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Abstract 

Flood risk models are used to help manage the financial and societal risks associated with 

floods. They quantify risk (usually in terms of flood losses) by modelling the underlying 

physical hazard, the exposure and vulnerability of people, properties and/or other assets to 

the hazard. However, these models are subject to significant uncertainty. Knowing how 

much uncertainty exists in risk estimates and how it can be attributed to its various sources 

is essential to guide efforts for model improvement, as well as to help risk managers make 

better decisions. Currently, there is a lack of knowledge regarding how much uncertainty 

affects the inputs of flood risk models and how it can be quantified. Additionally, it remains 

unclear how such input uncertainties propagate and which uncertain input mostly controls 

the uncertainty in predicted losses. Flood risk models can now estimate risk at large scale 

which means they produce large and complex datasets that can be challenging to analyse. 

The application of Machine Learning methods (like Decision Trees) poses a set of specific 

challenges.  

 

In this Thesis I intend to improve our understanding of uncertainty quantification and 

attribution in flood risk modelling. I performed an uncertainty and sensitivity analysis of a 

flood risk model over a large and heterogeneous domain, the Rhine River Basin, and in 

doing so developed a new Machine Learning method (interactive Decision Tree) to analyse 

large datasets by incorporating scientific knowledge into machine learning. I then developed 

an approach to quantify the uncertainty in the inputs of a flood risk model, based on a 

systematic literature review. Using this approach, I reported variability ranges for residential 

buildings value, damage ratios of the vulnerability curves, and the return period of flood 

events in the Rhine River Basin. I used these input uncertainty ranges to perform a global 

sensitivity analysis on the flood risk model over the Rhine River Basin. First, I identified the 

dominant input uncertainties in each spatial unit of the study domain for two key model 

outputs: the Average Annual Losses (AAL) and the Loss Exceedance Curves (LEC). I found 

that AAL is dominated by uncertainty in vulnerability, while the dominant uncertainties for the 

LEC change with the return period, with vulnerability becoming increasingly important with 

increasing return period. Finally, I attempted at linking dominant input uncertainties with the 

hydrological and socio-economic characteristics of the spatial units using an interactive 

Decision Tree. I found that topography, degree of urbanization and residential buildings’ 

value are key characteristics for determining how dominant uncertainties change over space 

within the study domain. 
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“Περί ουδέν των ανθρωπίνων έργων υπάρχει βεβαιότης.” 

Αριστοτέλης 

“There is no certainty about any human works.” 

Aristotle 
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Chapter 1: Introduction 

 

1.1 Economic impact of floods  

Floods are extreme hydrological and meteorological hazards and among the deadliest and 

costliest natural hazards. They cause over 40% of global deaths from natural disasters and 

over 50% of economic damages (left panel in Figure 1.1). The economic and societal 

impacts of recent flood events are shown on the right of Figure 1.1. In July 2021 Germany, 

Belgium, and the Netherlands were hit by a catastrophic flood event that led to 184 fatalities 

and the estimated damages for Germany alone are in the order of 30 billion euros (Apel et 

al., 2022). The 2022 Pakistan floods led to 1200 casualties and displaced around 33 million 

people (Mallapaty, 2022). Total damages are expected to exceed USD 14.9 billion, and total 

economic losses to reach about USD 15.2 billion (Altaf, 2022). The Thailand flood in 2011 

had devastating impacts on the world economy: industrial production was reduced by 2.5%, 

the growth rate in 2011 was reduced from 4.1% to 2.9%, while the damages to the insurance 

industry were assessed at 10 billion US dollars (Haraguchi & Lall, 2015). Additionally, flood 

events can cause significant problems in businesses. In the insurance industry, the 

protection gap (the difference between the total and insured losses) is increasing. Over the 

last 10 years, the global losses due to floods have increased while the insured share of 

these losses declined from 21% to 15% (Franco et al., 2020, Zanardo & Salinas, 2022). 

 

 
Figure 1. 1 Statistics of flood impacts (deaths and economic losses) worldwide and for recent flood events. Left: 

Flood damages and deaths at global scale in comparison with other natural disaster (Ritchie et al., 2023). Right: 

Flood damages and deaths of recent flood events. 
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Hence, national and international efforts are focused on better managing flood risk and 

mitigating the impacts of floods. For example, the United Nations Office for Disaster Risk 

Reduction has published the Hyogo Framework (United Nations, 2005) and the Sendai 

Framework (United Nations, 2015) that set quantitative targets for risk reduction in terms of 

lives, economic and environmental losses. Among the priorities is to ensure national and 

global cooperation on risk reduction. Another example is the European Union Flood Directive 

2007/60/EC (European Commission, 2007), which requires all the EU member states to 

perform flood risk assessments, find areas at risk of flooding, derive flood maps and take 

actions to reduce flood risk (Kundzewicz et al., 2018). 

 

1.2 Flood risk models  

Flood risk assessments are performed using models that estimate flood risk as the product 

of the probability of occurrence of an event (hazard) with its footprint (exposure) and 

consequences on society and economy (vulnerability) (Duha Metin et al., 2018, Beven et al., 

2018). A typical modelling cascade is shown in Figure 1.2. It starts with the estimation of 

peak river discharges for a set of flood events based on observed or simulated 

meteorological data (rainfall, river discharge etc). The peak river discharges are then fed into 

a flood inundation model to simulate the flood depths and extents over the region of interest. 

Once the flood depths and extents are available, they are intersected with exposure datasets 

to capture the exposed elements. Information on the damage driving characteristics of the 

flood event (e.g. flood depth) and on exposures (e.g. economic value of exposed assets) are 

then combined using vulnerability curves to assess the impact, usually expressed in terms of 

flood losses. 

 

Nowadays, numerous Flood Risk Models (FRMs) are available to simulate flood risk at 

various scales, from catchment to regional or even global scales (Ward et al., 2015, Trigg et 

al., 2016, Kaczmarska et al., 2018). Traditionally, flood risk assessments were performed at 

catchment, regional or national scales (Hall et al., 2005, European Commission, 2007, 

Jonkman et al., 2008). This approach is useful in wealthy and scientifically advanced 

countries where models and good-quality data are available. But this is not the case 

everywhere and many parts of the world are still ‘unmapped’.  
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Figure 1. 2 A typical flood risk modelling chain. 

 

With the increase in computational resources (Washington et al., 2009) and the growing 

availability of datasets at global scale (Nativi et al., 2015), large-scale FRMs have been 

developed to provide a consistent view of flood risk at increasingly larger scales (regional, 

national, continental and global), including areas where flood risk information was previously 

unavailable. Global investors use these risk estimates to prioritize their investments or find 

locations for further development, whereas international risk reduction organisations and 

governmental agencies use them to inform flood risk prevention and management 

strategies. For example, the World Bank has used large-scale FRMs to inform national-level 

disaster risk management plans for strengthening Nigeria’s flood resilience by generating 

flood risk maps per state to identify hotspots of flood risk (Ward et al., 2015). The 

Government of Belize used the nationally consistent information of a large-scale FRM to 

support decision-making in spatial and infrastructure planning (Ward et al., 2015). The 

European Joint Research centre used a large-scale FRM to develop pan-European flood risk 

estimates (Hall, 2014). (Re)Insurance industry uses large-scale FRMs – or flood 
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“catastrophe models” in this sector’s terminology – for risk pricing, accumulation control, 

portfolio and capital requirements management and solvency calculations (Grossi & 

Kunreuther, 2005; Mitchell-Wallace et al., 2017). The number of flood catastrophe models 

has significantly increased in the last few years (Zanardo & Salinas, 2022). Franco et al. 

(2020) showed that the number of catastrophe models nearly doubled from 24 to 44 

between 2015 and 2020, compared to the previous 5 years. 

 

1.3 Sources of uncertainty in flood risk models 

In both research and industry, there is an increasing awareness of the importance of 

understanding and estimating uncertainty in flood risk assessments (Merz & Thieken, 2005, 

Merz & Thieken, 2009, Kaczmarska et al., 2018, Beven et al., 2018). This is due to the 

recognition that every model has its limitations, the difficulty in capturing the natural 

variability in the characteristics of flood hazard and the socio-economic processes that 

determine flood losses (Beven et al., 2018) and the recognition that flood risk assessments 

without considering uncertainty may lead to qualitatively and quantitatively disparate 

answers.  

 

FRMs are subject to numerous input uncertainties which propagate through the flood risk 

modelling chain and make the final flood loss estimates uncertain. Sources of uncertainty in 

FRMs include: 

• Uncertainty in processes representation. This type of uncertainty could refer to the 

models (e.g. statistical, physical) used to represent the physical processes, 

omissions (if a process is considered negligible relative to the scale) and simplifying 

assumptions. For example, to estimate the return period of flood events, extreme 

value models are fitted to observed (or simulated) data. Even with a satisfactory 

fitting, different probability distribution functions can lead to different estimated return 

periods for peak discharges (especially when extrapolating for return period beyond 

the data record size) (Merz & Thieken, 2005). 

• The errors, gaps, and inconsistencies of the data used to build and test the models. 

Examples in the case of FRMs are the inaccuracies in the location, number, value 

and type of the exposed assets and/or the flood damage data used to build the 

vulnerability curves (Merz et al., 2010, Zanardo & Salinas, 2021), or the inaccuracies 

of the Digital Elevation Models (DEM) datasets used for flood inundation modelling 

(Schuman et al., 2014, Ward et al., 2015). 

• Uncertainty in model parameters. An example could be the buffer area around an 

exposure point that represents the footprint area of the building (Winter et al., 2018). 
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• Set up choices that are necessary for the execution of the model on a computer 

(Wagener & Pianosi, 2019). Examples are the spatial resolution at which the losses 

will be aggregated (national, district or post-code level), or of the hazard maps to be 

used (Savage et al., 2016). 

 

1.4 Uncertainty quantification and attribution 

Given the complexity and non-linearity of FRMs, the impacts and relative importance of the 

different uncertainty sources on the final model output uncertainty is not immediately 

obvious. Specific Uncertainty and Sensitivity analysis techniques can be used to analyse the 

propagation of uncertainty through the model, quantify the resulting uncertainty in model 

output and attribute it to key contributing input uncertainties. 

 

Differently from local sensitivity analysis, where uncertain inputs are varied one at the time 

starting from a baseline value, in this Thesis I will use a global sensitivity analysis (GSA) 

approach, where all input uncertainties are varied simultaneously (Pianosi et al., 2016, 

Wagener & Pianosi, 2019) within their variability space. GSA is a sensible choice here given 

that the complex nature of FRMs makes it difficult to define an appropriate baseline to which 

all the input uncertainties should refer to. 

 

GSA is performed in four steps which are presented in Figure 1.3. 

1. Firstly, one needs to identify the input uncertainties and characterize their variability 

space (e.g. assign them with probability distribution functions or variability ranges). 

2. Then, randomly sample combinations of input uncertainties values from the input 

variability space. 

3. Run the model against each input combination to propagate the input uncertainties to 

the model output. These output samples can be used to quantify the output 

uncertainty. 

4. Finally, post-process the input/output samples to derive sensitivity indices. A 

sensitivity index typically varies between 0 and 1 and measures the amount of output 

uncertainty caused by input uncertainty Xi. The higher the value the more sensitive is 

the output to Xi.  

 

Global sensitivity indices can be used to rank input uncertainties based on their relative 

contribution to the output uncertainty (Saltelli et al., 2008). This is useful in flood risk 

modelling to help experts in various tasks, e.g., to prioritize their efforts in uncertainty 

reduction (Pappenberger et al., 2008). For example, they can spend more time and 
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resources in better defining the vulnerability curve(s) in places where they know this is the 

dominant input uncertainty. Another use is for model diagnostic evaluation, where the 

modeller can check whether the model behaves consistently with their perceptual models, 

e.g., dominant input uncertainties at a particular place correspond to the physical processes 

that are also expected to dominate in reality, (Wagener et al., 2022). 

 

 
Figure 1.3 Basic Steps of Global Sensitivity Analysis 

 

 

1.5 Challenges in uncertainty quantification and attribution of flood risk models 

 

1.5.1 The challenge of a realistic definition of the input variability space. 

The definition of the input variability space (Step 1 in Figure 1.3) is a challenging and crucial 

step of uncertainty and sensitivity analysis. It requires the modellers to make choices on 

which values are possible and which are not, and (possibly) their associated probabilities. 
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These (more or less) subjective choices on the characterization of the input uncertainties 

propagate through the model and can significantly affect the sensitivity analysis results 

(Savage et al., 2016, Paleari et al., 2016).   

 

The input variability space needs to be a realistic representation of the variability existing in 

each input uncertainty. But, in flood risk modelling, this is challenging. Experts often deal 

with input uncertainties which probabilities are poorly known and constrained. For example, 

it is known there is considerable uncertainty in flood depths estimation, but it is unknown 

how much they vary with space and/or return period. Additionally, there is little (or no) 

availability of datasets that could be used to constrain the input uncertainties. For example, 

flood damage data collected from historical flood events could be used to constrain the 

uncertainty around vulnerability curves. While such datasets are available in data rich 

countries like UK, US and the Netherlands, they are lacking in most other countries (Wing et 

al., 2020, Bernhoven et al., 2022). 

 

1.5.2 Conflicting evidence on the importance of input uncertainties.  

Global Sensitivity Analysis has been previously applied to FRMs at city or catchment scale, 

providing conflicting evidence on the relative importance of input uncertainties. For example, 

De Moel & Aerts (2011) in a case study in Netherlands found that uncertainties in 

vulnerability component are dominating the uncertainty in flood loss estimates. In contrast, 

Apel et al. (2004) in a case study in Cologne found the extreme value modelling 

uncertainties to be dominant. This might be explained by the fact that they used different 

methods and data, or by the fact that the analysis was performed in different places. Indeed, 

as the hydro-climatic and socio-economic processes represented in flood risk assessments 

vary in space, one may expect dominant input uncertainties to also vary in space. 

 

It is known from studies in other fields that when the same model is applied across different 

places, the relative importance of input uncertainties varies from place to place. For 

example, van Werkhoven (2008) used GSA to investigate the behaviour of a hydrological 

model across diverse watersheds and time periods and found that the patterns of dominant 

input uncertainties vary consistently with the variation in the hydroclimatic characteristics of 

the watersheds. Brewer et al. (2017) reached to similar conclusions regarding the sensitivity 

indices for a computer model simulating chemical transport in the atmosphere. 

 

1.5.3 Suitability of Machine Learning methods to analyse geoscience datasets. 

To investigate the dominant input uncertainties over a large domain and potentially link them 

to hydro-climatic and socio-economic characteristics of places, it is necessary to process 
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and analyse large and complex datasets. Machine Learning (ML) methods are promising 

tools that can support this effort as they are in principle capable of identifying relationships in 

large data sets. ML methods have been previously used to process datasets in various 

geosciences applications, such as seismic hazard assessment (Perol et al., 2018), 

volcanology (Shoji et al., 2018), hydrology and water resources (Sit et al., 2020, Zounemat-

Kermani et al., 2021), and flood risk assessment (Chen et al., 2021, Paulik et al., 2022, 

Bentivoglio et al., 2022). 

 

However, as ML methods originated from a different field, they may not consider the specific 

data characteristics and issues relevant for applications to the geosciences (Faghmous & 

Kumar, 2014, Bergen et al., 2019, Reichstein et al., 2019). Users of ML in geosciences have 

knowledge of the physical principles and laws, that could be exploited to guide the ML 

process. Doing this would potentially lead to ML models that are more efficient and ensure 

that the data analysis results are more interpretable and consistent with our knowledge. 

Indeed, this is an active research topic in many fields which face similar challenges to 

geosciences like medical sciences (Gibert et al., 2010, Holzinger 2016), visual analytics 

(Choo & Liu, 2018) and finances (Sinha & Zhao, 2008). 

 

1.6 Research questions and objectives 

This Thesis aims at improving our understanding of uncertainty quantification and attribution 

of large-scale Flood Risk Models over heterogeneous regions. 

  

This Thesis is motivated by the following research questions: 

1. How do we characterise the variability space of highly uncertain inputs of Flood Risk 

Models? 

2. How does the relative importance of input uncertainties to Flood Risk Models change 

in places with different hydrological, climatic, land-cover and economic 

characteristics?  

3. How can we incorporate scientific knowledge into machine learning methods to 

improve the analysis of large geophysical datasets? 

 

In answering the above questions, I pursue the following key objectives: 

1) Develop a method that combines machine learning with scientific knowledge to 

analyse large geophysical datasets. 

2) Develop an appropriate and transferable methodological approach to quantify the 

variability space of input uncertainties of flood risk models (i.e. uncertainties in the 
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hazard, exposure and vulnerability components) when there is little knowledge or 

data to do so. 

3) Perform a global sensitivity analysis of a flood risk model at large scale to quantify 

the relative importance of different input uncertainties. 

4) Investigate how dominant input uncertainties vary spatially by linking them to climatic, 

hydrological, land cover and socio-economic characteristics.  

 

To fulfil the above objectives, I have chosen the Rhine River basin because it presents 

sufficiently large heterogeneity in the hydrological, climatic, land cover and socio-economic 

characteristics. Moreover, I use the data and global flood risk (catastrophe) model provided 

by JBA risk, a standard industry model that can simulate flood risk at such large scales. 

1.7 Thesis outline 

In Chapter 2 I discuss challenges geoscientists face in the application of ML methods in the 

field and present a novel method for addressing the first research question. That is, I present 

an interactive framework that put humans in the development loop of ML method. I 

implement this framework by developing interactive Decision Trees (iDT). With the iDT 

experts can interact with the DT and make amendments based on their domain/scientific 

knowledge. I demonstrate with three case studies how iDT overcome problems of current DT 

algorithms, leading to models with higher interpretability and robustness.  

 

In Chapter 3 I present a structured literature review approach to define plausible variability 

ranges for input uncertainties. The approach is applied on the Rhine River basin but it is 

transferable to other regions and similar applications.  

 

Last, in Chapter 4 I perform a global sensitivity analysis of the JBA flood risk model over the 

heterogeneous Rhine River basin, using the variability ranges from Chapter 2. Once I have 

identified the dominant input uncertainties over the entire basin, I investigate whether their 

variability over space can be linked to different characteristics of places within the basin. For 

example, in places with high urban coverage and high economic value, I may expect flood 

losses uncertainty to be dominated by the value of the buildings. For this purpose, I use the 

Interactive Decision Trees method developed in Chapter 2. 
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Chapter 2: Integrating scientific knowledge into Machine 

Learning using interactive decision trees 

 

This chapter has been published as a research article in Computers & Geosciences. Slight 

modifications have been made to better fit the general layout of this Thesis. 

 

Citation:  Sarailidis G., Wagener, T., Pianosi, F. (2022) Integrating scientific knowledge into 

machine learning using interactive decision trees. Computers & Geosciences, 170, 105248. 

https://doi.org/10.1016/j.cageo.2022.105248. 

 

2.1 Introduction 

In flood risk and in geosciences in general we often need to analyse large and complex 

datasets. In the past few decades, our ability to collect, store and access large volumes of 

earth systems data has increased at unprecedent rates thanks to improved monitoring and 

sensing techniques (Hart & Martinez, 2006; Butler, 2007; Karpatne et al., 2017; Zhou et al., 

2017), ever growing computational power (Washington et al., 2009), and the development of 

simulation models that produce large datasets at increasing domain scale and resolution. An 

example is the CMIP-5 dataset of the Climate Model Intercomparison Project (which 

contains various climatological variables at daily resolution (1980-2300) with global coverage 

and over 3 petabytes in size) that has been used extensively for scientific groundwork 

towards climate assessments (Reichstein et al., 2019). This ‘data deluge’ has paved the way 

for the systematic processing and analysis of observational and simulation data, often using 

Machine Learning or other statistical methods (Reichstein et al., 2019; Karpatne et al., 2019; 

Sun et al., 2022). 

