3,345 research outputs found

    IIHR Currents Winter 2012-13

    Get PDF
    https://ir.uiowa.edu/iihrcurrents/1006/thumbnail.jp

    Approaches to Disaster Management

    Get PDF
    Approaches to Disaster Management regards critical disaster management issues. Ten original research reports by international scholars centered on disaster management are organized into three general areas of hazards and disaster management. The first section includes discussions of perspectives on vulnerability and on evolving approaches to mitigation. The second section highlights approaches to improve data use and information management in several distinct applications intended to promote prediction and communication of hazard. The third section regards the management of crises and post-event recovery in the private sector, in the design of urban space and among the victims of disaster. This volume contributes both conceptual and practical commentary to the disaster management literature

    Five feet high and rising : cities and flooding in the 21st century

    Get PDF
    Urban flooding is an increasingly important issue. Disaster statistics appear to show flood events are becoming more frequent, with medium-scale events increasing fastest. The impact of flooding is driven by a combination of natural and human-induced factors. As recent flood events in Pakistan, Brazil, Sri Lanka and Australia show, floods can occur in widespread locations and can sometimes overwhelm even the best prepared countries and cities. There are known and tested measures for urban flood risk management, typically classified as structural or engineered measures, and non-structural, management techniques. A combination of measures to form an integrated management approach is most likely to be successful in reducing flood risk. In the short term and for developing countries in particular, the factors affecting exposure and vulnerability are increasing at the fastest rate as urbanization puts more people and more assets at risk. In the longer term, however, climate scenarios are likely to be one of the most important drivers of future changes in flood risk. Due to the large uncertainties in projections of climate change, adaptation to the changing risk needs to be flexible to a wide range of future scenarios and to be able to cope with potentially large changes in sea level, rainfall intensity and snowmelt. Climate uncertainty and budgetary, institutional and practical constraints are likely to lead to a combining of structural and non-structural measures for urban flood risk management, and arguably, to a move away from what is sometimes an over-reliance on hard-engineered defenses and toward more adaptable and incremental non-structural solutions.Hazard Risk Management,Wetlands,Natural Disasters,Adaptation to Climate Change,Climate Change Impacts

    Flood risk in urban areas: modelling, management and adaptation to climate change. A review

    Get PDF
    [Abstract:] The modelling and management of flood risk in urban areas are increasingly recognized as global challenges. The complexity of these issues is a consequence of the existence of several distinct sources of risk, including not only fluvial, tidal and coastal flooding, but also exposure to urban runoff and local drainage failure, and the various management strategies that can be proposed. The high degree of vulnerability that characterizes such areas is expected to increase in the future due to the effects of climate change, the growth of the population living in cities, and urban densification. An increasing awareness of the socio-economic losses and environmental impact of urban flooding is clearly reflected in the recent expansion of the number of studies related to the modelling and management of urban flooding, sometimes within the framework of adaptation to climate change. The goal of the current paper is to provide a general review of the recent advances in flood-risk modelling and management, while also exploring future perspectives in these fields of research

    Analysis of Resilience Situations for Complex Engineered Systems – the Resilience Holon

    Get PDF
    Improving the resilience of complex engineered and engineering systems (CES) includes planning for complex resilience situations, in which there may be multiple threats, interactions, and disruptions. One challenge in the modeling of CES is the identification of how interactions in a complex situation occur and their combined influence on CES resilience. This article presents a resilience holon that can be used to analyze complex resilience situations. It is made up of 24 elements (defining types of resilience, threats, interactions, and disruptions), which have varying importance to specific situations. Holons can be linked together hierarchically or in a network. An application of the resilience holon to a documented real-world resilience situation, widespread flooding in a city, illustrates its use. Pathways taken by threats and disruptions, as the flood effects cascaded through the city, are shown as connections between holons. The resilience holon could be used to decompose diverse resilience situations involving CES, to identify where critical vulnerability points are and how the whole resilience situation could be improved. The visual nature of the resilience holon could be used in an interactive way, allowing stakeholders to better understand the full resilience picture of CES that they use or operate

    Expert potentiometric surface modification for groundwater contaminant management

    Get PDF
    An expert system is linked to an previously reported optimization program. The expert system prompts the user for information about a groundwater contamination problem. The expert system determines whether pumping is a suitable containment strategy. If appropriate. it selects several well arrangements to be evaluated by an optimization algorithm
    corecore