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Abstract

Traditional information retrieval applications, such as Web search, return atomic units of

retrieval, which are generically called “documents”. Depending on the application, a document

may be a Web page, an email message, a journal article, or any similar object. In contrast to

this traditional approach, focused retrieval helps users better pin-point their exact information

needs by returning results at the sub-document level. These results may consist of predefined

document components — such as pages, sections, and paragraphs — or they may consist of

arbitrary passages, comprising any sub-string of a document. If a document is marked up with

XML, a focused retrieval system might return individual XML elements or ranges of elements.

This thesis proposes and evaluates a number of approaches to focused retrieval, including methods

based on XML markup and methods based on arbitrary passages. It considers the best unit of

retrieval, explores methods for efficient sub-document retrieval, and evaluates formulae for sub-

document scoring. Focused retrieval is also considered in the specific context of the Wikipedia,

where methods for automatic vandalism detection and automatic link generation are developed

and evaluated.
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Chapter 1

Introduction

Suppose we want to learn how Japanese art affected Impressionism in Europe. Decades ago,

we would go to the library, find the shelf section covering “art history”, browse through book

titles, and then pick some books to read. Today, we search on the web with keywords such as

“Impressionist and Japanese art”. We obtain some web pages about the topic, but they may be

rather short or incomprehensive, so we may still go to the library. Even though we can search

book titles in online library catalogues, we may find ourselves in the library, disappointed by the

fact a book title was rather misleading for the information we are seeking.

In the ideal world, all information should be available via a quick tapping on the keyboard.

Not only would this reduce time to commute, reduce environmental impacts, but it would make

information more accessible to people in the rural communities such as Africa. According to

2007 Ontario Public Library statistics 1, there are 4,916,903 active cardholders, visiting libraries

66,520,750 times a year. This is about 13.5 times per person, or a slightly more than once a month

commute to the library. There were 115,519,658 direct circulations; thus each time a person visits
1http://www.culture.gov.on.ca/english/library/statistics/statistics2007/2007%20Summary%20and%

20Comparison/Summary and Comparison Report 0607.pdf

1

http://www.culture.gov.on.ca/english/library/statistics/statistics2007/2007%20Summary%20and%20Comparison/Summary_and_Comparison_Report_0607.pdf
http://www.culture.gov.on.ca/english/library/statistics/statistics2007/2007%20Summary%20and%20Comparison/Summary_and_Comparison_Report_0607.pdf


Factor Document Retrieval Focused Retrieval

Unit of retrieval document any part of a document

Burden User Search System

Extra-textual Information Helps Unknown

Table 1.1: Document Retrieval v.s. Focused Retrieval

a library, the visitor borrows only 1.7 books. People in Africa, however, do not have the luxury to

commute to the library. There are only 1,129 library access points among 13 countries in Africa

during 1990 -2000 [53], while Ontario alone has 1,093 access points1. Even though a free digital

library is available to Africans 2 only 8,000 full-text books are available.

Now, suppose we live in an ideal world. We still need to flip through pages on books online

and scroll through the webpages, to find the relation between Impressionism and Japanese art.

It would be convenient if there is a single search engine that searches through parts of webpages

and books, ranking them together by how relevant the parts are to the query.

My thesis topic is focused retrieval from heterogenous objects. Focused means that we may

only be interested in parts of the objects. For example, in Figure 1.1 3 in the top-most figure,

the first search result returned points to the beginning of a document, whereas the bottom-most

figure highlights the most relevant part of the same document. Heterogeneous objects implies

that we want to retrieve web pages, books, news stories, and other media at the same time.

Though these objects could include graphics, audio, video, and similar media, in this thesis I

limit my focus to text documents such as journal articles, books and Wikipedia pages.

Focused retrieval offers distinct opportunities and challenges. Table 1.1 shows some of the

differences between traditional document retrieval and focused retrieval. First, the unit of retrieval
2http://www.africaeducation.org/adl/
3http://en.wikipedia.org/wiki/Impressionism

2

http://www.africaeducation.org/adl/
http://en.wikipedia.org/wiki/Impressionism
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is different. Document retrieval only returns entire documents, whereas focused retrieval can

return any part of any document. This part returned can range from a single character to a

sequence of sections, to an entire document. The ideal size for focused retrieval then must balance

exhaustivity, the measure of the amount of pertinent information, with specificity, the measure

of the quality of pertinent information. For example, in Figure 1.1, the top-most result has

high exhaustivity with respect to the query by displaying an entire article about Impressionism.

The top-most result, however, lacks specificity because most information is not pertinent to the

“Japanese art” part of the query. The first sentence of the bottom result, on the other hand,

has high specificity because it gives a one-sentence answer to the question as to how Japanese

art influenced Impressionism. This sentence alone, however, lacks exhaustivity because it does

not give supplementary information. Thus for this query, the ideal result is the paragraphs

surrounded by the box.

The second difference between document retrieval and focused retrieval is associated with the

burden of locating information in documents. In document retrieval, a search engine only needs

to score at most the number of documents in the corpus, but a user needs to spend time scanning

to spot the part of document that is relevant to their information need. Focused retrieval, on

the other hand, may need to score as many times as the number of parts of documents (or

subdocuments) in the collection. A user, however, does not need to scan and spot the relevant

part of documents.

For example, there are 2,666,500 documents in one of the corpora I used for experiments re-

ported in this thesis 4. The average document length in this Corpus is 1,564 terms, including XML

tags. In document retrieval, the scoring function is executed 2,666,500 times. In focused retrieval,

if we consider all subdocuments that start and end at a term, the function could be executed

(1564 · 1565/2) 266500 = 3, 263, 342, 695, 000 times. The number gets worse when documents

are longer, such as in the INEX 2008 Book Corpus [40, 77], which I used in some experiments.
4INEX 2009 Wikipedia Corpus [125]
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This corpus contains 50,238 books with an average document length of 143,037 words includ-

ing tags, which could correspond to 513,927,867,592,314 subdocuments, or 10,229,863,203 times

more executions of a scoring function than would be required for standard document scoring.

In general, if there are k documents, each with an average length of n words, there may be

(n · (n− 1) /2) k = O
(
kn2

)
possible subdocuments, thus when compared to a document retrieval

system that executes a scoring function k times, there is a quadratic increase in the running time.

If the book search engine resides in a large corporate computers, and the collection is relatively

small, these numbers may be acceptable. But what if a user wanted to search on an electronic

book reader, such as a Kindle 5? For portability, electronic book readers boast light weight and

long battery life. For example, the above mentioned Kindle website as of August 6th, 2010, boasts

a one-month battery life and a weight of less than a paperback novel. A quadratic increase in

the processing time would likely be impossible for these devices. Thus, the document search en-

gines may generate a much lighter processing load than focused search engines. Users, however,

may find that focused retrieval requires less effort because they do not need to go through the

document to locate information of interest.

Finally, document retrieval draws on an abundance of research to help improve the search

results. For example, using link structure in the computation of document scores, using methods

such as PageRank [6], helps search engines to take into account extra-textual context. Applying

XML structure to text such as BM25F [120] may also help with web page retrieval. However,

in focused retrieval, treating each subdocuments (sections, chapters, pages, paragraphs) as an

independent document appears to be essentially the state-of-the-art [73].

Focused retrieval from heterogeneous collection means more than just having a search engine

returning parts of webpages and books mixed together. Table 1.2 lists possible applications. In

a link detection problem, at the document level, we only need to “retrieve documents” related to

the document of interest. At the subdocument level, we need to retrieve a part of a document, an
5http://www.amazon.com/gp/product/B003FSUDM4/ref=sv kinc 0

5

http://www.amazon.com/gp/product/B003FSUDM4/ref=sv_kinc_0


Figure 1.2: Focused Retrieval Applications
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Application Document Retrieval Focused Retrieval

Link Detection Document Linking Identification of anchor phrase and the BEP

Spam Detection Email Wikipedia Pages

Table 1.2: Focused Retrieval Application

anchor phrase, to link to another part of a document, the best-entry-point (BEP) for reading. For

example, in Figure 1.2 6, instead of linking the entire document on “Impressionism” to related

documents on “Neo-Impressionism” 7, “Post-Impressionism” 8, and “Fauvism” 9, anchor phrases

such as “Neo-Impressionism” and the best entry points of the link destination, in these cases, the

beginnings of the documents, are selected.

In many spam detection applications the rules of document retrieval may apply. For email

and Web pages, we identify whole documents considered to be spam. However, in some ap-

plications spam detection may be required at the subdocument level. For example, vandalism

(spam) in the Wikipedia must be identified at the subdocument level, as each edit is made. In

Figure 1.2, a document-level spam detection might deem the entire article on “Impressionism”

to be spam, whereas in focused spam detection, only the “candy is good” part is deemed to

be vandalism because it does not follow from the previous sentence regarding various artistic

movements influenced by Impressionism.

1.1 INEX

6http://en.wikipedia.org/w/index.php?title=Impressionism&oldid=366378612
7http://en.wikipedia.org/wiki/Neo-Impressionism
8http://en.wikipedia.org/wiki/Post-Impressionism
9http://en.wikipedia.org/wiki/Fauvism

7

http://en.wikipedia.org/w/index.php?title=Impressionism&oldid=366378612
http://en.wikipedia.org/wiki/Neo-Impressionism
http://en.wikipedia.org/wiki/Post-Impressionism
http://en.wikipedia.org/wiki/Fauvism


Most of the experiments I report in this thesis are conducted as part of an XML retrieval

workshop, INEX, the INitiative for the Evaluation of XML retrieval 10. INEX is similar to the

well-known Text REtrieval Conference (TREC) 11 in the sense that for each search task, called a

track, participants are given a set of test queries called topics and a corpus to which they submit

a run to compare their performance to one another. The goal of INEX builds upon TREC in the

sense that its purpose is to test the utility of applying an XML structure to information retrieval.

The workshop consists of several tracks, each track is divided into tasks, again with different

objectives. The participants are required to create topics, submit the results of their experiments,

and assess the results. The final scores for each track/task are computed by evaluation measures

chosen by the organizers and the ranks are published according to the scores.

Between 2002 and 2009, INEX expanded from a single Ad Hoc Track and less than 30 par-

ticipating groups [32], to eight tracks and roughly 50 participating groups mostly from Europe

and Australia/New Zealand [47]. The current iteration, INEX 2010, features an Ad Hoc Track, a

Book Track, a Data-Centric Track, an Interactive Track, a Link-the-Wiki Track, a Question An-

swering Track, a Relevance Feedback Track, a Web-Service Discovery Track, and a XML Mining

Track. Of these tracks, my thesis relates to the Ad Hoc, Book, and Link-the-Wiki Tracks.

The purpose of the Ad Hoc Track is subdocument retrieval. Over the years, I participated

in the following tasks: The Focused Task, Best-in-Context Task, and Relevant-in-Context Task.

Focused Task, the center of my thesis, retrieves subdocuments that balance specificity and ex-

haustivity. In 2006, the corpus expanded from the 500MB IEEE collection donated by the IEEE

Computer Society in 2002, to the 6GB Wikipedia collection [25] created in 2006. In 2009, the

corpus was changed to a 50GB Wikipedia collection [125]. The set of tags expanded from basic

structural tags such as <section> and <p>, to semantic tags such as <person> and <country>

in 2009.
10http://www.inex.otago.ac.nz/
11trec.nist.gov/

8
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Until 2007, participants were restricted to return single XML elements (a paragraph, section,

abstract, etc.). This restriction was lifted in 2007, when INEX allowed participants to return

subdocuments of any size to facilitate the comparison between XML and non-XML oriented

retrieval strategy [33]. The evaluation measures were changed accordingly from those that take

structure into account, to the simple comparison of the ratio of assessor’s highlighted text to the

retrieved text [33]. As of 2009, no XML-oriented search strategy has significantly outperformed

a non-XML-oriented strategy [33,45,73].

The Book Track’s goal is to facilitate digitization of books. As part of my thesis work, I

have participated in the Book Retrieval Task and the Focused Search Task. The former can be

considered as a book version of web retrieval, and the latter a book version of focused search.

The major difference between the tasks at Ad Hoc Track and the Book Track is the sheer size

of corpus. The book corpus [40, 77] (since 2008) consists of 50239 out-of-copyright books with a

total size of 37GB after pre-processing. The original size was 250GB, but each word was wrapped

with a <word> tag. Additionally, the number of XML tags are limited in the book corpus.

The topic format for Ad Hoc and Book Tracks are similar. Fig 1.3 shows a sample topic

taken from INEX 2008 Book Track test set. The title field displays what a user would type into a

search box. In this example, it is “Impressionist and Japanese art”. The title field is followed by

a description field, which may be used as a natural language query. The narrative field describes

the background on the query, detailing why a user needs the information. In this example, the

user became interested in the relationships between Japanese art and Impressionism after hearing

about it. In addition to these fields, Ad Hoc topics contain the content-and-structure title field,

which specifies a structural requirement for the retrieval.

For both Ad Hoc and Book Tracks, relevance assessments were conducted by users highlighting

the relevant part of the document/book pages. For the Ad Hoc Track, the submitted runs were

pooled and the documents in the pool were submitted to a participant, usually the topic creator,

9



Figure 1.3: INEX 2008 Book Track Topic 54

for assessment [33, 45, 73]. For the Book Track, in addition to highlighting, buttons were clicked

to indicate if the pages and books are relevant or not [40,77].

The goal of the Link-the-Wiki Track is the automatic identification of anchor phrases and

best entry points for a plain text document. In 2008, the 6GB Wikipedia corpus, in 2009, the

50GB Wikipedia corpus, and in 2010, the teAra corpus 12 was used. For 2008 and 2009, the

corpus came with pre-existing links, which participants could use to their advantage. In 2010,

the corpus did not include any markup.

1.2 Contributions of my Thesis

My contributions may be divided into INEX-based contributions, and other published and
12www.teara.govt.nz

10
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non-published contributions. The major contributions from INEX help to resolve two open prob-

lems in the Ad Hoc Track, Focused Task, and Link-the-Wiki Tracks. The non-INEX-based con-

tributions fall into the area of focused retrieval not studied in INEX, completing a comprehensive

study of focused retrieval. My publications are listed as references to this thesis [64–69].

1.2.1 INEX-based Contributions

In INEX 2007, 2008, and 2009, I participated in Ad Hoc, Book, Entity Ranking (not part of

the thesis) , and Link-the-Wiki Tracks. My contributions are to study the unit of retrieval in Ad

Hoc Track, to study the utility of XML structure in Ad Hoc and Book Tracks, and to present a

simple baseline run for Link-the-Wiki Track that has proven difficult to beat. Because some of

my contributions provide difficult-to-beat performance in Ad Hoc and Link-the-Wiki Tracks, the

organizers changed the tasks in the two tracks in INEX 2010 13.

For reference, Table 1.3 summarizes my participation and the best rank achieved by my runs.

Unit of Retrieval

At INEX, I raised an issue that a single element may not be a good unit of retrieval. Specifically,

in Itakura and Clarke [64] we propose that converting a passage result into a single element

result in Ad Hoc Focused retrieval by taking the smallest element that contains the most relevant

passage, performs worse than simply scoring all single elements and returning the best scoring

elements. Thus, I propose that the then-restriction on the retrieval unit should be liberated

to include ranges of elements. In INEX 2007, the unit of retrieval was liberated into arbitrary
13INEX 2010 Ad Hoc Track Ad Hoc Retrieval Task and Result Submission Specification http://www.inex.

otago.ac.nz/tracks/adhoc/runsubmission.asp?action=specification

11
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track year task rank # groups

Ad Hoc 2007 Focused 3 26

Best-in-Context 3 19

2008 Focused 1 19

Best-in-Context 1 13

Relevant-in-Context 1 11

2009 Focused 1 16

Link-the-Wiki 2007 Outgoing 4 4

Outgoing (Unofficial) 1 4

Incoming 1 4

2008 Outgoing 6600 File2File (Wikipedia) 3 8

Incoming 6600 File2File (Wikipedia) 2 9

Outgoing 50 A2BbyA2F, Single Destination(manual) 2 8

2009 Outgoing 33 A2B (Wikipedia) 2 4

Incoming 33 A2B (Wikipedia) 1 2

Outgoing 33 A2B (Manual) 1 4

Book 2008 Book Search 4 4

Page-in-Context 1 2

2009 Focused search (results not available yet) n/a n/a

Table 1.3: Official INEX Ranks 2007-2009. Sources: Overview Papers [33,45,57,58,60,73,77]
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passages [33]. In INEX 2008, I submitted arbitrary-passage retrieval runs that, surprisingly, did

not perform as well as my single-element retrieval runs [45,66]. Chapter 5 Section 5.3 studies the

issue further and arrive at the conclusion that (at least with the current Ad Hoc Track setting)

single XML elements are good retrieval units.

Taking Advantage of Structure

My basic single-element retrieval runs that does not take XML structure into account (other than

defining which element to score) ranked well in INEX 2007 and 2008 [33, 65, 66, 73]. At INEX

2009, however, I used a version of BM25F [120] to increase the performance over the baseline on

both Ad Hoc and Book Tracks [45,69]. In Itakura and Clarke [68], I perform further experiments

on the INEX 2009’s successful submission on book focused search settings and show that it gives

improvements over the baseline that has consistently ranked high in the INEX Ad Hoc Focused

Task. I also present the generalized framework for how to use XML markup in Ad Hoc retrieval

without having too many fields to overload computations as in previous work [92,119]. Chapter 6

also discusses the topic.

Focused Links

In the INEX 2007 Link-the-Wiki track, I submitted an unofficial run 14 that used a simple

statistical approach that surpassed everyone else’s run [57, 65]. This simple statistical baseline

approach was later adopted and modified slightly by other participants to prove a difficult-to-beat

performance in INEX 2008 and 2009 [58,60,66,69]. In 2009, in order to improve on this baseline,

I used K-L divergence to balance the popularity of a page with the topicality of the page.
14The official run I submitted assumed that the links are not ranked. After the evaluation results and software

was released before the workshop, however, I learned that the links needed to be ranked. Thus I sorted the links

in the official run and presented the new unofficial run during INEX 2007.

13



In INEX 2009, this new approach gave an improvement over the baseline at early recall

points [60, 69]. However, the baseline run looked already near-perfect and difficult-to-beat that

in INEX 2010, the organizers changed the objective of Link-the-Wiki track. Chapter 7 discusses

my approach to the focused link problem.

1.2.2 Non-INEX Contributions

Some of the important differences between document and focused search are not yet studied at

INEX. One question is the increased complexity inherent to focused retrieval. The other question

is focused spam filtering.

Mathematical Framework

Chapter 3 first defines what a focused retrieval means. In order to reduce the brute-force com-

plexity of O
(
n2

)
quadratically, I devise a simple scoring function that is based on pivoted length

normalization [128]. Next, I derive two famous scoring functions, BM25 [121] and language

model [141] into a form similar to my function so that the reduction becomes applicable to them

and to show that they both possess the similar ranking formula. While this work does not fully

solve the problem of quadratic performance, it provides a framework for the problem, as well as

providing a formal foundation for the rest of the thesis.

Focused Spam Detection

Chapter 8 discusses my work reported in Itakura and Clarke [67]. In this work, I apply a simple

probabilistic compression model, previously employed for email spam detection, to the problem

of Wikipedia vandalism detection. I show, contrary to a previous work [129], that a simple

compression model can work in this limited setting.

14



1.3 Summary

In this thesis, I explore the topic of focused retrieval from heterogeneous objects. Focused

retrieval means not ad hoc retrieval of subdocuments, but also retrieval of anchor phrases and

the best-entry-points, as well as the identification of vandalism in otherwise proper text. The

heterogeneous objects I study are Wikipedia articles and book pages, though the results may not

necessarily be limited to those types.

For ad hoc focused retrieval, I study three main issues.

• Computational Overload: “Is there a way to reduce it?”

• Unit of Retrieval: “What is the best passage size?”

• Extra-textual Information: “Can we take advantage of it?”

The first two issues would not be a problem in traditional document retrieval settings. The last

issue has been investigated extensively in document retrieval, producing improvement by using

external information. In focused retrieval settings, however, despite being the main objective of

INEX since 2002, no one has been able to clearly resolve the advantage of using XML structure.

I base most of my experiments on an XML retrieval workshop, INEX. The official runs I

submitted from 2007 to 2009 are evaluated objectively by evaluation metrics chosen by the INEX

coordinators. Some of my runs have performed very well, and one run was re-implemented by

other participants in the following years, producing similar results. My runs are downloadable

from the workshop website 15.

The roadmap of my thesis is as follows: Chapter 2 lays out previous work on document

retrieval, passage retrieval, and focused retrieval, including INEX runs. Chapter 3 frames the
15http://www.inex.otago.ac.nz/

15

http://www.inex.otago.ac.nz/


problem of passage retrieval formally and tries to derive a linear time algorithm to solve the

problem. Chapter 4 describes implementation details of my approach to focused retrieval tasks.

Chapter 5 discusses the issue of determining the ideal unit of retrieval in focused ad hoc search.

Chapter 6 investigates how to take advantage of structures in ad hoc retrieval. Chapter 7 describes

one application of focused search, automatic linking of Wikipedia pages. Chapter 8 describes

another focused search application, vandalism detection in Wikipedia. Chapter 9 concludes the

thesis.

16



Chapter 2

Related Work

2.1 Document Retrieval

In almost all IR tasks, the unit of retrieval is fixed: I call these indivisible units “documents”,

although they may be email messages, articles, etc. Each document is considered independent

and ranked using relevance scoring functions such as the vector space model [124], BM25 [122],

and the language modelling approach to IR [114].