 

Machine Learning (ML), a term defined by Samuel (1959), is a branch of artificial intelligence 

(AI) and computer science which focuses on discovering patterns hidden in complex 

datasets (Bzdok et al., 2017; Reichstein et al., 2019) by imitating the way that humans learn 

(IBM, 2020).  The main purpose of ML is to develop algorithms that can learn from historical 

data and perform tasks (e.g. predictions and classification) on new input data. The capability 

of ML methods to automatically extract patterns from large volumes of complex and high-

dimensional data have made them an important part of research in many fields, including the 

geosciences (Bergen et al., 2019, Sun et al., 2022).  

 

In this chapter I focus on a method called Decision Tree (DT) (Breiman et al., 1984), a 

supervised ML method that is widely used in the geosciences. A DT model is developed 

https://doi.org/10.1016/j.cageo.2022.105248
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through an automatic algorithm that recursively partitions the space of input variables into 

subspaces using a set of hierarchical decisions. In Figure 2.1, I show a DT with a schematic 

representation of the recursive partitioning of the dataset along with basic terms used in this 

chapter. A DT model is a hierarchical tree structure that comprises nodes and branches. 

Each node is associated with a logical expression, i.e. a “split”, which consists of the variable 

and threshold to split, e.g. “Xi smaller X̅i,j”. Each node will lead to two branches that 

correspond to the different possible outcomes of the split. The terminal nodes are called 

leaves and are associated to either a class or a specific value for the output. DT are thus 

commonly used for (Flach, 2012): 

• Classification: The DT is trained on output data that are categorized under 

different classes (discrete values or non-numerical categories) and can predict 

classes for unseen data.  

• Regression: The DT is trained on continuous output variables, and it predicts 

continuous values instead of classes. 

 

Examples of DT applications in the geosciences include, catchment classification (Sawicz et 

al., 2014; Kuentz et al., 2017), land cover classification (Gislason et al., 2006), studying 

uncertain factors of simulation models (Almeida et al., 2017; Sarazin, 2018), analyzing 

rainfall-runoff relationships  (Iorgulescu & Beven, 2004; Singh et al., 2014), empirical 

streamflow simulation (Shortridge et al., 2016), soil mapping (Grimm et al., 2008; Hengl et 

al., 2017), regionalizing hydrological signatures (Addor et al., 2018), flood risk management 

(Chen et al., 2021, Paulik et al., 2022). 

 

DTs are quite appealing in the geosciences because geophysical processes often reveal 

hierarchical structures of controlling variables, and the hierarchical structure of DT with 

nodes, branches and splits is a straightforward way to capture this. In geoscience 

applications, DT are particularly appealing for the purpose of organizing spatially distributed 

entities, such as rivers, catchments or other landscape units, thus demonstrating how large-

scale (e.g. climatic) controls interact with small-scale (e.g. land use or geology) controls 

(Sawicz et al., 2014; Addor et al., 2018). 
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Figure 2. 1 Schematic representation of a DT and the recursive partitioning of the dataset along with basic terms. 

Left: A schematic representation of the recursive partitioning of the data space performed by a Decision Tree 

development algorithm. Middle: A typical Decision Tree. Right: Terminology. 

 

Despite these advantages, they have limitations (see Figure 2.2) which make their use in the 

geosciences challenging. I highlight three main challenges that are important to the 

discussion:  

1. Like any statistical tool, DT methods rely on data and consequently their credibility is 

dependent on the quantity and quality of data available. DT require large amounts of 

data for training which are not always available (Kirchner et al., 2020). When 

available, data in geosciences can be biased, complex, uncertain, noisy, 

heterogeneous and with changing properties (e.g., due to changes in measurement 

instruments or the data processing algorithms) (Solomatine & Ostfeld, 2008; 

Faghmous & Kumar, 2014; Beven et al., 2018; Karpatne et al., 2019). Therefore, the 
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accuracy of DTs deteriorates with decreasing size or quality of the training dataset 

(Pal & Mather, 2003).  

2. DT development relies on statistical metrics and algorithmic decisions aim at 

statistical optimality, usually measured in terms of classification rate or regression 

accuracy. However, such statistical optimality does not guarantee that the outcome is 

physically consistent (Roscher et al., 2020). By physical consistency I mean that a 

DT should not violate scientific principles (such as conservation of mass) or overlook 

known physical characteristics of the system investigated. For example, some input 

variables may have physically meaningful threshold values that may be missed by 

the DT because other threshold values might produce a statistically better result for 

the (noisy and biased) dataset used for training. Moreover, most DT algorithms use 

split rules based on a single variable at each node, whereas combinations of multiple 

variables may play a significant role in partitioning the data space (Loh, 2014; 

Almeida et al., 2017). 

3. DT complexity may decrease their interpretability and consequently limit their 

usefulness in geosciences applications. By interpretability I mean the ability by a 

human expert of making sense of the obtained model (Molnar, 2019), understand 

how the model works and reaches a specific decision. DT are easier to interpret if 

they are small. The greater the number of terminal nodes, the deeper the tree and 

the more difficult it becomes to interpret. (Molnar, 2019; Lipton, 2018). Visualization 

could also help increase the interpretability of DTs. However, existing visualization 

techniques mainly focus on displaying information related to the statistical properties 

of the DT (e.g. impurity, node data points), whereas they do not support the display 

of information related to the physical properties of the variables – something that 

would potentially be more useful for geosciences applications (Almeida et al., 2017). 
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Figure 2. 2 Strengths and Limitations of Decision Trees Algorithms and experts. 
 

Integration of human experts in the DT development process – and hence of their domain 

knowledge and their cognitive ability to formulate hypotheses and theories – may help 

overcome some of these challenges. For example, experts may have very good knowledge 

of the physical processes, quantities and phenomena under study and hence be able to 

define physically meaningful splitting variables and thresholds, or discard DT branches that 

are physically unrealistic. An example is given in Stein et al. (2020) where a DT model to 

classify river flood generating processes is built purely based on domain knowledge. In 

addition, experts can define combinations of input variables that they believe interact in 

controlling outputs, where current algorithms would not allow for the detection of such 

combinations. An example is given in Almeida et al. (2017), where expert knowledge 

enabled integrating multiple variables into a new and physically meaningful factor. Moreover, 

experts can learn patterns from few datapoints because they have a certain expectation of 

relevant causal relationships, so they could guide the algorithm to learn from smaller 

amounts of data, or dataset where a particular output class is under-represented 

(“imbalanced dataset”) (García & Herrera, 2009). Inclusion of domain knowledge in the 
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model building process can also increase trust in the modelling results (Solomatine & 

Ostfeld, 2008). Incorporating scientific knowledge into ML models to improve their physical 

realism and interpretability has been highlighted as a major challenge and opportunity for ML 

applications in the geosciences (Read et al., 2019; Sun et al., 2022). 

 

In this chapter, I propose a framework to develop “interactive Decision Trees” (iDTs) that put 

human experts in the development loop of Decision Trees. The iDT framework establish a 

two-way interaction between the automatic DT development algorithm and the expert, 

allowing the expert to manually create new composite variables, changing nodes’ splitting 

variables and thresholds, manually pruning leaf nodes, and visualizing DTs in physically 

meaningful ways. Past attempts at developing iDT include the works of Ankerst et al. (2000), 

Han & Cercone (2001), Teoh & Ma (2003), Fails & Olsen (2003), Solomatine & Siek (2004), 

Mickens et al. (2007), Thanh-Nghi Do (2006), van den Elzen & van Wijk, (2011), Estivill-

Castro et al., (2020), Elia et al. (2021). Outside the scientific literature I found two 

commercial software products that allow users to interact with the DT, Dataiku1 and IBM 

SPSS2. I discuss briefly why the additional work presented here is warranted despite these 

previous efforts: 

1. To my understanding, the above tools were developed for general use and none of 

them was tested for geosciences applications. This puts into question whether their 

interactive functionalities will be applicable and/or useful to overcome the specific 

challenges discussed above. For example, I ran the tool developed by van den Elzen 

& van Wijk (2011), but it could not handle the large datasets typical for geoscience 

applications. The tool by Solomatine & Siek (2004), which was tested on six 

hydrological datasets, allows for larger datasets, but it is not publicly available. 

2. To the best of my knowledge, none of the studies cited above publicly shared the 

code to run their analyses and this might be one reason why they were not followed 

up by others or adopted by researchers in our community. The exceptions are: (a) 

the web application from Elia et al. (2021), which is freely available open source, but 

is designed for educational purposes; (b) the commercial software Dataiku, which is 

freely available for academic purpose but not open-source; and (c) the IBM software, 

which is neither free nor open-source. 

3. Finally, in the above tools the main purpose for integrating human expertise in the DT 

development process is to improve the algorithm’ predictive performance. Here 

instead I argue that interpretability and robustness are at least equally important 

 
1 https://www.dataiku.com/  
2 https://www.ibm.com/analytics/spss-statistics-software  

https://www.dataiku.com/
https://www.ibm.com/analytics/spss-statistics-software
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aspects in geosciences applications. Even to the point that users might accept a 

reduction in predictive performance if it comes with an increase in interpretability and 

robustness given new datasets. Hence, I devise and demonstrate a number of 

visualisation and interaction functionalities that are specifically aimed at increasing 

DT interpretability, and I also discuss how to measure interpretability (in the context 

of a specific application – see Case Study 2) beyond simply measuring the DT size 

(number of layers, number of leaf nodes) and training time (as done in previous 

studies).  

 

Alongside presenting the iDT framework, I thus also introduce a free, open-source Python 

package to implement the iDT framework, which I demonstrate using three case studies 

representatives of typical challenges encountered in the geosciences. In the first case study, 

I show how color-coding the tree nodes based on their physical meaning produce a 

physically meaningful visualization, and how the experts can create new composite variables 

in the training process to better capture existing interactions in the dataset, thus producing a 

smaller and more interpretable DT. In the second case study, I show how the expert can 

manually change the splitting threshold values of the tree nodes based on other sources of 

knowledge, again to increase the DT interpretability. Finally, in the third case study, I show 

how experts can manually change nodes’ splitting variables and thresholds to include under-

represented classes in imbalanced datasets and make the DT physically consistent, robust 

and potentially even more accurate on new datasets.  

 

2.2 Methodology 

In this section I describe the framework for establishing interactions between the expert and 

an automatic DT training algorithm to integrate scientific knowledge in DT development. 

Moreover, I describe the Python package and the Jupyter Lab Graphical User Interface I 

developed to implement the framework. Finally, I present my ideas on how to evaluate DT 

predictive and interpretive performance. 

 

2.3 A framework for interactive construction and analysis of decision trees 

Figure 2.3 shows the framework for interactive construction and analysis of DTs and 

compares it to the classical approach of automatic development. In the classical approach, 

the analyst prepares the dataset to feed to the ML algorithm, specifies the algorithm’s tuning 

parameters, executes it, and obtains the classification/regression model. In the interactive 

framework, the analyst (expert) can input their prior knowledge and/or feedback. Specifically, 

the expert can: 
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1. Organize and (pre-)process the input datasets, by grouping input variables in a 

physically meaningful way (such as climate variables, land surface properties, soil 

properties, etc.). The tree can then be colour coded based on this grouping. The user 

can also add new composite variables to the input dataset before or after the first 

algorithm run. 

2. Directly manipulate the structure of the DT model, by changing node variables and 

split threshold values, or by manually pruning the DT or changing leaf node class. 

This can be useful when the expert is aware of physically meaningful threshold 

values for certain variables (for example thresholds for climate variables that are 

used to classify different climate zones) to improve the DT’s physical interpretability. 

Another reason to manipulate the DT structure is the case of an imbalanced dataset, 

where a certain class is under-represented in the dataset and thus an automatic 

algorithm may not separately represent that class in the DT. Different tactics have 

been proposed to overcome this problem, such as resampling (García & Herrera, 

2009), synthetic generation (Chawla et al., 2002) or penalized models, although they 

often are time consuming to implement (Zhou et al., 2017). iDT offers an easier way 

to overcome the problem by allowing the expert to force the tree to include the under-

represented class by manually changing nodes’ variable and thresholds to split 

and/or leaves nodes classes.  

 

 

Figure 2. 3 Classical and Interactive analysis flowcharts. The steps performed to develop a Decision Tree in a 

“Classical” analysis are coloured in blue and with pink the proposed Interactive analysis. 
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2.4 A Python package and graphical user interface in Jupyter Lab for 

interactive construction and analysis of decision trees 

To maximise the reusability, replicability and reproducibility of the proposed approach (Gil et 

al., 2016; Hutton et al., 2016) I developed and shared an open-source Python package and 

a GUI in Jupyter Lab for implementing the IDTs framework. The code is available at 3. I used 

the sklearn library of scikit-learn package in Python (Pedregosa et al., 2011) that contains 

the implementation of the tree algorithm (for more details see Appendix A1) as a basis for 

the interactive tools. I created a new package, called “InteractiveDT”, which consists of (1) 

an “iDT” module containing the functions that enable the expert to interact with the DT or the 

dataset, and (2) an “iDTGUIfun” module which incorporates these functions into widgets, 

which are then used in the Jupyter Lab script called “InteractiveDecisionTrees” to create the 

user interface. Further details about this GUI are also provided in the Appendix A2. 

 

2.5 Evaluating DT predictive and interpretive performance 

DT are generally used as predictive tools for classification or regression. Therefore, their 

evaluation is typically based on statistical metrics of their predictive ability (Lipton, 2018). 

Examples of such metrics include classification accuracy, confusion matrices, precision, 

recall, accuracy rate, root mean squared error metrics, and mean error metrics (Pedregosa 

et al., 2011).  However, in geosciences applications, we often would like the DT to be not 

just a good predictor, but also to be interpretable (Lipton, 2018). In contrast to predictive 

performance, interpretability is a less well-defined concept and metrics to measure 

interpretability are not yet well established (Doshi-Velez & Been, 2017). A widely used proxy 

for interpretability is the complexity of the tree, as it can be reasonably assumed that a less 

complex tree is easier to interpret (Molnar, 2019; Lipton, 2018). The complexity of a DT can 

be easily quantified through the number of leaf nodes and/or the depth of the tree (Molnar, 

2019). I adopted these simple metrics to evaluate DT interpretability in the first case study.  

 

The need for interpretability is often linked to the use of models to assist scientific 

understanding (Doshi-Velez & Been 2017). The evaluation of interpretability for scientific 

understanding though is context specific. In the second case study, I will give an example of 

a case-specific definition of interpretability, based on the consistency of the DT partitioning 

with an existing independent classification system of some of the input variables.  

 

 
3 https://github.com/Sarailidis/Interactive-Decision-Trees 

https://github.com/Sarailidis/Interactive-Decision-Trees


 

19 
 

2.6 Results 

 

2.6.1 Case Study 1 – Color-coding groups of variables and constructing new 

composite variables to reduce the DT complexity and increase interpretability  

The first case study is based on a dataset from a computational landslide study by Almeida 

et al. (2017), which includes 10,000 combinations of 28 input variables of a slope stability 

model (the list is given in Table A1 in the Appendix A3.1). These variables are model inputs 

characterising landscape attributes such as slope geometry, soil and design storm properties 

and initial hydrological conditions. The model output is the slope factor of safety (FoS), which 

is typically used to separate the model outputs into two results regarding the stability of a 

landscape position regarding landslide hazard risk: “stable”, when FoS is above 1, and 

“failure” otherwise. In Almeida et al. (2017) a standard CART algorithm was used to identify 

dominant drivers of slope instability. I applied the iDT framework to the same dataset to 

demonstrate two functionalities of the iDT toolbox: (a) How to increase the visual 

interpretability of the DT by colour coding variables based on their physical meaning (b) How 

to better capture interactions between variables by creating new composite variables.  

 

Figure 2.4 shows the statistically optimal DT delivered by the automatic DT algorithm. Nodes 

are coloured based on Impurity, a default choice in many software packages. Figure 2.4 also 

shows the graphical interface of the InteractiveDT tool, which enables the user to define 

groups of input variables and colour code the nodes accordingly. Through this new 

visualization, it is evident that the first three levels of the tree are dominated by “geophysical 

properties” and “slope geometry variables”, while levels 4 and 5 are mainly dominated by 

“design storm properties”. Furthermore, the colour coding helps spotting a repetition of four 

variables–- cohesion (c_0), thickness of topsoil (H0), rainfall intensity (I) and duration (D)–- 

at various levels of the tree. Such a repetition suggests that these variables may be 

interacting with one another to produce slope failures (the tree tries to mimic this interaction). 

Indeed, a scatterplot of c_0 versus H0 (left hand side in Figure 2.5) shows that combinations 

of high H0 and low c_o (bottom right) lead to slope failure (black dots). Moreover, it is 

expected rainfall intensity and duration to interact. Specifically, combinations of high-

intensity/short-duration and low-intensity/long-duration rainfall will more likely result in slope 

failure. This relationship is confirmed in the (log-scale) scatterplot on the right-hand side of 

Figure 2.5. To capture these interactions, the user may create two composite variables: Soil 

Ratio, which is the ratio of cohesion and thickness of topsoil (Soil Ratio=c_0/H0), and Storm 

Ratio, which is the ratio of the logarithms of rainfall intensity and duration (Storm Ratio=-

log10(D)/log10(I)). The bottom part of Figure 2.5 shows the new DT delivered by the 
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algorithm when fed by a training dataset including these two composite variables. Overall, 

the new DT is “better” than the original one because it is smaller (21 nodes instead of 57, 

and a depth of 5 layers instead of 8) and hence easier to interpret, and it is more accurate in 

predicting slope failure (higher number of true slope failures and lower number of false slope 

stabilities) for both training and test datasets. Evaluation and comparison of the two DTs are 

summarised in Figure 2.6.  

 

 

Figure 2. 4 Showcase of a physically meaningful Decision Tree visualization. Top: Decision Tree for Case study 

1 with the conventional nodes coloring approach, which is based on node impurity. Bottom: The same tree is 
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shown in the bottom with the proposed alternative nodes coloring, which is based on groups of variables 

proposed by the user. With this node coloring option, it is evident what kind of variables dominate the tree. The 

figure also shows a screenshot of the InteractiveDT tool developed to achieve this alternative visualization. 

 

Figure 2. 5 Showcase the construction of composite variables to reduce Decision Tree complexity and increase 

interpretability. Top: Initial DT for Case study 1, in which interactions between variables emerged. Middle: 

Scatter plots of the interacting variables coloured according to whether the associated slope fails (black dots) or 

not (grey). Bottom: The iDT in the bottom is the new tree after creating two composite variables based on the 

detected interactions. 
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Figure 2. 6 Evaluation of statistically optimal and Interactive DT. Comparison of the statistically optimal and 

interactive DTs for Case Study 1 based on classification performance (top) and interpretability (bottom). 

 

2.6.2 Case Study 2 – Increasing interpretability by changing splitting threshold 

values based on other relevant knowledge sources  

The second case study is based on a version of groundwater recharge dataset created by 

Sarazin (2018) which includes 17,000,000 simulations of 34 input variables of a hydrological 

model. These variables are model inputs characterizing spatially distributed climate 

properties, land cover and soil properties of karst landscapes across Europe under current 

conditions and future climate scenarios. The model outputs are values of annual 

groundwater recharge, which are then grouped into four classes, namely, C1 (<20 mm/yr), 

C2 (20 – 100 mm/yr), C3 (100 – 300 mm/yr) and C4 (>300 mm/yr). A DT is built to reveal the 

key controls of groundwater recharge. To increase the interpretability of the DT I used the 

iDT framework to manually change some of the nodes’ thresholds consistently with a 

simplified version of Holdridge’s life zones classification scheme (Holdridge, 1947). The 

Holdridge scheme provides a classification of land areas based on annual precipitation and 

aridity index (i.e. the ratio between potential evaporation and precipitation; Figure A2 in the 

Appendix A3.2 shows the original and simplified scheme). By imposing that the threshold 

values for Precipitation (Pm) and Aridity index (AI) in the DT be the same as in the Holdridge 

chart thresholds, I wanted to explore whether a tree so constructed leads to leaf nodes that 

map into fewer Holdridge life zones, and as such may be more interpretable, and whether 

this gain in interpretability comes with a significant loss in classification accuracy.  
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I generated 15 datasets of 1000 samples each by randomly sampling from the original 

dataset (of 17,000,000 samples) and hence each dataset is different. I then split each 

dataset into training and test sets (75% and 25% of the dataset size respectively). For each 

training dataset I derived a statistically optimal (SO) and an interactive (iDT) decision tree. 

