yet been observed.

De¯nition 3 Given a partial language G · S­; a common language can be
learned in k steps if G(!) 6= e; 8! 2 ­k¡1 and 9!̂ 2 ­k such that G(!̂) = e:

In group theory, the set !̂ is referred to as a \minimal basis" for G:
The following result shows that for a given size of the set of objects,

­; even with absence of a common description, there are typically multiple
partial languages that admit fast learning. In particular, it is shown that
there exists a partial language that admits k-step learning whenever k is a
divisor of #(­):

Proposition 7 Let k be a divisor of #(­): Then there exists a partial lan-
guage G · S­, with absence of a common description, from which a common
language can be learned in k steps.

Proof. Let #(­) = n; and without loss of generality enumerate ­ as
1; : : : ; n: Then there exists an integer l such that n = k £ l: For any subset
K of S­ call the smallest subgroup of S­ containing K the group generated
by K. Consider the group H · Sn that is generated by the (\component")
cycles

(il + 1; : : : ; (i + 1)l) i = 0; : : : ; k ¡ 1

20Note also that our last result is of interest is because it illuminates the limits for
modeling learning with a given a priori known structure. It is not di±cult to construct
games with rules that induce exactly the learning patterns ruled out in Proposition 6.
Take for the example a game which involves picking identical balls from an urn, one per
period. Each period a ball is picked, it is marked with the period number and returned to
the urn. Except in the 51st period, where the rule prescribes that all remaining balls be
marked with the numbers 51 through 100. Such phenomena arise if there are exogenous
forces that alter the structure.
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and by the cycle product

lY

j=1

(j; j + l; j + 2l; : : : ; j + (k ¡ 1)l):

To verify transitivity, ¯rst note that if ! = 1 belongs to an orbit, then
all elements that are moved by the component cycle (1; : : : ; l) belong to the
same orbit. This follows from considering compositions of cycles. Similarly,
examining powers of the cycle product, it follows that if 1 belongs to an
orbit, 1 + l; 1+ 2l; : : : all belong to that orbit. Furthermore, all of these are
moved by one of the di®erent component cycles, and repeated application of
those component cycles shows that for each such cycle all elements moved
by that cycle belong to the orbit of ! = 1: Thus all elements belong to the
same orbit.

To see that k observations su±ce to learn a common language from H; i.e.
9!̂ such that H(!̂) = e; note that each observation ! removes those cycles
from the set of remaining generators that move that element. The ¯rst
observation therefore removes one component cycle and the cycle product.
There are only k¡1 cycles left that form the generators of G!: Then simply
pick the remaining k ¡ 1 observations from di®erent component cycles such
that each of those observations eliminates one of those cycles from the set
of remaining generators.

Finally, observe that k ¡ 1 (or fewer) observations are insu±cient for
learning a common language from H because there are k component cycles
and each observation removes at most one component cycle from the set of
generators. 2

In interpreting this result, one should keep in mind that it is a statement
about the possibilities for (or the variety of) fast learning, and not an asser-
tion about the prevalence of fast learning. To fully address the prevalence
question, one would have to make assumptions about the probability distri-
bution over languages and use a much more detailed characterization of all
the possible languages. This is beyond the scope of this paper. A few ten-
tative comments can be made, however. First, with a uniform distribution
over all languages, our earlier result (Proposition 5) implies that n ¡ 1-step
learning is rare. Second, with a uniform distribution over partial languages
that satisfy absence of a common description, our last result implies that
n ¡ 1-step learning is again atypical. Note also that our last result is not
exhaustive. For example, a look at the dihedral groups shows that for any
number of objects, there is always a partial language that satis¯es absence of
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a common description and admits 2-step learning.21 Third, consider partial
languages that already make some distinctions among individual objects,
i.e. induce multiple orbits. Our results imply that each such orbit O can
typically be learned with fewer than #(O) ¡ 1 observations.