The Vector space model (VSM) is the simplest of all these scoring functions. Typically, a

document is represented by a vector of real numbers. Each entry in the vector corresponds to

the term frequencies of the terms in a corpus. Similarly, a query vector is formed based on

term frequencies of query terms. Ranking of a document is according to how close a document

vector is, compared to the query vector. Normally the similarity measure is computed by cosine

distance [124]. The drawback of this model is that it does not discriminate document length

well, where in practice, given the same term frequencies, short documents may be preferred. For

17



example, if a Wikipedia article on “Impressionism” contained all the query terms in the first

paragraph, then the VSM scores of the article and the first paragraph would be the same, but

the users may prefer reading the paragraph over the entire article.

Pivoted length normalization can normalize the length disparities. Singhal et al. propose

that a good document retrieval algorithm should produce a retrieval probability of a document

that closely matches the actual relevance of the document [128]. They show that existing doc-

ument retrieval scoring algorithms that normalize length can be normalized even further by the

application of pivoted length normalization.

The basic idea behind their pivoted length normalization is that given a graph that plots the

probabilities of retrieval and relevance of documents of varying length, we can tilt the retrieval

probability plot at some point (pivot) for some degree (slope) to make the retrieval probability

plot closer to the relevance probability plot. Thus the basic pivoted length normalization formula

involves the original normalization formula such as a logarithm of a length, and two variables, a

pivot p, and a slope s,

S (document) =
∑

t

f (ft) · g (wt)
(1.0− s)× p + s× old normalization

, (2.1)

[128] where f (ft) and g (wt) are functions of a term frequency and a weight for a query term

t [128]. In the next section, I define the mathematical model of passage retrieval and I revisit

(2.1) in our passage retrieval setting.

BM25 normalizes document lengths to counter the repeated appearance of query terms. The

basic idea is that a few appearances of a high IDF term establish that the document is (probably)

“about” that term. Additional appearances does not change the “aboutness” much [122]. For

example, in the Wikipedia article on “Impressionism”, after the first few times the reader sees

the terms in the article, the reader would think the article is about the Impressionism. The user

is unlikely to change mind after seeing the term for 791025 more times in the same article. The

18



version I use in this thesis is as follows:

S (document) =
∑

t

wt
ft (k1 + 1)

ft + k1

(
1− b + b l

avgl

) , (2.2)

where t is a query term, wt is an inverted document frequency for t, ft is a term frequency of t

in the document, and avgl is an average document length in the collection. Parameters k1 > 0

and b = {b : 0 < b < 1} are tuned to optimize the scoring scheme.

Language modeling also normalizes document length and scores documents using a different

paradigm than the first two, which are variations of counting term frequencies. In language

modeling-based document retrieval, a document’s probability to produce a query is computed

using the document’s language model [114]. The version I use in this thesis is as follows:

S (document) =
∑

t

log
(

1 +
ft

µ

lC
nt

)
−m log

(
1 +

l

µ

)
, (2.3)

where µ is a parameter, lC is the length of the corpus C, nt is frequency of t in the entire corpus

C, and m is the number of terms in the query.

In Chapter 3 I examine the details of BM25 and language modeling.

Finally, although not used in the thesis, a recent trend of ranking documents is to use a

machine-learning approach, called “learning-to-rank”. The approach learns a ranking function

through a set of training data along with its relevance judgements. The queries and documents

are represented by features to train on a machine learning algorithm [90].

2.2 Focused Retrieval

The goal of focused retrieval is to return to a user document parts that balances specificity with

exhaustivity. A whole Wikipedia page about Impressionism is too long for a busy user to skim

through to find information about how Japanese arts influenced it. But a phrase “Japanese arts”
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in the same Wikipedia page is too short for a user to understand how it actually influenced the art

movement. Chapter 1 proposed three problems inherent to focused retrieval, the unit of retrieval,

usefulness of (XML) markup, and complexity. In each of the following sections, I discuss related

work that involves these three issues.

2.2.1 The Best Passage Size

The majority of previous work on focused retrieval assumes a fixed unit of retrieval. For

example, sliding windows of words give fixed-length passages. Simply scoring XML elements do

not have fixed length, but fixed structure. We call this predefined passage retrieval. Figure 2.1 1

displays different types of predefined passages from the Wikipedia article on “Impressionism”.

The unit can be overlapped fixed-length sliding windows of words [8,81,91,103] (Figure 2.1-a), or

sentences [1], which is very common in question answering tasks. The unit can be also a disjoint

set of sentences, paragraphs, or chapters [8, 22, 55, 56, 85, 86, 111, 118, 143] (Figure 2.1-b), based

on document markup such as XML [3,126] (Figure 2.1-c)and SGML [110,143].

In general, the more flexible the unit is, the better the performance [8, 81, 91, 103]. Using a

sliding window of words in Fig 2.1-a would perform better than using paragraphs in Fig 2.1-b

as a unit if the window length was small because sliding window of words normally produces

more number of passages than the number of paragraphs. Callan [8] experiments on retrieval

of passages based on paragraphs and compare it against sliding windows of words and find that

sliding windows of words perform better than paragraphs. Liu and Croft [91] compares the

performance of half-overlapped sliding windows of words against a simulated arbitrary passage

retrieval, in which they set the length of passage size to be in a certain length and compute

a passage starting at every 25 words. Though the simulated arbitrary passage retrieval is still

a variation of sliding windows, it produces more varieties of passages than the half-overalpped
1Excerpt from http://en.wikipedia.org/wiki/Impressionism taken on July 7, 2010
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Figure 2.1: Predefined Passage Retrieval
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Figure 2.2: Arbitrary Passage Retrieval
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windows, giving superior performance.

The above observation is especially useful when the query size is small, as in the case of our

running example, “Impressionist and Japanese art”. Melucci [103] studies the effectiveness of

retrieval of overlapping passages against disjoint passages and shows that overlapping passages

are superior with short query terms and for relatively small passage size of 50 to 100 words. The

finding is supported by Kise et al. [81], who compares document retrieval based on document

scoring against document retrieval using sliding windows of passages to find that for very small

queries sliding windows works better.

The advantage of flexible unit of retrieval in document retrieval suggests that we should move

away from predefined passage retrieval towards arbitrary passage retrieval, that allows variable

passage length. Figure 2.2, shows an example of an arbitrary passage underlined. The passage

starts from the fourth incidence of search terms, “Impressionists” and ends at the sixth incidence

of search terms, “Japanese”, containing three incidences of search terms in total.

Few previous work on arbitrary passage retrieval exist. Kaszkiel and Zobel [76] approximate

arbitrary passage retrieval by having a fixed-word-sized sliding windows of 12 different sizes to

make computation feasible. Because some of their results skew towards shorter lengths, they use

pivoted length normalization to normalize the passage lengths. The results on the performance of

document retrieval are that there is no single ideal size of a passage and that not using document

markup such as sentence boundaries provides a more effective arbitrary passage retrieval system.

Liu and Croft [91] approximate arbitrary passages similarly to Kaszkiel and Zobel. They also

support that the passage length can be of any length. Mittendorf and Schäuble [107], and Knaus

et al. [83] show how arbitrary passage retrieval is possible using Hidden Markov Models . However,

the lack of a passage retrieval evaluation set forces them to evaluate a document returned that

contains the passages returned in a document collection. Clarke et al. [16] show an arbitrary

passage retrieval algorithm that works well for one to three query terms, but does not consider
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term frequency. The score of a passage depends on the number and the lengths of the shortest

sub-passage that starts and ends with any query terms.

The decision of ideal passage size to return becomes more complex in the case of arbitrary

passage retrieval. Suppose that we define an arbitrary passage to start and end with an instance

of query terms, as in Section3.2, Definition 8. Then, in Fig 2.2, we have 21 possible passages of

size one to size seven. A one-term passage seems too short, but the 21-term passage may be too

long. The previous work on predefined passage retrieval suggests that the ideal size of passage

to return is not too long, and not too short. The ten-word sliding window of Fig 2.1-a may be

too short, but the entire article may be too long, but the paragraph in Fig 2.1-b/c may be about

right.

Zobel et al. [143] compare the effectiveness of retrieving documents based on scoring of entire

documents, pages, and sections according to SGML markup. They find that scoring of pages

is superior to document scoring, which in turn is superior to section scoring. They suggest this

may be due to the large length of documents and small length of sections. Huang et al. [56] on

the other hand, show that retrieval based on chapters is better than that of a document. The

disparities between Zobel et al. [143] and Huang et al. [56] may be due to the fact that chapters are

significantly longer than sections, suggesting that markup can be helpful if we only score those

that are long enough. This idea is explored by Myaeing et al. [110], who show that judicious

weighting of SGML elements improves performance for document retrieval over ignoring SGML

elements. Although the above results examines the performance of passage retrieval in document

retrieval systems, it also holds true for question answering systems that use passage retrieval.

Abney et al. [1] compare the performance of 50 and 250 bytes passage retrieval approach with

entity recognition in question answering against retrieval of single sentences using tf-idf. They find

that their 250-byte passage retrieval approach works better than their single-sentence retrieval

approach, which in turn is better than 50-byte passage retrieval. An interesting approach to

decide on the length of a passage maybe to consider semantics. O’Connor [111] looks for connector
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words such as “and” to combine two sentences into a passage. Lee et al. [85] used lexical chains

to connect passages.

2.2.2 Scoring Function

Different ways to score passages exist. One of the simplest ways to do so is to not score passages,

but instead select all passages that contain all query terms, resulting in an AND query [111].

This type of query as well as other forms of boolean query is not popular in IR literature, because

it misses many relevant documents. Instead, a ranked query is normally used [98]. Instead

of retrieving precise matches to the query as in a boolean query, the search engines ranks text

according to the relevance to the query. A simple way to use a ranked query to score passages is to

count the number of query terms in the sentence. If one sentence has higher term frequencies than

the other, we choose that sentence. A variant of this method combined with linguistic analysis

seems fairly common among question answering tasks. Light et al. [86] call this approach word

overlap. They show that the size of overlap relative to other sentences indicate the relevance to a

question, even though the size may be small. A similar, but more complex method than simply

counting term frequencies, is to use weighted term frequencies to score passages. The VSM uses

an inverted document frequency of a term to determine term weights. Barbay et al. [3] adopt

this in the passage retrieval of XML documents. Their scoring function is the sum of weighted

term frequencies. Abney et al. [1] also score sentences using weighted term frequencies, but since

their unit of passage was three-sentence long, they discount the score of the first and the last

sentences against the score of the middle sentence. A slightly more advanced method of scoring

passages than weighted term frequency, is a variation of density. Kise et al. [81] locate the densest

part of a document according to tf-idf measure to aid in the retrieval of documents. For passage

retrieval application, however, it lacks length normalization. Tellex et al. show that the density-

based scoring work well [131] on pre-defined passage retrieval on the performance of question

answering combined with document retrieval. BM25 develops these density-based functions, but
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add length-normalization.

BM25 [122] along with cosine measures [124] and language modeling [114] are widely used to

score passages [1,8,91,118,126,143]. For example, Ittycheriah et al. combine a BM25-variant score

of a sentence with a score based on linguistic analysis [70]. They look in WordNet hypernyms

and hyponyms of a word that occurs after a question term. The additional sentence score then

depends on the distance of such words and hyper/hyponyms in the WordNet. Pivoted length

normalization with cosine measure performs well for passage retrieval [76].

The language modeling belongs to a group of approaches that use Bayesian techniques.

Melucci presents a way to score passages using Bayesian probabilities [103]. He computes a

posterior probability of term occurrences for a given passage, and judges the passage to be rele-

vant if it is less than the mean. Language modeling can be thought of as a Hidden Markov Model.

At a document level, a basic Hidden Markov Model approach proposed by Miller et al. [105] works

well. He showed that a series of query terms can move between two states, a document, and a

“general English”, each with a transition probability. Then a probability of a document being

relevant given a query becomes a linear combination of term frequencies over the document and

over the entire corpus, assuming a uniform probability of query occurrence and document rele-

vance. The linear combination then resembles the basic language model used for document or

passage retrieval [54,91,114]. At a passage level, Mittendorf and Schäuble [83,107] use a Hidden

Markov Model to retrieve passages. Each term in a document is mapped to either the relevant

or the non-relevant state. The transition probabilities and the background model for each state

determines the next state. At each sate, a similarity value between the term and the query is

produced as an observation. In order to find the best passage, we first compute the sequence of

similarity values for a given document and a query. We then use Vitarbi algorithm to find the

path that maximizes the probability of producing the sequence of similarity values. Makhoul et

al. use Hidden Markov Model in audio stream retrieval [94]. They construct two models, one

from the audio, and the other from the audio transcript to perform speech recognition. Myaeng
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et al. [110] use a Bayesian net to represent the hierarchical SGML structure, in which leaf nodes

point to terms they contain. The degree of belief of an element containing a query term is then

obtained by computing the conditional probabilities from the top down.

Outside of the variants of the standard tf-idf and probabilistic model-based scoring functions,

there exist various schemes using hand-crafted matching rules and information theoretic scoring

scheme. Hovy et al. [55] and Lee et al. [85] create hand crafted matching rules to score sentences.

Hovy et al.’s score depends on how the query terms matched. For example, if the query term

matched with proper capitalization, the score was changed. Lee et al.’s rules gave scores according

to the distribution of matched terms, in addition to the weights and number of matched terms.

Although all the above scoring functions treated query terms as a bag of words, there are some

that take into account the order of query terms. When the query is in the form of a natural

language statement or question, choosing a passage whose occurrences of the query terms are in

similar order as in the query sentence reduces the amount of false positives. Specifically, Cui et

al. [22] use a fuzzy matching technique to find passages in which the query terms have the same

grammatical dependencies as in the query. Clarke et al. [15] use an information theoretic scoring

function. They score a sentence by how rare the occurrence of a sentence is by self-information of

a probability that the sentence contains all different query terms. They then look for an answer

to a question by looking at the vicinity of the high scoring sentences.

Is one function better than the other? Fang and Zhai [30] suggested that scoring function

is a composition of “primitive weighting function”, “document growth function”, and “query

growth function”. The primitive weighting function defines how a score is awarded when a single-

term document contains a single instance of a query term. The document growth function and

the query growth function defines how the primitive weighting function can be extended as the

number of terms in the document and the query increases. They decomposed some of the common

document scoring functions into these functions and showed that these functions do not quite

fit the list of constraints that make a good scoring function. They then generated a new set of
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scoring functions using the three-function model that follows the constraints and experimentally

showed that the new scoring functions give better performance and less vulnerable to parameter

tuning.

2.2.3 Complexity

Another factor that makes arbitrary passage retrieval challenging is its computational overload.

In Figure 2.2, using a predefined passage retrieval on paragraphs, we only need to execute a

scoring function five times. In arbitrary passage retrieval, we need to score 21 times. In general,

if there are n words in a document, in the brute force approach, we need to score 1+2+3+ . . .+

(n− 1) + n = n(n − 1)/2 = O
(
n2

)
passages. Since computing two overlapping passages seems

redundant, is it possible to close the gap?

Computational complexity of information retrieval system is rarely studied and most studies

that do focus on document retrieval. Moffat et al. [109] show an O (n log n) time algorithm to

rank all n documents with efficient memory usage to approximate document lengths. Moffat and

Zobel [108] give a fast document retrieval algorithm by skipping parts of inverted lists. Dong and

Watters [26] show an algorithmic improvement in making similarity computation and document

ranking. The aforementioned work of Barbay et al. [3] is the only work that I know that provides

an algorithm (linear time) for passage retrieval.

Computational complexity of arbitrary “passage” retrieval is widely studied in the field of

bioinformatics; finding segments of a DNA sequence satisfying a certain condition. Huang [62]

show how to identify certain biological compositional criteria of DNA sequence. Ruzzo and

Tompa [123] describe a linear time algorithm to find a set of disjoint segments with a unit length

that maximizes the total sum of weights. Chen and Chao [9] show how to find the shortest and

the longest segments of unit length with minimum weight constraint. Lin et al. [88] show how

to find the densest path in a tree with length constraint. Goldwasser et al. [48] and Chung and
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Lu [13] present a linear time algorithm to find the densest segment, where a unit segment has

an arbitrary length. Chen et al. [11] describe a polynomial time algorithm to find a k disjoined

segments that maximizes the sums of the densities. These bioinformatics algorithms may be

applicable in deriving an efficient passage retrieval algorithm. However, it requires reducing the

more complex IR scoring functions into simpler forms.

2.2.4 Element Retrieval

Element retrieval involves retrieval of a portions of structured documents such as XML and

SGML documents (Figure 2.1-c). The biggest question is, “Does markup help at all in the

retrieval of passages?”

Larsen et al. [84] show that compared to reading the whole documents, users prefer reading

XML elements. So users do prefer reading parts of documents over the whole one, but also a

simple fixed-length passage retrieval of Figure 2.1-b may do the job. Kamps and Koolen [74] show

that passages that the users highlighted to be relevant matches XML structure. Giving credit to

retrieval of XML elements over fixed-length passage retrieval.

One advantage of retrieving XML elements over a passage is that a user can give structural

hints such as types of elements preferred. For example, a user may specify that a section contain-

ing a paragraph describing “Impressionism” is preferred. However, the usefulness of structural

hints seems limited so far. Kamps et al. [75] suggest that majority of user’s queries do not require

structural hints, and even when the structural hints are required, it only acts as precision en-

hancement. Trotman and Lalmas [134] suggest that XML structural hints are not useful because

users do not give proper structural hints. Specifically, the users may specify they want an article

element by //article[about(., Impressionists)]//sec[about(., Japanese)], where when

assessing, they prefer sections and other elements.

Another advantage of retrieving XML elements is that we can ignore minor elements such
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as <italicized>. Pharo [113] supports the findings of Trotman and Lalmas that users prefer

reasonably long elements such as sections, but too long elements such as articles were not popular.

This implies we could simply ignore short elements. Kamps et al. [72] says not so. They showed

that although most XML elements are very short, the length of relevant XML elements are

spread evenly over every length. Therefore, instead of simply ignoring short elements, we should

perform length normalization to give more bias to longer elements. Ramirez et al. [117] shows that

although retrieving small elements themselves are not desirable, linking the relevance information

of the small elements to related elements increases the effectiveness of retrieval.

Though XML is capable of annotating semantics of its elements, e.g., “¡north america¿Canada¡/north

america¿”, the problem arises when a foreign system has no knowledge of what each of the tag

means. This may not be a problem within a group of people who use the same standard, e.g., a

group of online retailors, or a group of libraries. But a third-party web developers who want to

integrate the information about a book in the library network and in the retailer network would

have difficulty mapping each group’s lingo into each other. The purpose of the Semantic Web is

to take down the barrier between different schemas to enable free movement of data available on

the web. A Resource Description Framework (RDF) was created to facilitate this process [24].

An RDF entity consists of a triplet, subject, predicate, and an object. In the above example,

the subject would be “Canada”, predicate would be “belongs to”, and object would be “North

America”. In order to define what subject, predicate, and object means, a uniform resource iden-

tifier (URI) must be used. For objects, a literal string is also allowed. An example application is

Creative Common’s 2 music licensing information.
2http://creativecommons.org/
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Year Corpus Tasks Query Types Assessment Evaluation

2002 500 MB IEEE unspecified CO, CAS individual spec. v.s. exhaust.

2003 unspecified CO, SCAS, VCAS individual spec. v.s. exhaust.

2004 unspecified CO, VCAS individual spec. v.s. exhaust.

2005 Focused CO+S, CAS’s highlighted spec. v.s. exhaust.

2006 6 GB Wikipedia [25] Focused CO+S highlighted specificity only

2007 Focused CO+CAS highlighted number of characters

2008 Focused CO+CAS highlighted number of characters

2009 50 GB Wikipedia [125] Focused CO+CAS highlighted number of characters

Table 2.1: Ad Hoc Track Over the Years

2.3 INEX Ad Hoc Track Focused Task

In Section 2.3, I summarize the official top runs submitted to INEX Ad-Hoc Track focused task.

Though unofficial runs are reported in the proceedings [32,34–38,46,47] the best scores reported

by two runs only perform as good as the top runs [63,99].

I divide INEX years into two eras. The first four years from 2002 to 2005 represent the

exploratory era, using the small 500MB IEEE corpus with changing specifications. The small

size and the simplicity of the document structure in the IEEE corpus reduced the overhead cost of

participation and allowed the INEX community to grow. The next four years from 2006 to 2009

represent “maturity years”, where the task specifications and evaluation procedures remained

mostly the same. This allowed participants to compare their approaches across the years. To

make comparisons of top runs across the years, for each era, I first explain the differences in

task specifications, followed by the descriptions of the top runs for each year in the era. The

specifications and rankings are obtained from INEX proceedings [33, 39, 45, 51, 73, 95–97] and on
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official sites 3.

2.3.1 INEX 2002 - 2005

Tasks

From 2002 to 2004, INEX held a single track and task. In 2005, it introduced the Focused

task, Thorough task, and FetchBrowse task. The Focused task prohibited overlaps in the results,

where the Thorough task permitted overlaps. The FetchBrowse task asked the systems to return

relevant documents first and then relevant elements in these documents. Thus the unspecified

task from 2002 to 2004 can be considered as a Thorough task. There are roughly two types of

topics, content-only (CO) topics and content-and-structure (CAS) topics. The CO topics have

topic titles that are series of query terms. The CAS topics have, in addition to query terms,

structural conditions enforced by a structure-specification language, NEXI [135]. In 2003, the

CAS topics were divided into strict CAS (SCAS) and vague CAS (VCAS), where the structural

condition should be interpreted vaguely in VCAS. In 2005, a single set of topics are created for

CO+S query, that is a combination of CO and CAS query. Thus it became easier to compare the

effect of using structure for the same set of topics. Until 2004, the assessments involved assigning

numeric values for specificity and exhaustivity for a pool of elements returned by the systems. In

2005, instead of assessing each element, users highlighted relevant passages first, and then gave

exhaustivity values. The evaluation metrics I report are average precision from 2002 to 2004, and

nxCG [78,79] for 2005.
3For 2003-2007, http://inex.is.informatik.uni-duisburg.de: followed by a year (e.g., 2003). For

2008/2009: http://www.inex.otago.ac.nz/.
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Metrics

The normalized extended cumulative gain (nxCG) metric [78, 79] is computed as follows. First,

each element in the assessment pool is assigned a pair of exhaustivity (0, 1, or 2) and specificity

(0 or 1) values. For Thorough task, the pool corresponds to the recall-base. For focused task,

the ideal recall-base is constructed by the removal of overlap. Overlap is removed by prioritizing

higher-path elements and elements with higher exhaustivity/specificity value. For example, if a

section contains a paragraph whose exhaustivity value is higher than itself, then the paragraph is

chosen. On the other hand, if both elements have the same exhaustivity values, the parent node,

the section is chosen.