To derive the SO decision tree, I tried different combinations of the algorithm tuning 

parameters (splitting criterion based on “Gini impurity” or “entropy”, maximum number of leaf 

nodes varied from 15 to 25, maximum impurity decreases of 10-5, 10-6, 10-7) and retained 

the best SO tree based on 10-fold Cross Validation strategy. To derive the corresponding 

iDT, I used the iDT framework to manually change all the splitting thresholds for Pm and AI 

to the closest Holdridge chart threshold values. The closest threshold could sometimes be 

quite far, and the choice of changing it, is subjective. But in some other cases even a small 

change e.g., changing AI threshold from 1.1 to 1, could make a big difference in terms of 

interpretability. 

 

Figure 2.7 shows an example of a statistically optimal DT (top) and the corresponding iDT 

(bottom), focusing on the specific branch where I manually changed the thresholds for 

Precipitation (Pm) and Aridity index (AI), and hence the resulting leaf nodes. Next to the tree 

branches, I show the Holdridge life zones (HLZs) that the leaf nodes are mapped into. In the 

statistically optimal DT (top), the three leaf nodes map into 13 and 5 HLZs respectively. In 

the iDT (bottom), the number of HLZs is reduced to 4, 2 and 5 after changing one 

precipitation threshold from 229.82 to 250 and another one from 527.54 to 500 (in line with 

the HLZ classification). Of particular interest is the leaf nodes labelled C2, which define 

conditions under which groundwater recharge is low. In the statistically optimal tree, such 

conditions appear in 13 different climatic zones, while in the iDT they can only appear in two 

climates: thorn/steppe or thorn woodland. This drastic reduction opens up the opportunity for 

the expert to find meaningful explanations of why those two particular climatic zones exhibit 

lower recharge and the implications of this finding. While it is beyond the scope of this 

chapter to go into such explanation, my argument is that the opportunity to develop it in the 

first place would have not been present if using the statistically optimal tree. Since class C2 

was associated to a variety of different climatic zones.  

 

Figure 2.8 shows the classification and interpretability performance of all 15 statistically 

optimal DTs (one per each of the 15 datasets sub-samples) and associated iDTs (each 

obtained from the statistically optimal DT by changing Pm and AI thresholds). Regarding 

classification performance, the differences are not pronounced, which means the changes 

made by the expert did not lead to a significant loss of performance. As expected, the 

statistically optimal DTs always show a slightly higher classification accuracy in the training 
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sets. Interestingly though, the iDTs outperform the statistically optimal trees in most cases (9 

out of 15) in the test sets. Interpretability performance was quantified through the number in 

climatic zones classes C2 and C3 classes can be mapped to. Overall, the plot shows that 

the number of HLZs associated to leaf nodes of classes C2 and C3 tends to decrease. In 

conclusion, this example shows that incorporating other knowledge sources in the DT 

development by manually changing the splitting thresholds produces iDTs with a clearer link 

to that knowledge, and hence higher interpretability potential, at no significant loss in 

classification accuracy. The sample datasets and the resulting training and test datasets 

used in this case study were different but of the same size. However, I would expect the 

variation in the classification accuracies between SOT and iDT to decrease with increasing 

dataset sizes because there is more information for the models to learn the underlying 

general patterns. I would expect that the conclusions on the interpretability performance 

should be unaffected by the dataset size because the definition of interpretability is related to 

the number of climatic zones the leaf nodes are mapped to and so it’s not dependent on the 

dataset size used to construct the DT model.  
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Figure 2. 7 Comparison of leaf nodes mapping to Holdridge Life Zones for the Statistically optimal and Interactive 

Decision Trees. Top: Detail of the statistically optimal DT for Case Study 2. Bottom: iDT after manually changing 

the thresholds for Precipitation (Pm) and Aridity index (AI). For the leaves nodes of each DT I plotted the 

Holdridge scheme and highlighted the diamonds that the leaves can be mapped to. The variables appearing in 

the two trees are: Pm: precipitation [mm/y], r_st: Stomatal resistance [s/m], AI: Aridity Index [-], a: Spatial 

variability coefficient, Wsm: Mean wind speed [m/s]. 
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Figure 2. 8 Evaluation of Statistically Optimal and Interactive Decision Trees. Comparison of the statistically 

optimal and interactive DTs for Case Study 2 based on their classification performance and interpretability. 

 

2.6.3 Case Study 3 Manually changing nodes’ variables and threshold values to 

include under-represented classes in imbalanced datasets 

This case study is an example of application of iDT in cases where certain classes are 

under-represented in a dataset, a situation known as “imbalanced datasets”. I again used 

the dataset from Sarazin (2018) as in section 2.6.2, and randomly generated 5 subsample 

datasets of increasing sizes (1000, 5000, 10000, 50000 and 100000 samples). I then split 

each subsample dataset into a training and a test set (75% and 25% of the dataset size 

respectively) and randomly removed data points that belonged to class C2 from the training 

dataset. Therefore, the training sets contained only few data points of class C2 (<2%). 

Similarly, to Sec. 3.2, for each dataset I trained a Statistically Optimal (SO) decision tree and 

then derived an iDT by manually changing the nodes’ variables and thresholds until the iDT 

included the unrepresented class C2 in some of its leaf nodes. In some cases, I also 

manually changed the class of a leaf node to class C2. For example, in Figure 2.9 on the left 

I show a part of the SO tree obtained for sample dataset 2. It is known from Sarazin (2018) 

that low recharge class C2 should appear for low precipitation values, but the algorithm fails 

to include the C2 class in the SO tree as the class is under-represented in the training 

dataset. Hence, based on the splitting variables and thresholds of the DT found in Sarazin 

(2018) I manually changed the threshold in the split node “Pm<=639.075” to “Pm<=300” and 

the node variable in the split “Vr<=201.14” to “Pm<=65” in the DT, so to create a branch in 

the tree that specifically explore low precipitation cases. In response to these manual 

changes, the algorithm created a leaf node for class C2 in the iDT (top right of Fig. 2.9). The 

change induced a loss of classification accuracy in the training dataset (see Figure 2.9, case 
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‘2’) but an increase in performance on the test dataset against unseen data. Moreover, the 

confusion matrices indicate that iDT is more capable in correctly classifying data points into 

Class C2 as shown in Figure A.3 in the Appendix A3.3. A similar trend is found for all other 

datasets: as expected, SO trees perform better in the training sets but iDTs outperform SO 

trees in in test set, particularly for smaller datasets. 

 

 

Figure 2. 9 Showcase of ensuring physical consistency in imbalanced datasets by manually changing splitting 

variables and thresholds. Top left: Detail of the statistical optimal DT for sample dataset 2. Top right: Interactive 

DT for the sample dataset 2. In the iDT, the variables and threshold values in italic are those manually changed 

by the user, and those marked with an asterisk are changed by the DT algorithm in response to the manual 
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changes. Bottom: Panel showing the classification accuracies on the training and test sets, and the distribution 

of the four output classes (C1-C4), in each of the 5 datasets (bottom). 

 

2.7 Conclusions 

How I can incorporate scientific knowledge into ML models to improve their physical realism, 

their robustness and their interpretability remains a major challenge and opportunity for ML 

applications in the geosciences (Read et al., 2019; Sun et al., 2022). To address this 

problem, I propose a framework for the construction and analysis of interactive decision 

trees (iDTs) for application in the geosciences. I created an open-source implementation of 

iDT in Python and Jupyter Lab, which I hope will encourage the use of iDT in future research 

applications. I demonstrated the value of iDT approach in three case studies that represent 

typical challenges encountered in applications of decisions trees in the geosciences. I found 

that the proposed iDT framework supports the development of decision trees that are easier 

to visualise and interpret in a physical sense. In the second case study, I find that manual 

adjustment of splitting thresholds can lead to a more physically meaningful tree with almost 

no loss in classification performance. In the third example, I show how experts can build a 

more robust and physically consistent DT in cases of imbalanced datasets that can 

generalize better on unseen data. Even though manually changing the nodes’ variables and 

threshold values based on domain knowledge to consider an under-represented class 

deteriorated the classification accuracy in training sets, it improved it in test sets.  

 

In Chapter 4, I will use again iDT to analyse the relationship between dominant input 

uncertainties of a flood risk model, and the system characteristics over a large spatial 

domain. As will be shown in that Chapter, iDT will help identifying an interpretable tree and 

deal with under-represented categories. 
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Chapter 3: Characterization of input uncertainties in flood risk 

modelling: application to the Rhine River basin  

 

3.1 Introduction 

Uncertainty and Sensitivity Analysis is now used in flood risk modelling to understand the 

impact of input uncertainties on the flood risk estimates uncertainty (Apel et al., 2004, Apel et 

al., 2008, Merz & Thieken 2009, De Moel & Aerts 2011, De Moel et al., 2014, Sampson et 

al., 2014, Kaczmarska et al., 2018). Uncertainty analysis (or, output uncertainty 

quantification) deals with the question of determining the uncertainty in the model output 

given the level of uncertainty in the model inputs. Sensitivity analysis (or, uncertainty 

attribution) deals with the question of which input uncertainty mostly contributes to the output 

uncertainty.  

 

A first step in any uncertainty and sensitivity analysis application is the selection of input 

uncertainties and their characterization, that is, to assign each input uncertainty with a 

probability distribution function (PDF) or a variability range or a list of plausible values. These 

choices represent our confidence/knowledge on what values we think are most likely to be 

true for a variable and how they are distributed. For example, triangular (Wagenaar et al., 

2016, Egorova et al., 2008), beta (Sampson et al., 2014), normal (Apel et al., 2008) and 

uniform (Saint-Geours et al., 2015, Duha Metin et al., 2018, Wagenaar et al., 2016) PDFs 

have been used in the past to characterize input uncertainties. A difference of the uniform 

distribution in respect with the rest is that it assumes that only the range that separates 

values into plausible and implausible is known. 

 

To characterize input uncertainties in an objective manner, good quality datasets (Bomers et 

al., 2019, Wing et al., 2020) or expert knowledge/judgement (Cooke, 1991, O’Hagan et al., 

2006, Krueger et al., 2012, Morris et al., 2014) could be used. But when it comes to flood 

risk assessment this is challenging. Good quality datasets are not always available or 

accessible. For example, regarding the value of exposed assets, economic databases like 

market values, construction costs etc. and/or exposure market portfolios could be used but 

they are usually owned by (re)insurance companies and thus are not accessible (Sampson 

et al., 2014). Besides accessibility issues, scarcity of datasets is another challenge. For 

example, flood damage data are rarely available (except for data rich countries like US, UK, 

Netherlands, Germany) to quantify the variability in vulnerability curves (Wing et al., 2020, 

Bernhoven et al., 2020). There is also the uncertainty that observations of hydrologic 
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extremes are particularly uncertain. Coxon et al. (2015) studied the uncertainty in observed 

discharges in gauging stations in England and Wales. They found that uncertainty intervals 

widely range from 10% to 397%. Regarding the option of expert knowledge elicitation, 

experts are aware of the existence of input uncertainties in models, but they may find it 

difficult to express these uncertainties in terms of probability. For example, it is well known 

there is considerable uncertainty in the vulnerability curves (Merz et al., 2010, McGrath et 

al., 2019, Wing et al., 2020) but it is still unclear how the damage changes depending on the 

flood damaging characteristics (e.g., flood depth, velocity, or the building types). 

 

Hence, flood risk modellers usually face the problem that little information is available to 

guide their choices of input uncertainty distributions (Moret et al., 2017). Scientists in other 

fields facing similar challenges have suggested to characterize input uncertainties through 

the definition of variability ranges instead of PDFs. For example, Moret et al. (2017) propose 

a method to define variability ranges by collecting information for each input uncertainty 

based on different criteria. 

  

In this chapter, I present a structured approach to define the variability range of the uncertain 

input parameters of a flood risk model. To exemplify the approach, I focus on the following 

three input uncertainties: the value of residential buildings, the damage ratio values of the 

vulnerability curves and the return period of flood events. These input uncertainties are 

present in almost every flood risk analysis. Moreover, they correspond to different flood risk 

components (hazard, vulnerability, exposure) and will be used in the sensitivity analysis in 

Chapter 4, helping us understand the relative importance of these 3 components. The 

approach is based on the synthesis of quantitative and qualitative information from literature 

sources. I looked at studies/reports where input uncertainties were defined (for a specific 

region(s) within the Rhine River basin), either by giving ranges of variability or a list of 

possible options. Then I extracted and combined these characterisations to define plausible 

ranges for the entire basin. I apply the approach to the Rhine River basin, however, it is 

transferable to similar applications and the reported ranges can be used as a starting point in 

future applications in the same and/or similar areas.  

 

3.2 Methodology 

 

3.2.1 Rhine River basin 

The Rhine River basin (shown in Figure 3.1) is a major European river with an average 

discharge of about 2,900 m3/s which is among the highest in Europe (Merz & Thieken 2009). 
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It starts from high mountainous areas to rocky canyons and lowland plains and passes 

through major European cities of 8 different countries (Switzerland, Liechtenstein, Austria, 

France, Germany, Belgium, Luxembourg and the Netherlands). The river can be divided into 

8 sections/sub-basins. High Rhine contains the origins of the Rhine and the river that leaves 

Lake Constance in a westerly direction and takes in the river Aare. Alpine Rhine section 

includes the confluence of the Anterior and Posterior Rhine which flows in a south-north 

direction until it reaches Lake Constance. The Alpine and High Rhine are in steep, high 

mountainous areas covered by glaciers. The Neckar sub-basin is located near Mannheim 

and it is where the river Neckar River flows into the Rhine. River Neckar has its source at a 

height of 706 m over sea level and flows over steep slopes. Cities and ports located in 

Neckar sub-basin include Plochingen, Stuttgart, Heilbronn, and Mannheim. The Upper Rhine 

is the section where the river changes direction from West to North. Important cities located 

here include Basel, Strasbourg, Colmar, Mulhouse. Moselle-Saar sub-basin is on the west of 

Upper Rhine and it flows through France, Luxembourg and Germany. Middle Rhine is the 

section where the river leaves the Mainz basin and enters the western part of the Rhenish 

Massif. In this part, there are meanders that have cut canyons of 200–300 depth into the 

rocks. Main is the sub-basin where the Main River flows into Rhine. Important cities in this 

sub-basin are Mainz and Frankfurt. Lower Rhine is the part where it enters the North 

German Plain. It falls from 50m to 12m and it is a typical lowland river. The Lower Rhine is 

characterized by intense industrial activities and a high density of population. Major ports 

and cities located here include Cologne, Düsseldorf, Neuss and Duisburg. Finally, the Rhine 

Delta roughly coincides with the political borders of Germany and the Netherlands, and it is 

the largest delta in Europe. The Rhine delta is situated at the southern margin of the North 

Sea Basin (Preusser, 2008; Merz & Thieken, 2009). Other large European cities that Rhine 

passes through are Karlsruhe, Bonn, Leverkusen, Arnhem, Utrecht, Rotterdam. 



 

32 
 

 

Figure 3. 1 Study Area (Rhine River Basin) 

 

3.2.2 Selection of input uncertainties 

A list of input uncertainties in flood risk modelling is shown in Table 3.1 (for more information 

on sources of uncertainty for each component see Gerl et al., 2016, Pittore et al., 2017, and 

Beven et al., 2018). I have selected to quantify the uncertainty in the value of residential 

buildings, the damage ratios of the vulnerability curves and the return period of the flood 

events (highlighted in bold letters in Table 3.1). They appear in three different components 

(hazard, vulnerability, exposure) of the flood modelling risk chain, so comparing their relative 

importance in Chapter 4 will enable us to compare the relative importance of the 3 

components. Besides, they are quantities that are used in almost every flood risk analysis. 

Residential assets are considered an important component of each nation’s wealth (Piketty 

& Zucman, 2014) and they account for the biggest share of damages induced by floods 

(Paprotny et al., 2020). Moreover, every vulnerability model uses an estimate of the 

residential asset’s value, either expressed per unit of area or in terms of individual buildings 

(Paprotny et al., 2020), to calculate flood losses. The vulnerability component is considered 

as an important driver of uncertainty in flood losses estimation (Jongman et al., 2012a, 

Wagenaar et al., 2016, Wing et al., 2020). Currently more than half of the available 

vulnerability models worldwide use curves that express the damage in relative terms, that is, 

through damage ratios. Moreover, the majority uses only flood depth to relate flood impact to 
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a damage (Gerl et al., 2016). Finally, an extreme value model is used in every flood risk 

analysis to estimate the return period of flood events (Beven et al., 2018). It starts with 

selecting the annual maximum discharges of the observed discharges, or peak values that 

exceed a certain threshold (Schendel & Thongwichian, 2017). A probability distribution 

function is then fitted to the peak values. The fitted distribution is then used to estimate 

discharges for various return periods. These can then be used as input to inundation models 

to simulate flood events (depths and extents) of various return periods. Usually, a set of flood 

events with different return periods is used to estimate losses for a range of flood events.  

 

Table 3. 1 List of input uncertainties for each flood risk component. In bold, I highlight the input uncertainties I 

have selected to quantify.  

Flood Risk 
Component 

Type of Uncertainty Input Uncertainty 

Exposure 

Exposed Assets 
Uncertainties 

Asset Value 

Asset Location 

Number of Assets 

Asset Footprint Area 

Asset Geometric features (e.g., height) 

Financial Sector (e.g., residential, commercial, 
industrial, etc.) 

Level of detail (e.g., individual objects or 
aggregated land use classes) 

Disaggregation 
Uncertainties 

Disaggregation method 

Proxy dataset (e.g., population, nightlights) 

Vulnerability 

Vulnerability Curves 

Damage Ratios 

Shape of the curve 

Flood damaging characteristics (e.g., flood depths, 
velocity, contamination etc.) 

Level of details (e.g., individual objects or 
aggregated land use classes) 

Model concept (deterministic, probabilistic) 

Defences 

Standard of Protection 

Protected Area 

Location 

Hazard 

Extreme Value modelling 
uncertainties 

Return Period of flood events 
Assumptions of extreme value statistics (e.g., 
homogeneity, independence, stationarity) 

Choice of sample (Annual Maximum Series, Peaks 
over threshold) 

Choice of Probability distribution function 

Choice fitting method 

Length of data records 

Event Selection 
uncertainties 

Rules used to define a flood event 

Inundation Modelling 
Uncertainties 

Definition of the river network 

Hydraulic Model (1D, 2D) 

Inaccuracies in datasets (e.g., DEM) 

Inaccuracies in channel geometry 

Channel parameters (e.g., roughness coefficient) 

Model assumptions (e.g., fixed channel capacity) 
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3.2.3 A systematic approach to explore the literature on the quantification of input 

uncertainties. 

In this section I suggest a structured approach to characterize input uncertainties. I am 

suggesting that it is possible to look at how past studies have quantified the variability of 

relevant input uncertainties, even if their scale of application differs, and synthesize the 

collected information to extract variability ranges for the input uncertainties and scale of 

application of interest in this thesis. To my knowledge, there has been no previous attempt to 

do such literature review, with the exception of Moret et al., (2017) in the energy sector. They 

suggested to characterize input uncertainties based on different criteria. Among the criteria 

for example are the use of historical datasets and/or expert judgement, which however in 

flood risk modelling is challenging to use as explained in the introduction. 

