188,515 research outputs found

    The Necessity of Relay Selection

    Full text link
    We determine necessary conditions on the structure of symbol error rate (SER) optimal quantizers for limited feedback beamforming in wireless networks with one transmitter-receiver pair and R parallel amplify-and-forward relays. We call a quantizer codebook "small" if its cardinality is less than R, and "large" otherwise. A "d-codebook" depends on the power constraints and can be optimized accordingly, while an "i-codebook" remains fixed. It was previously shown that any i-codebook that contains the single-relay selection (SRS) codebook achieves the full-diversity order, R. We prove the following: Every full-diversity i-codebook contains the SRS codebook, and thus is necessarily large. In general, as the power constraints grow to infinity, the limit of an optimal large d-codebook contains an SRS codebook, provided that it exists. For small codebooks, the maximal diversity is equal to the codebook cardinality. Every diversity-optimal small i-codebook is an orthogonal multiple-relay selection (OMRS) codebook. Moreover, the limit of an optimal small d-codebook is an OMRS codebook. We observe that SRS is nothing but a special case of OMRS for codebooks with cardinality equal to R. As a result, we call OMRS as "the universal necessary condition" for codebook optimality. Finally, we confirm our analytical findings through simulations.Comment: 29 pages, 4 figure

    Exit, Voice, and Disloyalty

    Get PDF
    Innomhuspositioneringssystem kan med fördel användas i många olika tillämpningar, allt från sjukhus till shoppingcenter. Denna rapport behandlar olika tekniker och lösningar för att designa ett positioneringssystem. Rapporten tar även upp i detalj hur ett system kan konstrueras av ZigBee kombinerat med dödräkning

    Exit, Voice, and Disloyalty

    Get PDF
    This Lecture begins with a puzzle about Albert Hirschman’s famous work Exit, Voice, and Loyalty: Why do we make much of exit and voice but utterly neglect loyalty? It’s a question that goes well beyond Hirschman’s book. For example, much of constitutional theory is preoccupied with a single question: What doesademocracy owe its minorities? And most of the answers to this question fit naturally into the two categories Hirschman made famous: voice and exit. On both the rights side and the structural side of constitutional theory, scholars worry about providing minorities with an adequate level of influence. And the solutions they propose almost inevitably offer minorities a chance at voice or exit, ] as if no other option exists. The First Amendment, for instance, offers minorities the right to free speech (voice) and private association (exit). Similarly, structural arrangements give minorities the chance to vote in national elections (voice) and in state elections (exit)

    On the Diversity-Multiplexing Tradeoff of Unconstrained Multiple-Access Channels

    Full text link
    In this work the optimal diversity-multiplexing tradeoff (DMT) is investigated for the multiple-input multiple-output fading multiple-access channels with no power constraints (infinite constellations). For K users (K>1), M transmit antennas for each user, and N receive antennas, infinite constellations in general and lattices in particular are shown to attain the optimal DMT of finite constellations for the case N equals or greater than (K+1)M-1, i.e., user limited regime. On the other hand for N<(K+1)M-1 it is shown that infinite constellations can not attain the optimal DMT. This is in contrast to the point-to-point case in which infinite constellations are DMT optimal for any M and N. In general, this work shows that when the network is heavily loaded, i.e. K>max(1,(N-M+1)/M), taking into account the shaping region in the decoding process plays a crucial role in pursuing the optimal DMT. By investigating the cases where infinite constellations are optimal and suboptimal, this work also gives a geometrical interpretation to the DMT of infinite constellations in multiple-access channels

    Processor Verification Using Efficient Reductions of the Logic of Uninterpreted Functions to Propositional Logic

    Full text link
    The logic of equality with uninterpreted functions (EUF) provides a means of abstracting the manipulation of data by a processor when verifying the correctness of its control logic. By reducing formulas in this logic to propositional formulas, we can apply Boolean methods such as Ordered Binary Decision Diagrams (BDDs) and Boolean satisfiability checkers to perform the verification. We can exploit characteristics of the formulas describing the verification conditions to greatly simplify the propositional formulas generated. In particular, we exploit the property that many equations appear only in positive form. We can therefore reduce the set of interpretations of the function symbols that must be considered to prove that a formula is universally valid to those that are ``maximally diverse.'' We present experimental results demonstrating the efficiency of this approach when verifying pipelined processors using the method proposed by Burch and Dill.Comment: 46 page

    MIMO Networks: the Effects of Interference

    Full text link
    Multiple-input/multiple-output (MIMO) systems promise enormous capacity increase and are being considered as one of the key technologies for future wireless networks. However, the decrease in capacity due to the presence of interferers in MIMO networks is not well understood. In this paper, we develop an analytical framework to characterize the capacity of MIMO communication systems in the presence of multiple MIMO co-channel interferers and noise. We consider the situation in which transmitters have no information about the channel and all links undergo Rayleigh fading. We first generalize the known determinant representation of hypergeometric functions with matrix arguments to the case when the argument matrices have eigenvalues of arbitrary multiplicity. This enables the derivation of the distribution of the eigenvalues of Gaussian quadratic forms and Wishart matrices with arbitrary correlation, with application to both single user and multiuser MIMO systems. In particular, we derive the ergodic mutual information for MIMO systems in the presence of multiple MIMO interferers. Our analysis is valid for any number of interferers, each with arbitrary number of antennas having possibly unequal power levels. This framework, therefore, accommodates the study of distributed MIMO systems and accounts for different positions of the MIMO interferers.Comment: Submitted to IEEE Trans. on Info. Theor
    • …
    corecore