To compute nxCG, we create two vectors, xG from the result set, and xI from the (ideal)

recall base. We next fill in the vectors with a gain, xG[i] of ith element in the result set and xI[i]

for the ith element in the (ideal) recall base as follows. For the Thorough task, if an element

in the result set is not found in the recall base, the gain is 0. Otherwise, a gain of an element

in the result set is the gain of an element in the recall base, which is usually the product of

exhaustivity and specificity values. For the Focused task, a gain of 0 is given to an element in

the result set that overlaps with a higher ranked element in the result set. Otherwise the gain is

calculated as in the Thorough task. Sometimes it is possible to be lenient on overlap by assigning

discounted values to overlapping results. Moreover, for the Focused task the gain in the result

set is normalized so that sum of the gain of an element’s descendants does not exceed the gain

of the element. Once we obtain xG and xI, we create cumulative gain vectors, xCG and xCI

by entering the cumulative gain values up to each rank. We finally obtain normalized xCG, or

nxCG by dividing each entry of xCG with the corresponding entry of xCI.

Another metric used in this thesis is mean average effort-precision (MAep) and MAep at rank

i denoted as iMAep. They are obtained by computing effort-precisions and gain-recalls as follows.

An effort precision at a gain-recall point r is computed by the rank of a submitted run that reaches
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the given gain r, divided by the corresponding value from the (ideal) recall-base. Gain-recall at

rank i is computed by submitted run’s xCG[i] divided by the xCI[n] of an (ideal) recall-base.

Then MAep is obtained by for each query, computing effort precisions at every rank, taking the

average of the effort precisions at all rank, and taking the average of average effort precision across

the queries. The value of iMAep is obtained by plotting an effort-precision-gain-recall curve.

Best Runs

With these variations in specifications across the years, I report evaluation results from 2002 to

2005 that use specifications similar to the years 2007 to 2009, when I participated, while main-

taining consistency. Thus the rankings I base on are CO and CAS results, unless the combined

CO+S rankings are available. For CAS results, VCAS results are reported over (S)CAS results

whenever possible. Generalized quantization is used because it was used throughout the years.

For 2005, focused results disallowing overlapping of the results are reported, otherwise the results

permit overlaps.

2002 The general theme behind the top runs in 2002 is to compute a variant of tf-idf score

for each element and then adjust the scores according to the structural requirement. However,

CSIRO’s unofficial run that only scores article surpassed their best-performing run that ranked

first in CAS topics.

In CO topics, Universität Dortmund/Universität Duisburg-Essen tops the first two ranks with

the highest score of 0.07 for the run Epros03. Their idea is to compute tf-idf for each node in the

XML tree. The higher-level nodes receive discounted term frequencies for the terms contained

in the descendant nodes [50]. The second best ranked group is Royal School of Library and

Information Science with the score of 0.06 for the run bag-of-words [51] 4.
4Their approach is unknown as they did not submit a paper to the proceeding.
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For CAS topics, the run manual by CSIRO Mathematical and the run Merge from Informa-

tion Sciences and IBM Haifa labs occupies the first two ranks with the score of 0.28 and 0.27

respectively. The CSIRO run scores selected elements by the combination of BM25 and the term

frequencies. It is then filtered by the manually constructed structural requirements, where a term

in an element only maps to the smallest container element. This run, however, is surpassed by

their unofficial run that simply retrieves documents [136]. IBM Heifa translates INEX queries

into their own query forms that define structure and terms. They score elements by how much

the structure defined in the query matches the structure of a given element. It is combined with

a term similarity score in a variant of vector space model that takes structural resemblance in

mind [102].

2003 The general theme behind the top runs in 2003 seems to be combining the element scores

with document scores.

For CO topics, University of Amsterdam submitted the best performing run, UAmsI03-CO-lamda=0.20

with score of 0.10. The group submitted two other runs that rank the second and the third. An

element score is computed using a language model and depends on the text inside the element as

well as the text surrounding the element. All the top three runs used different smoothing factors

to bias the element size to very large to very small. The best performing run has a bias towards

middle-sized elements such as sections [126]. IBM Haifa submitted the next best performing run,

CO-TDK-With-No-Clustering with score of 0.10. They apply VSM at component level, scoring

each element with component-wide term statistics [100].

For SCAS topics, University of Amsterdam occupies the first three ranks with the run

UAmsI03-SCAS-MixedScore giving the score of 0.30. It extracts <article> elements from an

element retrieval run, from these, extracts all elements that satisfy structural constraints. The

final element score is the combination of the element score and the document and other related

elements’ scores [126]. The best runs are followed by the run SCAS-TDK-With-No-Clustering
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from IBM Haifa with the score of 0.24. They first score documents according to the query term

specified in the article component of the topic. If components smaller than an article were also

specified in the topic, each of the components (as well as components similar to it) is queried

accordingly.

2004 5 In 2004, various approaches produced top ranking runs. The Amsterdam’s technique

of combining the element and the document scores from 2003 still ranks high, and ranks first in

VCAS task, where they ignored the structural requirements.

For CO topics, IBM Haifa tops the first two runs with the score of 0.13 for the best run,

CO-0.5-LAREFIENMENT. When scoring individual elements they use pivoted length normaliza-

tion at element level to normalize the differences in element-wide statistics such as average

element lengths. The first set of results are then used for query expansion [101]. The third

ranked run UAms-CO-T-FBack was submitted by University of Amsterdam achieving the score of

0.126. They use a language modeling approach that combines the score of elements and their

surroundings, along with blind feedback. [127]. For VCAS task, University of Amsterdam sub-

mitted the top performing run, UAms-CAS-T-FBack with the score of 0.12, followed by the run

VCAS PS stop50K 099 049 from Queensland University of Technology (QUT) with the score of

0.127. The Amsterdam run is implemented exactly the same as their best performing CO run,

only using VCAS topics without structural constraints [127]. The QUT runs create a tree consist-

ing of elements that contain at least one query term, assign a heuristic tf-idf-esque score to each

leaf node and propagate the scores upwards the tree using heuristic functions. The structural

constraints are then applied to filter out the results [43].
5Two assessments sets exist to accommodate duplicate assessors for a number of topics. Here, the first Assess-

ments set is used.
6http://inex.is.informatik.uni-duisburg.de:2004/internal/results/CO.html
7http://inex.is.informatik.uni-duisburg.de:2004/internal/results/VCAS.html
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2005 In 2005, both of the top runs seem to use score propagation along the XML document

tree. It can be thought of a variant of combining a document (background) and element scores.

In the CO+S task, University of Kaiserslautern tops the first two ranks with the best scoring

run COS Pattern Focussed having nxCG[10]=0.29. They guess the element types by such pat-

terns as the length of its parent and child node. Once the element types are determined, terms

that appear in the elements have an effect on the scores of its neighboring nodes [27]. The best

run is followed by the run COS 3 Focused highest VVCAS from Queensland University of Tech-

nology with the score of nxCG[10]=0.28. The QUT run performs an overlap elimination on the

last year’s task. Instead of filtering a ranked list of overlapping elements top down, they create

a set of non-overlapping elements first by taking the highest scoring elements in each path, and

then sorted the elements according to the scores [44].

2.3.2 INEX 2006 - 2009

Tasks

From 2006 to 2009, Ad Hoc Track always held a Focused task, in addition to a Best-in-Context

task, Relevant-in-Context task, and the occasional Thorough task. The CO and CAS topics are

unified 8 that enable ranking of runs using either run together. The assessments are conducted by

highlighting relevant passages and except for 2006, the evaluation metric is a precision and recall

respect to the highlighted passages. For 2006, later result gives a ranking using 2007 metrics

which I report here. Thus I report two runs from the first two best performing groups in Focused
8Confusingly, in 2006, the unified topics are called CO+S topics. From 2007, the unified CO+S topics are called

CO topics and CAS topics, whereas prior to 2007, a separate CO(+S) and CAS topics exist.
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task, CO or CAS topics, and with the official metric of interpolated precision at a recall of 0.01

(iP[0.01]) with respect to highlighted passages.

Metrics

The interpolated precision is computed by first drawing a recall-precision curve, and then at

each specific recall point, say at 0.01, choosing the highest precision obtained up to the chosen

recall point. Another metric used in this thesis, MAP roughly corresponds to the area under the

interpolated recall-precision curve. To obtain the specific MAP value, for each query we compute

an average precision. At each rank we compute a precision of a set consisting of results up to the

rank. We accumulate these precisions at all ranks and then divide this by the number of results

returned to obtain average precision. In order to obtain the mean value of average precision, we

average the average precisions across all queries.

Top Runs

2006 In 2006, the best run continues to use the approach of combining the background score

with an element score.

The best run was submitted by LIP6, OkTg-Lineaire-RkSym-100cent...-NoTrait 9 with

iP[0.01]=0.45. It first uses BM25 to score elements, and then uses machine learning to learn how to

combine the scores of the element and its parents [137]. The second best run FOCU-BM25-cutoff400

was submitted by City University London with iP[0.01]=0.44. They limit the element lengths to

400 characters to score them by BM25. Though they also cut off the number of documents from

which elements were to be retrieved, they give no improvement [93].
9The actual run name is: OkTg-Lineaire-RkSym-100cent-Oki-2-7-0.75-DocDoxParent-VectTagFamClass-

2006etiq-50it-2006-SansOvl-NoTrait
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2007 In 2007, though the top run continues to use the mixture of element and the background

score, my run that only used the element score ranks behind the top two runs.

Dalian University of Technology submitted the best performing run with iP[0.01]=0.53. They

combine document scores with element scores. They check CAS titles to see if it contains an

image path, separated the topics with image path to process differently. [89]. Ecoles des Mines

de Saint-Etienne ranks the second with iP[0.01]=0.52. They create a proximity function that

computes the proximity of each term in the document to each query terms. The proximity scores

for each term is summed for each section-like elements. The structure is taken into account by

giving maximum proximity scores to those terms appearing in the title-like elements [4]. My run

ranks the third with iP[0.01]=0.51 [33]. My run scores selected XML element types by BM25.

2008 In 2008, top runs gave higher weights to the terms appearing at a certain location in the

elements.

My run FOERStep ranks the best with iP[0.01]=0.69. It modifies the basic focused retrieval

approach from 2007 by adding extra weights to the terms appearing at the beginning of elements.

It gives a very modest improvement over the baseline run that ranks the second. My runs are

followed by a run TopX-CO-Proximity-articleOnly from Max-Planck-Institut für Informatik

with iP[0.01]=0.68. The run only retrieves article-level elements combining the BM25 scores

with proximity scores. Proximity scores are introduced to give more weights to terms appearing

together in the same element over terms that appear across an element boundary. Adding prox-

imity scores improves over the baseline BM25-only article run, but decreases the performance at

official metric of iP[0.01] when applied for element retrieval [7].

2009 In 2009, the best run combined the background and the element scores as often done by

the previous years’ best perfoming runs. However, the second ranked run only scores documents.

My run UWatFERBM25F ranks the best with iP[0.01]=0.63. It builds on the baseline run from
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2007 by combining the element scores with the scores of all titles the element belongs to. The

second best run I09LIP6Okapi from LIP6 had iP[0.01]=0.61 [23]. It is a baseline run retrieving

only documents.

2.3.3 Meta-analysis

Table 2.2 shows that a good XML retrieval system can be made by scoring either single elements

or articles by a variant of VSM, BM25, and language modeling. Arbitrary passage runs were

submitted by a few participants since 2007, but none topped the top 2 nor dominated the top

10. A list of XML element types to score is extracted by observing previous years’ assessments.

Structural information may be used to propagate an element score across the XML tree, or to

filter out irrelevant element-types. Document level statistics can be combined with the element

statistics to produce the relevance score. However, considering LIP6’s second ranked run in 2009

that only scores articles with BM25, the big question at INEX, the utility of XML structure in

the retrieval of text fragment is still left unanswered.

2.4 State of the Art for Focused Search Engines

In Section 2.4, I present the current state 10 of focused, heterogeneous search on major search

engines, Google 11, Yahoo 12, Bing 13, and A9.com 14. Google has the largest search engine share

in the US of 64.4% as of April 2010, followed by Yahoo!, and Microsoft search sites including

Bing [18]. Although Amazon’s search engine, A9.com may not have a large share, it offers both

book search and heterogeneous search.
10As of June 10, 2010 and July 7, 2010
11http://www.google.com/
12http://www.yahoo.com/
13http://www.bing.com/
14http://a9.com/
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Year Group Scoring Structure Size Note

2002 U Dortmund VSM no single elements

2002 RSLIS - - - no final report

2002 CSIRO tf, BM25 no article-only unofficial run

2002 IBM Haifa extended VSM yes single elements CAS

2003 U Amsterdam language model no single elements

2003 IBM Haifa VSM no single elements

2003 U Amsterdam language model yes single elements SCAS

2003 IBM Haifa VSM yes single elements SCAS

2004 IBM Haifa SVM no single elements

2004 U Amsterdam language model no single elements

2004 U Amsterdam language model no single elements VCAS

2004 QUT VSM yes single elements VCAS

2005 U. Kaiserslautern Lucene yes single elements Lucene uses VSM

2005 QUT VSM yes single elements

2006 LIP6 BM25 yes single elements learning to rank

2006 City U. London BM25 no single elements

2007 Dalian unknown yes single elements CAS

2007 Ecole Mines de S.-E. proximity yes single elements self-made function

2007 U. Waterloo BM25 no single elements

2008 U. Waterloo biased BM25 no single elements

2008 MPI BM25 yes article-only

2009 U. Waterloo BM25F yes single elements

2009 LIP6 BM25 no article

Table 2.2: Best Performing Focused Retrieval Strategies

41



2.4.1 Google

Google has the most comprehensive search features regarding focused snippets and heterogeneous

search results of all the search engines studied in Section 2.4.

Figure 2.3 15 shows an example search using “Impressionist and Japanese art”. We see that the

snippets returned resemble what a focused search should return. In addition, for certain results, it

gives links to jump into the beginning of sections inside the result pages. The drawback, however,

is that since Google does not perform pure-focused search, when clicking on the page results, it

brings directly to the beginning of the page, as opposed to where the snippet starts.

Google performs heterogeneous search, or “Universal Search” as they call it [49], over web

pages, books, images, video, news and others. The bottom result in Fig 2.3 shows an example

of a book search result blended in with web search results. When clicking the book result, it

takes into the pages where the search phrases appear. Thus for book search, Google implements

focused heterogeneous search.

2.4.2 Yahoo! and Bing

Fig 2.4 15 shows the search results using Yahoo! and Bing for a query “Impressionist and

Japanese art”. At first glance, the search results of Yahoo! and Bing seem similar to that of

Google. All have snippets and links to jump into the beginning of the sections in a search result

page. However, neither of them returns heterogeneous results. For example, they lack book

search results, beyond searching Amazon.com site.

The more concrete query phrase, “Katsushika Hokusai”, however, changes the landscape. Ya-

hoo! now includes images tagged as such as their search results similar to Google results 16. Bing,

in addition to including image results, includes an entity card, a summary of the entity searched,
15Snapshots taken on June 10, 2010.
16As of July 7, 2010
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Figure 2.3: Example Google Search Result
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extracted from multiple search results. Figure 2.5 17 shows that for the Japanese printmaker, it

returns his vital statistics as his date of birth. For a non-living entity, “Impressionism”, it returns

the focused result that summarizes the entity. Google, on the other hand, instead of returning a

summary of any entity, creates a timeline of a historical entity from the search results.

2.4.3 A9.com

An online retailer Amazon.com subsidizes a search engine company, A9.com. Technologies

developed at A9.com are used, among others for searching books and products on Amazon.com.

Given a query term, the book search engine matches the query terms against the book titles,

authors, and the text. For those books that copyrights allow Amazon.com to display contents of

the books, the search results show snippets and page numbers in which the query terms appear.

Once users select a book, users can also search inside the books. Although it appears that

the book search engine performs focused search, the page search results, listing the results in

ascending page numbers, seem to be a simple matching of query terms, rather than a ranked list

based on relevance. The snippets results accordingly, seem to list the first incidence of a query

term match in the book, rather than a focused result.

The product search lets user search for any products sold at Amazon.com. For example, with

the query “Impressionist and Japanese art”, the first result is a wall screen of a Japanese art, the

second result is a book, the third result a DVD, and the lower ranked results are occupied by

poster prints.
17Snapshots taken on July 7, 2010.
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Figure 2.4: Example Yahoo! (top) and Bing (bottom) Search Results
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Figure 2.5: Entity Cards from Bing (top) and Timelines from Google (bottom)
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2.5 Conclusions

In Chapter 2, I list previous work related to focused or heterogeneous search. For focused

search, even though there is a good evidence that the finer the granularity of search, the better

the results, nobody has come up with a way to efficiently implement an arbitrary passage retrieval

approach. I next describe efforts at INEX. Since 2002, it has been unclear whether there is a way

to take advantage of the XML structure to improve retrieval performance significantly. Passage

retrieval was implemented by some participants, but although they perform comparable to other

approaches, they did not occupy the highest ranks among the submitted runs. Finally, I survey

the current state of the popular web search engines. Google performs reasonably well in regards

to focused heterogeneous search, though the algorithms of theirs and other search engines are

unknown. Amazon.com’s product search presents heterogeneous search well, whereas the book

search, even though they take into account the content of the books in addition to the titles and

the authors when ranking books, when searching inside a book, the search results seem a simple

matching of query terms as opposed to focused results. Therefore, there is a need to investigate

the following three agenda.

• Efficiency: Is there a way to efficiently implement focused retrieval ?

• Size: What is the best granularity of search results, sentence, paragraphs or XML elements?

• Heterogenity: How do we score objects of different type?

In the next three chapters, I investigate these three issues individually.
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Chapter 3

Foundation of Passage Retrieval

This chapter defines the problem of passage retrieval. It also tries to reduce the running time of

the brute-force passage retrieval approach quadratically, to present a solution to the first problem

of focused retrieval, complexity, proposed in Chapter 1. The next Chapter 4 then presents how the

problem of passage retrieval defined in this Chapter can be implemented. The later Chapters 5

and 6 use the implementation to solve the problem of passage retrieval, in order to answer two

other questions of focused search, the unit of retrieval and taking advantage of XML structure.

Additionally, Chapter 3 reduces one-term BM25 and language scores in the focused retrieval

setting to a proposed function I used to analyze the complexity.

Section 3.1 introduces to the problem of passage retrieval. Section 3.2 defines a formal model

of passage retrieval. Section 3.4, reduces two popular document scoring functions into one canon-

ical form. Section 3.4, discusses the consequence of the canonical form. Section 3.5 concludes

Chapter 3 with future possibilities.
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3.1 Introduction

Suppose there is a sequence of n points on a line with positive values Wi associated with each of

them. Moreover, each pair of points Wi and Wi+1, called an extent denoted [i, i + 1] has a length

li. Given a search phrase and the relevance scoring function S[u, v], our goal is to find a set of

extents [u, v] in decreasing order of scores such that the extents do not overlap with each other,

that contains all n points.

In the domain of passage retrieval, the points map to occurrences of search terms such as

“Impressionist” and “Japanese”, li maps to the number of terms between the points i and i+1, and

S[u, v] maps to a scoring function such as BM25 that measures the relevance to the query. Though

my focus in this thesis is focused text retrieval, I believe that the problem can be generalizable

in other areas of research such as audio retrieval.

The motivation comes from INEX Ad Hoc track Focused task, where overlaps are disallowed

in the result set. One of the ways to remove overlaps, that I employ throughout the thesis and

described in Chapter 4, is to score all XML elements, sort them by scores, and then examine

each elements top-down to see if there is any overlap in the result set. If there is no overlap in

the result set, the element in question joins the result set. For example, if a section contains a

paragraph whose score is higher than itself, then I choose the paragraph over the section. The

problem with this approach is that it involves scoring overlapped parts multiple times. In the

case of my example, it involves scoring the section once and the paragraph once, even though the

text that contains the search terms in the paragraph is scored twice, once as part of the section,

and once as part of the paragraphs. It seems that if there is a way to examine each part of text

only once, it would reduce the processing time quadratically.
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3.2 Formal Model of Passage Retrieval

Section 3.2 constructs a mathematical model of passage retrieval. Because my goal is to make

passage retrieval general, so that it can be applied to not only text but also audio streams and

other data, I first define a set of symbols that is a building block of information entity, an entity

we wish to retrieve information from.

Definition 1 (Vocabulary) A set of symbols V is called the vocabulary.

A subset of vocabulary is used to represent an information entity. Figure 3.1 lists a subset of

vocabulary used in the Wikipedia entry on Impressionism 1. In general, in an English text,

the vocabulary is English words, and in a French text, the vocabulary is French words. The

information entity can also be XML files that contain data, or an audio stream. In an audio

stream, a vocabulary could be a set of phonemes, but it could also be a set of words or both,

depending on how we choose to represent it. It is also possible to define vocabulary as a set of

letters that represent DNA sequences or a set of numbers or discrete signals that constitute a

sequence of data stream. Next, I define a collection of entity we wish to retrieve information from

in terms of symbols.