 

My approach starts with the literature search for each input uncertainty chosen for the case 

study. To search the literature I used the Google Scholar, Scopus, and Semantic Scholar 

engines.  I used the key words Uncertainty, Variability Flood risk, Rhine, Europe, for every 

input uncertainty. Additionally, I used the keywords residential building value, flood damage 

assessment, asset value for the residential buildings’ value, flood damage model, flood 

damage assessment, vulnerability functions, depth-damage functions, damage ratios for the 

vulnerability curves, and flood frequency curves, extreme value modelling, peak discharges, 

return period. To choose the relevant papers I read the abstract and looked at the figures 

and tables.   

 

The next step is to process the information retrieved from each literature source. This could 

include unit transformation, referencing values to the same time period or scaling values to 

nearby areas. If additional information is required in the processing, it could be retrieved 

either from existing open databases or based on a literature search. Asset values for 

example can be expressed either in square meters or individual objects.  Square meters 

values could be transformed to individual objects values using indexes that express the 

average area of the single asset. Moreover, it is quite often that they are referenced to a 

specific year or time period. Hence, when comparing values from different sources it is 

necessary to reference them in the same year. This could be done using indexes such as 

price indexes.  

 

The final step is to estimate the minimum and maximum values. Each study provides its own 

characterisation of uncertainty for a specific area within the study area. The final minimum 
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and maximum values for the study area are estimated by averaging the minimum and 

maximum values from these individual characterizations of uncertainties found in each study 

using equation (3.1): 

 

�̅�𝑖,𝑚𝑖𝑛 =
∑ 𝑋𝑖,𝑚𝑖𝑛,𝑠

𝑠
𝑠=1

𝑆

�̅�𝑖,𝑚𝑎𝑥 =
∑ 𝑋𝑖,𝑚𝑎𝑥,𝑠

𝑠
𝑠=1

𝑆

  (3.1) 

Where:  

X̅i,min, X̅i,max , are the final minimum and maximum values for input uncertainty i. 

Xi,min,s, Xi,max,s , are the minimum and maximum values for input uncertainty i, for study s.  

S is the total number of studies. 

 

There are two cases: studies that provide a range of variability and studies that provide a list 

of possible values. In the former case one can directly apply equation 3.1. In the latter case, 

one first needs to derive minimum and a maximum value from that list before applying 

equation 3.1. 

 

In the following sub-sections, I exemplify the approach with an application on the Rhine 

River Basin and focusing on the three selected input uncertainties. 

 

3.3 Results  

 

3.3.1 Residential Buildings Values  

 

Literature Search 

 

I found nine studies (listed in Table 3.2) that reported minimum and maximum Residential 

Buildings Value (RBV) for areas within the Rhine River basin. The scale of application for the 

different studies may range from local (e.g., dike ring, catchment, city) to large (e.g., 

country).  

 

The studies provided estimates of RBV for urban, agricultural and industrial areas. I only 

considered the values provided for urban areas. The studies did not provide estimates of 

RBV depending on the building type except for Paprotny et al., (2020), and hence, I did not 

make such distinctions in my analysis. Moreover, the studies provided estimates of RBV in 

market, replacement and/or depreciated values which reflect the value of the buildings 

differently. Depreciated values represent the reduced value of the assets after considering 
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the loss in their value that naturally occurs through time. They reflect a value at the actual 

time of a flood and are useful to estimate the damage to the national economy (Messner et 

al., 2007).  Replacement costs reflect the costs which would be necessary to replace/rebuild 

the buildings at the time of the event and are more relevant for the insurance companies or 

individuals (Messner et al., 2007). Market values represent the value of the assets on the 

real estate market. They reflect the total value of the building (including the land and 

contents) (Messner et al., 2007). 

 

Table 3. 2 List of studies, their scale, area and type of values, considered in the quantification of uncertainty of 

Residential Buildings Value. 

Studies Scale Area Type of values 

De Moel et al. (2011) Dike Ring South Netherlands Market values 

Jongman et al. (2012a) City Eilenburg (Germany), Carlisle (UK) 
Replacement, Depreciated,  
Market values  

Cammerer et al. (2013) Catchment Northwestern Austria Replacement values 
Jongman et al. (2014) Country The Netherlands Market values 
Wagenaar et al. (2016) Dike Ring Southwest Netherlands Replacement values 
Huizinga et al. (2017) Country Europe Depreciated values 
Lüdtke et al. (2019) Country Europe Replacement values 
Paprotny et al. (2020) Country Europe Replacement values 
Sieg et al. (2022) Country Germany Market values 

 

For this input uncertainty I extracted variability ranges at country level and more specifically 

the 8 countries that Rhine River flows over, averaging the values provided by the nine 

studies.  

 

Processing the retrieved information 

 

In some cases, estimates of residential building values were given in Eur/m2. I converted 

them into Eur/Building per country by using the average building area of each country.  

 

𝑅𝐵𝑉𝑚𝑖𝑛,𝑟,𝑠 = 𝑅𝐴𝑉𝑚𝑖𝑛,𝑟,𝑠 ∗ 𝐵𝐴𝑟   ,

𝑅𝐵𝑉𝑚𝑎𝑥,𝑟,𝑠 = 𝑅𝐴𝑉𝑚𝑎𝑥,𝑟,𝑠 ∗ 𝐵𝐴𝑟
  (3.2) 

Where: 

RBVmin,r,s, RBVmax,r,s is the minimum and maximum value in Eur/Building for region r in study 

s 

RAVmin,r,s RAVmax,r,s is the minimum and maximum value in Eur/m2, for region r in study s 

BAr is the building area for region r estimated by averaging values provided by JBA (personal 

communication), Huizinga et al. (2007) and Eurostat (2022a). 
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In cases where ranges for residential buildings values were not available for a region, I 

calculated them from estimates for a nearby region, using the construction costs indexes of 

the two regions, as follows: 

 

𝑅𝐵𝑉𝑚𝑖𝑛,𝑟,𝑠 = 𝑅𝐵𝑉𝑚𝑖𝑛,𝑗,𝑠 ∗
𝐵𝐶𝐶𝑟,𝑠

𝐵𝐶𝐶𝑗,𝑠
  ,

𝑅𝐵𝑉𝑚𝑎𝑥,𝑟,𝑠 = 𝑅𝐴𝑉𝑚𝑎𝑥,𝑗,𝑠 ∗  
𝐵𝐶𝐶𝑟,𝑠

𝐵𝐶𝐶𝑗,𝑠

  (3.3) 

Where:  

RBVmin,j,s , RBVmax,j,s  are the minimum and maximum values available for the nearby country 

j,  

BCCr,s is the building construction costs for country r  retrieved from Eurostat (2022b) 

BCCj,s is the building construction costs for country j  retrieved from Eurostat (2022b) 

 

I selected 2011 as the reference year. In studies where residential building values were 

estimated at a different year, I rescaled them using equation 3.4: 

 

𝑅𝐵𝑉𝑚𝑖𝑛,𝑟,𝑠 = 𝑅𝐵𝑉𝑚𝑖𝑛,𝑟,𝑠,𝑦 ∗ (
𝐻𝑃𝑟,2011

𝐻𝑃𝑦
) ,

𝑅𝐵𝑉𝑚𝑎𝑥,𝑟,𝑠 = 𝑅𝐵𝑉𝑚𝑎𝑥,𝑟,𝑠,𝑦 ∗ (
𝐻𝑃𝑟,2011

𝐻𝑃𝑦
)  

  (3.4) 

Where:  

RBVmin,r,s,y , RBVmax,r,s,y is the minimum and maximum residential building value for region r 

and year y for study s, respectively 

HPr,2011 is the house price index for country r for the year 2011 retrieved from Eurostat 

(2022c). 

HPr,y is the house price index for country r for the year y retrieved from Eurostat (2022c). 

 

Estimation of minimum and maximum values 

 

I estimated the final minimum and maximum values per country using equation 3.1. I used 

the values from all the available studies without converting to a specific type of values 

(Market, Depreciated or Replacement). The results are shown in Figure 3.2 (and in Table B.1 

in the Appendix B).  
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Figure 3. 2 Minimum and Maximum Residential building values (in Euros) per country in the Rhine River basin 

 

3.3.2 Damage ratio values of the vulnerability curves 

 

Literature search  

 

I found eight studies listed in Table 3.3 each using a different set of vulnerability curves. In 

these studies, one can see that while the scale of application of the vulnerability curves 

ranges from local (e.g., river reach, dike ring and/or city) to large (e.g., country and/or 

continent) the same vulnerability curves can be used. Hence, despite the differences in scale 

among the studies I used the curves I found within them to extract variability ranges for the 

vulnerability curve for the whole Rhine. 

 

Table 3. 3 List of studies, their scale, areas, and vulnerability curves, considered in the quantification of 

uncertainty of vulnerability curves. The letters in the columns correspond to the following curves a: Rhine Atlas, b: 

MURL, c: Hydrotec, d: Damage Scanner, e: Flemish, f: Netherlands later, g: Polynomial, h: FLEMO, i: HAZUS, j: 

Multi Coloured Manual, k: JRC (Germany), l: linear, m: square root, n: HIS-SSM, o: Tebodin/Billah, p: JRC (UK), 

q: JRC. With red colour I indicate the curves I did not consider as they were developed for countries not 

belonging to the Rhine River basin. 

Studies Scale Area 
Vulnerability Curves 

a b c d e f g h i j k l m n o p q 

Apel et al. 
(2009) 

City Germany + + +     +          

Bubeck & 
De Moel 
(2010) 

Country Netherlands +   +              

De Moel & 
Aerts 
(2011) 

Dike Ring Netherlands +    + +            

Elmer et al. 
(2010) 

Country Germany  + +    + +          
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Jongman 
et al. 
(2012a) 

City 
Eilenburg 
(Germany), 
Carlisle (UK) 

+   + +   + + + +     +  

Cammerer 
et al. 
(2013) 

Catchment 
Northwestern 
Austria 

+ + +    + +    + +     

Wagenaar 
et al. 
(2016) 

Dike ring 
Southwest 
Netherlands 

+       + + +    + +   

Huizinga et 
al. (2017) 

Continental All continents                 + 

 

Moreover, these studies include in total 17 vulnerability curves. Cammerer et al. (2013) 

tested the transferability of different curves in residential areas and found that curves derived 

from similar regions performed much better than the curves from dissimilar regions. Hence, 

for this case study I discarded the curves which were developed for other countries than the 

ones through which the Rhine River flows. These were the HAZUS curve (developed for the 

US), Multi Coloured Manual curves (UK) and the ones developed by the Joint Research 

Centre (JRC) for the UK. Of the curves I considered, only the Rhine Atlas was developed 

specifically for the Rhine River basin, whereas the FLEMO and MURL models were 

developed for Germany, the Flemish for Belgium, the HIS-SSM, Damage Scanner, 

Netherlands Later and Tebodin for the Netherlands, and JRC and JBA for the whole Europe. 

 

Estimation of minimum and maximum values 

 

First, I estimated minimum and maximum vulnerability curves for each study. To do that I 

used the different vulnerability curves shown in figures within each study. In Figure 3.3 I 

exemplify this with the study of Wagenaar et al. (2016). For each flood depth (e.g., red 

vertical line at flood depth 4m) I extracted4 the damage ratio value for each curve (e.g., red 

dashed horizontal lines). I recorded the values in a table and then calculated the minimum 

and maximum values, and range at each flood depth. The range is defined as the difference 

between the maximum and minimum values. 

 

 
4 I used the Graph Grabber 2.0.2 software to extract the values from the published figures. 
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Figure 3. 3 An example (based on a figure retrieved from Wagenaar et al., (2016)) for estimating minimum and 

maximum vulnerability curves. 

 

The final minimum and maximum values (shown in Figure 3.4) are calculated by averaging 

the minimum and maximum values of all studies using equation 3.1. The final range at each 

flood depth is shown in Table 3.4.  

 

 

Figure 3. 4 Vulnerability curves variability ranges. Left: Minimum and Maximum vulnerability curves resulted 

from the literature. Right: Minimum and Maximum (blue dashed lines) vulnerability curves for the step 

vulnerability curve of the flood risk model I used in Chapter 4. The blue dashed lines were extracted based on the 

ranges of Table 3.4 and applying equation 3.5. 

 

Table 3. 4 Variability range for damage ratios at various flood depths 

Flood depth (m) Range 

1 0.22 
  
2 0.29 
  
3 0.34 
4 0.45 
5 0.58 
6 0.70 
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Table 3. 5 Perturbation range for the baseline vulnerability curve function used in Chapter 4. The 1st column 
shows the flood depths and the second column the corresponding minimum and maximum damage ratio values. 

Flood Depth (m) Perturbation Range (Min-Max)  

0-0.2 0-0.11 

0.2-0.5 0-0.14 

0.5-0.7 0-0.18 

0.7-1 0-0.22 

1-1.7 0.01-0.3 

1.7-2.34 0.03-0.34 

2.34-3 0.08-0.42 

>3 0.22-0.68 

 

In the sensitivity analysis application of Chapter 4 I characterized the uncertainty in 

vulnerability curves by perturbing the baseline step function (black line in the right plot of 

Figure 3.4) of JBA Risk Management Ltd flood risk model within a range (blue dashed lines 

in the right plot of Figure 3.4). To define this range of perturbation I used the ranges in Table 

3.4 and equations 3.5: 

 

𝑉𝑢𝑙𝑛𝑚𝑖𝑛 = 𝑑𝑟𝑖 −
𝑅𝑛𝑖

2

𝑉𝑢𝑙𝑛𝑚𝑎𝑥 = 𝑑𝑟𝑖 +
𝑅𝑛𝑖

2

  (3.5) 

Where 𝑑𝑟𝑖 is the default damage ratio value at flood depth i 

𝑅𝑛𝑖 is the range at flood depth i reported in Table 3.4 

 

The ranges I defined in Table 3.4 are per 1 meter of flood depth. While the steps of the 

baseline function are in higher resolution (<1 meter). When applying equation 3.5, for each 

step of the function I used as 𝑅𝑛𝑖 the range of the flood depth interval the step belongs to in 

Table 3.4. For example, for every step with depth <1m, 𝑅𝑛𝑖 in equations 3.5 will be equal to 

0.22. The resulting range of perturbation for each step is shown in Table 3.5. One can notice 

that while the resulting range from the literature in the left plot of Figure 3.4 is increasing for 

flood depths >3m, the range of perturbation in the right plot of Figure 3.4 does not increase. 

This happens because in the baseline function the last step contains all flood depths >3m 

and so this step got the same range. Moreover, in the first 4 steps the minimum damage 

ratio value is always zero. This happens because when applying equation 3.5 to the baseline 

damage ratio would result in negative values which is unrealistic and so I decided to put the 

minimum damage ratio equal to zero. 
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3.3.3 Return period of the flood events 

 

Literature Search 

 

For this input uncertainty, I found five studies in total (shown in Table 3.6). Three of them 

performed extreme values analysis based on observed discharges for the Cologne Station. 

Each study used datasets of different record length. The other two did the same for the 

Lobith station, again using datasets with different record lengths. In this case it is sensible to 

average estimates that refer to the same station. Thus, the spatial unit for this input 

uncertainty is the gauging station. More specifically, I used the estimates from Merz & 

Thieken (2005), Merz & Thieken (2009), Apel et al. (2008) for Cologne and Toonen et al. 

(2015) and Bomers et al., (2019) for Lobith. 

 

Table 3. 6 List of studies, their gauging station, dataset and time periods, considered in the quantification of 

uncertainty of vulnerability curves. 

Studies Gauging Station Dataset Time Period 

Merz & Thieken. (2005) Cologne Annual Maximum series 1880-1999 

Merz & Thieken (2009) Cologne 
Annual Maximum & Peaks 

over Threshold series 
1846-2004 

Apel et al. (2008) Cologne Annual Maximum series 1961-1995 

Toonen et al. (2015) Lobith Annual Maximum series 1901-2011 

Bomers et al. (2019) Lobith Annual Maximum series 1901-2018 

 

Estimating the minimum and maximum values 

  

The studies included figures providing estimates of minimum and maximum discharges for 

various return periods. I used these figures to estimate minimum and maximum Return 

Period for various discharges. In Figure 3.55 I exemplify this with the study of Bomers et al. 

(2019). For various discharges, e.g., red horizontal lines, I estimated the minimum and 

maximum return periods, e.g., red dashed vertical lines. I then plotted the minimum and 

maximum return periods for the various discharges. 

 

Then, using equation (3.1) I calculated the minimum and maximum values for each gauging 

station using the estimates from the corresponding studies. The results are summarized in 

Figure 3.6 (and in Table B.2 in Appendix B). 

 

 
5 I used the Graph Grabber 2.0.2 software to extract the values from the published figures. 
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Figure 3. 5 An example (based on a figure retrieved from Bomers et al. (2019)) for estimating min and maximum 

values of return periods for various discharges. 

 

 

Figure 3. 6 Minimum and Maximum values for the return period (in years) depending on the peak discharges for 

the Lobith and Cologne gauging stations.  

 

These graphs provide variability ranges for return periods depending on the discharge. 

Additionally, I extracted variability ranges for various return periods without having to pass 

through a discharge value. I summarize them in Table 3.7. In Figure 3.6 and the Lobith plot, I 

exemplify how I calculate the range for the 10-year return period. The grey solid line is the 

mean of the variability range (black dashed lines). I found where on this line the 10-year 

return period lies (red dot). Then, following a vertical line down and up until intersecting 

lower and upper black dashed lines I calculated the min and max values for the 10-year 

return period respectively (red crosses). I did the same for the rest of the return periods 

shown in Table 3.7. 
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Table 3. 7  Minimum and Maximum values of Return Period for various return periods for the Lobith and Cologne 

gauging stations. 

Lobith 

Return Period 2 5 10 15 20 50 100 200 500 1500 

Min RP 1.75 3 4.5 5.2 6.4 8 10 11 12.5 15 

Max RP 2.4 7 15 25 34 88 200 385 894 3200 

Cologne 

Return Period 2 5 10 15 20 50 100 200 500 1500 

Min RP 1.5 4 8.4 12 16.2 23 33 48 86 - 

Max RP 2.6 6 12 18 24.6 75.4 164 371 1014 - 

 

3.4 Discussion 

The resulting residential buildings values are generally low in respect with current values. 

One explanation is that most of the studies considered are more than five years old and all 

values are referenced back to year 2011. Hence, any recent temporal variations in economy 

that may affect building values were probably not accounted for. For example, none of the 

studies considered current high inflation rates which can significantly impact the value of a 

building. Moreover, as expected the resulting variability ranges differ, but not significantly, 

among the regions. The differences existing among the countries can be justified by 

temporal and spatial variations. Temporal variations exist due to economic trends, 

investments, inflation rates. Spatial differences may exist due to differences in wages, 

material costs, etc., (Merz et al., 2010). Moreover, there is great heterogeneity among the 

residential properties’ characteristics (Eurostat, 2013). They can vary in terms of their 

structural type (e.g., detached, semi-detached, etc.), construction material (e.g., concrete, 

steel, etc.) and age.  

