4,240 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Decision-making with gaussian processes: sampling strategies and monte carlo methods

    Get PDF
    We study Gaussian processes and their application to decision-making in the real world. We begin by reviewing the foundations of Bayesian decision theory and show how these ideas give rise to methods such as Bayesian optimization. We investigate practical techniques for carrying out these strategies, with an emphasis on estimating and maximizing acquisition functions. Finally, we introduce pathwise approaches to conditioning Gaussian processes and demonstrate key benefits for representing random variables in this manner.Open Acces

    Three-dimensional solid particle self-assembly in thermovibrational flow : the case with unidirectional temperature gradient and concurrent vibrations

    Get PDF
    As a follow up on an earlier work (Phys. Fluids 34, 014108, 2022), where the main focus was on the modes of convection in a three-dimensional cubic enclosure filled with a Pr=7 liquid undergoing vibrations in a direction 'parallel' to the imposed temperature gradient, the present study considers the modes of particle clustering, which occur when solid spheres, with density ratio ξ=1.85 or 0.3 and Stokes number (St) between 0.5 and 3.5 x 10-5, are added to the fluid. Starting from a uniform distribution of solid particles and fluid in quiescent conditions, the governing equations for the involved phases are numerically solved in their complete, time-dependent and non-linear form for a representative vibrational Rayleigh number (8.34×104), angular frequency Ω=50 and non-dimensional acceleration amplitude (γ) spanning the interval 0.4x107≤ γ≤3.4x107. It is shown that, while for relatively high values of St and/or γ, only degenerate states are obtained, where all particles collapse on planar structures, for intermediate values of such parameters, interesting (heretofore unseen) patterns are enabled. The hallmark of these phenomena is an endless squeezing and expansion of the particle formations along the direction of the temperature gradient. As confirmed by the numerical simulations, the underlying formation mechanisms rely on the combined action of the body force acting on particles due to their different density with respect to the host fluid and the additional drag that is produced when the carrier thermovibrational flow enters a specific stage, known as "convective burst", where the magnitude of the fluid velocity increases dramatically

    Current issues of the management of socio-economic systems in terms of globalization challenges

    Get PDF
    The authors of the scientific monograph have come to the conclusion that the management of socio-economic systems in the terms of global challenges requires the use of mechanisms to ensure security, optimise the use of resource potential, increase competitiveness, and provide state support to economic entities. Basic research focuses on assessment of economic entities in the terms of global challenges, analysis of the financial system, migration flows, logistics and product exports, territorial development. The research results have been implemented in the different decision-making models in the context of global challenges, strategic planning, financial and food security, education management, information technology and innovation. The results of the study can be used in the developing of directions, programmes and strategies for sustainable development of economic entities and regions, increasing the competitiveness of products and services, decision-making at the level of ministries and agencies that regulate the processes of managing socio-economic systems. The results can also be used by students and young scientists in the educational process and conducting scientific research on the management of socio-economic systems in the terms of global challenges

    Attosecond photoelectron interferometry: from wavepackets to density matrices

    Get PDF
    Through the advent of high-order harmonic generation and attosecond light pulses, photoionization dynamics has been studied on the attosecond time-scale, the intrinsic time-scale of such dynamics. When the electron leaves the atomic potential a phase shift is imprinted on the electron wavefunction. The measurement of this phase, together with amplitude allows us to determine the dynamics that of the photoionization.In this thesis, attosecond (10−18 s) and femtosecond (10−15 s) photoionization dynamics are studied using the photoelectron interferometry technique, Reconstruction of Attosecond Beating By Interference of two-photon Transitions (RABBIT). In RABBIT, the electron wave-packet is interfered with itself, and through this spectral interference, the spectral amplitude and phase can be retrieved.Attosecond time-delay measurements, are performed in argon and xenon where different aspects of electron correlation are investigated. In argon photoionization is studied in the region of the Cooper minumum, where the ionization cross section rapidly decrease. In xenon photoionization is studied across the 4d giant dipole resonance. Resonant dynamics is stud- ied using energy-resolved RABBIT. The studied resonances are the 1s3p, 1s4p, 1s5p (below threshold) and 2s2p (above threshold) in He and 3s−14p (above threshold) in Ar. Most of the measurements in the thesis are angular-integrated.If the photoelectron is prepared as a mixed state, RABBIT is unsuccessful in characterizing the quantum state of the electron, since it cannot be represented as a wavefunction. Therefore a quantum state tomography protocol for photoelectrons (KRAKEN) was developed and tested experimentally in non-resonant ionization of helium, neon and argon. In the case of neon and argon, due to spin-orbit splitting, the entanglement between the photoelectron and ion leads to decoherence induced by incomplete measurements where the state of the ion is not measured