Definition 2 (Corpus) A corpus C is a sequence of symbols s1, s2, . . . , sN , where si ∈ V, for

1 ≤ i ≤ N .

A corpus can be a single book or a single section of an audio stream, or a collection, be it ho-

mogeneous or heterogeneous. In the case of collections, it is possible to ignore the collection

boundaries such as book chapters and audio sections when retrieving. In my thesis, I set the col-

lection boundaries as each book or article. The Wikipedia article in Figure 1.1, can be considered

a corpus of length L = 4441 by MS Word word count.
1August 14, 2010 version of http://en.wikipedia.org/wiki/Impressionism
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Figure 3.1: Vocabulary, Symbols, and Extents
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I define a passage of a corpus C as follows:

Definition 3 (Extent) An extent is a pair [u, v] with length l representing an interval of corpus

from u to v, su, su+1, . . . , sv.

A passage in Figure 3.1 excerpted from Figure 1.1 2 contains an extent [s1, s18] spans the subsen-

tence beginning with “Impressionists” and ending with “Japanese”.

Given a corpus, a user can now issue a query.

Definition 4 (Query) A query is a vector of symbols ~q = 〈t1, t2, . . . , tm〉 where ti ∈ V for

1 ≤ i ≤ m.

Therefore, I consider a query to be a disjunction of an unordered set of symbols, instead of a

natural language query. For example, a Wikipedia query “Impressionist and Japanese art”, will

be represented as, after stop words removal,

~q = 〈“impressionist”, “japanese”, “art”〉 .

Under this model, it is possible to add a scaler weight on each symbol in a query, which scales

match function involving the symbol accordingly. For example, in the case of “+impressionism

and Japanese art”, we could represent the query vector as,

~q = 〈100“impressionist”,100“japanese”, ·“art”〉 .

The score of match function will be scaled 100 times, which will be reflected in higher term

frequency and score as we define below. In the rest of Chapter 3, I assume that ~q is arbitrary but

fixed.

Given a query ~q, I would like to match each t ∈ ~q against the symbols in C. I define what makes

two symbols match with each other. The following function represents the symbol similarity.
2http://en.wikipedia.org/wiki/Impressionism
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Definition 5 (Symbol Match) Given two symbols w1, w2 ∈ V, define a function match so

that 0 ≤ match (w1, w2). In a simplest case, match (w1, w2) is either 0 or 1. For
∨

w ∈ V,

match (w,w) = 1.

For example, if I set match to be a function of edit distance,

match (“japanese”, “japanese”) = 1,

match (“japanese”, “japan”) = 0.99,

and

match (“japanese”, “camera”) = 0.01.

But I can also set match to be a synonymity function, which returns 1 if the symbols are synonyms

and 0 otherwise. In this case, the first two examples would return 1, and the second 0.

Match values are used in computing term frequencies.

Definition 6 (Term Frequency) A term frequency of a single q ∈ V in interval [u, v] is

fq[u, v] =
∑v

i=u match (q, ti). From here, define a term frequency vector ~f = 〈f1, f2, . . . , fm〉

of dimension m of a query vector ~q in the interval as fi = fqi [u, v], for 0 ≤ i ≤ m.

Using the query vector ~q and the match functions above, fimpressionist[s1, s18] = 0.99, fjapanese[s1, s18] =

1, and fart[s1, s18] = 0.01. Thus ~f = 〈0.99, 1, 0.01〉.

Using a vector corresponding to each extent with respect to a given query, define a score of

an extent that reflects the relevance of the extent to the query.

Definition 7 (Score) A score S[u, v] ≥ 0 of an interval [u, v] depends on a term frequency

vector ~f , and the length of the interval and can also be written as S
(

~f, l
)
.
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Figure 3.2: Symbols with Positive Matches

When scoring an extent, I am only interested in those symbols in C that have positive match

scores with ~q. Otherwise, the score of an extent [u, v] that starts and ends with non-positive

match scores is always lower than the score of an extent it contains that starts and ends with

positive match scores.

Definition 8 Given a query term t, let nt =
∑

1≤i≤N (match (si, t) > 0 : 1 : 0), and let n =∑
t∈~q nt. Thus nt is the number of symbols in C that has a positive match with t, and n is the

number of symbols in C that have positive match with the given query terms. Consequently, let

(p1, p2, . . . , pn) be a subsequence of (s1, s2, . . . , sN ) for which match (si, t) > 0 for all i. Each pi

has its weight Wi associated with it, where Wi =
∑

t∈~q match (si, t).

In Figure 3.2, with the same ~q and match functions as before, W1 = 0.99 because p1 almost

matches one of the terms, “impressionist”.

There are many ways to select extents out of O(n2) possible extents. When a user is presented

with the extents in decreasing order of scores, it is a reasonable assumption that the user do not

want to read the same part of extents over and over. The redundancy is considered an overlap.
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Definition 9 (Overlap) An extent [u′, v′] overlaps another extent [u, v] when either u ≤ u′ ≤ v

or u ≤ v′ ≤ v.

Accordingly, define the problem of passage retrieval.

Definition 10 (Disjoint Passage Retrieval) Given a corpus C, find a set D of intervals,

[u1, v1], . . . [uk, vk] such that

1. S[u1, v1] > S[u2,2 ] > . . . > S[uk, vk].

2. 6 ∃u′, v′ ∈ [p1, p2, . . . , pn] such that

(a) S[ui, vi] < S[u′, v′],

(b) [u′, v′] overlaps [ui, vi], and

(c) Covers all corpus.

Therefore, D is a set of disjoined extents that have highest scores among all those that overlap

them. In Figure 3.2, the only two possible D is either [p1, p1] and [p2, p2], or [p1, p2].

Although there are O
(
n2

)
extents in C, there are at most n extents in D.

Finding D takes O
(
n2

)
time using a brute force approach by computing scores for each

possible O
(
n2

)
extents. The lower bound for this problem is Ω (n) as we need to take a look at

all vocabularies in C to compute term frequencies. Therefore, an algorithm that finds sets D in

linear time may be optimal.

Assume the scoring function to possess the following properties that are typical of IR scoring

functions:

1. For a fixed length, the higher term frequencies, the higher the score.

S (〈. . . , fi, . . .〉 , l) < S (〈. . . , fi + ε, . . .〉 , l) , for ∀ε ≥ 0.
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2. For a fixed term frequencies, the longer the interval, the lower the score.

S
(

~f, l
)
≥ S

(
~f, l + ε

)
, for ∀ε ≥ 0.

3. Computing a score takes a linear time to the size of query.

In this Chapter, the size of query is O (m), therefore, computing a score must take O (m)

time.

There are three well-known document scoring functions that satisfy the above properties;

pivoted length normalization [128], BM25 [122], and language modeling [114]. I decided to adopt

pivoted length normalization into scoring extents because of its versatility. Later, in Section 3.4,

I reduce BM25 and language modeling into the same form as the score using pivoted length

normalization.

Using the formula in Section 2.1, define a passage score as

S[u, v] =

∑
t∈~q ft · wt

s× l + ∆
, (3.1)

where wt is a weight of a symbol t, in this case set to an IDF of t and ∆ = (1.0− s) × p is a

constant for a pivot p and a slope s. From Equation 2.1, set f (·) and g (·) as the identity function,

use an extent length as old normalization, and train for s and p. Therefore, a score of an extent

is the sum of all weighted symbols per extent length with ∆ acting as a length normalization

factor. Using Definition 8, Equation 3.1 becomes

∑
pi∈[u,v]

Wi

l + ∆
. (3.2)

3.3 Reduction to Density Problem

In this section, I use my proposed scoring function Equation 3.2 to try to come up with an

algorithm that solves the problem 10 in almost linear time. I first make the problem simpler by

finding the highest scoring extent only.
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An algorithm theHighest(u, v) describes the general framework for finding the single high-

est scoring extent within an extent [u, v]. It depends on having a function that finds the

highest scoring extent that includes the middle point [d(v − u + 1) /2e, d(v − u + 1) /2e]. I call

theHighest(1, n) to cover the entire corpus.

Algorithm 1 theHighest (u, v)
if v = u then

return [u, u].

end if

if v = u + 1 then

return argmax[a,b]∈{[u,u],[u,v],[v,v]} S[a, b]

end if

M ← d(v − u + 1) /2e.

[lS , lE ]← theHighest (u, M)

[rS , rE ]← theHighest (M,v)

Find the highest scoring extent [mS ,mE ] that includes [M,M ], where mS 6= M and mEneqM .

return argmax[a,b]∈{[lS ,lE ],[rS ,rE ],[mS ,mE ]} S[a, b]

Theorem 1 An algorithm theHighest(u, v) correctly returns the highest scoring extent in time

O (T log n), where T is the time it takes to find the highest scoring extent [mS ,mE ] that includes

the middle point, [d(u + v)/2e].

Proof 1 The highest scoring extent must lie either within the left or the right half, or on both

halves. The first two cases are handled by recursions and finding the highest scoring extent

that includes the midpoint [mS ,mE ] takes O (T ). Thus theHighest(u, v) runs correctly in time

O (T log n).
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Figure 3.3: A Sequence of Blocks (Bi, Bj)

Next, I reduce the problem of finding an extent [mS ,mE ] that includes pM into a density

problem. First, define elements that constitutes the density problem.

Definition 11 (Block) A block Bi has a single weight Wi and length li associated with it. A

sequence of blocks (Bi, Bi+1, . . . , Bj) is denoted (Bi, Bj) and corresponds to Figure 3.3

Definition 12 (Density) A density of a sequence of blocks (Bi, Bj) denoted d (Bi, Bj) is a sum

of weights associated with the blocks divided by the sum of lengths associated with the blocks. In

Figure 3.3,

d (Bi, Bj) =
Wi + Wi+1 + . . . + Wj

li + li+1 + . . . + lj
.

Figure 3.4 describes the mapping of extents so that the densest sequence of blocks that includes

pM will correspond to the highest scoring extent that includes pM . For each pi for i < M , we

associate a block Bi with a weight Wi and a length pi+1 − pi + 1. We assign a block BM for

pM with a length ∆. To each pi for M < i, we associate a block Bi with weight Wi and length

pi − pi−1 + 1.

Theorem 2 Finding the highest scoring extent [mS ,mE ], that includes pM is equivalent to
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∆

1−MW 1+MW

2−Mp

∆

1−Mp Mp 2+Mp1+Mp

MW2−MW 2+MW

11 +−+ MM pp

112 +− ++ MM pp

11 +− −MM pp

121 +− −− MM pp

2+MB1+MBMB1−MB2−MB

Figure 3.4: Constructing Blocks from Points

finding the densest sequence of blocks that includes pM , where the length of the block BM is

augmented by a constant ∆ > 0.

Proof 2 To find [mS ,mE ], we need to add the normalization constant ∆ to the length of pM as

in Figure 3.4. This way, every extent that includes pM have ∆ added to its length. Then we

only need to find the densest sequence of blocks among those that include pM to find the highest

scoring extent that includes pM .

Therefore, an algorithm to find the highest scoring extent with respect to Equation 3.2 takes

as much time as finding the densest extent that contains the middle block, times a log n factor.
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3.4 Canonical Passage Scoring Function

This Section transforms the single-term BM25 and language model scoring functions into a form

similar to my proposed function in Equation 3.2. This way, it may be possible in the future to

derive a sub-quadratic algorithm to solve Problem 10 in a manner similar to my proposed scoring

function using a real-world scoring function.

3.4.1 BM25

From BM25 scoring function for documents and using notations in Section 3.2, define a score of

an extent using BM25 as,

S[u, v] ≡
∑
t∈~q

wt
ft[u, v] (k1 + 1)

ft[u, v] + k1

(
1− b + b l

avgl

) , (3.3)

where wt is a logarithm of the relative number of extents containing a symbol t in a collection

and avgl is an average extent length in the collection. Parameters k1 > 0 and b = {b : 0 < b < 1}

are tuned to optimize the scoring scheme.

Theorem 3 shows how we can reduce the problem of comparing one-term BM25 scores of two

extents into that of comparing densities of these two extents.

Theorem 3 An extent [u, v] has a higher BM25 score than an extent [u′, v′] if its density com-

puted by adding ∆ = avgl (1− b) /b to its length is larger than that of the other extent. That is,

for two extents [u, v] with length l1, and [u′, v′] with length l2,

S [u, v] ≥ S [u′, v′] (3.4)

⇔ ~f
l1+∆ ≥

~g
l2+∆ . (3.5)

Proof 3 Let t1 = ~f t2 = ~g, A = 1/ (k + 1), B = kb/ ((k + 1) avgl), and C = k (1− b) / (k + 1).
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Then,

S [u, v] ≥ S [u′, v′] (3.6)

⇔ t1
At1+Bl1+C ≥

t2
At2+Bl2+c (3.7)

⇔ t1(At2+Bl2+C)−t2(At1+Bl1+C)
(At1+Bl1+C)(At2+Bl2+C) ≥ 0 (3.8)

⇔ At1t2 + Bt1l2 + Ct1 −At1t2 −Bt2l1 − t2C ≥ 0 (3.9)

⇔ t1l2 − t2l1 ≥ C
B (t2 − t1) (3.10)

⇔ t1
(
l2 + C

B

)
≥ t2

(
l1 + C

B

)
(3.11)

⇔ t1
l1+ C

B

≥ t2
l2+ C

B

(3.12)

⇔ t1
l1+∆ ≥

t2
l2+∆ . (3.13)

Equation (3.8) is obtained by expanding (3.7). I canceled the denominator when moving from

(3.8) to (3.9) because C = k (1− b) / (k + 1) is positive because of our assumption that k > 0 and

0 < b < 1. From (3.12) to (3.13) I used the fact that C/B = avgl (1− b) /b = ∆ because,

C

B
= k(1−b)

k+1
(k+1)avgl

kb =
avgl (1− b)

b
. (3.14)

3.4.2 Language Modeling

Following notations in Section 3.2, a score of an extent using language modeling with Dirichlet

smoothing is defined as [141]

S[u, v] ≡
∑
t∈~q

log
(

1 +
ft[u, v]

µ

lC
nt

)
−m log

(
1 +

l

µ

)
, (3.15)

where µ is a parameter, lC is the length of the corpus C, nt is frequency of t in the entire corpus

C, and m is the number of terms in the query.

For a single term, (3.15) becomes

log

(
1 + ft[u,v]

µ
lC
nt

)
(
1 + l

µ

) .
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Letting t1 = ~f t2 = ~g, α = (lC) / (ntµ) and β = 1/µ, we get

S [u, v] ≥ S [u′, v′] (3.16)

⇔ t1α+1
βl1+1 ≥

t2α+1
βl2+1 . (3.17)

Since both α and β are constants, I can use theorem 2 by setting ∆ = 1, scaling all lengths by β,

scaling all term frequencies by α, and adding 1 to the term frequency of BM .

3.4.3 Discussion

It is interesting to note that the language model score is derived from quite a different perspective

than BM25, that is a variation of tf-idf. Language model score, however, is derived from a Markov

model. Both models, at least at the single-term level, reduce similar to my proposed function,

Equation 3.2 that is a very simple form of pivoted length normalization. For all three scoring

functions, what I show was that, when comparing the two overlapping extents, we only need to

compare the density of the extents. The additional ∆ does not necessarily need to be inserted in

the middle. A much longer extent whose adjusted density (including ∆ in the overlapped point)

is higher than a shorter extent would be selected over the shorter extent.

Following the pattern of how the three scoring functions are formed in the setting of passage

retrieval, I could generalize a single-term scoring function as follows.

S [u, v] =
tα + γ

lβ + ∆
, (3.18)

where α, β, γ, and ∆ are either constants or combinations of parameters to train. From the

generalized single-term scoring function, it may be possible to derive a generalized multiple-term

scoring function that is more versatile than BM25 and language model (it may require significant

tunings), akin to the work of Fang and Zhai [30], but in the passage retrieval setting.
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3.5 Conclusions

Chapter 3 establishes a formal model of focused retrieval. I define the goal of focused retrieval

is the retrieval of passages that cover the corpus in the decreasing order of scores in which

no overlapping extent whose score is lower than the others appear. I partially solve the first

problem of focused retrieval in Chapter 1, to reduce the running time, by showing that a linear

time algorithm that finds the densest extent that contains the mid point leads to the log-linear

time to find the highest scoring extent according to my proposed scoring function that depends

on pivoted length normalization. I finally show that the comparing the single-term BM25 and

language model scores is similar to that of comparing my proposed function.
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Chapter 4

Basic Retrieval Strategy

Chapter 1 and Chapter 2 introduce the importance of building a heterogeneous focused search

system. Chapter 3 defines the problem of passage retrieval. This chapter takes the theory

established in Chapter 3 into practice. It describes the implementation details of the basic search

system I implement that is capable of performing focused Wikipedia and book search. The next

two Chapters 5 and 6 then builds upon this focused search system to solve the two main questions

in this thesis; what is the best unit of retrieval, and how can we take advantage of structure?

Section 4.1 introduces the basic concept of my search system. Section 4.2 introduces the

step-by-step implementation details. Section 4.3 concludes Chapter 4.

4.1 Introduction

Probably the major difference between my Ad Hoc search engine and those of others used in

INEX is the ability to process XML element retrieval and arbitrary passage retrieval on the same

ground. This enables me to compare the utility of applying XML markup over text.

Below are the basic steps taken in my focused search system. Slight variations in details and

64



implementation exist across the years. All code is implemented using Perl v5.8.8 (most of the

code) or C++ (to score passages and finding XPaths) and executed on 2,814MHz AMD Opteron

Processor 154 with 1,880MB of memory. In addition, Java is used to run evaluation software

provided by INEX. The steps are:

1. Pre-process the corpus.

2. Locate XML tags using Wumpus.

3. For each XML element indicated by the Wumpus term-index, build a lookup table contain-

ing XPath.

4. Locate the query terms in a corpus using Wumpus.

5. Compute Inverse Document Frequency (IDF).

6. Compute passage scores.

7. Remove overlap.

8. Return the top results as indicated by INEX specification.

9. Train

4.2 Indexing

4.2.1 Step 1: Pre-Processing

The 6GB Wikipedia corpus [25] contains comments that I remove prior to indexing as much as

possible. However, the wild nature of Wikipedia left some characters, notably angular brackets in
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equation, unescaped, limiting comment removal. For earlier experiments on the 6GB Wikipedia

corpus and other corpora, comments are not removed.

The book corpus [40, 77] is originally 400GB in size. In 2008, I partitioned parts of the

corpus across thirteen computers. In 2009, I strip all tags except <document>,<page>, <region>,

<section>, and <line>, and replaced these tags to shorter versions, shrinking the original size

into 37GB, smaller than 50GB Wikipedia corpus of that year.

4.2.2 Step 2: XML Tag Indexing

Instead of using an off-the-shelf XML parser, I use the text search engine Wumpus 1. The main

reason to use this text search engine over an XML parser is to compare arbitrary passage retrieval

against XML element retrieval using the same approach. The Wumpus search engine indexes files

term by term, thus for a given query it returns the term positions such as 1 for the first term in

the first file it indexed.

The Wumpus search engine has limited XML capacity. The search engine has difficulty

retrieving XML tags because it ignores non-alphanumeric characters, including angular brackets,

even though search is performed verbatim. For example, <article> is considered identical to

<article>, , but different from </article> and <article>>. It also cuts a term containing

non-alphanumeric letters into pieces, which is problematic when identifying an entire tag. Thus

my search engine implementation have followup lines to handle the Wumpus problems, but it may

not be complete. For example, to make sure I do not misidentify the opening tags with closing

tags or some other terms, I parse through the markup trees to check if all opening tags are closed

appropriately. For the book collection, I replaced the original tags with simpler tags that do not

interfere with Wumpus. In the future, I plan to also pre-process the Wikipedia corpus.
1www.wumpus-search.org/
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4.2.3 Step 3: Pre-compute XPath

At the indexing time, I create a table containing a list of XML tags in the order of appearance.

Initially, the specification of XPath for an element involved parsing the table top down, however,

doing so every time we encounter the same element during training takes time. Instead, I pre-

computed XPaths for all elements in the corpus to act as a lookup table. For the 50GB Wikipedia

corpus [125], the number of XML tags is too large to map efficiently, so only the elements of

interest are mapped to abbreviated XPath (because I did not query the position of all distinct

32311 tags that exist in the 50GB Wikipedia corpus). INEX provides participants with a program,

XML2FOL.jar 2, to convert XPaths into a different format. In doing so, the program lists all

XPaths for XML elements of a minimum size. Thus I use abbreviated XPaths to match the full

XPaths in the list to return.

Since 2009, INEX requires passage results to be in file-offset-length (FOL) format [45]. The

format assumes a plain text version of the corpus. Both the offset and length are counted as

numbers of utf-8 characters. Since Wumpus does not handle character-counts, I retrieve the

actual passages to return from Wumpus, remove XML tags, and count the number of utf-8

characters. The retrieval of actual passages takes about eight hours for the first run. The time is

dramatically shrunken during training, by recording the Wumpus-term-position to a FOL map.

4.2.4 Step 4: Obtain Query Term Positions

I process queries by converting each topic title into a disjunction of query terms without negative

query terms. Positive terms are treated as regular terms. Stop words are removed, the terms are

lower-cased, and the stemming operator, indicated by ’$’ is applied on Wumpus query.

For example, the topic in Figure 1.3 is converted into,
2Downloadable from http://www.inex.otago.ac.nz/data/software.asp
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"$impressionist","$japanese","$art"

Topic 607 in INEX 2008 Ad Hoc track,

law legislation act +nuclear -family

is converted into

"$law","$legislation","$act","$nuclear".