 

Regarding the damage ratios, the ranges are wide for all the different flood depths 

considered and they are increasing with increasing flood depths. These wide variability 

ranges stem from the differences existing in the various models considered. The vulnerability 

curves models were developed using different approaches (e.g., empirical, expert 

judgement, synthetic). For example, FLEMO was developed based on flood damage data, 

the Tebodin model using expert judgement, the Damage Scanner, the Flemish, Rhine Atlas 

and JBA models using an approach that combined flood damage data and information 

retrieved from a literature review. Moreover, the different models even though they have 

been used in case studies in Rhine, they were originally developed for various regions as 

mentioned in the previous section. Finally, another reason is that all models that were used 

to estimate the variability ranges are based only on flood depth to translate the flood impact 

to damages. According to the literature, even though flood depth is the main contributor to 
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flood damages it does not explain the total variability in observed damages (Gerl et al., 

2016). For example, Merz et al. (2004) used a flood damage database for residential 

buildings and a non-parametric regression model based on flood depth to show that there is 

great variability in flood losses for a water depth of > 1m, and that the flood depth explains 

only a part of that variability. Thieken et al. (2005) analysed the impact of different flood 

characteristics to residential buildings losses and found that variability in losses increases 

with increasing flood depths, which might explain why the differences among the models are 

more pronounced for larger flood depths. Other flood characteristics like duration, velocity 

and water contamination are deemed to also contribute to the total variability of flood losses. 

 

Finally, regarding the Return Period of the flood events there is large uncertainty for large 

return periods (>100 years). One explanation is the short record lengths (around 100 years) 

used in the local studies to perform the extreme value analysis. Extrapolation of the 

measured discharges from such records to return periods much larger than the record length 

results in large uncertainty for the predicted discharges (Bomers et al., 2019) as shown in 

Figure 3.6. The values shown in Table 3.6 are extracted based on the discharges shown in 

Figure 3.6 hence it is sensible that there is large uncertainty. Moreover, I couldn’t extract 

variability ranges for the whole Rhine River basin because I collected information only for 

two gauging stations. The variability ranges extracted for these two stations are 

representative for the local areas but probably not for the whole Rhine River basin. Thus, I 

deemed that the sample of two stations was too small to extrapolate to the whole Rhine 

River basin. For the sensitivity analysis application of the next chapter, I will define my “own” 

variability range for the Rhine River basin, and I will check how this compares to the ranges I 

calculated for the two stations. 

   

3.5 Conclusions 

In flood risk modelling our knowledge of input uncertainties is limited and the probability 

distribution are practically unknown. How we quantify the input uncertainties in such cases 

remains an open challenge, yet a crucial step in uncertainty and sensitivity analysis to 

understand the robustness of risk model outputs. In this chapter I presented a 

methodological approach for addressing this challenge. I assumed that independent and 

uniform prior distributions are the most appropriate distribution type given the lack of 

knowledge. A literature review is then performed to determine minimum and maximum 

values for these uniform distributions. I exemplified the approach with an application to the 

Rhine River basin for three input uncertainties in flood risk modelling. I defined variability 

ranges for the residential buildings value and the vulnerability curves. These ranges will be 
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used in a sensitivity analysis application in the next chapter. Regarding the return period of 

the flood events, I extracted variability ranges only for two gauging stations because I could 

not find relevant information for more stations. The reported ranges for the two stations can 

still be useful for local scale flood risk applications. This approach can be transferred to 

similar applications and areas. In the next chapter I explore how the uncertainties defined 

here propagate through a flood risk model of the Rhine River.  
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Chapter 4: Linking the relative importance of input uncertainties 

of a flood risk model to River Rhine spatial characteristics 

 

4.1 Introduction 

Comprehensive flood risk assessments are necessary to better manage the risk associated 

with floods (European Commission, 2007, United Nations, 2005, 2015). Nowadays, 

numerous flood risk models are available to simulate flood risk (usually expressed in terms 

of average annual losses or selected quantiles of losses over a year) at various scales, from 

catchment to regional or even global scale (Ward et al., 2015, Trigg et al., 2016, 

Kaczmarska et al., 2018). They involve a complex modelling chain that estimates risk as the 

product of the hazard, exposure and vulnerability (Duha Metin et al., 2018; Beven et al., 

2018). These chains may differ among the various models, but some basic components are 

common. A typical modelling chain is shown in Figure 1.1 in the introduction chapter. Each 

element in the chain can contain numerous aleatory and/or epistemic input uncertainties, 

that propagate and contribute to the final uncertainty in risk estimates (Apel et al., 2004; 

Merz & Thieken, 2009; Beven et al., 2018). 

 

Different studies across Europe have tried to quantify output uncertainty of flood risk models 

and attribute it to its various sources along the modelling chain. I have summarized the 

conclusions of these studies in Figure 4.1. Green dots mark the study locations and their 

size is proportionate to the size of the study domain. The boxes are coloured according to 

which input uncertainty was found to dominate uncertainty in flood loss (risk) estimates. I see 

that studies reached different conclusions regarding what uncertainty mostly influences flood 

risk estimates within a particular study domain. 
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Figure 4. 1 Summary of local scale uncertainty attribution studies results in the Rhine River basin and Europe. 

The boxes are coloured according to the conclusion of each study as to which input uncertainty dominates the 

uncertainty in flood loss estimates. 

 

There are two possible explanations for these ambiguous outcomes. One explanation may 

be that the studies used different flood risk models and characterization of input 

uncertainties, which can significantly impact the sensitivity analysis results (Pappenberger et 

al., 2008; Pianosi et al., 2016). For example, Merz & Thieken (2009) used a peaks over 

threshold model to estimate peak discharges, which they then transformed into flood depths 

and extents using two different 2-dimensional inundation models. Apel et al. (2008), instead, 

used five different extreme value distributions to estimate peak discharges and a 1-

dimensional inundation model to simulate flood depths and extents. These studies also differ 

in the characterization of input uncertainties. For example, Merz & Thieken (2009) and de 

Moel & Aerts (2011) used different vulnerability curves to quantify the uncertainty in flood 

loss estimates. Saint-Geours et al. (2015) used a single depth-damage curve and defined a 

[-50%, 50%] variability range around their default curves. Apel et al. (2004) applied a 

randomizing procedure on the three-parameter polynomial function representing the 

vulnerability curve used to model damage estimates.  

 

The second explanation is that the studies reviewed above were conducted in different cities 

and catchments over a large region (ranging from the Mediterranean to central and Northern 

Europe). Hence the differences in the dominant input uncertainties could be due to the 

climatic, hydrological or socio-economic differences across the study sites.  



 

49 
 

 

In this chapter, I study the question of uncertainty attribution across a much larger domain 

than those investigated in the previous studies, namely the heterogeneous region of the 

Rhine River basin (described in Section 3.2.1). The goal is to provide evidence on how the 

importance of input uncertainties varies across places with different climatic, hydrologic, land 

cover and socio-economic characteristics. To this end, I use an industry flood risk 

(catastrophe) model provided by JBA Risk Management Ltd (hereafter JBA) which is 

capable of simulating flood risk across such a large region. In this way, I can compare 

results from different sub-regions in the domain while using the same model, methods and 

data everywhere. I use a combination of different statistical methods to analyse the 

sensitivity of model outputs to the input uncertainties with the aim to: 

1. Identify the dominant input uncertainties within the spatial domain. 

2. Find the system characteristics that explain the spatial variability of the dominant 

input uncertainties 

 

4.2 Methodology 

 

4.2.1 Loss Calculation 

Like all Flood Risk Models (FRM) (or catastrophe models, Mitchell-Wallace et al., 2017), JBA 

FRM uses multiple components and inputs to estimate flood risk in terms of economic losses 

induced by floods (Figure 4.2). The estimation starts by calculating the loss for a single 

exposed asset and a single flood event according to Equation 4.1: 

 

𝐿𝑠,𝑡 = 𝐸𝑉𝑠 × 𝐷𝑅(𝐹𝐷𝑠,𝑡 )  (4.1) 

Where L𝑠,𝑡  is the loss at exposed asset 𝑠 for event t, EV𝑠 is the asset value, 𝐹𝐷𝑠, 𝑡 is the flood 

depth and 𝐷𝑅(. ) is the vulnerability curve that returns the damage ratio as a function of the 

flood depth.  

 

Equation 4.1 is applied for all the exposed assets in the spatial domain and for a range of 

flood events over a 10,000-year period. Such a large time period is used so that one can 

robustly calculate statistics of the loss frequency distribution. In this Chapter I will consider 

two: the Average Annual Losses (AAL), i.e., is the average of the per-year losses across the 

a range of flood events, and the Loss Exceedance Curves (LEC), i,e, the level of annual 

losses that is exceeded with given probability. These loss statistics at individual asset point 

can then be spatially aggregated over user-defined spatial units. In this project, I aggregated 

losses at Catastrophe Risk Evaluating and Standardized Target Accumulation (CRESTA) 
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high resolution zones (CRESTA, 2022). This is a standard spatial aggregation unit widely 

used in the (re)insurance sector (Grossi & Kunreuther, 2005, Mitchell-Wallace et al., 2017, 

Kaczmarska et al., 2018). For a CRESTA Zone (denoted by C hereafter), the Average 

Annual Loss 𝐴𝐴𝐿𝑐 is calculated using the following equation: 

 

𝐴𝐴𝐿𝑐 = ∑ ∑ 𝑝𝑠,𝑡𝐿𝑠,𝑡𝑡𝑠∈𝐶             (4.2) 

Where 𝑝𝑠,𝑡 is the annual probability of event t happening at the location of asset s.  

 

The level of annual losses that is exceeded with given probability in the C-th CRETSA Zone, 

𝐿𝐸𝐶𝐶(𝑝), is defined as: 

 

𝐿𝐸𝐶𝐶(𝑝) =  𝑋    𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   ℙ(𝐿𝐶,𝑌 ≥ 𝑋) =  𝑝             (4.3) 

where p is the probability value chosen by the user, and 𝐿𝐶,𝑌 is the expected annual loss in 

Zone C in year Y, calculated as: 

 

𝐿𝐶,𝑌 = ∑ ∑ 𝑝𝑠,𝑡  𝐿𝑠,𝑡𝑡∈𝑌𝑠∈𝐶       (4.4) 

 

Note that the probability p appearing in Equation (4.3) can equivalently be expressed (and 

will be expressed throughout this chapter) as a Return Period (RP) (in years): 

 

𝑅𝑃 = 1 / 𝑝               (4.5) 

 

4.2.2 Calculation of flood depths, damage ratios and exposed asset value 

The flood depth at each location of the study domain for a given flood event (𝐹𝐷𝑠, 𝑡) can, in 

principle, be estimated by running a flood inundation model with river flow and/or rainfall as 

forcing inputs characterising that event. A large number of flood events is necessary to 

approximate the probability of exceedance ℙ(𝐿𝐶,𝑌 ≥ 𝑋) from the empirical distribution 

function for 𝐿𝐶,𝑌. However, running the inundation model for millions of different flood events 

at such large scales is computationally prohibitive. To overcome this problem, the flood 

inundation model is first used to derive Flood Hazard Maps for a limited set of return periods 

(in this case 20, 50, 100, 200, 500 and 1,500 years) and then flood depths for events of any 

other return period are obtained by interpolating through the flood depths of the appropriate 

hazard maps (see Fig. 4.2). For example, if the exposed asset is attributed with a return 

period of 147 years for an event, then the model will interpolate between the depths of the 

maps with return periods 100 and 200. In the Appendix C1 I provide more information on 

JBA flood risk model and on the flood events and hazard maps generation. 
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The flood events considered for the calculations of AAL and/or LEC are pre-computed and 

stored in a Flood Event Set. It contains millions of plausible flood events (observed and 

simulated in a 10,000-year period). Each event is assigned with a return period and its 

location, year and duration. Typically, the event sets are generated using a historical record 

of observed events in which synthetic events, generated using physical (e.g., Global 

Circulation Models) and statistical models (e.g., extreme value models, Heffernan & Tawn, 

2004) are added with the purpose that the final record will cover events that has not been yet 

observed (Grossi & Kunreuther, 2005, Lamb et al., 2010, Keef et al., 2013, Mitchell-Wallace 

et al., 2017, Kaczmarska et al., 2018). 

 

The estimated flood depth (𝐹𝐷𝑠, 𝑡) is then used to read the damage ratio (DR) from the 

vulnerability curve. The damage ratio values range between 0 (no damage) and 1 (total 

loss). Here step functions were used (as also done for instance in Apel et al., 2009, 

Cammerer et al., 2013, Sairam et al., 2021). The use of step functions means that it is 

assumed that a range of sufficiently similar flood depths all lead to the same damage ratio. 

Other studies have used different shapes for the vulnerability functions (Bubeck & de Moel, 

2010, De Moel & Aerts, 2011, Jongman et al., 2012a, Wagenaar et al., 2016). I will further 

discuss the implications of this choice in Section 4.4. 

 

The estimated damage ratio value is multiplied by the value of the exposed asset (𝐸𝑉𝑠 ) 

which is retrieved from the exposure portfolio. The exposure portfolio contains all the 

relevant information regarding the exposed assets (e.g. location, total value etc.). Here I 

fabricated an exposure portfolio based on a market portfolio provided by JBA Risk 

Management. The spatial resolution of this market portfolio is at CRESTA zones level, as it 

is usually the case in flood risk modelling (Mitchell-Wallace et al., 2017, Kaczmarska et al., 

2018). I then disaggregated it at coordinate level based on the number of exposed assets in 

each CRESTA zone and by sampling against the distribution of a proxy dataset (population).  
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Figure 4. 2 Schematic representation of loss calculation for a single exposed asset for a single event. 

 

4.2.3 Global Sensitivity Analysis  

I selected to analyse the uncertainty associated with four inputs: (1) the value of the exposed 

assets, which in this case coincides with the residential buildings’ value (RBV) as the assets 

are all residential; the Damage Ratio values of the vulnerability curves; (3) the return period 

of the hazard maps; and (4) the return period of the flood events in the event set. Note that 

these input uncertainties refer to different flood risk components (exposure, vulnerability and 

hazard). Thus, performing sensitivity analysis will enable us to compare the relative 

importance of the three components. It is worth noting that by changing the return period of 

the Hazard maps both the flood depths and extents are perturbed. 

 

I used global sensitivity analysis (GSA) to formally assess the relative importance of these 

input uncertainties on the AAL and the LEC at different return periods. The four steps of 
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GSA were described in the introduction and in Figure 1.2. Here I briefly describe how I 

applied each step to this case study: 

1. Identification and characterisation of input uncertainties. For the characterization of 

the uncertainty in residential buildings’ value and the vulnerability curves I adopted 

the ranges reported in Chapter 3 and summarized in Figure 4.3. For the return period 

of the hazard maps and of the flood events, in Chapter 3 I could not extract variability 

ranges for the whole Rhine basin, hence here I decided to apply a +-50% uniform 

perturbation of the return periods from their default values. In Table 4.1 I show how 

this compares to the ranges I extracted from the literature for the two stations of 

Cologne and Lobith. In Lobith the +-50% uniform perturbation underestimates the 

range for return periods >15 years, closely estimated the 10-year return period range 

and overestimates the range for lower return periods (<10 years). In Cologne, there 

is an underestimation for return periods >100 years, a good fit for the 50-year return 

period and an overestimation for the return period <20 years. 

2. Sampling inputs’ variability space. I randomly sampled combinations of input 

uncertainty values from the input variability space using a random uniform distribution 

and the Latin Hypercube Sampling strategy. I generated a sample of size 400. 

3. Model execution against each input value combination. I executed the model against 

each input combination.  

4. Calculation of sensitivity indices. Finally, to calculate sensitivity indices I used the 

PAWN method (Pianosi & Wagener, 2015, Pianosi & Wagener, 2018). In the PAWN 

method, the sensitivity of the output y to the input factor xi is quantified by measuring 

the distance between the unconditional cumulative distribution function (CDF) of y 

that is obtained by varying all inputs simultaneously, and the conditional CDF 

obtained when all inputs vary but xi. Operationally, if one has a dataset of input-

output samples (e.g., generated by latin hypercube sampling as in point 2), the 

PAWN sensitivity indices are approximated by splitting the range of variation of each 

input uncertainty xi into n equally spaced intervals 𝐼𝑘 and using the following 

equations: 

 

�̂�𝑖 = 𝑚𝑒𝑎𝑛𝑘=1,…,𝑛 𝐾𝑆(𝐼𝑘)  (4.6) 

𝐾𝑆(𝐼𝑘) = 𝑚𝑎𝑥𝑦|�̂�𝑦(𝑦) − �̂�𝑦|𝑥𝑖
(𝑦|𝑥𝑖  ∈  𝐼𝑘)|  (4.7) 

Where �̂�𝑦(𝑦) and �̂�𝑦|𝑥𝑖
(𝑦|𝑥𝑖  ∈  𝐼𝑘) are the unconditional and conditional CDFs of the 

output y and KS is the Kolmogorov-Smirnov (KS) statistic that measures the distance 

between the CDFs (Kolmogorov, 1933, Smirnov, 1939). 
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The sensitivity indices vary between 0 and 1: the higher the value of the sensitivity 

index the more sensitive the output to the input uncertainty. PAWN has been shown 

to effectively estimate sensitivity indices with a relatively low number of model 

evaluations (Pianosi & Wagener, 2018) which is useful in this context to use a lower 

sample size and reduce the computational time of this experiment. To assess the 

robustness of the estimated sensitivity indices values, bootstrapping (Efron & 

Tibshirani, 1994, Archer et al., 1997) was used to repeat the calculation of the 

sensitivity indices against a prescribed number of random resamples of the original 

input-output dataset, yielding a statistical distribution of the sensitivity indices. 

 

Table 4. 1 Comparison of the return period ranges resulting from the +-50% uniform perturbation from default 

values with the return period ranges extracted from the literature (in Chapter 3) for the gauging stations of 

Cologne and Lobith. 

Lobith 

Return Period 2 5 10 15 20 50 100 200 500 1500 

Min RP 1.75 3 4.5 5.2 6.4 8 10 11 12.5 15 

Max RP 2.4 7 15 25 34 88 200 385 894 3200 

Cologne 

Min RP 1.5 4 8.4 12 16.2 23 33 48 86 - 

Max RP 2.6 6 12 18 24.6 75.4 164 371 1014 - 

Uniform +-50% perturbation 

-50% 1 2.5 5 7.5 10 25 50 100 250 750 

+50% 3 7.5 15 22.5 30 75 150 300 750 2250 

 

 

 

Figure 4. 3 Variability ranges for each input uncertainty. 

 

4.2.4 Definition of dominant input uncertainties 

I calculate sensitivity indices to rank the input uncertainties with respect to their relative 

contribution to the output uncertainty and determine the most important ones (dominant input 

uncertainties) in each spatial unit. However, as mentioned in Sec. 4.2.3, by using 

bootstrapping a distribution of sensitivity indices is actually derived for each input uncertainty 

in each unit. An intuitive approach to define the dominant input uncertainty may be to 
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compare the means of the bootstrap resamples. In Appendix C2 I provide reasons why this 

approach may not work well. Here I propose a new way to define the dominant input 

uncertainty that considers the full distribution.  

1. For each bootstrap resample, I determine the dominant input uncertainty as the one 

with highest sensitivity index.  

2. For each input uncertainty (say the i-th), I calculate the frequency (𝐹𝑅𝑥𝑖,𝑠𝑖
) with which 

it is identified as dominant across bootstrap resamples: 

 

𝐹𝑅𝑥𝑖,𝑠𝑖
=

𝑁𝑥𝑖

𝑀
       (4.8) 

Where 𝑁𝑥𝑖
 is the number of bootstrap resamples in which the i-th input uncertainty 

has the highest sensitivity index, and M is the total number of bootstrap resamples 

(=500 in this case). 

3. An input uncertainty is said to be dominant in a given CRESTA zone if its frequency 

𝐹𝑅𝑖 is the highest and exceeds the second highest by at least a prescribed difference 

(0.3 in this case which was a judgement call). If instead the difference between the 

first and second highest frequencies is less than 0.3, I deem both input uncertainties 

as dominant. 

