24 research outputs found

    SLDNFA-system

    Full text link
    The SLDNFA-system results from the LP+ project at the K.U.Leuven, which investigates logics and proof procedures for these logics for declarative knowledge representation. Within this project inductive definition logic (ID-logic) is used as representation logic. Different solvers are being developed for this logic and one of these is SLDNFA. A prototype of the system is available and used for investigating how to solve efficiently problems represented in ID-logic.Comment: 6 pages conference:NMR2000, special track on System descriptions and demonstratio

    Logic Programming for Describing and Solving Planning Problems

    Full text link
    A logic programming paradigm which expresses solutions to problems as stable models has recently been promoted as a declarative approach to solving various combinatorial and search problems, including planning problems. In this paradigm, all program rules are considered as constraints and solutions are stable models of the rule set. This is a rather radical departure from the standard paradigm of logic programming. In this paper we revisit abductive logic programming and argue that it allows a programming style which is as declarative as programming based on stable models. However, within abductive logic programming, one has two kinds of rules. On the one hand predicate definitions (which may depend on the abducibles) which are nothing else than standard logic programs (with their non-monotonic semantics when containing with negation); on the other hand rules which constrain the models for the abducibles. In this sense abductive logic programming is a smooth extension of the standard paradigm of logic programming, not a radical departure.Comment: 8 pages, no figures, Eighth International Workshop on Nonmonotonic Reasoning, special track on Representing Actions and Plannin

    Problem solving in ID-logic with aggregates: some experiments

    Full text link
    The goal of the LP+ project at the K.U.Leuven is to design an expressive logic, suitable for declarative knowledge representation, and to develop intelligent systems based on Logic Programming technology for solving computational problems using the declarative specifications. The ID-logic is an integration of typed classical logic and a definition logic. Different abductive solvers for this language are being developed. This paper is a report of the integration of high order aggregates into ID-logic and the consequences on the solver SLDNFA.Comment: 9 pages conference: NMR2000, special track on abductive reasonin

    Ultimate approximations in nonmonotonic knowledge representation systems

    Full text link
    We study fixpoints of operators on lattices. To this end we introduce the notion of an approximation of an operator. We order approximations by means of a precision ordering. We show that each lattice operator O has a unique most precise or ultimate approximation. We demonstrate that fixpoints of this ultimate approximation provide useful insights into fixpoints of the operator O. We apply our theory to logic programming and introduce the ultimate Kripke-Kleene, well-founded and stable semantics. We show that the ultimate Kripke-Kleene and well-founded semantics are more precise then their standard counterparts We argue that ultimate semantics for logic programming have attractive epistemological properties and that, while in general they are computationally more complex than the standard semantics, for many classes of theories, their complexity is no worse.Comment: This paper was published in Principles of Knowledge Representation and Reasoning, Proceedings of the Eighth International Conference (KR2002

    Knowledge Compilation of Logic Programs Using Approximation Fixpoint Theory

    Full text link
    To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 2015 Recent advances in knowledge compilation introduced techniques to compile \emph{positive} logic programs into propositional logic, essentially exploiting the constructive nature of the least fixpoint computation. This approach has several advantages over existing approaches: it maintains logical equivalence, does not require (expensive) loop-breaking preprocessing or the introduction of auxiliary variables, and significantly outperforms existing algorithms. Unfortunately, this technique is limited to \emph{negation-free} programs. In this paper, we show how to extend it to general logic programs under the well-founded semantics. We develop our work in approximation fixpoint theory, an algebraical framework that unifies semantics of different logics. As such, our algebraical results are also applicable to autoepistemic logic, default logic and abstract dialectical frameworks

    A Tarskian Informal Semantics for Answer Set Programming

    Get PDF
    In their seminal papers on stable model semantics, Gelfond and Lifschitz introduced ASP by casting programs as epistemic theories, in which rules represent statements about the knowledge of a rational agent. To the best of our knowledge, theirs is still the only published systematic account of the intuitive meaning of rules and programs under the stable semantics. In current ASP practice, however, we find numerous applications in which rational agents no longer seem to play any role. Therefore, we propose here an alternative explanation of the intuitive meaning of ASP programs, in which they are not viewed as statements about an agent\u27s beliefs, but as objective statements about the world. We argue that this view is more natural for a large part of current ASP practice, in particular the so-called Generate-Define-Test programs

    Epistemic Foundation of Stable Model Semantics

    Full text link
    Stable model semantics has become a very popular approach for the management of negation in logic programming. This approach relies mainly on the closed world assumption to complete the available knowledge and its formulation has its basis in the so-called Gelfond-Lifschitz transformation. The primary goal of this work is to present an alternative and epistemic-based characterization of stable model semantics, to the Gelfond-Lifschitz transformation. In particular, we show that stable model semantics can be defined entirely as an extension of the Kripke-Kleene semantics. Indeed, we show that the closed world assumption can be seen as an additional source of `falsehood' to be added cumulatively to the Kripke-Kleene semantics. Our approach is purely algebraic and can abstract from the particular formalism of choice as it is based on monotone operators (under the knowledge order) over bilattices only.Comment: 41 pages. To appear in Theory and Practice of Logic Programming (TPLP
    corecore