4.2.5 Step 5: Compute IDF

Corpus-level IDF values are computed for each query term. Specifically, an IDF of a term t is

IDF (t) =
the number of documents in corpus

the number of times t appears in corpus
.

At this time I also compute an average document length.

4.2.6 Step 6: Score Passages

In scoring XML elements, I extract following tags to score:

IEEE Collection <abs>, <app>, <article>, <bb>, <bdy>, <bm>, <fig>, <fm>, <ip1>, <li>,

<p>, <sec>, <ss1>, <ss2>, <vt>.

6GB Wikipedia Collection <p>, <section>, <normallist>, <article>, <body>, <td>, <numberlist>,

<tr>, <table>, <definitionlist>, <th> ,<blockquote>, <div>, <li>, <u>.

50GB Wikipedia Collection <p>, <sec>, <list>, <article>, <bdy>, <column>, <row>, <table>,

<entry>, <indent>,<ss1>, <ss2>,<ss3>,<ss4>,<ss5>.

2008 Book Corpus <document>,<page>, <region>, <section>.
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2009 Book Corpus <document>, <page>.

The choice of tags in IEEE and Wikipedia collections base on the original selection of

Clarke [14] for IEEE collection. Clarke hand picks the tags based on INEX 2003 test set. The

IEEE collection on my experiments use the same set of tag as Clarke. For the Wikipedia col-

lections, I choose the corresponding tags. For the book collection, from the list of tags used in

tag-abbreviated version of the corpus downloadable from the Book Search site 3, I select tags

that are larger than <section>, which is the smallest unit of retrieval in 2008. In 2009, only the

page element, in addition to the document element is used because the evaluation in 2008 was

based on page-level.

I ignore any elements or passages that are smaller than a certain threshold, mostly 25.

I use a version of BM25 [121] to score passages.

s(E) ≡
∑
t∈Q

Wt
fE,t(k + 1)

fE,t + k(1− b + b plE
avgdl )

, (4.1)

where Q is a set of query terms, Wt is an IDF value of the term t in the collection, fE,t is the

sum of term frequencies in an element E, plE is an element length of E, and avgdl is an average

document length in a collection to act as a length normalization factor.

When scoring an XML element, instead of just scoring the body of the element, I consider

the textual context inside the XML element tag. For example, the <a href> tags contains the

URL of the page to which an anchor phrase link to. Oftentimes the URL address contains the

phrase that is also an anchor phrase. This may help increase the accuracy of retrieval. Finally, I

include XML tags as part of length calculation, but they should be excluded for future work.
3http://www.booksearch.org.uk/
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4.2.7 Step 7: Remove Overlap

All possible elements/passages are ranked according to the score. I eliminate overlap by going

down the list and see if the current result in the list overlaps with previously retrieved list. This

may not necessarily be the ideal way to remove overlap. In Section 5.3 I discuss how it could

cause a problem.

4.2.8 Step 8: Return Results

Results returned are then evaluated using assessments provided by INEX.

4.2.9 Step 9: Parameter Tuning

I change the value of one parameter incrementally while having other parameters fixed. For my

earlier runs, I only perform one iteration. In the later runs I perform multiple iterations until the

parameters stabilizes or cannot increase the score for 10 iterations. It turns out for two-parameter

tuning, a single iteration is sufficient because either the parameters stabilize or the best training

scores increases only slightly after the first iteration. Some of the runs used average document

length as a parameter, but later experiments in Chapter 5 and Chapter 6 show that it seems to

lead to overtraining; during training it produces slightly better results, but during testing, the

score is slightly lower.

4.3 Conclusion

The basic retrieval strategy scores all XML elements of interest using BM25. Overlaps are

removed top down that seems to be effective on single XML element retrieval but may not be so

in retrieval of passages of different sizes.
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Chapter 5

What to Retrieve?

Chapter 3 defines the problem of passage retrieval. Based on the model, Chapter 4 lays out the

implementation details. This chapter uses the same approaches to conduct two sets of experiments

in order to answer the second question of focused search defined in Chapter 1: What is the ideal

unit of retrieval?

The first experiments try to find a way to convert best passages into single elements. I show

that scoring single elements is better than trying to turn passages into elements. The second

experiments directly compares the performance of focused retrieval based on five different gran-

ularity of retrieval; single element, range-of-elements, semi-arbitrary passage, arbitrary passage,

and article. I show that even in this scenario, single element seems to suffice as a good unit of

retrieval.

The experiments use BM25 [122] as a scoring function. The choice of BM25 among others

is simply because of familiarity and popularity. Pivoted length normalization [128] is not widely

used. Language modeling [114] is equally popular, but because the canonical form implies that

the basic version of both BM25 and Language Modeling shares the same philosophy, I choose to

work on BM25. Finally, most of my INEX runs are based on BM25, so we can see the results
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judged by an objective third-party.

Section 5.1 introduces the problem of passage size. Section 5.2 suggests returning single XML

elements are not good enough. Section 5.3 shows that for using BM25, single XML elements

produces results good enough. Section 5.4 concludes Chapter 5.

5.1 Introduction

Using the notations in Chapter 3, suppose a corpus contains N documents, and there are n

incidents of a positive match with a query term vector, ~q. In document retrieval, there are only

N possible documents to return, thus the unit of retrieval is a document. In passage retrieval,

the unit of retrieval can range from a single match occurrence to as long as the entire sequence of

n match occurrences. It is conceivable to score all O(n2) possible passages, but can we do better?

One way to decide on the passage size to return is to use XML markup on text documents.

5.2 Turning Passage into XML Elements

Originally in INEX Ad Hoc Track, the unit of retrieval is single XML elements [39, 51, 95–97].

The most intuitive way therefore is to score single XML elements. Trotman and Geva [133],

however, show that when human assessors perform relevance judgement by highlighting any

parts of documents, be it a single character, a paragraph, or an entire article, the highlighted

passages do not necessarily correspond to XML elements. Thus it seems that obtaining relevant

passages first and then converting them into single XML elements may be more appropriate. To

transition into passage based XML retrieval, Trotman and Geva propose two ways to convert

passages into XML elements for the focused retrieval task;

TG+ Return the smallest XML element that fully contains the relevant passage.
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TG- Return the largest XML element that is fully contained in the relevant passage.

In Section 5.2, I implement TG+ algorithm on INEX 2005 test set and compare its perfor-

mance against simply scoring single XML elements. I show that TG+ algorithm has less precision

than single XML element retrieval. This suggests that direct comparison of arbitrary passage re-

trieval against single XML elements may be more appropriate than trying to convert high scoring

passages into single XML elements.

5.2.1 Experiments

As a test collection, I use INEX 2005 IEEE collection and the query topics provided for the

INEX 2005 Ad Hoc Track. The corpus contains 16, 819 files from various IEEE journals from

1995 to 2004. There are 39 topics, each containing a set of query terms. In INEX 2005, the results

are assessed using the nxCG metric [78]. I only consider the generalized quantization because

this is the only metric with published ranking in both INEX 2005 and 2006. I implement three

algorithms:

Arbitrary Passage Retrieval (AR) An arbitrary passage starts and ends at a query term. I

use this as a gold standard.

Single Element Retrieval (SR) Scores and return only single XML elements.

TG+ Retrieval (TG+)

My implementation of TG+ algorithm is as follows. I first score all arbitrary passages as

in Arbitrary Passage Retrieval. Next, for each passage, I assign the smallest element that fully

contains the passage. The score of an element is then the score of the corresponding passage.

When more than one passage is assigned to the same element, I assign to the element the best
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sec1 sec2 sec3

p1 p2 p3 p4 p5 p6 p7 p8

4: 4.0

3: 4.72: 5.0
1: 5.2

Figure 5.1: Assigning Scores and Nesting Elimination in TG+ Retrieval

74



passage score. Now that we only have a set of single elements, I remove overlap as in single

element retrieval.

Figure 5.1 illustrates TG+. Suppose there are four passages with scores; passage 1 with a

score of 5.2 to passage 4 with a score of 4.0. Passage 1 spans through paragraph 1, 2, and 3,

which are under section 1 and an article. Similarly for other passages. After computing scores

for these passages, I assign scores to corresponding XML elements. The score of 5.2 is assigned

to sec[1], the smallest element containing passage 1. Similarly, the score of 5.0 is assigned to

article. Because passage 3 has a higher score than passage 4, I assign the score of passage 3,

4.7 to p[7]. Next, I remove nested elements while taking the top scored elements. I first take

the element with the highest score, sec[1] and assign a rank of 1. The element with the second

highest score, article is eliminated because it causes a nesting of sec[1] within it. I can safely

take the element with the next highest score, p[7] because it does not cause a nesting with

sec[1], and assign a rank of 2.

5.2.2 Evaluation and Analysis

Performance Against INEX 2005

I train both SR and TG+ retrieval over the INEX 2005 corpus and the query set. Figure 5.2

and Figure 5.3 show the scores for different values of k1 with b = 0.8 using the nxCG metric,

mean average precisions (MAep) and interpolated MAep (iMAep) in the CO.Focused Task. I

then choose k1 = 10 for TG+ retrieval and k1 = 4 for element retrieval for training b as in

Figure 5.4 and Figure 5.5. The results of nxCG and MAep/iMAep metrics seem correlated as

both have similar curves and give maximum values at the same parameters. The values of both

k1 and b need to be quite large for both algorithms to perform well. Clarke [14] also points out
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nxCG[10] nxCG[25] nxCG[50] MAep iMAep

TG+ 0.1856 0.1774 0.1633 0.0612 0.0387

Element 0.2586 0.2323 0.217 0.0929 0.0715

Table 5.1: TG+ and SR at k1 = 10 and b = 0.9 in INEX 2005 CO-focused

this phenomenon for his BM25-based passage retrieval algorithm that is quite different from these

two. Having a large k1, therefore, seems to be necessary for using BM25. Section 5.2.3 examines

this phenomenon further.

These figures suggest that the simple element retrieval performs much better than TG+

retrieval. To see why, I compare the results of both algorithms at k1 = 10 and b = 0.9, which are

optimal parameters for TG+ retrieval. Table 5.1 shows that even if at an optimal setting, TG+

retrieval performs significantly worse than element retrieval.

I analyze the submission files of TG+ and element retrieval and realized that in the TG+

algorithm, the majority of the elements returned have a large granularity; many of them are

either /article or /article/bdy. In the element retrieval, however, the returned elements have

much finer granularity such as paragraphs and sections.

For example, as we see in Figure 5.6, the first element returned for the first topic in both

retrieval methods is from the same file, ex/2001/x1026 that spans through positions 27040000 and

27046835. In TG+ retrieval, the element returned is /article/bdy, corresponding to positions

27040246 through 27045776 with a score of 42.53. The passage corresponding to this element that

gives the score of 42.53 spans through positions 27042389 and 27043619. In element retrieval, the

element returned is /article/bdy/sec[4] corresponding to positions 27042506 through 27043559

with a score of 40.90. We see that /article/bdy, the smallest element that contains the highest

scoring passage, is much longer than the passage. However, /article/bdy/sec[4], the element

returned in element retrieval contains much of the passage without much excessive text.
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Figure 5.2: nxCG: Training on different k1 with b = 0.8 in INEX 2005 CO-Focused

Figure 5.3: MAep/iMAep: Training on different k1 with b = 0.8 in INEX 2005 CO-Focused
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Figure 5.4: nxCG: Training on different b in INEX 2005 CO-Focused

Figure 5.5: MAep/iMAep: Training on different b in INEX 2005 CO-Focused
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The element, /article/bdy/sec[4], returned by element retrieval is not returned by TG+

retrieval because the highest scoring passage within the element that spans through positions

27042550 and 27043534 only scored 41.02, lower than the highest passage contained in /article/bdy.

On the other hand, element retrieval does not return /article/bdy because its score, 39.44 is

lower than the score of /article/bdy/sec[4], 40.90.

The above observation suggests that the TG+ algorithm is not a good approach for converting

passages into an XML element because it returns a lot of excessive text. The TG- algorithm,

taking the largest XML element contained in a passage, would likely perform well for the same

reason element retrieval performs well; the returned elements would be unlikely to contain too

much excessive text. However, both element retrieval and TG- retrieval may miss too much text

to reduce the overall performance.

Performance Against the Gold Standard

In Section 5.2.2, I observe that TG+ retrieval tends to return excessive text. I also speculate

that element retrieval may be missing too much text. To measure how much text is missing or

in excess for both algorithms compared to what users find relevant, I create a gold standard to

which I compare the elements returned by TG+ and single element retrieval 1.

Gold Standard Because human assessors see passages when making relevance judgement, the

gold standard may be passages. The best XML elements are those that cover the gold-

standard passages sufficiently, but not much more. I create the “gold standard” using

passage retrieval with the same parameters as TG+ retrieval, k1 = 10 and b = 0.9. This is

because as Table 5.1 indicate, even at the optimal parameter TG+ retrieval performance is
1INEX 2005 relevance assessments are at element level. From INEX 2006, passage level relevance assessments

are available.
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worse than that of element retrieval. Thus the choice of parameters may highlight what is

wrong with TG+ retrieval.

Percentage Lack/Excess I compare a set of passages/XML elements returned by both TG+

and element retrieval against the gold standard at each rank up to 1500. The percent lack

at rank r is defined as the percentage of the gold standard up to rank r that is not covered

by the returned elements up to rank r. The figures are averaged over the topics.

Figure 5.7 and 5.8 show that SR misses more gold standard than TG+, but TG+ returns

more irrelevant text than SR.

Perhaps the reason that element retrieval performs better on the nxCG, MAep, and iMAep

metric for the focused task is because having excessive text is punished more than missing text.

In the INEX Focused task, specificity is preferred to exhaustivity [95]. In the same manner, the

TG- algorithm, that takes the largest element contained in the passage, will likely score high in

the focused task. The TG+ algorithm would score high in other tasks that place preference on

exhaustivity over specificity.

5.2.3 Discussion

In this section, I discuss the behavior of parameters k1 and b in passage retrieval. I use an

average document length for avgdl in computing a BM25 score for a passage in Equation 4.1.

Because most passages are less than a size of a document, |P |/avgdl is less than 1 most of the

time. The result is that in the denominator, we multiply k1 with something very small. Then if

k1 is also small, the denominator approaches to fP,t, turning Equation 4.1 into

score(P ) ≡
∑
t∈Q

Wt1. (5.1)

Therefore, one reason for a large k1 value is to prevent Equation 4.1 from degenerating into

Equation 5.1 when the length of P is smaller than the average document length. Similarly, a
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Figure 5.7: Percent Excess of the Gold Standard
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Figure 5.8: Percent Lack of the Gold Standard
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Final Intermediate Nested

Passage 1760.56 N/A 2424.85

Element 750.87 N/A 1354.69

TG+ 3322.06 770.72 874.56

Table 5.2: Average Length in Passage, Element, and TG+ Retrieval

large b augments the effect of length normalization in b|P |/avgdl in the denominator, and this

sets off the large gap between the average document length and a passage length. Therefore, it

appears that the choice of the average document length is balanced by the choices of k1 and b.

To see how small the passage lengths are compared to the average document length, I compute

various passage lengths. Table 5.2 shows the average length of the top 1500 final results (Final),

the passages that produced the top 1500 final results (Intermediate) (only applicable to TG+),

and the top 1500 results before the elimination of nesting (Nested), for passage, element, and

TG+ retrieval. From the average document length of 6147.97, I compute the average passage

length to be 1538.47. Then both the TG+ and the element algorithms retrieve fairly small

elements/passages, 770.72 for TG+ retrieval, and 750.87 for element retrieval, compared to the

average passage length of 1538.47. However, the average length of the elements returned by TG+

retrieval is about four times as large (3322.06) as the average length of the corresponding passages

(770.72). This shows that the TG+ algorithm is inherently ineffective for the following reason.

The passages returned by TG+ algorithm is about the right size because this is about the same

size as the elements returned by element retrieval that performs well. Therefore, it is the way we

assign passage scores to elements, rather than the choice of avgdl, k1, and b, that makes TG+

retrieval less effective than element retrieval.

Finally, it is interesting to note that the average length of the passages returned by the passage

retrieval, 1760.56 is close to the average passage length of 1538.47. The difference between the
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average lengths of the passages returned by TG+ and passage retrieval may be accounted for by

how nesting is eliminated. In passage retrieval, I eliminate nestings of the passages that eliminates

more passages than nesting elimination of elements in TG+ retrieval. Furthermore, the fact that

the average passage length returned by passage retrieval is close (in fact more) than the average

passage length implies that TG- retrieval would likely be able to find the largest element within

the passages. However, I believe that the best elements to return in XML retrieval is multiple

consecutive elements that contain passages just enough.

5.2.4 Related Work

Huang et al. [61] implement their own version of the TG+ algorithm, where the method of

identifying passages are different from ours. Instead of considering all possible passages as I do,

they consider a fixed size passages obtained from sliding windows. Moreover, they first perform

document retrieval, and then runs passage retrieval on the top scoring documents, whereas I

directly retrieve high scoring passages. When scoring passages, they use a simple term frequency

approach and two language modeling approaches, whereas I use a variant of BM25, which is used

for document retrieval.

The effectiveness of the TG+ algorithms of Huang et al. and mine can be easily compared be-

cause both of us use the same test set, the INEX 2005 IEEE collection, run the same CO.Focused

task, and use the nxCG generalized quantization to score the results. Huang et al. compared

their passage based XML retrieval results against the INEX 2005 CO-Focused task submissions of

IBM Haifa that ranks 4th and of University of Amsterdam that ranks 28th in the Mean Average

Precision (MAep) ranking. They conclude that their algorithm ranks between these two. My

results of the TG+ algorithm at k = 10 and b = 0.9 with MAep of 0.0612 also ranks between

these two. On the other hand, my element retrieval algorithm with the same parameters that

has a MAep of 0.0929 ranks first before the first result of IBM Haifa that ranked 1st with a mean
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average precision of 0.0917 [95].

Huang et al. conclude the paper by mentioning that a passage retrieval algorithm can pro-

duce effective element retrieval results because it ranks between the 4th and the 28th out of 44

submissions. However, the fact that both versions of TG+ retrieval, despite with very different

implementations of passage retrieval, only rank between the 4th and the 28th implies that TG+

retrieval is not a good idea for turning passages into an element. The comparison of my TG+

retrieval against my gold standard along with the average length statistics in Section 5.2.2 also

imply that it does not perform well because TG+ algorithm always return excessive text, if the

best passages do not match the element boundaries.

5.2.5 Conclusions

I implement three algorithms to test the effectiveness of the first algorithm of Trotman and

Geva [133], which converts the results of passage retrieval into XML elements. This TG+ algo-

rithm takes the smallest XML elements that contain the passages. I show that the TG+ algorithm

does not perform as well as the simple element retrieval, where I score all XML elements, not

passages. By comparing the result sets of the TG+ and the element retrieval algorithm, I realize

that the TG+ algorithm tends to return a lot of excessive text. Even though element retrieval

performs well, I speculate that it may miss too much text.

To see how much of text is missing or excessive, I create the gold standard, a set of results

obtained from passage retrieval using the same BM25 parameters. I then compute an average

percent excess and an average percent lack of text for returned results over all topics. Although

element retrieval does miss out a lot of text, it scores well on the focused task of INEX because the

task has a preference of specificity over exhaustivity. Because the TG− algorithm that returns the

largest XML elements contained in the passages will not have much excessive text as in the case

of element retrieval, the performance of the TG− algorithm may be similar to the one obtained
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by element retrieval. Ultimately though, the best results to return should be a series of XML

elements.

5.3 Arbitrary Passages Vs. XML Elements

5.3.1 Introduction

In the INEX 2007 Ad Hoc Track, the granularity of passage to retrieve is liberated from single

elements to arbitrary passages [33]. This makes it possible to compare if an arbitrary passage

retrieval that ignores document structure can perform better than a single element (or range

of elements) retrieval that considers structure. In Section 5.3 I implement five versions of my

subdocument retrieval strategies in Section 4.2 and compare their performance to each other.

5.3.2 Experiments

I use the 6GB Wikipedia collection [25] as a corpus and a collection of assessments called qrels

in FOL format from INEX 2006, 2007, and 2008 Ad Hoc Track Focused Task to compare five

different subdocument retrieval strategies in which only the unit of a passage to score is different.

• Single Element Retrieval (SingleE): Retrieves single XML elements as in Chapter 4.

Example: /article[1]/section[1]/p[2]

• Range of Element Retrieval (RangeE): Retrieves ranges of XML elements; starting

and ending at single element boundaries listed in Section 4.2.6.

Example: /article[1]/section[1]/p[2]-/article[1]/section[2]/p[4]
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• Semi-arbitrary Passage Retrieval (SemiP): Retrieves passages starting at element

boundary, ending anywhere.

Example: /article[1]/section[1]/p[2]-/article[1]/section[2]/p[4].40

(40 utf-8 characters after the beginning of the fourth paragraph.)

• Arbitrary Passage Retrieval (ArbP): Retrieves arbitrary passages.

Example: /article[1]/section[1]/p[2].20-/article[1]/section[2]/p[4].40

or in official INEX FOL notation, 1000 20 100.

• Article Retrieval (Article): Retrieves entire articles.

Example: /article[1]/

I trained on 2007 test set using average document length as parameter, and tested on 2006

and 2008 test sets. All evaluations are performed by inex eval.jar 2 on the 2007/2008 official

metric of iP[0.01].

5.3.3 Results and Analysis

Table 5.3 shows the results of the experiments. The score reported is the official metric of

interpolated precision at 0.01 recall point (iP[0.01]).

The results are puzzling. One would think that an ideal retrieval system that retrieves more

flexible unit, such as arbitrary passage retrieval, would perform at least as well as an ideal retrieval

system that works with more coarse granularity. This seems true during training on 2007 set for

single element, range of element, semi-arbitrary passage, and article retrieval.