 

4.2.5 Linking dominant input uncertainties with system characteristics 

The last step of the analysis is to investigate whether I can link the dominant input 

uncertainty in a given CRESTA zone with any of its characteristics.  To do this, I used a 

range of different variables representing climatic, hydrological, socio-economic and land 

cover properties for each CRESTA zone (shown in Table 4.2). I included hydrological 

variables characterizing river properties such as length, average discharge and stream 

order, because I investigate riverine floods. I also included a categorical hydrological 

variable which indicates the river section or sub/catchment the CRESTA zone belongs to, 

because they are quite different according to the description of the study area in Chapter 3 

and it also serves as a proxy for the topography. More specifically, Lower Rhine and the 

Delta are dominated by flat terrains while the rest of the sections and sub-catchments by 

steep terrains. Hydrological variables were retrieved from HydroSHEDS (HydroRivers) 

dataset (Lehner & Grill, 2013). Additionally, I included variables describing the flood depths 

within the CRESTA zone because flood depth is one of the main damage driving flood 

characteristics. These were retrieved from JBA’s flood maps. I included socio-economic 

variables such as population and residential buildings’ value because they are the main 

exposure characteristics that influence flood losses estimation. Population was retrieved 

from the World Population Dataset (WorldPop, 2020) and the residential buildings’ value 
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from the exposure portfolio. As climate can influence floods, I included a variable 

representing the Koppen Climate Class (Beck et al., 2018) of the CRESTA Zone. Finally, I 

included a categorical variable which represents land cover properties of each CRESTA 

zone, because land cover can potentially greatly impact floods in an area (Rogger et al., 

2017). I modelled CRESTA Zones’ land cover properties using CORINE dataset 

(Copernicus, 2018). The datasets used to retrieve the values for each variable have been 

frequently used in the past in flood risk applications: HydroSHEDS (Alfieri et al., 2013, 

Lindersson et al., 2021), WorldPop (Smith et al., 2019, Lindersson et al., 2021, Bernhoven et 

al., 2022), CORINE (Wünsch et al., 2009, Jongman et al., 2012a, Paprotny et al., 2018). 

 

Table 4. 2 Summary of the variables representing the hydrological, socio-economic, land cover and climatic 

properties of the study area. 

Property Source 
Variable 

Name 
Description Units 

Range of 
Values 

Dataset 
format 

Hydrological 

Lehner & 
Grill (2013) 

RivLen River length Km [0-103] Shapefile 

AvDisch 
Average 
discharge 

m3/s [0-2427] Shapefile 

MaxStOr 

Maximum 
river order 
indicator at a 
CRESTA 
zone 
according to 
Strahler 
ordering 
system 

- [1-7] Shapefile 

HydBas 

River section 
or sub-
catchment 
where the 
CRESTA 
zone belongs 
to. 

- 

1: High Rhine 
2: Alpine 
Rhine 
3: Upper 
Rhine 
4: Neckar 
5: Main 
6: Middle 
Rhine 
7: 
Moezel/Saar 
8: Lower 
Rhine 
9: Delta 

Shapefile 

JBA Flood 
Hazard 
Maps 

MajFD 
Most frequent 
flood depth 
value 

m [0-12] Raster 

MeanFD 
Average 
Flood Depth 

m [0.02-5.8] Raster 

MaxFD 
Maximum 
Flood Depth 

m [0-12] Raster 

FD3 
Percentage of 
flood depths 
over 3m 

- [0-100] Raster 

Socio-
Economic 

Chapter 2 
values 

MeanVal 
Mean value of 
residential 

Euros 
[276,027-

52,629,147] 
csv 



 

57 
 

buildings 

WorldPop 
(2020) 

Pop 
Number of 
People 

- [4-1,804] Raster 

CRESTA 
(2022) 

Area 
Area of the 
CRESTA 
zone 

Km2 [0.2-235] Shapefile 

Climatic 
Beck et al. 

(2018) 
ClimClass 

Koppen 
Climate Class 

- 

15: 
Temperate, no 
dry season, 
warm summer 
 
26: Cold, no 
dry season, 
warm summer 
 
27: Cold, no 
dry season, 
cold summer 
 
29: Polar, 
tundra 

Raster 

Land Cover 
Copernicus 

(2018) 
(CORINE) 

ARTF 
Percentage of 
artificial 
surfaces 

- [0-100] Raster 

AGR 
Percentage of 
agricultural 
surfaces 

- [0-100] Raster 

FRST 

Percentage of 
forests and 
semi natural 
areas 

- [0-100] Raster 

WETLN 
Percentage of 
wetlands 

- [0-100] Raster 

WB 
Percentage of 
water bodies 

- [0-100] Raster 

 

I analyse the potential links between these variables and the dominant input uncertainties by 

using the interactive Decision Trees (iDT) algorithm presented in Chapter 2. The dataset I 

fed to the DT consists of the values of the above variables for each cresta zone as inputs 

and the dominant input uncertainty of each CRESTA zone as outputs. It is worth to mention 

that each CRESTA zone is associated with one dominant input uncertainty. Hence, there are 

four different classes (the dominant input uncertainties: Residential Buildings Value, 

Vulnerability Curves, Hazard Maps and Event Set) in total for this case study. The resulting 

DT model(s) will show the combination of variables (system characteristics) lead to each 

class (dominant input uncertainty).  

 

4.3 Results  
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4.3.1 Uncertainty in Average Annual Losses is dominated by the uncertainty in the 

damage ratios  

The results for the AAL are summarized in Figure 4.4. The map on the left shows the Rhine 

river basin, divided into CRESTA Zones which are coloured according to the dominant input 

uncertainty on Annual Average Loss (AAL) predicted for that zone. In white colour I 

represent the zones where no data were available and therefore no losses and sensitivity 

indices were calculated. The bar plot in the top right corner summarises the total number of 

CRESTA zones in which a specific input uncertainty is dominant. Figure 4.4 shows that 

uncertainty in AAL is dominated by the uncertainty in damage ratio values with very few 

exceptions. 

 

 

Figure 4. 4 Map of Rhine River basin with dominant input uncertainties on Annual Average Losses (ALL) at 

CRESTA zones (CRESTA, 2022). The bar plot in the top right corner summarises the total number of CRESTA 

zones in which a specific input uncertainty is dominant. RBV: Residential Buildings Value, DamRat: Damage 

Ratio, HazMaps: Hazard Maps 
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4.3.2 Dominant input uncertainties change while moving from lower to larger return 

periods in the Loss Exceedance curves  

The results for Loss exceedance curves (LEC) for six different return periods are 

summarised in Figure 4.5. The LEC uncertainty is dominated by damage ratio and event set 

uncertainties for small return periods (< 20 years). There are also see some cases where 

Hazard Maps and Exposed Value (EV) uncertainties dominate the LEC uncertainty. This 

might be explained by the fact that at lower return period, losses are likely to be dominated 

by small and frequent flood events where the impact of localized features is greater. Thus, 

uncertainties in estimates of flood depths and/or value of individual assets become more 

important for the estimation of losses. As the return period increases, the damage ratio 

becomes dominant in more and more CRESTA zones while the influence of other input 

uncertainties progressively fades away. The number of CRESTA zones with multiple 

dominant input uncertainties (purple bar) also decreases with increasing return period. 

These may be explained by the fact that, at large return periods, losses are dominated by 

floods with large inundation extents where many assets experience similar flood depths and 

thus flood loss uncertainty is mainly driven by the uncertainty in the damage ratios. 

 

 

Figure 4. 5 Bar plots showing the number of CRESTA Zones where each input uncertainty dominates the 

uncertainty in Loss exceedance curves (LEC) for different return periods (in years). The percentage in the top 

right of each plot indicates the number of CRESTA zones sensitivity indices were calculated because flood loss 

occurred. 
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4.3.3 An Interactive Decision Tree can link each dominant input uncertainty to a 

combination of system characteristics 

This part of the analysis is based on the results of LEC with return period of 10 years. I 

chose this output because it is the one showing greater variability in the dominant input 

uncertainties. I trained both a conventional Decision Tree (here called a Statistical Optimal 

Tree, to highlight that the conventional DT algorithm aims for statistical optimality) and an 

interactive Decision Tree using the method of Chapter 2. Both trees are trained to use the 

explanatory variables in Table 4.1 to predict the dominant input uncertainty into each 

CRESTA zone. It is worth mentioning that I trained several Statistically Optimal DTs (see 

Appendix C4) because there is an inherit randomness in the algorithm (e.g., it randomly 

selects the data to split the dataset into train and test sets) which may lead to the generation 

of different DTs during the training process. However, in this case this randomness had little 

impact on the emerging patterns in the different trained DT and their associated accuracies. 

For the sake of simplicity, I start by analysing and comparing only the leaf nodes of the 

different DTs (instead of their entire structure). Specifically, the top panel of Figure 4.6 

shows the leaf nodes of a randomly picked statistically optimal DT (the full DT is shown in 

the Appendix C4 in Figure C.3). The content of the leaf nodes is visualized with a set of 

stacked coloured bars which show the distribution of dominant input uncertainties in the 

CRESTA Zones falling in that node. If one colour prevails in the leaf node (e.g., green in the 

first node on the left) it means that the leaf node mainly contains CRESTA Zones with the 

same dominant input uncertainty (e.g., Event Set). In other words, the purity of the leaf node 

is high, and one can confidently classify that leaf node as representative of places where 

that particular input uncertainty is dominant. When instead there is no clearly prevailing 

dominant uncertainty (to prevail, it needs to represent > 70% of the CRESTA zones included 

in a leaf node), the leaf node is very impure and is not really representative of any specific 

category of places. Leaf nodes of this kind are labelled as “undefined” in Fig. 4.6. Under 

each bar three numbers are noted. The first number indicates how many CRESTA zones fall 

into that leaf. The second number indicates how many of the CRESTA zones in that leaf are 

associated with the dominant input uncertainty prevailing in that leaf. The third number is the 

percentage of CRESTA zones associated with that dominant input uncertainty with respect 

to the total over the entire Rhine River basin. For example, looking at the first bar in the 

statistically optimal DT, the numbers show that there are 185 CRESTA zones in that leaf 

node, of which 150 have Event set (green) as dominant input uncertainty, which is the 27% 

of all the CRESTA zones in the Rhine River basin where event set was found to be 

dominant. Hence, when the latter number is small (for example, less than 5%) then the leaf 

node explains only a “tiny” portion of the overall variability of the dominant input uncertainty, 
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meaning further analysis of these leaves is probably not particularly meaningful. These 

cases are represented in Fig. 4.6 with empty bars. 

 

In summary, the statistically optimal DT has 13 leaf nodes, of which however only 4 enable a 

clear classification of the prevailing dominant input uncertainty and at the same time explain 

a sufficiently high proportion (ie. >5%) of zones associated with that dominant input. These 

nodes represent places where either the Damage Ratios (blue) or the Event set (green) are 

the dominant uncertainties, but no meaningful node is found associated to Hazard Maps or 

the Value of Residential buildings. This means that this statistical optimal DT may be further 

analysed to look for the explanatory variables that make the uncertainty in Damage ratio or 

Event set be dominant, but it would not provide us with any possible explanation of where 

and why other input uncertainties are dominant. 

 

 

Figure 4. 6 Evaluation of statistically optimal and interactive Decision Trees. The coloured bars represent the 

distribution of dominant input uncertainties within the leaves nodes of the statistically optimal (top) and interactive 

(bottom) Decision Trees. Below each bar, the first number indicates how many CRESTA zones fall into that leaf. 

The second number indicates how many of the CRESTA zones in that leaf are associated with the dominant 

input uncertainty prevailing in that leaf. The third number is the percentage of CRESTA zones associated with 

that dominant input uncertainty with respect to the total over the entire Rhine River basin. 
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The bottom part of Figure 4.6 shows that leave nodes of the interactive DT (iDT) obtained 

using the toolbox presented in Chapter 2 (the full DT is shown in the Appendix C4 in Figure 

C.3). Using the statistically optimal DT as a starting point I obtained the iDT in an interactive 

“trial and error” approach: I was manually expanding or pruning tree branches either by 

changing splitting variables and thresholds, and/or changing the number of leaf nodes. I 

stopped manual interactions with the DT when I got a model that represented all dominant 

input uncertainties in its leaf nodes. It is obvious that, in general, the purity of the iDT nodes 

is higher than in the statistically optimal DT. Also, in the case of iDT, out of 17 leaf nodes, 

the 11 that are meaningful (i.e., neither blanked or “undefined”) span over all four input 

uncertainties. In fact, besides the 4 leaf nodes where Event set or Damage ratios are 

dominant, there are another 5 nodes representative of places where either hazard maps 

(brown) or residential buildings’ value (orange) are the dominant input uncertainty. In 

absolute numbers, these leaf nodes may contain few CRESTA zones, but in relative terms 

these few CRESTA zones explain a significant percentage of the total variability for these 

dominant input uncertainties across the river basin. This is important because it means that 

further analysis of the iDT structure (presented in the next subsection) will help determine 

the characteristics that explain where any of the four input uncertainties is dominant. Last, it 

is worth noting that these useful results yielded by the iDT is not obtained at the expenses of 

overall classification accuracy. Actually, the iDT is slightly more accurate than the SOT in 

both the training and test sets - and this is obtained with the same tree depth 8 layers in both 

cases).  

 

4.3.4 Topography, degree of urbanization and residential buildings’ value are key 

characteristics to explain the spatial variability of dominant input uncertainties. 

 

Figure 4.7 shows the full iDT whose leaves were reported in Figure 4.6. For the sake of 

simplicity, the inconclusive leaves (those labelled as “undefined” in Figure 4.6. and those 

that explain less than 5% of the total variability for a dominant input uncertainty) are not 

reported in Figure 4.7. The earlier a variable appears in the tree structure, the more 

important it is for classifying the dominant input uncertainties.  Hence, the key characteristics 

are the river section/sub catchment (HydBas), the mean value of the residential buildings at 

a region (MeanVal) and the degree of urbanization (ARTF) because they dominate the DT at 

the top three levels. Other useful variables are the river length and the statistics of flood 

depths because they dominate the tree in the lower levels. The percentage noted at each 

leaf is the third number in Figure 4.6.  In Table 4.3 I have summarized the conclusions drawn 

from the iDT as to what system characteristics lead to each input uncertainty. Each summary 
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statement in the table is labelled with a number which points to the respective leaves in the 

iDT of Figure 4.7. 

 

 

Figure 4. 7  Interactive Decision Tree. The leaf nodes are assigned with a percentage which refers to the third 

number in figure 4.6 and expresses the fraction it represents with respect to the total cases of the corresponding 

dominant input uncertainty. The numbers in black bold letters point to the corresponding summary in Table 4.3 

 

Table 4. 3 Summary of the characteristics of the places where each input uncertainty is likely to dominate the 
flood losses uncertainty. The terms High, Alpine, Upper, Middle. Lower Rhine, Neckar, Main, Moezel/Saar and 

Delta refer to the Rhine River sections and sub-catchments shown in Figure 3.1. 

Event Set Damage Ratios Hazard Maps Residential buildings’ 
Value 

1. In Upper, Middle & 
Lower Rhine, and 
Neckar, Main, 
Moezel/Saar with low 
residential buildings 
values and urbanized 
areas 
 
2. In High and Alpine 
Rhine, with low 
residential building 
values, urbanized areas 
and medium to small river 
lengths 

3. In Delta River 
section 
 
4. In Moezel/Saar 
and Lower Rhine 
with medium to high 
residential buildings 
values 

5. In High and Alpine 
Rhine, with low residential 
building values, urbanized 
areas and large river 
lengths 
 
6. In all regions but delta, 
with low residential 
building values, highly 
urbanized areas, small 
flood depths, large range 
of river lengths and low 
slopes. 

7. In all regions but 
delta, with low 
residential building 
values, highly urbanized 
areas with small flood 
depths and river 
lengths. 
 
8. In all regions but 
delta, with low 
residential building 
values, highly urbanized 
areas and medium flood 
depths 

 

Topography seems to be a key factor in differentiating the dominant input uncertainties. The 

leaf nodes on the right-hand side of the iDT (labelled with number 3 and 4 in Fig. 4.7) show 

that more than half of the CRESTA zones where damage ratios uncertainty is dominant 

belong to regions with flat terrains, i.e. either the Delta (node 3 with HydBas = 9) or the 
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Lower Rhine and Moezel/Saar (HydBas =7,8). In these regions the water from a flood event, 

unaffected by cross sectional changes, is free to extend further, thus leading to large flood 

extents with low variability in flood depths (Merwade et al., 2008). In such cases any 

changes to flood depths are likely to lead to similar flood depths that cause similar damage. 

Hence, uncertainty in damage ratios emerges as the dominant input uncertainty. On the 

other hand, iDT classifies 19% of the CRESTA zones where Event Set uncertainty is 

dominant in regions with steep, e.g., High and Alpine Rhine (node 2 with Hydbas =1,2) and 

urbanized terrains. In these areas, water is confined in slopes (or from artificial surfaces), 

leading to lower flood extents but with greater variability in flood depths. In such cases, 

changes in flood depths are likely to lead to different damages. Hence, uncertainty in the 

values related to more localized features (e.g. flood depths estimation) emerge as the 

dominant input uncertainty. This conclusion is confirmed by the scatterplots in Figure 4.8. 

The scatterplots show the mean terrain slope (1st row) and the variance of flood depths (2nd 

row) in CRESTA zones that are dominated by Event Set (left column) and Damage ratios 

(right column) uncertainty. These CRESTA zones correspond to cases 1,2 and 3,4 in Table 

4.3. Where Damage ratios are the dominant input uncertainty (right column), the mean slope 

and flood depths variance in CRESTA zones are significantly lower than where Event Set is 

dominant. Looking at the mean slope scatterplot for Damage ratios (top right panel), the 

CRESTA zones with higher mean slope (highlighted by the red rectangle) are those 

belonging to the Moezel/Saar basin, which has bit higher slopes in comparison with the 

Delta and Lower Rhine River sections where the rest CRESTA zones belong to.  
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Figure 4. 8 Scatterplots of the mean slope (1st row) and variance of flood depths (2nd row) for CRESTA zones 

that are dominated by Event Set (Left column) and damage ratios (Right Column) uncertainty. The selected 

CRESTA zones correspond to cases 1,2 and 3,4 in Table 4.3. 

 

Moreover, as expected the residential buildings’ value is dominant in highly urbanized places 

(nodes 7,8 with ARTF>43.5) where a greater number of exposed assets is likely to be 

located.  Additionally, one can see that some nodes on the branches leading to CRESTA 

Zones with residential buildings value as dominant uncertainty (orange leaves) make splits 

on flood depths variables. The splitting thresholds indicate that relatively small flood depths 

are associated with such places (node 7). This is explained by the fact that the variability 

range for those depths is smaller in comparison with larger flood depths. 

 

According to the methodology, when perturbing the hazard maps both flood depths and 

extends are changing. Hence, uncertainty in flood hazard maps is likely to dominate in a 

larger range of regions. Indeed, based on the iDT Hazard Maps uncertainty can dominate in 

steep terrains like High and Alpine Rhine (node 5, with Hydbas =1,2) with large river lengths 

and/or in flatter terrains (node 6, with MaxStrOrd>4.5) with relatively small flood depths and 

a large range of river lengths. 

 

4.4 Discussion 
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4.4.1 Uncertainty in vulnerability component significantly impacts flood loss 

estimation 

Sensitivity analysis of average annual losses (AAL) highlights the importance of the 

vulnerability component on flood loss estimation. It is sensible because vulnerability curves 

are the means to translate the physical hazard to flood loss. Hence, even if we assume that 

the flood depths and residential buildings’ value estimation is perfectly accurate if there is 

significant uncertainty in the vulnerability curves then the losses will ultimately be over or 

under-estimated. This result aligns with many previous studies. Wing et al. (2020) argues 

that even for very accurate hydraulic models damage estimates can be poor due to the use 

of vulnerability curves. Freni et al. (2010) demonstrated that using detailed hydraulic models 

will not necessarily improve flood damage estimates due to significant uncertainty in 

vulnerability curves which they see as the bottleneck in flood loss estimation. Thus, they 

suggest that efforts on uncertainty reduction should first be focused on the improvement of 

the vulnerability curves. The Lighthill Risk Network (2019) report ranked the vulnerability 

curves and the potential bias created by damage ratios as top priority challenge to be 

addressed in the flood risk modelling industry among a list of flood model topics. De Moel & 

Aerts (2011), in a case study in Netherlands also concluded that the uncertainty in the 

estimated AAL is driven by the uncertainties in the vulnerability component. 