    First observations of Weddell seals foraging in sponges in Erebus Bay, Antarctica

    Get PDF
    Attaching cameras to marine mammals allows for first-hand observation of underwater behaviours that may otherwise go unseen. While studying the foraging behaviour of 26 lactating Weddell seals (Leptonychotes weddellii) in Erebus Bay during the austral spring of 2018 and 2019, we witnessed three adults and one pup investigating the cavities of Rossellidae glass sponges, with one seal visibly chewing when she removed her head from the sponge. To our knowledge, this is the first report of such behaviour. While the prey item was not identifiable, some Trematomus fish (a known Weddell seal prey) use glass sponges for shelter and in which to lay their eggs. Three of the four sponge foraging observations occurred around 13:00 (NZDT). Two of the three sponge foraging adults had higher-than-average reproductive rates, and the greatest number of previous pups of any seal in our study population, each having ten pups in 12 years. This is far higher than the study population average of three previous pups (± 2.6 SD). This novel foraging strategy may have evolved in response to changes in prey availability, and could offer an evolutionary advantage to some individuals that exploit prey resources that others may not. Our observations offer new insight into the foraging behaviours of one of the world’s most studied marine mammals. Further research on the social aspects of Weddell seal behaviour may increase our understanding of the extent and mechanisms of behavioural transfer between conspecifics. Research into the specific foraging behaviour of especially successful or experienced breeders is also warranted

    Design and characterisation of monolithic CMOS detectors for high energy particle physics and SEU radiation tests for ATLAS Inner Tracker Upgrade readout chip

    Get PDF
    This thesis covers the characterisation results and the design of monolithic CMOS detectors designed in TowerJazz 180nm CMOS technology for High Energy Particle Physics applications. Three different detectors have been studied the MALTA, the Mini-MALTA and the MALTA2. The MALTA sensor showed some efficiency losses at the corners of the pixels after irradiation, which meant that it was not suitable for the radiation environments in which it was supposed to be installed. Therefore, the front-end electronics and the fabrication process were modified to overcome this issue. The Mini-MALTA prototype was designed including the above mentioned improvements, fabricated and fully characterised. Finally taking into account all the knowledge acquired during these years of developments another large scale sensor the MALTA2 has been produced which should be radiation tolerant and have very good time resolution. The description and studies of the different architectures used in this family of detectors are covered and a simulation to estimate the bandwidth capabilities have been reported. Furthermore, this work will present characterisation of single event effects in the ITkPixV1, the prototype version of the ATLAS Inner Tracker Upgrade chip for the High Luminosity LHC. Measurements were made in testbeam campaigns with high energy ions and protons to evaluate the level of single event effects in the chip

    Complexity Science in Human Change

    Get PDF
    This reprint encompasses fourteen contributions that offer avenues towards a better understanding of complex systems in human behavior. The phenomena studied here are generally pattern formation processes that originate in social interaction and psychotherapy. Several accounts are also given of the coordination in body movements and in physiological, neuronal and linguistic processes. A common denominator of such pattern formation is that complexity and entropy of the respective systems become reduced spontaneously, which is the hallmark of self-organization. The various methodological approaches of how to model such processes are presented in some detail. Results from the various methods are systematically compared and discussed. Among these approaches are algorithms for the quantification of synchrony by cross-correlational statistics, surrogate control procedures, recurrence mapping and network models.This volume offers an informative and sophisticated resource for scholars of human change, and as well for students at advanced levels, from graduate to post-doctoral. The reprint is multidisciplinary in nature, binding together the fields of medicine, psychology, physics, and neuroscience
    • …
    corecore