However, on both 2006 and 2008 test set, it seems that single element retrieval performs better

than any other runs. It seems as though they are over-trained. A similar over-training effect is

observed in Chapter 6.
2Available at http://www.inex.otago.ac.nz/data/software.asp
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Strategy 2008 Test Score 2006 Test Score Best Training Score Parameter (k,b,avg)

SingleE 0.6782 0.5879 0.5027 3, 0.8, 1100

RangeE 0.6721 0.5655 0.5104 4, 0.8, 1000

SemiP 0.6501 0.5535 0.5286 5, 0.8, 1000

ArbP 0.6092 0.5655 0.5095 4, 0.8, 700

Aritcle-only 0.6749 0.5236 0.4925 3, 0.8, 1000

Table 5.3: Different Granularity of Retrieval, Trained on iP[0.01]

SingleE RangeE SemiP ArbP Article

SingleE - 0.6338 0.1071 0.6846 0.6269

RangeE - - 0.1228 0.9553 0.4473

SemiP - - - 0.1815 0.1284

ArbP - - - - 0.5327

Table 5.4: P-values reported on paired t-tests on 2007 Training Set, on iP[0.01]

SingleE RangeE SemiP ArbP Article

SingleE - 0.1983 0.0649 0.2450 *0.0051

RangeE - - 0.3631 0.9964 0.0805

SemiP - - - 0.4241 0.1955

ArbP - - - - 0.1034

Table 5.5: P-values reported on paired t-tests on 2006 Test Set (*=significant), on iP[0.01]
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SingleE RangeE SemiP ArbP Article

SingleE - 0.7739 0.1951 *0.0057 0.9004

RangeE - - 0.0965 *0.0005 0.9019

SemiP - - - *0.0015 0.3429

ArbP - - - - *0.0282

Table 5.6: P-values reported on paired t-tests on 2008 Test Set (*=significant), on iP[0.01]

Furthermore, even during training, arbitrary passage retrieval only performs close to range of

element retrieval. This also holds true on the 2006 test set. One could argue that it is because

elements are natural boundaries. However, single elements still perform better than range-of-

elements and arbitrary passages. In addition, on 2008 test set, the results of arbitrary passage

retrieval is much worse than range-of-element retrieval. The p-values reported from paired t-tests

on Table 5.5 and 5.6 support this. Article retrieval seems to perform as expected, scoring the

lowest of all runs except for 2008.

One theory is that the official metric of iP[0.01] is not an appropriate measure. Table 5.7

reports the number of characters returned at recall point of 0.01 and the average number of

characters in a passage, computed from qrels. The average length at 0.01 recall is smaller than

an average passage length for all years. Since it is likely that the set of all highlighted passages

contains at least one type of the passage I experiment, achieving high scores on iP[0.01] does not

require the choice of passage type.

Figure 5.9, Figure 5.10, and Figure 5.11 instead shows the performance of each type of runs

at all recall points. The article runs seem to outperform other runs over most recall points. In

general, the less flexible the run is, the higher the curve. Training on iP[0.01] itself may have

caused the problem.

Table 5.7 also suggests that the gap between average highlighted passage lengths of 2006 and
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Figure 5.9: Precision Recall Curve on 2007 Training Set, Trained on iP[0.01]
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Figure 5.10: Precision Recall Curve on 2006 Test Set, Trained on iP[0.01]
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Figure 5.11: Precision Recall Curve on 2008 Test Set, Trained on iP[0.01]
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Year Average Length at 0.01 Recall Average Highlighted Passage Length

2006 864.84 1745.92

2007 1009.32 1671.78

2008 1638.81 2347.38

Table 5.7: Number of Characters in 0.01 Recall Points and Average Number of Characters in

Highlighted Passages

2007, and that of 2008 may also be a cause of misbehavior.

5.3.4 Training on MAP

With the observation from Section 5.3.3 in mind, I run the same five sets of retrieval strategies

in the new setting:

• Fix average document length to prevent possible overtraining.

• Train on MAP to capture precisions across all recall points.

Table 5.8 shows the MAP scored I obtain for the five different retrieval strategies during 2007

training (reported best score achieved), and during 2006 and 2008 test sets. The results are

even more surprising than when I train on iP[0.01]. Throughout the training and testing, article

retrieval performs the best, followed by single-element retrieval, and this time, arbitrary passage

retrieval performs the worst. It could be argued that the best unit of retrieval is an article!

Figures 5.12, 5.13, and 5.14 show the recall precision curves during the 2007 training set,

and 2006/2008 test set. Indeed that the curves in each graph look quite similar to each other.

Tables 5.9, 5.10, and 5.11 show the results of significant tests. It seems that during training on the
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Strategy 2008 Test Score 2006 Test Score Best Training Score Parameter (k,b,avg)

SingleE 0.3023 0.2315 0.2177 3, 0.4, 1085.22556253005

RangeE 0.2588 0.2003 0.1828 3, 0.2, 1085.22556253005

SemiP 0.2615 0.2010 0.1868 3, 0.2, 1085.22556253005

ArbP 0.2565 0.1959 0.1801 3, 0.2, 1085.22556253005

Aritcle-only 0.3162 0.2445 0.2312 2, 0.8, 1085.22556253005

Table 5.8: Different Granularity of Retrieval, Trained on MAP

SingleE RangeE SemiP ArbP Article

SingleE - *0.0116 *0.0287 *0.0390 0.6378

RangeE - - 0.3091 0.2751 *0.0360

SemiP - - - 0.5237 0.0601

ArbP - - - - 0.0940

Table 5.9: P-values reported on paired t-tests on 2007 Training Set (*=significant), on MAP

2007 set, single element retrieval are significantly better than all strategies but article retrieval.

The article retrieval itself is only more statistically significant than the range-of-element retrieval.

5.3.5 Conclusion

In Section 5.3, I run my basic retrieval approach in Chapter 4 using five different granularity

of retrieval; single elements, range-of-elements, semi-arbitrary passages, arbitrary passages, and

articles. Since the same corpus is used through 2006 to 2008, and passage-level qrels are available

for each year, I train on 2007 set 3, and test on 2006 and 2008 test sets.
3Since qrels format changed from 2006 to 2007, I did not know the existence of new qrels for 2006, instead I

trained on 2007.
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SingleE RangeE SemiP ArbP Article

SingleE - 0.4778 0.3658 0.3755 0.6713

RangeE - - 0.5770 0.6255 0.3757

SemiP - - - 0.8919 0.2940

ArbP - - - - 0.3041

Table 5.10: P-values reported on paired t-tests on 2006 Test Set, on MAP

SingleE RangeE SemiP ArbP Article

SingleE - 0.5234 0.5284 0.5494 0.4629

RangeE - - 0.8874 0.7500 0.2376

SemiP - - - 0.3590 0.2343

ArbP - - - - 0.2429

Table 5.11: P-values reported on paired t-tests on 2007 Test Set, on MAP
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Figure 5.12: Precision Recall Curve on 2007 Training Set, Trained on MAP
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Figure 5.13: Precision Recall Curve on 2006 Test Set, Trained on MAP
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Figure 5.14: Precision Recall Curve on 2008 Test Set, Trained on MAP
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The first set of results, trained on the official metric of iP[0.01] with variable average document

length show that even though during training, the finer granularity performs better than the

coarser one with the exception of arbitrary passages, during testing, single elements performed

the best. Having average document length as a parameter may have contributed to overtraining.

The second set of results, in which I train on MAP with fixed average document length show

that article retrieval performed the best. However, significant tests show that the performance of

single element retrieval result is statistically more significant than others during training, except

for article retrieval. During testing no approach is statistically better than any other. Since article

retrieval is only more statically significant than one other retrieval strategy only during training,

and that users would like a shorter document, single element retrieval may be the best retrieval

approach after all. The second best run by LIP6 [23] in INEX 2009 only ranks articles. Thus the

phenomenon may be system independent, but particular to the Wikipedia corpora. However, I

do not have enough evidence to draw a strong conclusion.

5.4 Conclusions and Future Work

Chapter 5 investigates the issue of the passage size to return. Section 5.2 shows that turning

a high scoring passage into a single element result by taking the smallest element containing

the passage produces a lot of excess text compared to simply scoring all single elements. This

suggests the need for an evaluation forum to directly compare single element retrieval results

against arbitrary passage retrieval. Section 5.3 uses three years of test sets from INEX Ad Hoc

Track Focused Task. It showed that for 6GB Wikipedia corpus [25] and for my subdocument

retrieval strategy, single element retrieval performs well. Thus, together with Section 5.2, I show

that single element is a sufficient (at least for the INEX tasks) unit of retrieval. Both of the results

may result from the effectiveness of the pre-selection of element types and from the ineffectiveness

of passage retrieval. The assessment tools may contribute to the bias towards single elements.
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The future work includes studying the effect of different document structure and collection type,

as well as inventing a passage retrieval specific strategy.
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Chapter 6

Taking Advantage of XML Structure

Using the model of passage retrieval in Chapter 3, and the implementation details of Chapter 4,

Chapter 5 comes to a conclusion that for the 6GB Wikipedia collection [25] and my subdocument

retrieval strategy, single element retrieval is sufficient at least for the INEX collection. In this

chapter, I adhere to the single element retrieval and study how I can take structure into account

when scoring single elements.

Section 6.1 introduces the problem of structural retrieval. Section 6.2 introduces Robertson’s

et al.’s BM25F [21, 120], a structural version of BM25. Using BM25F, Section 6.3 proposes

the idea of characteristic field. Section 6.4 performs experiments on INEX Ad Hoc and Book

collection. Chapter 6 concludes by laying out the future map of research.

6.1 Introduction

In the INEX Ad Hoc Track focused task, while various participating groups have reported

attempts to exploit XML structure in order to improve performance on this task, none of these

efforts have consistently outperformed the simple approach of applying BM25 [121] to score
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individual XML elements and then filtering the resulting ranked list to remove overlap. Under

this approach, each element is scored as if it were an independent document. The context of the

element — such as information appearing in the elements that surround it — is ignored. Runs

using this basic approach ranks third in 2004, third in 2007, and first in 2008 [33,73,96].

Robertson et al. [21, 120] describe BM25F, an extension of BM25 that exploits structural

information. Under BM25F, terms contained in a document’s title, for example, may be given

more weight than terms contained in the document’s body.

In this Chapter, I explore a framework for adapting BM25F to XML element retrieval. Under

this framework, I construct two fields for each element. One field contains the contents of the

element itself; the other field, called the characteristic field, contains contextual information

associated with the element. This contextual information will vary from domain to domain, but

might include the title of the overall document, titles from containing elements, and document

metadata.

6.2 BM25F

6.2.1 The Original BM25F

The original BM25F proposed by Robertson et al. [120] simply assigns weights to different fields

of a document. For example, a title field may have heavier weight than a section field because

document titles may contain more important information than sections. A weight of each field is

then used to multiply term frequencies and field length.

At INEX 2005, Robertson et al. implement BM25F for XML element retrieval, and show

some improvement [92,119]. They take the idea of anchor inheritance in BM25F web retrieval by
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making each element inheriting article titles. An element score is the weighted summation of the

scores from three fields, one containing the body of the element, another containing the element

title, and another containing all ancestral titles. However, the experiments are on a very small

scale 705MB IEEE collection, and the training is performed to tune the scores on document level

as opposed to element level. Furthermore, their evaluation is not on focused retrieval, so the

actual effectiveness of their algorithm is unknown.

Around the same time, Trotman has studied the effectiveness of multiplying term frequencies

on different parts of XML structures using a few standard document scoring function [132]. He

shows that even with the optimal set of parameters, the improvement obtained by BM25F is less

than 1% as computed by mean average precision.

6.2.2 BM25F with per-Field Length Normalization

One of the features of BM25 [121] in scoring a document is length normalization: The more

the instances of query terms, the less significant a new instance of the query term will be. In

the original BM25F [120], length normalization is applied only at a document level, whereas in

reality, the weight of the first term in every section should be the same. An extended version of

BM25F [21] corrects this and applies length normalization at every field. This is the version of

BM25F I study in this chapter.

Using BM25F, an element’s score is computed as follows:

BM25F (e) =
∑

t∈q∩e

xe,t

K + xe,t
Wt ,

where q is a query term, xe,t is a weighted normalized term frequency, K is a tunable parameter,

and Wt is document-level IDF for a term t. To obtain xe,t, length normalization is first performed

separately for each field f associated with an element e, producing field-specific normalized term

frequencies. These normalized term frequencies xe,f,t are multiplied by field-specific weights Wf
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and summed to obtain xe,t

xe,f,t =
xe,f,t

1 + Bf ( le,f

lf
− 1)

, xe,t =
∑

f

Wf · xe,f,t ,

where xe,f,t is the term frequency of t in field f of element e, Bf is a tunable parameter, le,f is the

length of f in e, and lf is the average field length of f . I report the results obtained by treating

average document and field lengths as a constant, but later experiments that treated them as

parameters seem to give no advantage.

6.2.3 BM25F in Book Search

In addition to web retrieval and XML retrieval, BM25F is also studied in the setting of book

retrieval. Wu, Kazai, and Taylor implement BM25F with per-field length normalization on re-

trieval of books on INEX 2007 Book Track data set [140]. They use six fields, each corresponding

to a different book part such as back of the book content and book title. Using BM25F, there

is 9.09% improvement over the baseline BM25 on metric NDCG@1, but as rank goes down, the

improvement decreases, 4.68% at NDCG@5, and 3.92% at NDCG@10.

Using the same INEX 2007 Book Track data set, Kazai and Milic-Frayling implement a book

retrieval system incorporating external features such as the number of copies sold on Amazon.com

as well as book content [80]. As part of scoring book content, they use BM25F with ten fields,

some from the books and others from the MARC record that have information such as publisher

name. Since they use BM25F as a baseline to compare the performance improvement from

external features, I cannot compare BM25 against BM25F in this setting.

Both of the above papers use BM25F only for retrieval of books, as opposed to book pages,

thus it is not focused retrieval. Furthermore, they do not perform inheritance of book titles to

section as done by Lu et al. [92] and Robertson et al. [119].
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6.3 The Characteristic Field

In this section, I establish a framework for retrieval of XML elements using BM25F. This

framework applies to not only documents such as Wikipedia articles, but also to books and web

pages. That is, using this framework, I wish to retrieve parts of Wikipedia articles, parts of Books,

and parts of web pages more effectively than simply scoring all XML elements using BM25:

1. Decide on which XML elements are worth retrieving. For example, a paragraph element is

probably more worthy of retrieval than a table column element. This step is standard in

XML element retrieval.

2. Create two fields for each element listed previously. One of the field contains the entire

body of an element, and the other field, I call the characteristic field, containing any meta

data that characterizes the element.

3. Score all elements using BM25F with per-field length normalization. Since our interest in

improving the performance of focused element retrieval, I remove overlapping elements.

In the case of Robertson et al. and Lu et al. [92,119], they have two characteristic fields, one

containing the current element title, and the other containing all the ancestral titles. I propose

that this is an unnecessary step and concatenating all ancestral titles with the current title to

fill in the single characteristic field is sufficient. For example, in Figure 6.1 1, the title of the

document is “Sharaku”, and the title of the current section is “Biography”, thus both titles go

into the characteristic field. In the case of book page retrieval, in addition to book titles, I could

add book categories, “ Art, Japanese. Japan.” into the characteristic field.
1Top: http://en.wikipedia.org/wiki/Sharaku snapshot taken on August 14th, 2010. Bottom: INEX 2008

Book Track MARC
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Figure 6.1: Extracting Characteristics from Heterogeneous Source

106



Run Training iP[0.01] Test iP[0.01] Test Rank

BM25F 0.7266 (0.7371) 0.6361 (0.6082) 1(6)

BM25 0.6818(0.6823) 0.5915 (0.5947) 15(11)

Table 6.1: Adhoc Focused Retrieval

6.4 Experiments and Results

6.4.1 Ad Hoc Retrieval

I first report the results of runs on INEX 2009 ad hoc task. I train on a 5.9GB INEX 2008

Wikipedia corpus [25] with 659,387 articles and 70 assessed topics and tested on a 50.7GB INEX

2009 Wikipedia corpus [125] with 2,666,190 articles and 68 assessed topics. The training optimizes

the official metric of iP[0.01]. For these runs, I use a characteristic field formed from the titles of

the article and the sections in which an element occurs.

Table 6.1 shows the best training results and ranks compared to INEX 2009 ranking 2. The

scores in brackets indicate the scores obtained by using average title/field length as additional

parameters. The BM25F run that ranks first gives a 7.54% improvement over the BM25 run

that ranks 15th. Because the training and the test corpora are different, the training corpus

containing only section headings while the test corpus containing subsection headings, I only use

up to section heading in the test corpus to create a run. The test result would likely improve if I

considered subsection headings.
2The original ranks are 1st for BM25F and 12th for BM25, but here I report results of the runs after I remove

some comments from the corpus.
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6.4.2 Book Page Retrieval

I use INEX 2008 Book Track data [77] of 50239 books of size 37GB after pre-processing. Only

25 out of 70 topics has relevance judgements, thus I use 17 of them for training, and 8 for testing.

The corpus comes with a file, in machine readable cataloging (MARC) format 3, that contains

document ID, library of congress classification 4, ISBN, author, title, publisher, year, total pages,

library of congress control number, and keywords. Among these, LC classification code and

keywords seem to describe the content of the books well. The ISBN and LCCN, on the other

hand do not pertain to the content of the books.

Table 6.4.2 shows MARC format for one book in the corpus. The LCC code for the book

9CF1F9CCCE13D107 is “N7350”, which is categorized as

1. N: Visual Arts

The category of the book according to MARC is “Art, Japanese. Japan.”. The title of the

book is

The arts of Japan

Our running topic title is “Impressionist and Japanese art”, thus it seems reasonable to assume

that adding LCC and category into the characteristic field along with the title would help increase

the score for the pages from the book because of query term overlaps.

For simplicity purpose, I only use up to the second level of LCC classification. In the example

above, it is “N”. Adding all level of LCC classification into the characteristic field may help in

the retrieval. When concatenating a title with keywords and LCC, the order of appearance in

the characteristic field is LCC, categories, and title. Of 50305 available MARC records in the

corpus, 24800 of them (49.30%) have LCC code, and 21497 (42.73%) have categories listed.
3http://www.loc.gov/marc/
4http://www.loc.gov/catdir/cpso/lcco/
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The Book Track task requires to group the pages by the books and rank the books. Thus

all of my runs does so and rank the books by the highest scoring page returned for the book.

Training maximizes mean average precision.

Table 6.3 shows the results of my experiments. The runs with the plus signs indicate in-

formation used in the characteristic field. The scores in brackets indicate the scores obtained

by using average title/field/document length as additional parameters. Along with Table 6.1,

having additional average lengths as parameters marginally improves the best scores obtained

during tuning, but it adds little improvement in testing if not overtrained. The table shows that

using characteristic information gives up to 48.92% and 35.45% improvement over BM25 during

training and testing respectively.

INEX 2009 Book Track

In this section, I report the results of INEX 2009 Book Track.

Unlike the experiments in Section 6.4.2, I use the brand new INEX 2009 topics for testing, use

the entire MARC record in the characteristic field, and retrieve characteristic fields in addition

to pages. Since the characteristic field should not have been retrieved, the actual score may

be slightly higher than reported. Because of the limitation in the training/test set in my book

experiments, the results for the effect of BM25F with characteristic field on book page retrieval

should be considered together.

Table 6.4 shows the results obtained during training and testing at INEX 2009. For training,

the improvement is 62.56%.
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Run MAP (training) MAP (test)

BM25 0.0278 (0.0280) 0.0110 (0.0092)

BM25F+title 0.0412 (0.0429) 0.0149 (0.0116)

BM25F+title+cat 0.0413 (0.0429) 0.0139 (0.0104)

BM25F+title+cat+LCC 0.0414 (0.0429) 0.0137 (0.0104)

Table 6.3: Book Page Retrieval

Run MAP (training) MAP (test)

BM25 0.0219

BM25F+MARC 0.0356

Table 6.4: Book Page Retrieval

6.5 Conclusions

I propose a framework for applying BM25F to XML element retrieval through the addition of the

single characteristic field. This characteristic field merges contextual information from multiple

sources, which may include inherited titles and metadata. The proposal is inspired by previous

work, but aims to avoid the complexity of multiple fields and heterogenous structure by merging

contextual information into this single field. Though it may be possible to have multiple fields

and learn the type of information each field can contain from heterogeneous sources, the single

characteristic field provides the baseline for heterogeneous retrieval.

The proposal is evaluated in the context of the INEX effort. While the results of the INEX

2009 Book Track have not yet been fully judged, they suggest that the benefits of field weights

may be obtainable even in this simplified framework.

The proposal addresses the following questions: How do I order multiple sources of the char-
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acteristic field; should a title go before or after keywords? Is it necessary to perform length

normalization within the characteristic field? Unlike the body field that contains a sequence of

sentences, the characteristic field contains phrases and sentences that are in no order.

Future work includes experimenting my version of BM25F on heterogeneous collection and tak-

ing advantage of more detailed structural information available in the new INEX 2009 Wikipedia

collection [125].
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Chapter 7

Focused Links

Chapters 3, 5, and 6 discuss focused search of subdocuments. This chapter discusses a special

case of focused retrieval where the retrieval unit consists of a pair, an anchor phrase and a

destination passage that the anchor phrase links to.

Section 7.1 introduces the problem of linking Wikipedia pages. Section 7.2 introduces related

work. Section 7.3 introduces my work at INEX Link-the-Wiki Track. Section 7.5 builds on the

PageRank algorithm [6] and its variant to create a new retrieval algorithm. Section 7.6 tests the

effect of the new algorithm. Section 7.8 concludes Chapter 7.