 

Besides the damage ratio values, the results show that the shape of the function, that is the 

steps in the function, has a great impact on flood loss estimation too. Every change in the 

value of damage ratios affects losses but this is not true for the flood depths. Flood depths 

lead to different losses only if the change in their value is combined with a change in the step 

of the vulnerability function. If not, the damage ratio will be the same and ultimately the 

losses too. Hence, when using step functions the resolution/width of the steps needs to be 

carefully determined.  For example, if the steps are too wide, the effects of uncertainty in 

flood depths can be dampened and potentially lead to biased conclusions.  

 

Sensitivity analysis results of the Loss Exceedance Curves (LECs) show that dominant 

uncertainties change with the chosen return period. Uncertainty in the event set, in the 

residential buildings’ value and in the hazard maps are more likely to control LECs at low 

return periods, i.e. when losses are driven by small and frequent flood events. Damage 

ratios uncertainty instead dominates the LEC uncertainty at large return periods when 

extreme flood events are important. These results are in line with other findings from the 

literature. Kaczmarska et al., (2018) also concluded that the impact of the vulnerability 

component on flood losses increases as the return period of flood losses increases. 
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Moreover, the results for the low return period LEC, agree with most of the local scale 

studies: De Moel et al. (2014), in the Delta section and Apel et al. (2004) & (2008), and Merz 

& Thieken (2009), in the lower rhine section. Except Winter et al. (2018) in the Alpine Region 

where they concluded that the vulnerability component and not the flood events uncertainties 

dominate the LEC uncertainty. The differences might be explained by methodological 

differences existing between the two studies. Firstly, Winter et al. (2018) used different rules 

(e.g., time interval of peak discharge above a certain threshold) for the event definition. 

Another reason could be the different extreme value model used to estimate the return 

period of the events. Finally, Winter et al. (2018) generated flood events based on 1,000 

years simulation period, while in this case study the events are generated based on 10,000 

years simulation period. This means that in this case study a much larger range of flood 

events is considered. The length of the simulation period is deemed crucial for flood risk 

analysis (Kaczmarska et al., 2018). 

 

4.4.2 The importance of investigating dominant uncertainties across large spatial 

domains 

Applying sensitivity analysis to a large-scale FRM allowed us to gain new insights regarding 

the dominant controls of flood losses. To the best of my knowledge this is the first study to 

provide evidence on how the different system characteristics (hydrological, socio-economic, 

land cover) can explain (to some degree at least) why certain input uncertainties dominate in 

different places. Topography seems to be a key factor to differentiate flat places (e.g., 

deltas) where LEC uncertainty is dominated by uncertainties in the vulnerability component, 

from steep regions where hazard uncertainty (Hazard Maps and Event Set) is dominant. 

This is also consistent with previous studies. Devitt et al. (2021) investigated the spatial 

variability in the uncertainty of 100-year flood events’ magnitude estimates of large-scale 

flood hazard models across the USA. They found that topographic characteristics (such as 

elevation and mean per cent slope) has a strong influence on the spatial variability of the 

predictive performance of flood magnitude estimates. The authors identified contrasting 

patterns in the prediction performance of models for flat terrains (e.g. deltas) versus high, 

steep and complex terrains (e.g. mountainous areas). Lindersson et al. (2021) investigated 

the model agreement of three different global flood hazard models across variable 

geographic conditions (e.g., topography). They found poor inter-model agreement in steep 

and flat regions. As expected, the degree of urbanization is a key factor for places where the 

residential buildings’ value uncertainty dominates the losses. De Moel & Aerts (2011) 

investigated the effect of different flood risk components uncertainties to the overall 

uncertainty in flood risk estimates within a dike ring in Netherlands. They also concluded that 
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uncertainties in residential buildings’ value are especially important for the urbanized areas 

which also accounted for a significant part of the study case’s loss. Other hydrological 

characteristics like river length and the statistics of flood depths seem to be more relevant for 

input uncertainties that are associated with more localized features (event sets and 

residential buildings’ value) 

 

4.4.3 The importance of using scientifically informed data-based methods to analyse 

large datasets 

In flood risk applications, I often have to analyse imbalanced datasets where one or more 

variables are under-represented. There are two problems with models built on unbalanced 

datasets. Firstly, they are poorly generalizable on unseen data (Faghmous & Kumar, 2014). 

Second, if the interest is on the under-represented class, the model might ignore it given that 

fitting the small number of data does not influence the overall performance statistic, hence 

rendering the model less informative. Both problems are highlighted in this case study. The 

statistically optimal Decision Tree (DT) performed poorly on unseen (test set) data because 

the DT model did not include the under-represented dominant input uncertainties. The 

algorithm would treat them as statistically insignificant due to their low representation in the 

dataset. Hence, the resulting model was not very informative as my efforts to understand 

which local characteristics are linked with these dominant input uncertainties were 

compromised.   

 

Common approaches for dealing with imbalanced dataset were mentioned in Chapter 2 and 

some of them have been used in flood risk applications too.  For example, Park & Lee 

(2020) used a resampling technique to deal with imbalanced datasets in a coastal flood risk 

application. However, these approaches can often be time consuming (Zhou et al., 2017). 

Here I showed that one can interactively build a DT model to overcome the challenge of 

imbalanced datasets.  

 

4.4.4 Suggestions for improving input uncertainty characterization  

The choices made on the characterization of damage ratio and return period uncertainty may 

partly explain why they dominated the loss uncertainty in most places within the study 

domain. In Sec. 4.4.1 I explained that the use of a step function for the vulnerability curve 

may dampen the effect of varying flood depths, and in Sec. 4.2.3 I showed that the +-50% 

homogeneous perturbation overestimates the variability range for small and medium return 

periods.  
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In the context of this application, I believe there are two directions for further research that 

are particularly important to investigate. Firstly, the use of a smooth vulnerability curve 

instead of a step function could potentially lead to a greater variability in the dominant input 

uncertainties and thus allow to explore further links with local characteristics. Second, it is 

worth investigating the use of a perturbation range that increases with return period. This 

could potentially lead to greater variability in the dominant input uncertainties for losses with 

large return period. These losses are dominated by extreme flood events and therefore it is 

possible that the role of uncertainty in the characterisation of these extreme events is 

underestimated with the current approach.  

 

My choice to perturb the return period of the hazard maps and events in the event set, was 

driven by the computationally expensive nature of the hazard component. The assessment 

of uncertainty all along the modelling chain requires the implementation of a comprehensive 

uncertainty quantification scheme (Deroche, 2023). The hazard component is a bottleneck to 

this effort because running multiple simulations under different parameterizations is 

computationally expensive and therefore not always an option. An idea would be to use the 

hazard component (e.g., flood maps) from the various available flood risk models to assess 

the uncertainty in the hazard component. The challenge here is that some of them are 

proprietary and so not easily accessible. It’s currently unclear how to best represent the 

uncertainty in the hazard component and this is a topic of interest beyond the context of this 

application. 

 

4.5 Conclusions 

Uncertainty is inherent in every flood risk model. One way to increase the value of flood risk 

estimations is to better understand the dominant controls in flood risk estimations, and how 

and why they vary in space. I answered these questions for the heterogeneous Rhine River 

basin by presenting a GSA application on a flood risk model.  First, I identified the dominant 

input uncertainties (among uncertainty in the flood depth estimates, vulnerability curves and 

exposure dataset) within the spatial domain on two key model outputs, the Average Annual 

Loss (AAL) and the Loss Exceedance Curve (LEC). Then, using interactive Decision Trees I 

linked the dominant input uncertainties in each spatial unit within the domain with its 

hydrological, climatic, and socio-economic properties. 

 

The methodological approach and results presented in this chapter are useful for model 

development and to help prioritize efforts for uncertainty reduction in flood risk modelling. 

They can be used by (re)insurers and government agencies contributing to more informed 
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decisions. For example, AAL and LEC are standard metrics that are used for risk portfolio 

management and/or solvency calculations. The results indicate that to reduce the 

uncertainty in those metrics estimation, efforts should focus on the vulnerability component. 

Moreover, for tasks like underwriting, pricing and exposure management which are 

performed at post-code level the results provide evidence on which input uncertainty 

modellers should focus. For example, it seems that for flat terrains vulnerability component 

uncertainties strongly influence the uncertainty in flood loss estimations while the hazard and 

exposure component uncertainties are more likely to be influential in steep and urbanized 

places. 
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5 Conclusions and future research 

 

5.1 Chapter summaries 

In this Thesis, I aimed at improving our understanding of uncertainty quantification and 

attribution in flood risk modelling. My efforts were guided by three main research questions. 

 

How can we incorporate scientific knowledge into data-based methods? 

 

In flood risk modelling (and in geosciences in general) there is often the need to analyse 

large and complex datasets. Machine Learning offer promising tools such as Decision Trees, 

that can support this effort. Decision Trees have been widely used in the geosciences to 

automatically extract patterns from complex and high dimensional data. However, like any 

data-based method, the application of decision trees is hindered by data limitations, such as 

significant biases, leading to potentially physically unrealistic results. In Chapter 2 I 

developed interactive DT (iDT) that put humans in the loop to integrate the power of experts' 

scientific knowledge with the power of the algorithms to automatically learn patterns from 

large datasets. I created an open-source Python toolbox that implements the iDT framework. 

Users can interactively create new composite variables, change the variable and threshold 

to split, prune and group variables based on their physical meaning. I demonstrate with three 

case studies how iDT overcomes problems with current DT thus achieving higher 

interpretability and robustness of the result.  

 

How can we define the input variability space when we are too uncertain about our inputs? 

 

To quantify the uncertainty in flood risk estimates one needs first to characterize the input 

variability space. This requires the modeller to make subjective statements on what values 

are possible and not. In mathematical terms these choices are represented by the use of 

appropriate probability distribution functions or a list of possible values for the input 

uncertainties. However, in the context of flood risk modelling, this is challenging because 

input uncertainties are poorly known and constrained, and the quantity and quality of 

available data that could be used to infer probability distribution functions are often poor. In 

Chapter 3 I develop an approach to characterize input uncertainties in cases where we are 

too uncertain about the input uncertainties. I suggest using uniform distribution functions and 

defining plausible variability ranges for the input uncertainties through a systematic literature 

review approach. I demonstrated this approach by defining variability ranges for the 

residential buildings’ value, the damage ratios of the vulnerability curves for the Rhine River 

https://www.sciencedirect.com/topics/computer-science/high-dimensional-data
https://www.sciencedirect.com/topics/computer-science/human-in-the-loop
https://www.sciencedirect.com/topics/computer-science/interpretability
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basin and the return period of flood events for two gauging stations. The variability ranges 

were then used in a sensitivity analysis application. Besides, these quantities are used in 

every flood risk analysis. The approach is transferable to similar applications and areas. 

 

How the importance of input uncertainties changes in places with different hydrology, 

climatology, land-cover, and economy? 

 

In flood risk modelling it is essential to know which uncertainty sources mostly control risk 

estimates so to guide efforts for model improvement, as well as to help risk managers make 

better decisions. Past efforts to attribute the output uncertainty of flood risk models have 

reached conflicting conclusions. This may be because these studies used different risk 

models and different uncertainty and sensitivity analysis approaches; or, that they were 

conducted at relatively small (catchment and/or city) scale, in places with different climatic, 

hydrological, and socio-economic characteristics. In Chapter 4, I investigated dominant 

uncertainties of a flood risk model across a much larger scale, namely the entire Rhine River 

basin, and explored whether dominant uncertainties at specific places can be linked to their 

physical or socio-economic characteristics. In particular, I analysed two model outputs: the 

Average Annual Losses (AAL) and Loss Exceedance Curves (LECs). For each output, I first 

identified the dominant input uncertainties (among uncertainty in the flood depth estimates, 

vulnerability curves and exposure dataset) in each spatial unit of the modelled domain; and 

second, I linked those dominant input uncertainties to the characteristics of the spatial units. 

I find that uncertainties in the vulnerability component dominate the AAL. The dominant 

uncertainties for the LECs change with the return period of loss, with vulnerability becoming 

increasingly important with increasing return period. I used interactive decision trees to link 

the dominant input uncertainties to hydro-climatic and socio-economic characteristics of the 

places. Using this method, it was possible to extract useful insights for the dominant input 

uncertainties in the datasets even for the under-represented ones. Topography (flat versus 

steep terrains), degree of urbanization and economic value of the buildings are key 

characteristics for determining how dominant uncertainties change spatially within the study 

domain. 

 

5.2 Thesis Contributions 

In this section I summarize the three main contributions of this thesis. 

1. I have presented a methodology to perform Global Sensitivity Analysis (GSA) of a 

complex flood risk model at large domains. By applying this methodology to the 

Rhine River Basin, I showed that despite the computationally expensive nature of 
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GSA it is possible to propagate uncertainties across large domains, identify which 

input uncertainty dominates the uncertainty in risk estimates at different places and 

learn some general lessons on what controls the spatial variability of dominant input 

uncertainties.  

2. Moreover, I have shown that in cases with little knowledge or data availability it is 

possible to characterize input uncertainties by collecting and combining information 

from the literature on how past studies have characterized relevant input 

uncertainties. 

3. I developed a method that establishes an interactive approach between experts and 

the algorithm for building ML models. With this approach the experts can gain a 

deeper understanding of the models they build and the cases they investigate, and 

they can constrain the process of knowledge discovery with their domain knowledge. 

 

5.3 Overarching remarks 

 

In this Thesis I faced cross-cutting issues which I tackled and presented in separate 

chapters and here I discuss how they are connected. 

 

The imbalanced datasets were the first cross-cutting issue tackled in this Thesis. We 

frequently encounter such datasets in our field because the phenomena we are studying are 

usually controlled by only few processes (Wagener & Pianosi, 2019). Indeed, the sensitivity 

analysis application presented in Chapter 4 confirms the above point. The dominant controls 

of flood loss within Rhine River basin resulted in an imbalanced dataset.  

 

Finding patterns in imbalanced datasets using current automated ML proved to be a 

daunting task. My attempts in Chapter 4 to identify links between local characteristics and 

dominant input uncertainties with a conventional ML approach (Decision Trees) were 

unsatisfactory because the resulting models were missing the under-represented dominant 

input uncertainties due to their low numbers in the dataset. In fact, the automated algorithm 

built the Decision Tree by expanding only the branches that improved the overall accuracy 

based on statistical metrics, which meant under-represented classes did not appear in the 

DT. But these minor classes were physically important to us. Even though it is a well-known 

problem in geosciences (Oommen et al., 2011) not much progress has been made in 

developing methods that tackle this problem. Existing approaches were discussed in 

Chapter 2 but most of them are time consuming (Zhou et al., 2017). A lesson I learned is that 

interaction between humans and ML algorithms discussed in Chapter 2 can significantly 

improve and ease the process of finding patterns in an imbalanced dataset. As it was 



 

74 
 

unknown to us a priori what the characteristics linked to the under-represented dominant 

uncertainties could be, it was important to use a tool to explore this. The interactive DT 

toolbox was very handy to us because it established an expert-algorithm iterative learning 

process. With us attempting changes (e.g., through manual pruning and changing of splitting 

variables and thresholds) and the algorithm updating on the fly I was able to guide the 

algorithm to expand branches that were physically (and not statistically) sensible to us, that 

is, those that I believed they could contain the underrepresented classes. Thus, with just few 

changes I was able to end up with a model that represented all classes and not just the 

major ones. 

 

The second cross cutting issue discussed in this Thesis was how to create a comprehensive 

scheme to investigate the dominant controls of flood losses uncertainty. This was tackled in 

Chapters 3 and 4 and I found particularly challenging to identify, select and quantify the input 

uncertainties (Chapter 3) for the global sensitivity analysis of the chosen flood risk model 

(Chapter 4). From my interactions with my industry collaborators at JBA Risk Management 

and experts at GFZ Potsdam, I realized that even though it is known there is considerable 

uncertainty in every risk component it is unclear how this could be best translated in 

mathematical terms for sensitivity analysis applications, and there is not an established 

methodology for this step. Moreover, the available information in the literature was 

fragmented. I thus developed an approach that can build on this fragmented information 

(e.g., information available on different places and scales) from various studies to propose 

variability ranges of selected input uncertainties for the entire Rhine River Basin. It may not 

always be possible to find enough information in the literature, but this is a first step in 

overcoming this daunting and complex problem. In Chapter 4 I used the ranges I found in 

Chapter 3 to perform a sensitivity analysis and identify the dominant controls of flood losses 

uncertainty.  

 

5.4 Future Research 

In this Thesis I have looked at how and why uncertainty in flood risk modelling changes in 

space. I investigated dominant input uncertainties in a large and heterogeneous spatial 

domain and presented an approach to explain their variability by linking it to the 

characteristics of the places.  The results are useful to better understand the spatial patterns 

of flood risk uncertainty. But one limitation worth discussing is that the methodological 

approach presented in this Thesis doesn’t consider the temporal aspect of risk. It implicitly 

assumes that hazard, exposure and vulnerability remain stable through time and so the 

same is true for flood risk estimations and the associated uncertainty. 
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However, the three flood risk components (hazard, exposure, vulnerability) are all changing 

in time: they have changed over the past and will likely be subject to further changes in the 

future (Duha Metin et al., 2018, Kreibich et al., 2017). There are several anthropogenic or 

natural causes for these changes, e.g., climate, land use, flood plain changes, socio-

economic trends, flood prevention management policies (Schanze, 2012).  

 

For example, Merz & Thieken (2009) reported that flood hazard along the Rhine has 

changed due to river training networks, retention measures, the construction of weirs. Slater 

& Villarini (2016) studied flood hazard trends in the United States and found increases in 

flood hazard in the Midwest and decreases in the Gulf coastal plain, south-eastern United 

States and California. Their results suggest that these patterns cannot be explained by the 

large-scale spatial precipitation patterns alone, but also from more localized factors like 

shifts in basin wetness that occur at the land surface and subsurface over annual time 

scales (due to climate and human activity). Blöschl et al. (2017) studied the impacts of 

climate change on the timing of European floods and found temporal and spatial patterns 

(e.g, earlier than usual spring snowmelt floods due to increased temperatures throughout 

north-eastern Europe, Delayed winter floods around the North Sea and in some places in 

Mediterranean coast due to delayed winter storms associated with polar warming, Earlier 

than usual winter floods in western Europe which are happening due to earlier soil moisture 

maxima. 

 

Exposure and vulnerability are also changing. Europe has experienced significant increases 

in population (>130%) and wealth (>2000%) during the period 1870-2016 and thus 

increasing trends in the number of people affected by floods and related economic losses 

(Paprotny et al., 2018). Jongman et al. (2012b) investigated global exposure to river and 

coastal flooding using population and a land-use based methods and found increasing 

trends in population and wealth exposure to floods between 1970-2010. Jongman et al. 

