6,522 research outputs found

    Fault Tolerant Air Bubble Sensor using Triple Modular Redundancy Method

    Get PDF
    Detection of air bubbles in the blood is important for various medical treatments that use Extracorporeal Blood Circuits (ECBC), such as hemodialysis, hemofiltration and cardio-pulmonary bypass. Therefore a reliable air bubble detector is needed. In this study designed a fault tolerant air bubble detector. Triple Modular Redundancy (TMR) method is used on the sensor section. A voter circuit of the TMR will choose one of three sensor output to be processed further. Application of TMR will prevent errors in the detection of air bubbles, especially if the sensor fails to work

    Redundant Logic Insertion and Fault Tolerance Improvement in Combinational Circuits

    Full text link
    This paper presents a novel method to identify and insert redundant logic into a combinational circuit to improve its fault tolerance without having to replicate the entire circuit as is the case with conventional redundancy techniques. In this context, it is discussed how to estimate the fault masking capability of a combinational circuit using the truth-cum-fault enumeration table, and then it is shown how to identify the logic that can introduced to add redundancy into the original circuit without affecting its native functionality and with the aim of improving its fault tolerance though this would involve some trade-off in the design metrics. However, care should be taken while introducing redundant logic since redundant logic insertion may give rise to new internal nodes and faults on those may impact the fault tolerance of the resulting circuit. The combinational circuit that is considered and its redundant counterparts are all implemented in semi-custom design style using a 32/28nm CMOS digital cell library and their respective design metrics and fault tolerances are compared

    Reliability estimation procedures and CARE: The Computer-Aided Reliability Estimation Program

    Get PDF
    Ultrareliable fault-tolerant onboard digital systems for spacecraft intended for long mission life exploration of the outer planets are under development. The design of systems involving self-repair and fault-tolerance leads to the companion problem of quantifying and evaluating the survival probability of the system for the mission under consideration and the constraints imposed upon the system. Methods have been developed to (1) model self-repair and fault-tolerant organizations; (2) compute survival probability, mean life, and many other reliability predictive functions with respect to various systems and mission parameters; (3) perform sensitivity analysis of the system with respect to mission parameters; and (4) quantitatively compare competitive fault-tolerant systems. Various measures of comparison are offered. To automate the procedures of reliability mathematical modeling and evaluation, the CARE (computer-aided reliability estimation) program was developed. CARE is an interactive program residing on the UNIVAC 1108 system, which makes the above calculations and facilitates report preparation by providing output in tabular form, graphical 2-dimensional plots, and 3-dimensional projections. The reliability estimation of fault-tolerant organization by means of the CARE program is described

    Fault Tolerant Air Bubble Sensor using Triple Modular Redundancy Method

    Get PDF
    Detection of air bubbles in the blood is important for various medical treatments that use Extracorporeal Blood Circuits (ECBC), such as hemodialysis, hemofiltration and cardio-pulmonary bypass. Therefore a reliable air bubble detector is needed. This study presents the design of a new fault tolerant air bubble detector. Triple Modular Redundancy (TMR) method is used on the sensor section. A voter circuit of the Triple Modular Redundancy will choose one of three sensor outputs to be processed further. Application of Triple Modular Redundancy will prevent errors in the detection of air bubbles, especially if the sensor fails to work

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications

    On cost-effective reuse of components in the design of complex reconfigurable systems

    Get PDF
    Design strategies that benefit from the reuse of system components can reduce costs while maintaining or increasing dependability—we use the term dependability to tie together reliability and availability. D3H2 (aDaptive Dependable Design for systems with Homogeneous and Heterogeneous redundancies) is a methodology that supports the design of complex systems with a focus on reconfiguration and component reuse. D3H2 systematizes the identification of heterogeneous redundancies and optimizes the design of fault detection and reconfiguration mechanisms, by enabling the analysis of design alternatives with respect to dependability and cost. In this paper, we extend D3H2 for application to repairable systems. The method is extended with analysis capabilities allowing dependability assessment of complex reconfigurable systems. Analysed scenarios include time-dependencies between failure events and the corresponding reconfiguration actions. We demonstrate how D3H2 can support decisions about fault detection and reconfiguration that seek to improve dependability while reducing costs via application to a realistic railway case study
    • …
    corecore