7.1 Introduction

We click links in a hyperlinked document to obtain additional information. In the Wikipedia

article of Figure 7.1, concerning the New Zealand region of Otago, we may click on links for

Dunedin and Pinot Noir, to learn more about the capital of the region and the wines grown

there.

Both “Dunedin” and “Pinot Noir” are proper nouns. As a result, editors of the article may
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Figure 7.1: A sample Wikipedia page on “Otago”

be more likely to link to them than to link to the common noun “country”. At the same time,

Dunedin is arguably more closely related to the topic of the article than the wine, which is grown

in many locations around the world.

The goal of research in this chapter is to better understand the link structure of the Wikipedia,

in part as an aid for automatically suggesting links for new articles (or new links for existing

articles). I derive my inspiration from the INEX Link-the-Wiki Track [57,58,60], whose purpose

is to suggest incoming and outgoing links from a Wikipedia article stripped of links. The main

focus is on suggesting outgoing links from an article, however, techniques used in suggesting

outgoing links seem to help in identifying incoming links.

At INEX 2007, despite efforts from various participants, a simple statistical approach domi-

nated the track. I call this approach the Structural Threshold algorithm, or just the ST algorithm.

The next year, at INEX 2008, the ST algorithm was implemented by several participants, produc-

ing results that are comparable to the Wikipedia as the ground truth. However, when the runs
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were judged against separate manual assessments, it transpired that both the submitted runs and

the Wikipedia ground truth (the links actually in the Wikipedia) differed substantially from the

manual judgements. The following year in INEX 2009, the same phenomenon was observed.

To understand the difference between the Wikipedia ground truth and the manual judgements,

a novel version of PageRank , which I call KLD PageRank or just KPR, was developed. The

KPR algorithm combines the standard PageRank with a topic-oriented PageRank, using K-L

divergence. Based on my experience with the INEX tracks and the KPR algorithm, I suggest

that Wikipedia links may be characterized as being primarily structural or primarily topical.

Topical links are those strongly related to the topic of an article, such as “Dunedin” and

“South Island” in our example. Structural links, such as “Pinot Noir” and “Merlot”, are those

that have a weaker topical relationship to the article, but are frequently linked by articles in which

they appear. Some links are both topical and structural to some extent: “New Zealand” is both

topically related to “Otago” and also linked frequently by articles in which it appears. Current

Wikipedia articles contain a fair proportion of structural links, some created automatically by

bots such as Rambot 1.

In this chapter, I first describe the ST algorithm for automatically identifying links between

Wikipedia articles, demonstrating that it reproduces the set of links in Wikipedia reasonably

well, despite its lack of topical considerations. I follow this discussion with a summary of the

INEX 2007, 2008, and 2009 Link-the-Wiki Tracks. I then compare the performance of the ST

algorithm to the INEX 2008 manual assessments, highlighting the differences between them. I

argue that these disparities stem from the difference in the underlying role of the links, many of

which are not topical. To better demonstrate the topical nature of the manual assessments, I

introduce the KPR algorithm, comparing it to the manual assessments, to the ST algorithm and

to the Wikipedia ground truth. I finally deploy an inverted version of KPR algorithm to show
1http://en.wikipedia.org/wiki/User:Rambot
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that it gives a good improvement over my simple baseline for identifying incoming links.

7.2 Previous Work

Wikis, such as the Wikipedia, have become important tools for gathering and sharing information.

According to Kittur et al. [82], in the early days of the Wikipedia most articles were written by a

small number of editors, but since then the number of editors has grown substantially. Although

the Wikipedia is sometimes viewed as an unreliable source of information, Lih [87] identified 72

mainstream news sources, ranging from the Associated Press to AskMen.com 2, which cited or

referred to the Wikipedia between January 2003 and March 2004. The Wikipedia itself is growing

rapidly, with a projected growth of the English Wikipedia to as many as ten million articles by

2025.3

A substantial fraction of research related to the Wikipedia focuses on semantics, such as

computing the semantic distance of concepts [41,130]. Much of the prior work on automatic link

discovery in the Wikipedia employs statistical approaches [104, 106] to compute the probability

that a phrase constitutes an anchor. These approaches, as well as my own, can not only help

improve the utility of the Wikipedia, but can also be applied to automatic document linking in

more general contexts, such as news articles.

Similar to the prior work of Mihalcea and Csomai [104], and the work of Milne and Wit-

ten [106], the ST algorithm depends on simple statistics. Like the work of Mihalcea and Csomai,

the ST algorithm ranks anchor phrases by link probability, but unlike that work, the ST algo-

rithm considers more than just article titles as potential anchor phrases. Instead of performing

word sense disambiguation separately, the ST algorithm assigns to an anchor phrase the most

frequent destination in the Wikipedia corpus. Milne and Witten, on the other hand, build on
2www.askmen.com
3en.wikipedia.org/wiki/Wikipedia:Modelling Wikipedia’s growth
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top of an ST-like algorithm by using the textual context of an article to disambiguate anchor

phrases and destination files. In my KPR algorithm, I take topicality into account by using only

the Wikipedia link graph, without the need for context parsing.

Gardner and Xiong [42] employ a sequence labeling approach in which a label indicates the

start and part of the links. They use a conditional random field as a classifier and trained on

both local and global data such as surrounding terms. Their results are comparable to Milne and

Witten’s.

All of Mihalcea and Csomai, and Milne and Witten, and Gardner and Xiong treat the links

in the Wikipedia as manually-crafted ground truth, for comparison with their results. The ST

algorithm’s performance against this ground truth is better than that of Mihalcea and Csomai and

somewhat less than the more complicated approach of Milne and Witten. However, I argue that

the current Wikipedia links should not be strictly regarded as the one-and-only gold standard.

Instead, when evaluating potential links, the topical links should be considered separately from the

less-topical structural links. Otherwise, the structural links will tend to dominate the evaluation.

7.3 INEX Link-the-Wiki Track

Section 7.3 describes the background that lead to the ST algorithm that is discussed in Chap-

ter 7.4.

7.3.1 INEX 2007 Link-the-Wiki Track

For the INEX 2007 Link-the-Wiki Track, 90 of the 659,387 documents in 6GB INEX Wikipedia

corpus were nominated and selected as test topic files by track participants [25,57]. These topics

were stripped of all intra-article links that originally existed in the corpus. We call these stripped

links the Wikipedia ground truth. In 2007, this ground truth represented the only method for
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evaluating the performance of submitted runs.

Participants then were asked to generate runs suggesting links to and from these test topic

files using any information available in the stripped corpus. Use of link information related to the

test topic files themselves was not permitted. Although participants were required to identify up

to 250 anchor phrases per topic as well as the single best entry point (BEP) for each destination

article, these anchor phrases and BEPs are ignored during the evaluation phase, reducing the

problem to that of file-to-file link selection.

Four groups participated, submitting 13 runs in total. Although there were various approaches

taken, the ST algorithm, my contribution, dominated the results [65]. None of the other runs

used this approach.

7.3.2 INEX 2008 Link-the-Wiki Track

For 2008, the Link-the-Wiki Track introduced two tasks [58]: the File-to-File task and the

Anchor-to-Best-Entry-Point task. The file-to-file task required participants to specify links at

the file level, with 6600 randomly chosen topics. The Anchor-to-BEP task required participants

to specify anchor phrases and up to five best entry points for a destination article for 50 topics

nominated by the participants. For Anchor-to-BEP runs, the track organizers prepared manual

assessments that required human assessors to judge about 600 links, an effort that was estimated

to have taken 200-300 hours in total [59]. Since my goal is to compare Wikipedia ground truth

against the manual assessments, my focus on the Anchor-to-BEP topics and runs. However, for

the purposes of this evaluation, I treat them as if they were file level runs, ignoring the actual

BEP.
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Runs

The ten participating groups submitted 25 runs in total. Several other groups based their

submissions on the ST algorithm, including Lycos Europe GmbH and the University of Otago.

These groups in addition to my runs dominated the results. My runs [66] re-used previous year’s

implementation of the ST algorithm from INEX 2007. The University of Otago [71] implemented

their own version of the ST algorithm, with additional weighting for capitalized phrases. Lycos

Europe GmbH [28] built their algorithm on top of the ST algorithm, extending it to dynamically

decide target files depending on the context of the topic, such as the set of possible links from

the topic.

Other approaches that preformed reasonably well included that of the Graz University of

Technology [52], who ranked destination files identified using Gazetteer by cosine similarity. The

Queensland University of Technology [10] created a list of frequent phrases in the corpus, reducing

the topic files into a set of frequent phrases from the list, and querying these phrases to obtain

destination files. The University of Amsterdam [29] queried the corpus using the entire topic file

as a query phrase to find destination files that have the same text segment as the topic file.

Evaluation and Results

The track evaluated the 2008 Anchor-to-BEP runs at the file level by ignoring the placements

of anchor phrases and the best entry points, but considering all five possible destination files per

anchor. The track evaluated the runs against both the Wikipedia ground truth, and against the

manual assessments. For each of them, the track computed mean average precision, R-precision,

and precisionn for various values of n. Figure 7.2 shows interpolated precision at various recall

levels for the best performing runs from the top participants. The Wikipedia ground truth appears

as a line at the top of the graph.

The runs based on the ST algorithm generally outperform runs based on other approaches.
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However, when the track assessed the same set of runs, including the Wikipedia ground truth,

against the manual assessments, the picture changes. Figure 7.3 presents the result. The perfor-

mance of the Wikipedia ground truth is little better than that of the submitted runs.

7.3.3 INEX 2009 Link-the-Wiki Track

In 2009, the Link-the-Wiki Track [60] continued the same tasks as previous years, but with the

new 50GB Wikipedia corpus with semantic annotations [125].

Six participants submitted runs for file-to-file level and anchor-to-BEP level tasks. Three other

participants submitted their implementations of the ST algorithm. Of those, Queensland Uni-

versity of Technology and University of Otago occupied the highest ranks. The third participant

only submitted to the file-to-file task and had the incorrect understanding of the ST algorithm.

Figure 7.4 shows the results of the two participants at anchor-to-BEP level link discovery assessed

against Wikipedia ground truth. Only the first destination is considered for evaluation.

In addition to my implementation of the ST algorithm, I also submitted the KPR algorithm

described in Section 7.5. Figure 7.5 shows the results when assessed against manual judgements.

My KPR run outperformed all other runs, including the ST algorithm and the Wikipedia as the

ground truth.

7.4 Structural Threshold

7.4.1 Link Probability Estimate

The Structural Threshold (ST) algorithm is computed by creating a list of all potential anchor

phrases in the corpus stripped of test topic files, and in the test topic files, by extracting phrases
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manual assessments (Bolded runs are based on the Structural Threshold) [58]
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Figure 7.4: INEX 2009 Anchor-to-BEP Run Assessed Against Wikipedia as Ground Truth Re-

produced from Huang et al. [60]
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Figure 7.5: INEX 2009 Ancohr-to-BEP Run Assessed Against Manual Assessment Reproduced

from Huang et al. [60]
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Anchor γ

country 0.01

province 0.07

Dunedin 0.61

New Zealand 0.68

South Island 0.79

Pinot Noir 0.81

Merlot 0.82

Table 7.1: The γ values for some anchors in Figure 7.1

verbatim (with some whitespace normalization). For each potential anchor phrase a, assign the

destinations d in order of frequency. For each most frequent destination d, compute the probability

estimate γ that a phrase will be linked as an anchor as follows:

γ =
] of pages containing a link from anchor a to a file d

] of pages in which a appears at least once
.

For example, the phrase “New Zealand” is used to link to the articles “New Zealand”,“New

Zealand cricket team”, “New Zealand national rugby league team”, “New Zealand national soccer

team”, and “New Zealand women’s cricket team”, 7680, 321, 48, 23, and 21 times respectively.

Therefore, select “New Zealand” as the destination of the phrase. Since 11,312 articles in the

corpus contain the phrase “New Zealand”, compute γ = 7680/11312 = 0.68.

Table 7.1 lists γ values for some of the phrases in Figure 7.1. Common nouns such as “country”

and “province” have low γ values, whereas proper nouns such as “New Zealand” and “Pinot Noir”

have high γ values. Interestingly, when γ is plotted against rank (by frequency) the result is close

to linear. Figure 7.6 shows γ vs. frequency for phrases with more than 100 links.

Links are suggested by the ST algorithm in order of decreasing γ values. Once obtaining a
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list of anchor-destination pairs ordered by γ, search for the anchor phrases in the topic files and

suggest the pairs in the order of γ. When there are phrases that have multiple matches in the γ

list, assign the longer phrases. For example, when a topic file contains the phrase “University of

Otago”, link to the destination “University of Otago”, rather than the destination “Otago”.

The ST algorithm essentially creates a ranked list of possible links from an article. Since

Wikipedia articles do not link to all possible destinations, the actual list of links to add to an

article might be determined by setting a threshold for γ. Figure 7.7 shows a plot created by

varying the threshold value. The usual trade-off between precision and recall is evident.

INEX 2007 provides an example of the effectiveness of the ST algorithm. Table 7.2 shows the

results of University of Waterloo’s INEX 2007 submission for various metrics, and the highest

scores of all the other official INEX 2007 runs, none of which used the ST algorithm. Comparisons
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MAP rPrec P@5 P@10 P@20

ST algorithm 0.61 0.63 0.85 0.82 0.75

Others’ Best Scores 0.32 0.42 0.77 0.68 0.58

Table 7.2: The Structural Threshold at INEX 2007 Link-the-Wiki

are against the Wikipedia ground truth. The official results in INEX 2008 and 2009 corroborate

this; for both file-to-file level and anchor-to-BEP level runs, all the top runs, except for KPR

runs, use ST algorithm as the basis [58,60].

7.4.2 Anchor Density

Another method for selecting a threshold for adding links to an article, is to consider density of

anchors in the article. Define an anchor density δ of a page p as follows.

δp =
# of article linked from page p

size of page p without Tags in KB
.

The average anchor density of a corpus with N pages is, therefore,

δ =
∑

p

δp

N
.

Estimate anchor density by allocating articles into 5KB bins, according to their size, and then

computing the average for each of the bins. Figure 7.8 shows that the density is roughly linear

and there are 35.457/5 = 7.09 anchors for every KB. The roughness with larger file sizes is caused

by few number of files in these file sizes. Similar observations have been made by Zhang and

Kamps [142]. Thus, instead of selecting links according to a γ threshold, we may add links to an

article in γ order, until an anchor density of δ = 7.09/KB is reached.

I incorporated anchor density into an INEX 2008 run based on the ST algorithm by cutting

the list of anchor phrases ranked by γ for each topic by δ times the file size. For example a topic
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file “Otago” has the size of 2.789KB. Therefore, I cut off the number of anchors to return for the

topic to d2.789× 7.09e = 20.

I evaluate the effect of δ by computing a set precision and recall against the Wikipedia

ground truth. I obtain the precision of 62.88% and recall of 65.21%. Mihalcea and Cosmai’s link

identification-only accuracy is 53.37% precision and 55.90% recall [104], and Milne and Witten

with more complex disambiguation technique achieves precision of 74.4% and recall of 73.8% [106].

Thus the simpler ST approach works reasonably well despite its lack of any topical considerations.

7.5 Link Analysis

The ST algorithm identifies all anchor phrases with high γ regardless of the topic of an article.

Thus, an anchor phrase “Peninsular War” (a European War during Napoleonic period) with

γ = 0.90 would be suggested as an anchor for nearly any page in which it occurs, from “Napoleon”

to “Otago” to “wine”. According to the Wikipedia ground truth, “Peninsular War” should be

indeed linked. However, the manual assessments deem the anchor phrase to be not topically

relevant to the “Otago” page. From an assessor’s point of view, this European war is not related

to New Zealand. On the other hand, the page “Otakou”, from where “Otago” derived its name,

seems more topically relevant and manual assessments deem it relevant, but has a rather weak γ

value of 0.63 and the Wikipedia ground truth judges it not relevant. Therefore, there is a need

to balance the topicality of an anchor phrase with the popularity of an anchor phrase measured

by γ.

In this section, I enlist a variant of PageRank to estimate the topicality of anchor phrases.

Instead of measuring the popularity of anchor phrases by the γ value, through KPR algorithm, I

balance both topicality and popularity by computing the contribution to K-L divergence of scores

between a standard PageRank (PR) and a traditional topic-oriented PageRank (TPR).
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Throughout this section, I use a process that computes KPR with all links present (links

related to the test topics are not stripped). Initially, my goal is to show that even though

there are both topical and structural links in Wikipedia, topical links indicated by KPR better

matches manual judgements. I also present KPR as an alternative method for specifying ground

truth for evaluation. For these purposes, using an unstripped version of the Wikipedia corpus is

appropriate. Later in the paper, I apply KPR to solve the link discovery problem. In this case,

I use stripped Wikipedia corpus, use γ instead to provide initial linkages for the test topic, and

then I use KPR to compute the final linkages.

7.5.1 PageRank

The classic PageRank algorithm of Brin and Page [6] may be summarized as follows: Assume

the existence of a follow matrix F [1...N, 1...N ] and a jump vector J [1...N ] An entry F [i, j] in the

follow matrix contains the probability that a user clicks from page i to page j. To accommodate

a jump preference, an entry J [i] contains the probability that a user randomly jumps to page i.

The following equation then describes the PageRank algorithm.

r (α) = δF

∑
β→α

r (β)
out (β)

+
∑
γ∈Γ

r (γ)
N

 + J (1− δ) , (7.1)

In the equation, the variable δ is a dumping factor (I used δ = 0.75), N is the total number of

pages, r(α) is the PageRank value of a page α, out(β) is the outdegree of a page β, and Γ is a set

of sinks. In the basic version of PageRank, all elements of the jump vector have the same value

(1/N). The equation may be solved using fixed point iteration (i.e., the power method).

I use the INEX 2008 Wikipedia corpus [25] to create a page-level directed link graph, rep-

resented by the follow matrix. I use this graph to compute a PageRank for each node in the

graph using a uniform jump vector (the total number of pages in INEX Wikipedia corpus is

N = 659387). Table 7.3 lists the top 10 articles with the highest PageRank. To normalize these
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Page PR

United States 2671.10

2000 1459.86

United Kingdom 1336.37

2005 1304.94

France 1109.47

Canada 1059.67

2003 1023.52

Square Metre 1017.11

Population Density 906.32

Germany 839.18

Table 7.3: Top 10 Wikipedia pages by PageRank

values, converting them into probabilities, divide the values in the table by N . We see that the

top entries are mostly major countries and recent years.

7.5.2 Topical PageRank

In this section, I modify the jump vector J such that a user has a much higher probability

of jumping to a specific target page, than to other pages. By computing PageRank with this

modified jump vector, we can determine pages closely related to the target page [112]. Specifically,

modify the jump vector by assigning a probability of 50% to the target page, and distributing the

remaining probability mass evenly to the rest of the pages. For example, compute topic-oriented

PageRank (TPR) for the “Otago” page by modifying the jump vector such that J [“Otago”] = 1/2

and J [p] = 1/2(N − 1) for all pages p 6= “Otago”.

Table 7.4 lists the top 10 pages with highest TPR with respect to the topic “Otago”. We see

132



Page Title Relevance TPR PR ρ γ

New Zealand 1 7524 321.33 0.016 0.068

Dunedin 1 4302 1.28 0.017 0.61

South Island 1 4259 23.37 0.015 .79

1861 0 3353 10.54 0.008 0.61

Maori 0 3304 29.98 0.010 0.56

Invercargill 0 3299 3.84 0.015 0.80

Central Otago Gold Rush 1 3278 1.49 0.017 0.83

1860s 0 3248 53.90 0.009 0.58

Southland Region 1 3033 3.45 0.014 0.33

Queenstown, New Zealand 1 3007 2.12 0.014 0.78

Table 7.4: Top 10 pages with highest TPR for a topic “Otago” (P@10=0.6 for Relevance=1)

that the potentially non-topical articles may have a high TPR (but also have high PR).

7.5.3 K-L Divergence Adjustment

After computing PR and TPR, I compute point-wise KL divergence. To my knowledge, this

additional step represents a novel extension to the standard link analysis toolkit.

Let f(p) and g(p) be the TPR and PR values for a page p respectively, normalized to be

probability values. Then, the contribution to K-L divergence (which we call ρ) is,

ρ(p) = f(p) log
f(p)
g(p)

.

Then compute the contribution to K-L divergence for all Wikipedia articles. For example, the PR

value of “Dunedin” is g(“Dunedin”) = 10.2779/659387. The TPR of “Dunedin” with respect to

“Otago” is f(“Dunedin”) = 4302.2559/659387. The contribution to K-L divergence of “Dunedin”
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Destination File Relevance ρ TPR PR γ

Dunedin 1 0.017 4302 1.28 0.61

Central Otago Gold Rush 1 0.017 3278 1.49 0.83

South Otago 1 0.017 2962 0.62 0.44

New Zealand 1 0.016 7524 321.33 0.68

Otakou 1 0.015 2688 0.52 0.63

Balclutha, New Zealand 1 0.015 279 0.77 0.55

Gabriel Read 1 0.015 2643 0.52 0.71

Invercargill 0 0.015 3299 3.84 0.80

South Island 1 0.015 4259 23.37 0.79

Queenstown, New Zealand 1 0.014 3007 2.12 0.78

Table 7.5: Top 10 results for “Otago” ranked by ρ (P@10=0.9 for Relevance=1)

with respect to “Otago” is

ρ(p) = f(p) log
f(p)
g(p)

=
4302.2559

65938
log

4302.2559
10.2779

= 0.0171 .