(2015) found declining vulnerability (expressed in terms of mortality and loss rates) in river 

floods between 1980 and 2010. This pattern is consistent in low- and high-income countries 

and associated with increasing gross domestic product. Tanoue et al. (2016) studied long 

term trends in vulnerability (expressed in terms of mortality and loss rates) at global scale 

and found consistent decreasing trends (in loss rates) for high income countries (classified in 

terms of gross domestic product per capita) and an inverted U-shape pattern for low- and 

middle-income countries. The U-shape pattern reveals that at first there is an increase in risk 

because the effect of adaptation strategies is slower than the increase in assets. Then risk 

decreases once the effect of adaptation is more pronounced. 
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Additionally, the three risk components interact in multiple ways leading to non-linear effects 

on flood risk. Di Baldassarre et al. (2018) describes how urban development close to the 

river in protected areas can lead to non-linear increases in flood risk. The presence of 

structural flood protection tends to create incentives to build closer to the river and therefore 

increases flood exposure. The presence of structural flood protection creates a sense of 

safety reducing the awareness and preparedness to floods increasing vulnerability. This 

phenomenon known as the “levee effect” can offset part of the intended benefits of structural 

flood protection and, paradoxically, flood risk can even increase in the medium–long term 

after the introduction or reinforcement of a structural flood protection.  Another example of a 

non-linear effect of structural adaptation are the comparable (in terms of hazard) 2002 and 

2013 floods in Elbe River in Germany. After the 2002 flood event, Saxony decided to adapt 

to floods by investing on structural flood defences. The installed defences in Saxony 

withstood the hydraulic load in the 2013 flood event by routing it downstream to Saxony-

Anhalt where increased levee failures were recorded in comparison with the 2002 flood 

event. This resulted in increased flood loss (risk) for this area fuelling a public debate on the 

benefits of structural adaptation policies (Vorogushyn et al., 2018). 

 

Investigating such temporal changes and interactions is important to understand how the 

different flood risk modelling components affect flood risk. Changes in the three risk 

components will continue to occur in the future in ways that are impossible to predict and 

thus associated with significant uncertainty. For example, the negative impacts of climate 

change are escalating at a faster rate than scientists predicted few years ago, according to 

the latest report from a United Nations climate panel (IPCC 2022, Tollefson, 2022).  

Improving our understanding of the impacts of climate change on the frequency and severity 

of flood losses for different return periods and in different regions of the world is a top 

concern for governments, regulators and the (re)insurance industry and the public (Lighthill 

Risk Network, 2019, AXA Future Risks Report, 2022, Mitchell-Wallace, 2022, Ellison, 2023). 
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Figure 5. 1 Evolution of sensitivity indexes over the time, for five input uncertainties related to coastal defence 

vulnerability. Source: Le Cozannet et al., (2015) 

 

An important question for future research thus is: How do the drivers of flood risk change in 

time?  A time-varying version of the uncertainty and sensitivity analysis techniques used in 

this Thesis, could help investigate such question (Wagener & Pianosi 2019). For example, 

Le Cozannet et al. (2015) studied the changing frequency of coastal flood events. They 

presented an application of time varying global sensitivity analysis to quantitatively assess 

the relative importance of various input uncertainties over the coming decades. The following 

figure (retrieved from the paper) shows how the sensitivity of predicted coastal defence 

vulnerability (namely the yearly probability of exceeding the threshold height of coastal 

defences) varies with time. The variation in dominant input uncertainties over time is 

significant. For example, global climate change scenario starts dominating after 2070 while 

offshore extreme values are not influential after then. Up to 2050 the dominant factor is the 

‘wave set-up’ parameter, which accounts for sea level rise induced by wave breaking. This 

local process is determined by the near-shore coastal bathymetry and is often neglected in 

coastal hazard assessments studies. This type of analysis helps revealing the changing 

effect that certain processes can have over time. Failing to incorporate such patterns may 

lead to invalid conclusions and to an overestimation of the effects of input uncertainties at 

short, mid and/or long-term period. 

 

Future research should explore the applicability of a similar approach to flood risk modelling 

in order to investigate the temporal dynamics of uncertainty in flood risk estimation. 
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Appendix A – Supporting information for Chapter 2 

 

A1 Decision Tree Algorithms and CART algorithm 

Decision trees fall in the category of non-parametric supervised learning methods. There are 

various algorithms developed and applied over the years. Classification and Regression 

Trees (CART) proposed by Breiman et al. (1984) is of particular interest in Chapter 2 

because it is used as a basis for the construction of the DT model in the interactive methods. 

CART algorithm is used to build models for non-linear predictions from a dataset. 

 

Description of CART algorithm: 

The DT structure described in the Introduction section of Chapter 2 is constructed in a top-

down fashion based on a greedy algorithm that searches through all the possible 

combinations to find the optimal split. This is the variable and threshold that will lead to pure 

nodes. The two most popular criteria that have been used for this purpose and the ones 

implemented here are information gain and gini index. CART algorithm allows trees to fully 

grow and then a pruning technique is applied. It uses 10-fold cross validation to estimate 

error rates and the tree is reduced to the size that has the lowest cross-validation error 

estimate. CART can handle missing values using surrogate splits (Breiman et al. 1984; Loh, 

2014). 

 

A1.1 Mathematical Formulation: 

Given vectors of independent variables xi ∈ Rn, i=1, …, l and a label vector (which I call 

classes) y ∈ Rl. 

If Q are the data at node m then for each candidate split θ=(Xi, X̅i,m) where Xi represents the 

variable and X̅i,m the threshold, one can partition the dataset into Qleft(θ) and Qright(θ) subsets: 

 

Qleft(θ)=(x,y)|Xi ≤ X̅i,m

Qright(θ)=Q-Qleft(θ)
  (A.1) 

 

The impurity at node m can be estimated using an impurity function I.  

 

𝐺(𝑄, 𝜃) =
𝑛𝑙𝑒𝑓𝑡

𝑁𝑚
𝐼 (𝑄𝑙𝑒𝑓𝑡(𝜃)) +

𝑛𝑟𝑖𝑔ℎ𝑡

𝑁𝑚
𝐼 (𝑄𝑟𝑖𝑔ℎ𝑡(𝜃)) (A.2) 

 

The variable and threshold that minimises the impurity will be selected: 
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𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐺(𝑄, 𝜃)  (A.3) 

 

Then, there is a recursive partitioning of the subsets: Qleft(θ*) and Qright(θ*) until the maximum 

allowable depth is reached, Nm<minsamples or Nm=1. 

 

A1.2 Impurity criteria 

The nodes are split in a way that the new nodes will be as pure (homogeneous) as possible. 

Consequently, it is a usual practice to adopt a metric that will measure the impurity of the 

nodes (e.g., how many values are of the same class or not). A general equation to compute 

the impurity is shown below: 

 

𝐼𝐺(𝐷𝑝, 𝑓) = 𝐼(𝐷𝑝) − ∑
𝑁𝑗

𝑁𝑝
𝐼(𝐷𝑗)𝑚

𝑗=1  (A.4) 

Where: F is the variable to perform the split 

Dp dataset of the parent node 

Dj dataset of the jth child node 

I is the impurity measure 

Np is the total number of samples in the parent node 

Nj is the total number of samples in the jth child node 

 

Therefore, the optimal split is for the variable and corresponding threshold that maximizes 

the above metric. 

 

Commonly used impurity metrics are entropy, gini index and minority class. Here only the 

entropy and gini index will be explained as they are used for the construction of the trees. 

a. Gini Index: 

ΙG(t) = 1 − ∑ p(i|t)2m
i=1  (A.5) 

Where: m is the number of classes 

p(i/ t)is the fraction of data points in the node t belonging to category i. 

If Gini=0 then the node is pure and the samples in that node are perfectly separated 

and belong only to one class. If Gini=0.5 the node is impure and the samples are 

misclassified. 

 

b. Entropy: 

ΙΗ(t) = − ∑ p(i|t) log2 p(i|t)m
j=1   (A.6) 

Where:  m the number of classes 

p(i|t) is the proportion of the samples that belong to class m for a node t. 
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If Entropy=0 the node is pure and all samples of the node belong to the same class. 

If Entropy is maximal the nodes is impure and the samples are misclassified. 

 

A1.3 Cost Complexity Pruning 

Breiman et al. (1984) proposes a pruning algorithm called minimal cost-complexity to prune 

a tree and avoid overfitting. The basic parameter of this algorithm is the cost-complexity 

parameter a> 0. This parameter is used to define the cost complexity measure, Ra(T) of a 

given tree T: 

 

𝑅𝑎(𝑇) = 𝑅(𝑇) + 𝑎|𝑇|  (A.7) 

Where |𝑇| is the number of terminal nodes in T  

𝑅(𝑇) is normally the misclassification rate in the terminal nodes. However, scikit-learn 

uses for 𝑅(𝑇) weighted impurity of the terminal nodes instead. 

 

Minimal cost-complexity pruning finds the subtree of T that minimizes Ra(T). Cost-complexity 

for a single node is defined as 𝑅𝑎(𝑇) = 𝑅(𝑇) + 𝑎. Tt is a branch with root node t. The impurity 

of a node is greater than the sum of impurities of its terminal nodes. However, the cost 

complexity measure of a node, t, and its branch, Tt, can be equal depending on a. As 

effective cost complexity parameter aeff of a node t is defined the value of a where 𝑅𝑎(𝑇𝑡) =

 R𝑎(T) or 𝑎𝑒𝑓𝑓(𝑡) =
𝑅(𝑡)−𝑅(𝑇𝑡)

|𝑇|−1
. The non-terminal node with the smallest value of aeff is the 

weakest link should be pruned. 
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A2 Graphical User Interface of the web-based tools for interactive construction 

and analysis of decision trees. 

The Graphical User Interface (GUI) of the tool (Figures A.1) is comprised of three tabs: 

1. The first tab is named “Pre-processing Stage” and contains widgets (e.g. text boxes, 

dropdown menus etc) for: 

a. Defining classes,  

b. Grouping the available features (and assign colours to the groups) and  

c. Selecting important features. 

2. The second tab is named “Interactive Decision Tree” and contains widgets to enable 

the expert to: 

a. Control the tree size and structure.  

b. Create new variables and feed it back to the algorithm. 

c. Manually change variables and thresholds to split 

d. Manually prune nodes and/or tree branches 

e. Manually change leaf nodes classes 

3. The third tab is named “Evaluation Metrics and Plots” and contains widgets to enable 

the expert to: 

a. Calculate the classification accuracy 

b. Plot confusion matrices 
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Figure A. 1 The three tabs of the Interactive Decision Trees Graphical User Interface. 
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A3.1 Case studies Supporting Information 

 

A3.1 Case Study 1 

In Table A.1 the groups of variables, the variables belonging to each group and the colour of 

the group are given. 

 

Table A. 1 Input Features (CHASM parameters) divided in groups and color coded 

Variable Symbol Colour 

Geophysical Properties 

Saturated Hydraulic Conductivity: K_sat_0, K_sat_1 

Brown 

Dry Unit Weight: gamma_us_0, gamma_us_1 

Saturated Moisture Content: theta_s_0, theta_s_1, theta_s_2 

Residual Moisture Content: theta_r_0, theta_r_1, theta_r_2 

Van Genuchten suction-moisture curve α: alpha_0, alpha_1, alpha_2 

Van Genuchten suction-moisture curve n: n_0, n_1, n_2 

Effective Cohesion: c_0, c_1 

Initial Surface Suction: psi_init 

Effective Friction Angle: phi_0, phi_1 

Slope Geometry 

Slope Angle: delta 
Purple 

Thickness of Soil: H, H0, H1 

Design Storm 

Rainfall Intensity I 
Blue 

Rainfall Duration D 

Initial Hydrological Conditions 

Water Table Height DWT Yellow 

 

A3.2 Case Study 2 

In Figure A.2 the original and Modified Holdridge Life scheme is shown. 
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Figure A. 2 Holdrigge Life Zone Schemes. Top: Original Holdridge Life Zone Scheme, Bottom: Modified Holdridge 

Life Zone scheme. 

 

A3.3 Case Study 3 

In Figure A.3 the confusion matrices for the statistically optimal and interactive DTs for the 

training and test sets are shown. 
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Figure A. 3 Confusion matrices for statistically optimal and interactive DT for training and test sets. 
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Appendix B – Supporting Information for Chapter 3 
 

Table B. 1 Minimum and Maximum values and Range in Euros per Residential building for the regions Rhine 

flows over 

 

 

 

Table B. 2 Minimum and Maximum values and Range for the return period (in years) depending on the peak 
discharges for two different gauge stations 

Lobith gauge station - Netherlands 

Discharge (m3/s) Min (yrs) Max (yrs) Range (yrs) 

5000 1.27 1.44 0.17 
5650 1.59 2.03 0.44 
6250 1.76 2.24 0.49 
7500 2.81 5.09 2.28 
8750 5.08 16.79 11.71 

10000 9.58 101.40 91.82 
11250 19.76 4797.78 4778.02 

Cologne gauge station - Germany 

6250 1.67 3.17 1.50 

7500 3.44 4.48 1.04 

8750 6.65 9.30 2.65 

10000 25.79 35.70 9.91 

11250 37.68 121.99 84.31 

 

  

Region Min (Eur/Buil) Max (Eur/Buil) Range (Eur/Buil) 

Switzerland 64,365 118,857 54,492 
Liechtenstein 68,952 129,910 60,958 

Austria 65,641 128,423 62,782 
France 65,988 128,895 62,907 

Germany 60,636 115,971 55,335 
Luxembourg 56,959 109,574 52,615 

Belgium 58,165 113,474 55,309 
Netherlands 61,039 119,090 58,051 
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Appendix C – Supporting Information for Chapter 4 

 

C1 JBA Flood Risk Model 

In this thesis I used the flood risk model provided by JBA Risk Management Ltd. It consists 

of various datasets which may have their own physical or statistical modelling. In the next 

paragraphs we briefly describe each model dataset/component. 

 

The Stochastic Event Set (Event Set) is a database of plausible event-driving conditions. In 

our case it is a catalogue of millions of plausible flood events (observed and simulated) in a 

10,000 years period. Their severity is expressed in terms of return periods. The modelling 

chain to generate these events starts with the simulation of precipitation time series 

(including tropical and non-tropical cyclone related extremes) using spatio-temporal extreme 

value models. Simulated precipitation is one of the primary inputs that feed rainfall-runoff 

models to produce river discharge estimates. The other primary inputs are temperature and 

observed river discharge in locations with available measurements. At ungauged locations 

JBA uses a conceptual rainfall-runoff model and river discharge estimates are produced 

through regionalisation (using interpolation methods and the properties of nearby 

catchments). The simulated daily precipitation and river discharge data (10,000 years) are 

then transformed into return period estimates based on extreme value theory. Events are 

then extracted using a multivariate declustering scheme.  

 

Hazard Maps are used to estimate the damage driving characteristics (flood depths and 

extents) over the area where assets are located. As mentioned in Section 4.2.2 Hazard 

Maps an undefended view of flood depths and extents for six different return periods (in this 

case 20, 50, 100, 200, 500 and 1,500 years) To generate these maps two modelling phases 

took place:  

• Hydrological modelling which was performed to derive return period flows across the 

river network. The hydrological modelling stage starts with the gauge data collection 

and cleaning and the creation of a network of inflow points. Then, it continued with 

the delineation of geographically similar hydrological modelling regions and the 

development of regional flood estimation models. The final step is the derivation of 

flood hydrographs that will be used in the hydraulic modelling. 

• Hydraulic modelling which was performed to apply of those flows onto the digital 

terrain model (DTM) using JFlow® software to create flood hazard maps. 
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The exposure portfolio contains all the relevant information regarding the exposed assets, 

e.g., location (coordinates, postcode, country etc) line of business (residential, commercial, 

industrial etc), economic/insured value etc. JBA model accepts portfolios compatible with 

Open Exposure Data format. More information can be found in https://oasislmf.org/open-

data-standards . 

 

The vulnerability component translates the impact of flood hazard to damages normally 

using a set of vulnerability functions. JBA model use step functions that vary based on the 

line of business, coverage and geographic region. In this project I used the curve for 

residential line of business for Europe. 

 

C2 Definition of dominant input factor 

I calculated sensitivity indices to rank the input uncertainties with respect to their relative 

contribution to the output uncertainty. An intuitive approach to define the dominant input 

uncertainty is to look at the mean of the bootstrap resamples and the one with the higher 

mean is considered the dominant. But, this approach may not work well when:  

• The means of the bootstrap resamples do not differ significantly. 

• There is significant overlapping in the bootstrap resamples’ sensitivity indices 

distributions among the input uncertainties. 

• The bootstrap resamples sensitivity indices distributions of the input uncertainties are 

not normally distributed but skewed. 

 

In such cases, it is not enough to look only at the mean of the bootstrap resamples. An 

example is shown in Figure 4.4.  4 boxplots are shown and the dots within them represent 

the calculated sensitivity indices for different bootstrap resamples. Comparison based on the 

means indicates the Event Set as the dominant input uncertainty for this area. However, if 

one compare the calculated sensitivity indices in each bootstrap resample separately then 

there might be cases where other factors could be dominant, like the case I have highlighted 

in red colour. If this happens frequently, a factor other than the one with the highest mean 

could be dominant. 

 

https://oasislmf.org/open-data-standards
https://oasislmf.org/open-data-standards
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Figure C. 1 Showcase of the two different approaches for the definition of the dominant input uncertainty. 

. 

 

I proposed a new definition for the dominant input factors that considers the full distribution 

of the bootstrap resamples and which I described in Chapter 4. In Figure S3.2 I show the 

effect of the two approaches with results for dominant input uncertainties for Switzerland. 

 

 

Figure C. 2 Comparison of two different definitions for the dominant input uncertainties with results from 

Switzerland. 

 

C3 Dataset of hydrological, climatic, land cover, socio-economic variables and 

the associated dominant input uncertainties. 

At each polygon the dominant input uncertainty is known and additionally, I calculated the 

values of the properties shown in Table 4.1 (Chapter 4). The resulting dataset consists of 

2,102 of rows and 18 columns. Each row represents a different High Resolution CRESTA 
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zone (CRESTA, 2022). Each column represents a different property, except the last one 

which represents the dominant input uncertainty and will be treated as the classes by the 

DT.  

 

In the following table I show part of the dataset I used to link the dominant input uncertainties 

to hydrological, climatic, land cover and socio-economic properties of the places. 

 

Table C. 1 The table shows as an example part of the dataset used to link system characteristics with spatially 

varying dominant input uncertainties. 

CRESTA 

ID 

Riv 

Len 

Av 

Disch 

Max 

StOr 

Maj 

FD 

Mean 

FD 

Max 

FD 
FD3 

Hyd 

Bas 

Clim 

Class 
ARTF AGR FRST WETLN WB MeanVal Pop Area Classes 

AUT_6700 23 26 2 0.03 0.66 5 23 2 26 19 11 70 0 0 4175478 419 32 Event Set 

AUT_6708 17 2 1 0.1 0.22 4 3 2 26 4 3 93 0 0 8147274 179 40 Event Set 

AUT_6710 41 38 1 0.02 0.67 12 27 2 26 4 4 92 0 0 2240500 288 100 Hazard Maps 

AUT_6712 11 6 3 0.02 0.67 5 2 2 26 24 33 43 0 0 1222091 73 6 Event Set 

AUT_6714 13 27 3 0.19 1.04 4 28 2 26 13 10 77 0 0 2036818 181 22 Event Set 

AUT_6764 5 0 1 12 1.04 12 27 2 27 3 3 94 0 0 1120250 203 90 Damage Ratio 

… … … … … … … … … … … … … … … … … … … 

 

C4 Derivation of 15 Statistically optimal DT 

 

I derived 15 statistically optimal (SOT) DT by trying different number of leaf nodes (varied 

from 10 to 30). For each case, I chose the SOT based on 10-fold Cross Validation strategy 

and recorded their classification accuracy (on the train and test sets) and their interpretability 

(number of leaf nodes and tree depth). Then, I computed mean metrics of classification and 

interpretability performance. These are summarized in the tables on the top right of Figure 

C.3. 



 

93 
 

 

Figure C. 3 Statistically optimal and Interactive Decision Trees and their classification and interpretability 

performances. 
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