In light of our discussion in the introduction, our last result brings to
mind multiple categorizations of objects as a source of structure in language.
The construction in the proposition would correspond to a situation where
we can sort objects into di®erent categories, there is order both of and within
the categories but there are no maximal (minimal) categories or maximal
(minimal) elements within the categories. As mentioned earlier, categoriza-
tion is also a source of structure when objects can be cross-categorized. As
a practical matter the prevalence of fast learning phenomena or of structure
in language in general may then, for example, be related to the number of
categories that a set of players is aware of, and to their ability to commonly
sort the categories.

7 Relation to the Literature

The problem of language learning, structure in language and creative use
of language are relatively new in economics. Closest in spirit to the present
paper is probably Rubinstein [1996] who is concerned with the structure of
binary relations appearing in natural language. Like us, he has as one of
his premises that \evolutionary forces make it more likely that the `optimal'
structures are observed [...]." He argues for certain properties that make
binary relations in language more useful; among them the facility with which
nameless elements in a set can be indicated, which reminds one of creative
language use. He ¯nds that this criterion of \indication-friendliness" is only
satis¯ed by linear orderings.

For linguists of course, the questions of structure in language and how
language is learned are central. Chomsky's research agenda for example
attempts to identify a universal language faculty, a \generative grammar."
Such a grammar would account for the fact that apparently relatively few
observations su±ce to learn a language that is capable of generating ex-
pressions of in¯nitely many meanings, in particular novel expressions that
have not been encountered before. Thus viewed, the generative grammar
accounts for creative language use (e.g. Chomsky [1988]).

21The dihedral groups correspond to the symmetries of regular polyhedra.

26



Within economics there is recent work by Segal [1996] that is related to
ours. He starts with a common language but assumes that players cannot
use the language to deduce a way of playing a coordination game. Instead
they communicate with their common language within some organizational
form. His objective is to determine the optimal organizational form (pro-
tocol, mechanism), where the likely quality of the communication outcome
is traded o® against a measure of communication complexity. Like in the
present paper and in Rubinstein's work the focus is on characterizing ef-
¯cient structures (protocols), and players are assumed to attain common
knowledge of the structure via prior exposure to similar coordination prob-
lems. Segal shows that coordination by authority performs well in a wide
range of circumstances and alludes to the possibility of using models of this
kind to think of organizations as incomplete contracts.

In their study of optimal debate rules, Glazer and Rubinstein [1997] point
out the potential role for natural binary relations (e.g. geographic proximity)
in in°uencing persuasion rules. There may for example be an advantage in
requiring that an argument that references a particular city be countered
with reference to a city that belongs to the same natural category of cities.
This is an example of the role of structure in an adversarial setting.

Wernerfelt [1998] studies how members of an organization construct lan-
guages in equilibrium. He postulates that agents have only access to a
restricted set of codes. He ¯nds that there may be bene¯ts to using similar
codes, and a centralized organization (with coarse code communication) may
be preferred to decentralized decision making, even with costs for setting up
the centralized organization.

Goyal and Janssen [1996] and Kramarz [1996] both reexamine the work
of Crawford and Haller. Goyal and Janssen argue that optimal learning
requires a prior convention to resolve multiplicities. Kramarz considers co-
ordination with more than two players. He examines optimal learning, com-
pares it to simple learning heuristics, and argues that learning rules that
are highly history dependent may be ine±cient because they may introduce
more ambiguities than they resolve.

Two recent papers examine how coordination is a®ected or aided by
structure. Chwe [1996] examines how structure a®ects collective action. In
Chwe's model individuals share a common interest in coordinating collective
action but have to rely on social networks to spread information about each
individual's readiness to participate in collective action. The form of the
network determines the speed at which information travels, the likelihood
of collective action, and the time spent until collective action is achieved.
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Calvert [1991] considers Crawford and Haller's \learning to coordinate" par-
adigm under constantly changing conditions. He declares that \[...] the basic
problem of social order involves the achievement of coordination in funda-
mentally new situations [...]," and points out the bene¯t to players who make
use of the \common-knowledge environment" of the games.

