78 research outputs found

    Efficient product sampling using hierarchical thresholding

    Get PDF
    We present an efficient method for importance sampling the product of multiple functions. Our algorithm computes a quick approximation of the product on the fly, based on hierarchical representations of the local maxima and averages of the individual terms. Samples are generated by exploiting the hierarchical properties of many low-discrepancy sequences, and thresholded against the estimated product. We evaluate direct illumination by sampling the triple product of environment map lighting, surface reflectance, and a visibility function estimated per pixel. Our results show considerable noise reduction compared to existing state-of-the-art methods using only the product of lighting and BRD

    Focused Retrieval

    Get PDF
    Traditional information retrieval applications, such as Web search, return atomic units of retrieval, which are generically called ``documents''. Depending on the application, a document may be a Web page, an email message, a journal article, or any similar object. In contrast to this traditional approach, focused retrieval helps users better pin-point their exact information needs by returning results at the sub-document level. These results may consist of predefined document components~---~such as pages, sections, and paragraphs~---~or they may consist of arbitrary passages, comprising any sub-string of a document. If a document is marked up with XML, a focused retrieval system might return individual XML elements or ranges of elements. This thesis proposes and evaluates a number of approaches to focused retrieval, including methods based on XML markup and methods based on arbitrary passages. It considers the best unit of retrieval, explores methods for efficient sub-document retrieval, and evaluates formulae for sub-document scoring. Focused retrieval is also considered in the specific context of the Wikipedia, where methods for automatic vandalism detection and automatic link generation are developed and evaluated

    Die Sphere-Search-Suchmaschine zur graphbasierten Suche auf heterogenen, semistrukturierten Daten

    Get PDF
    In dieser Arbeit wird die neuartige SphereSearch-Suchmaschine vorgestellt, die ein einheitliches ranglistenbasiertes Retrieval auf heterogenen XML- und Web-Daten ermöglicht. Ihre Fähigkeiten umfassen die Auswertung von vagen Struktur- und Inhaltsbedingungen sowie ein auf IR-Statistiken und einem graph-basierten Datenmodell basierendes Relevanz-Ranking. Web-Dokumente im HTML- und PDFFormat werden zunächst automatisch in ein XML-Zwischenformat konvertiert und anschließend mit Hilfe von Annotations-Tools durch zusätzliche Tags semantisch angereichtert. Die graph-basierte Suchmaschine bietet auf semi-strukturierten Daten vielfältige Suchmöglichkeiten, die von keiner herkömmlichen Web- oder XMLSuchmaschine ausgedrückt werden können: konzeptbewusste und kontextbewusste Suche, die sowohl die implizite Struktur von Daten als auch ihren Kontext berücksichtigt. Die Vorteile der SphereSearch-Suchmaschine werden durch Experimente auf verschiedenen Dokumentenkorpora demonstriert. Diese umfassen eine große, vielfältige Tags beinhaltende, nicht-schematische Enzyklopädie, die um externe Dokumente erweitert wurde, sowie einen Standard-XML-Benchmark.This thesis presents the novel SphereSearch Engine that provides unified ranked retrieval on heterogeneous XML andWeb data. Its search capabilities include vague structure and text content conditions, and relevance ranking based on IR statistics and a graph-based data model. Web pages in HTML or PDF are automatically converted into an intermediate XML format, with the option of generating semantic tags by means of linguistic annotation tools. For semi-structured data the graphbased query engine is leveraged to provide very rich search options that cannot be expressed in traditional Web or XML search engines: concept-aware and linkaware querying that takes into account the implicit structure and context of Web pages. The benefits of the SphereSearch engine are demonstrated by experiments with a large and richly tagged but non-schematic open encyclopedia extended with external documents and a standard XML benchmark

    Objective comparison of methods to decode anomalous diffusion

    Get PDF
    Deviations from Brownian motion leading to anomalous diffusion are found in transport dynamics from quantum physics to life sciences. The characterization of anomalous diffusion from the measurement of an individual trajectory is a challenging task, which traditionally relies on calculating the trajectory mean squared displacement. However, this approach breaks down for cases of practical interest, e.g., short or noisy trajectories, heterogeneous behaviour, or non-ergodic processes. Recently, several new approaches have been proposed, mostly building on the ongoing machine-learning revolution. To perform an objective comparison of methods, we gathered the community and organized an open competition, the Anomalous Diffusion challenge (AnDi). Participating teams applied their algorithms to a commonly-defined dataset including diverse conditions. Although no single method performed best across all scenarios, machine-learning-based approaches achieved superior performance for all tasks. The discussion of the challenge results provides practical advice for users and a benchmark for developers. Deviations from Brownian motion leading to anomalous diffusion are ubiquitously found in transport dynamics but often difficult to characterize. Here the authors compare approaches for single trajectory analysis through an open competition, showing that machine learning methods outperform classical approaches

    Guidelines and recommendations on yeast cell death nomenclature

    Get PDF
    lucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel- lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi- nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ- ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou- tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au- thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro- gress of this vibrant field of research

    Guidelines and recommendations on yeast cell death nomenclature

    Get PDF
    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research

    Guidelines and Recommendations on Yeast Cell Death Nomenclature

    Get PDF
    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research

    Guidelines and recommendations on yeast cell death nomenclature

    Get PDF
    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research
    corecore