8 Conclusion

Communication and coordination in novel circumstances has to contend
with language being at least partially incomplete. It is then important to
know which constraints an incomplete language imposes on communication
and coordination, and which possibilities it a®ords for learning a complete
language. This paper isolates novelty of objects from common knowledge
of structure and labeling rules. This permits one to develop a coherent
framework in which to investigate the role of structure in coordination and
learning. It is shown that structure aids both coordination and learning,
even in the extreme case where there is no distinction among individual
objects. In future work it would interesting to relax the common knowl-
edge assumptions and to investigate frameworks that permit more general
learning patterns (e.g. the ones ruled out by Proposition 6).
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Appendix

A group G consists of a set, and an operation ,\ ± "; on the set such that
for all f; g; h 2 G; (i) the associative law holds (f ± (g ± h) = (f ± g) ± h); (ii)
there exists an identity element e such that e ± g = g = g ± e; and (iii) for all
g 2 G there exists an inverse g¡1 with g ± g¡1 = e = g¡1 ± g:

One group that is of particular interest to us is the set of all permuta-
tions of elements of the set ­; denoted by S­: Here the group operation is
composition of permutations. This group is referred to as the symmetric
group on ­: If G is a group and H is a subset of G; then H is a subgroup
of G; denoted H · G; if H contains the identity, and is closed under taking
inverses and under the group operation.

Observation. A set H of permutations satis¯es the condition Hg¡1 =
H 8g 2 H if and only if H is a subgroup of S­: Proof. Consider necessity
¯rst. (i) (existence of the identity). Hg¡1 = H and g 2 H together imply
that e = gg¡1 2 H: (ii) (existence of an inverse) Hg¡1 = H and e 2 H
together imply that g¡1 = eg¡1 2 H. (iii) (composition of permutations in
H de¯nes an operation on H) (Hg¡1 = H;8g 2 H) and (g¡1 2 H;8g 2 H)
implies that Hg = H;8g 2 H from which it follows that fg 2 H;8f; g 2 H:
(iv) (associative law) associativity is inherited from S­: Conversely, if H is
a permutation group, then since H is closed under the group operation, we
have Hg ½ H;8g 2 H: Since e 2 H; this implies that Hg = H;8g 2 H; and
in conjunction with g¡1 2 H;8g 2 H; we also have Hg¡1 = H; 8g 2 H: 2

Permutations can also be viewed as functions which leads to the notion
of group G acting on a nonempty set ­: For each ! 2 ­ and for each g 2 G;
de¯ne an element g(!) 2 ­: Then the group G acts on ­ if

(i) e(!) = ! 8! 2 ­; and

(ii) h(g(!)) = hg(!) 8! 2 ­; and 8 g; h 2 G:

If g 2 S­ and ! 2 ­; then we say that g ¯xes ! if g(!) = !; otherwise g
moves !: Let !1; : : : ; !r 2 ­; !i 6 =!j for 1 · i; j · r; i 6 =j: If g ¯xes !j for
j 6 =1; : : : ; r; and if g(!1) = !2; g(!2) = !3; : : : ; g(!r¡1) = !r; g(!r) = !1;
then g is called an r-cycle, and is denoted (!1; !2; : : : ; !r).

Let G be a group and g 2 G: If gk = e for some k ¸ 1; then the
smallest such k is called the order of g: If G is a group and g 2 G; then
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< g >:= fgnjn 2 Zg is the cyclic subgroup of G that is generated by g:
One convinces oneself easily that if g is an r-cycle, then g has order r and
< g >= fe; g1; : : : ; gr¡1g:

For any set ¢ ½ ­; H a group acting on ­; and g 2 G let

¢g := fg(!) 2 ­j! 2 ¢g:

Then one can de¯ne the setwise stabilizer of the set ¢ as

Hf¢g = fg 2 Hj¢g = ¢g;

and the pointwise stabilizer of the same set as

G(¢) = fg 2 Gj!g = !;8! 2 ¢g:

One checks easily that for any ¢; both pointwise and setwise stabilizers are
subgroups of H: The stabilizer of a point ! will be denoted by G!:
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