Table 7.5 lists the top 10 results in the order of ρ for the topic “Otago”. Compare this against

Table 7.6 that are the top 10 results in the order of γ. A relevance of 0 or 1 is given from the

manual assessments. Even though the number of results manually assessed as relevant may be

similar, we see that in Table 7.5, the results are closer to the topic of “Otago” as there are more

geographically related topics than in Table 7.6. Moreover, we see that many of the topically

non-relevant files in Table 7.4, such as “1861” and “1860s”, are eliminated.
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Anchor Relevance γ ρ TPR PR

Central Otago goldrush 1 1.00 0.017 3278 1.49

Maori Language 0 1.00 0.002 685 11.49

Janet Frame 1 0.92 0.014 2581 0.90

Arrowtown 1 0.90 0.014 2552 0.58

Otago Peninsula 1 0.86 0.014 2677 0.84

Taieri Plains 1 0.85 0.014 2571 0.68

Firth of Clyde 1 0.84 0.011 2519 4.18

Gabriel’s Gully 1 0.83 0.002 406 0.51

William Cargill 1 0.83 0.014 2555 0.57

Invercargille 0 0.80 0.015 3299 3.84

Table 7.6: Top 10 results for “Otago” using Structural Threshold by γ (P@10=0.8 for Rele-

vance=1)
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7.6 Experiments

My main goal is to show that the Wikipedia contains two kinds of links, topical and structural,

but that the topical links suggested by KPR better reflects manual assessments. I also then try

to automatically create a “manual” assessment set using KPR. For these two purposes, the use

of the Wikipedia ground truth to perform KPR is appropriate. Later in Chapter 7, when I show

that KPR can produce an improvement over an existing run against the manual assessments, I

use a stripped version of the Wikipedia (i.e., without the knowledge of the Wikipedia ground

truth, to make a run appropriate for INEX 2008).

Specifically, the first experiment takes the links in the Wikipedia ground truth for INEX 2008

topics, and ranks them by both γ and ρ. Evaluating the top results for each ranking against the

manual assessments shows that ρ is a better measure of manual relevance than γ. The second

experiment creates a Wikipedia ground truth run and a run that applied KPR on top of it. In the

third experiment, instead of using the Wikipedia ground truth run, I use University of Waterloo’s

INEX 2008 run and apply KPR on top to make a new run. In both the second and the third

experiments, the manual assessments show that KPR gives improvements over the existing runs.

The last two experiments try to automatically create “manual” assessments by running KPR on

top of various versions of Wikipedia ground truth runs. It shows that the evaluation result using

one of the new assessment set follows closely to the evaluation result using the manual assessment.

As a final note, since approaches taken at INEX are ranked based, and thus we have ranked-

based evaluation measures, we cannot directly compare our results to those of Mihalcea and

Csomai [104], and Milne and Witten [106]. However, since our ST approach works comparably to

the above works as discussed in Section 7.4.2, we compare the improvements of KPR algorithm

over the ST algorithm.
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P@5 P@10 P@20

by γ 54.80 56.20 51.03

by ρ 66.40 63.40 59.93

∆ 11.60 7.20 8.90

p-value 0.0007 0.0337 0.0003

Table 7.7: Performance of ranking Wikipedia ground truth by γ and ρ against manual assessments

7.6.1 Ranking Wikipedia Ground Truth

To support my hypothesis that ρ values are a better indicator of manual relevance than γ values,

I rank the Wikipedia ground truth by both γ and ρ. I then compute P@5, P@10, and P@20 for

each ranking against the manual assessments. Table 7.7 shows that ranking by ρ gives a significant

improvement over ranking by γ, therefore suggesting that even though Wikipedia contains both

topical links with high ρ values and structural links with high γ values, the manual assessors

prefer those with high ρ values.

Table 7.8 and Table 7.9 further illustrate this difference. Both tables return the top ten desti-

nation files when the Wikipedia ground truth for topic “Otago” is ranked by γ and ρ respectively.

All the results, but one, in Table 7.9 contain pages that are topically relevant to “Otago”. In

Table 7.8, “Peninsular War” (a war in Europe during Napoleonic Wars”), “census”, and “In-

vercargill” (the Southernmost city in New Zealand, not part of Otago) have little or no topical

relationship to “Otago”, yet their γ values are high. Again, ρ eliminates nearly meaningless links,

such as “census” probably created by a bot and appear in numerous pages about geographical

region. Overall, the relevant results in Table 7.9 seem more intuitively related to the topic than

those in Table 7.8.
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Relevance γ Topic

1 0.92 Janet Frame

1 0.90 Arrowtown

0 0.90 Peninsular War

1 0.86 Otago Peninsula

1 0.85 Taieri Plains

1 0.84 Firth of Clyde

1 0.83 Central Otago Gold Rush

1 0.83 William Cargill

0 0.82 census

0 0.80 Invercargill

Table 7.8: Ranking Wikipedia ground truth by γ for topic “Otago”

7.6.2 KPR and Wikipedia Ground Truth Run

In the following two sections, I apply the KPR algorithm on two very different runs to show that

KPR can give improvement against the manual assessments over existing runs. In this section, I

construct a Wikipedia ground truth run from the Wikipedia ground truth. This will be utilized

in the last experiment to try to construct an alternative ground truth.

The Wikipedia ground truth supplied by INEX 2008 consists of all the links in the topic

that appear in the Wikipedia corpus. Because the official INEX 2008 evaluation software only

considers the first 50 links in the ranked result set, but the Wikipedia ground truth may contain

more than 50 links unordered, the choice of how to pick the links in the Wikipedia ground truth

to make an evaluatable run is important. I think links in the order of appearance is reasonable

and collected the first 50 links in the order of appearance, and call this run WGT50. I use the
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Relevance ρ Topic

1 0.017 Dunedin

1 0.017 Central Otago Gold Rush

1 0.017 South Otago

1 0.016 New Zealand

1 0.015 Otakou

1 0.015 Balclutha, New Zealand

1 0.015 Gabriel Read

0 0.015 Invercargill

1 0.015 South Island

1 0.014 Qeenstown, New Zealand

Table 7.9: Ranking Wikipedia ground truth by ρ for topic, “Otago”

links in WGT50 run to create a link graph, and run KPR to create a result set, call this new run

ρWGT50. For both WGT50 and ρWGT50, I evaluate against the manual assessments. Table 7.10

shows that applying KPR on top of WGT50 gives a noticeable improvement against the manual

assessments.

MAP rPrec P@5 P@10 P@20 P@30

WGT50 0.46 0.44 0.60 0.58 0.52 0.45

ρWGT50 0.54 0.45 0.67 0.63 0.56 0.53

Table 7.10: Manual assessment for WGT50 and ρWGT50
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7.6.3 KPR and Waterloo’s Run

The ρWGT50 run uses the knowledge of the Wikipedia ground truth to construct a link graph,

before applying KPR. In the INEX setting, however, this is not permitted. In this section, I

instead use University of Waterloo’s run, UW to apply KPR to see if this new run, ρUW also

provides improvement over the original run (which I call UW), against the manual assessments.

I first run the ST algorithm to return the top 50 links. I create a link graph using the links

in the Wikipedia corpus, except those involving the test topic files, and then added to this graph

the links returned by the ST algorithm. I run the KPR algorithm using this link graph, and then

returned the top 50 pages for each topic in the order of ρ to create a run we call ρUW. Table 7.11

shows that KPR on top of the ST improves performance against the manual assessments, although

the improvement is not substantial.

Next I run the same experiment on INEX 2009 dataset, on the new 60GB Wikipedia cor-

pus [125] with the new ST run. This time, I assign an anchor phrase by filtering the list of pages

that are in the order of ρ by the existence of the page titles in the topic page. The best entry point

is set at the beginning of the topic files. Figure 7.5 shows that when assessed against manual

judgements, my KPR run outperforms my ST run at early precisions. Table 7.12 shows the top

10 results returned by my ST run and my KPR run for topic “Politics of New Zealand”. Although

my ST run returns a decent number of topically related links, they still return unrelated entries

such as Auckland. The KPR results, on the other hand, returns all topically related results that

are important enough to link to.

7.6.4 Approximating Manual Assessments

My discussion so far suggests that the Wikipedia ground truth is not an ideal standard for

assessing the performance of automatic link discovery. Moreover, ρ seems to be a better indicator

of manual relevance than γ, and that applying KPR on top of existing runs seems to improve the
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MAP rPrec P@5 P@10 P@20 P@30

UW 0.41 0.36 0.52 0.49 0.42 0.38

ρUW 0.46 0.37 0.57 0.51 0.49 0.44

Table 7.11: Manual assessment for UW and ρUW

performance of the runs against the manual assessments. These observations lead to the idea of

simulating a topically oriented assessment set.

Here, I view the manual assessments as the gold standard. However, manual assessments

are not easily scalable to future experiments, with thousands of topics. However, if ρ is a good

indicator of topical relevance and, applying KPR on top of runs create a run with higher scores

against the manual assessments, perhaps I can approximate the manual assessments by applying

KPR on top of various runs and use the run with the highest scores as an alternative standard?

Since for the purpose of creating an alternative standard, using the knowledge of the Wikipedia

ground truth is acceptable and that in the previous experiments running KPR on top of WGT50

produces better performance against the manual assessments than on top of the run UW, I decide

to make a variation of the Wikipedia ground truth run, WGT50.

Recall that in creating WGT50, I select the first 50 links in the Wikipedia ground truth in the

order of appearance. I then use these top 50 links to create a link graph to run KPR to obtain

the run ρWGT50. I vary X, the number of top links to select from the Wikipedia ground truth,

to create runs WGTX. For each WGTX, I run KPR to produce ρWGTX. Table 7.13 shows the

results of the manual assessments of ρWGTX. It seems that the value of X above 30 appears to

give similar performance.

Next, I evaluate runs in Table 7.14 and assess those against ρWGTX runs in Table 7.15 as a

standard to see which of the standards emulates the manual assessments best.
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Standard MAP rPrec P@5 P@10 P@20 P@30

ρWGT5 0.32 0.19 0.64 0.45 0.29 0.22

ρWGT10 0.41 0.27 0.71 0.61 0.41 0.31

ρWGT20 0.48 0.35 0.66 0.65 0.53 0.41

ρWGT30 0.51 0.39 0.67 0.62 0.57 0.47

ρWGT40 0.53 0.42 0.68 0.63 0.57 0.50

ρWGT50 0.54 0.45 0.67 0.63 0.56 0.53

ρWGTall 0.55 0.49 0.63 0.59 0.55 0.53

Table 7.13: Performance of ρWGTX standards against manual assessments

Run ID Description Ranking

UW ST algorithm γ

ρUW KPR on top of UW run ρ

UO Official U. Otago run at INEX 2008 γ

Table 7.14: Runs used in Table 7.16
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Standard Description Ranking

Manual Manual Assessments from INEX no

WGT The Wikipedia Ground Truth no

ρWGT50 62 results from KPR on WGT50

; the first 50 links from the

Wikipedia Ground Truth

in the order of appearance. ρ

ρWGT5 ρWGT50, but with 5 links ρ

ρWGT10 ρWGT50, but with 10 links ρ

ρWGT20 ρWGT50, but with 20 links ρ

ρWGT30 ρWGT50, but with 30 links ρ

ρWGT40 ρWGT50, but with 40 links ρ

ρWGTall ρWGT50, but with all the links ρ

Table 7.15: Standards used in Table 7.16
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Figure 7.9: Comparison of Manual Judgments and KPR Automatic Judgments

I see in Table 7.16 that ρWGT30 best emulates the results of the manual assessments. Since

ρWGT30 also performs fairly well against the manual assessments and better than all the official

INEX 2008 runs, I think that the run ρWGT30 is a reasonable alternative standard in place of

the manual assessments.

7.6.5 Manual Assessments v.s. KPR Assessments

Results in Section 7.6.4 may be coincidental. In this section, I reinforce the idea that KPR

can be used to make an automatic manual assessment by showing correlation between manual

assessment results and the KPR assessment results of INEX 2008 runs.

In order to create an automatic assessment set, I take the top 10 links in the Wikipedia ground

truth by ρ as in Section 7.6.1.
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Run Standard MAP rPrec P@5 P@10 P@20 P@30

UW Manual 0.41 0.36 0.52 0.49 0.42 0.38

WGT 0.82 0.75 0.89 0.89 0.85 0.80

ρWGT5 0.18 0.15 0.21 0.20 0.18 0.17

ρWGT10 0.25 0.20 0.30 0.28 0.26 0.23

ρWGT20 0.33 0.28 0.40 0.37 0.34 0.31

ρWGT30 0.43 0.35 0.50 0.49 0.44 0.40

ρWGT40 0.51 0.42 0.59 0.57 0.53 0.49

ρWGT50 0.56 0.47 0.63 0.62 0.59 0.54

ρWGTall 0.71 0.58 0.82 0.79 0.73 0.68

ρUW Manual 0.46 0.37 0.57 0.51 0.49 0.44

WGT 0.78 0.72 0.83 0.83 0.79 0.77

ρWGT5 0.17 0.16 0.20 0.19 0.17 0.16

ρWGT10 0.25 0.22 0.33 0.27 0.24 0.23

ρWGT20 0.34 0.30 0.44 0.38 0.32 0.30

ρWGT30 0.42 0.37 0.53 0.45 0.41 0.38

ρWGT40 0.50 0.45 0.59 0.54 0.49 0.47

ρWGT50 0.55 0.50 0.64 0.60 0.54 0.52

ρWGTall 0.75 0.60 0.83 0.84 0.78 0.74

UO Manual 0.40 0.36 0.44 0.45 0.41 0.38

WGT 0.82 0.76 0.90 0.87 0.84 0.80

ρWGT5 0.17 0.15 0.20 0.20 0.18 0.17

ρWGT10 0.24 0.21 0.27 0.25 0.25 0.23

ρWGT20 0.34 0.29 0.41 0.38 0.35 0.32

ρWGT30 0.42 0.37 0.49 0.45 0.43 0.40

ρWGT40 0.50 0.44 0.58 0.53 0.51 0.48

ρWGT50 0.55 0.49 0.60 0.58 0.56 0.54

ρWGTall 0.70 0.61 0.81 0.77 0.71 0.67

Table 7.16: Comparison of various runs using different standards
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Figure 7.9 compares precision10 values for INEX 2008 runs under both the original manual

assessments and the KPR automatic assessments. I use Kendall’s τ to compare the rankings

under the two assessment sets. While a value of τ = 0.7354 falls short of the level that would

allow us to replace the manual assessments with automatic assessments [138], it suggests a close

relationship between the two sets. Given the simplicity of this experiment, where the top-10

links are simply assumed to be relevant, additional development of this approach may produce a

stronger correspondence.

7.7 What about Incoming Links?

Identification of incoming links has not attracted as much attention as the identification of

outgoing links in Link-the-Wiki Track.

In Section 7.7, I show a simple baseline that seems to outperform other participants’ run, and

then apply an inverse KPR to show that KPR can also be used to improve the baseline runs in

the incoming links.

7.7.1 Baseline

I score each article in the Wikipedia corpus using topic titles as query and returned the top 250

articles. In addition to file-to-file level run, anchor-to-BEP run was created by setting the anchor

phrase as the page title and the BEP as the title of the topic file.

7.7.2 Inverse KPR

The idea behind using KPR for outgoing link discovery is to balance the popularity as measured

by how frequently a page is link to, with topicality measured by topical PageRank. For incoming
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links, we may want to balance the promiscuity, a measure of how frequently the page has a link

to other pages, with the same topicality as before.

To measure promiscuity, I invert the Wikipedia link graph with outgoing edges added from

the topic files according to my ST algorithm, and apply a topical PageRank algorithm for each

topic. Note that when applying KLD, I use the PageRank value based on un-inverted graph.

After obtaining the list of pages in the order of τ , I screen the list by the existence of topic title

in the page. The anchor phrase and the BEP are set to the page and topic titles respectively.

Fig 7.10 and Fig 7.11 show the results of assessment at file-to-file and anchor-to-BEP levels.

Both assessments are against the Wikipedia ground truth. Fig 7.11 shows that the baseline

performs better compared to one other participants. Together with Fig 7.10, it shows that KPR

produces better results than the baseline. Table 7.17 shows an example results for the topic

“Politics of New Zealand”. We see that the results in the KPR run produces the links that are

more general than the results from the baseline.

7.8 Conclusions and Future Work

In this chapter, as part of understanding the motivation behind user clicking links, I hypothesize

that the links in the Wikipedia may be categorized into topical links and structural links. The

simple statistical ST algorithm performs well as a method for predicting structural links, but

manual assessors think topical links are more important, and the ST algorithm cannot predict

topical links well. Because I think users are looking for topical links while still taking into

account the frequency of the links in the corpus, I balance the topicality indicated by topical

PageRank with the popularity indicated by PageRank through contribution to pointwise K-L

divergence. Experiments show that the KPR algorithm selects destination files that are more

related to the topics, more relevant according to the manual judgements, than using γ or topical

PageRank. When KPR was applied on University of Waterloo’s INEX 2008 run, it produces
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Figure 7.10: INEX 2009 File-to-File Incoming Run Assessed Against Wikipedia as Ground Truth

Reproduced from Huang et al. [60]
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Figure 7.11: INEX 2009 Ancohr-to-BEP Incoming Run Assessed Against Wikipedia as Ground

Truth Reproduced from Huang et al. [60]
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an improvement against the manual assessments. The same phenomenon is observed in official

INEX 2009 submissions.

Future work includes linking encyclopedic pages without any existing links. It would also be

interesting to analyze which set of links in the Wikipedia are manually created and which links

are created by bots, along with the analysis of topicality versus structurality. I could also apply

our knowledge of the frequency of topical and structural links into different kinds of hyperlinked

documents, that may help in detecting a spam site from normal sites in the same category of

hyperlinked documents.
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Chapter 8

Focused Spam Filtering

Chapters 5 and 6 discusses focused search of text to answer users’ queries. Chapter 7 discusses

one application of focused retrieval, focused links; how to link a portion of a document to another

portion of another document. This chapter discusses another application of focused retrieval,

focused spam filtering, a way to identify a portion of a document that contains vandalism.

Section 8.1 introduces the concept of vandalism in the Wikipedia. Section 8.3 discusses related

work. Section 8.4 explains experiments. Section 8.5 shows the experimental results. Section 8.6

discusses the experimental results. Section 8.7 concludes Chapter 8.

8.1 Introduction

The Wikipedia [139] allows any user to contribute and edit articles. This freedom sometimes in-

vites vandalism, defined by the Wikipedia as “a deliberate attempt to compromise the integrity” 1

of its content. Figure 8.1 illustrates an example of a vandalism. The topmost statement 2 is con-
1http://en.wikipedia.org/wiki/Revert vandalism, August 15, 2010
2http://en.wikipedia.org/w/index.php?title=Utamaro&oldid=89481505 August 16, 2010
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sidered vandalism because of the subjective statement. The bottom statement 3, on the other

hand, is not considered vandalism because it adds an objective knowledge to the topic of vege-

tarianism.

The problem of vandalism detection in the Wikipedia differs from other spam filtering tasks,

such as email and Web spam filtering. In Figure 8.3 an entire email is spam (Personal commu-

nication.) and the entire Web page is spam 4. Thus both emails and web spams tend to consist

solely of spam content. To some extent, email and Web spam has predictable content, in this

case diploma mills. Vandalism detection in the Wikipedia, on the other hand, requires us to

spot parts of an article that are spam, that may consist of nothing more than a few words or

characters. For example, an article may get vandalized by the addition of a nonsensical sequence

of characters such as “asdfg”. An identical edit may never appear again.

Similar models are widely employed for email and web spam filtering. My algorithm per-

forms comparable to that of Potthast et al. [115], who use machine learning in combination with

manually crafted rules to classify spam edits. My algorithm performs somewhat less than that

of Chin et al. [12] who only use two articles in the study. Perhaps more surprisingly, my algo-

rithm appears to outperform similar work, based on a different compression model, conducted by

Smets et al. [129]. In that work, they classify entire revisions, which could contain many types

of vandalism and concluded that a compression model alone does not perform well. To explore

exactly where their compression model fails, I focus on classifying individual types of vandalism.

In trying to better apply a compression model on vandalism detection, I use the same number

of spam and ham edits for training. In addition, I apply Dynamic Markov Compression [20] on

English Wikipedia corpus 5, instead of using prediction by partial match [17] on Simple English

Wikipedia 6 corpus. In contrast to the conclusions reached by Smets et al., I show that a sim-
3http://en.wikipedia.org/w/index.php?title=Utamaro&oldid=312792364August16,2010
4http://www.pluoxy.com/q/phd-on-line
5http://en.wikipedia.org/wiki/Main Page
6http://simple.wikipedia.org/wiki/Main Page
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Figure 8.1: Example of Spam and Ham Edit
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Figure 8.2: A Page and its Revisions
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Figure 8.3: Web and Email Spams
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ple compression-based algorithm works reasonably well, and could provide the foundation for an

operational spam filter.

8.2 Problem Definition

In order to frame the problem of Wikipedia spam detection, I first define the following terminol-

ogy:

• A Page of Wikipedia is an entity that pertains to human knowledge. In Figure 8.2 7, the

entity is a concept of an Ukiyoe painter named “Utamaro”.

• A Revision of a page is an instance of the page at a discrete time point. In Figure 8.2,

there are three revisions of the page “Utamaro”, one current, one at 5pm on November

22th, 2006 8, and one at 3pm on September 9th, 2009 9.

• An Edit is a set of textual acts that changes a revision at one time point to create a new

revision. In Figure 8.1, in both top and bottom figures, an insertion of a new statement

created a new revision.

• An Insertion Edit is an edit created by inserting new statements. Figure 8.1 shows two

examples of insertion edits.

• A Change Edit is an edit that changes part of a sentence. For example, changing a phrase

“Wikipedia vandalism detection” into “Wikipedia spam detection” is considered a change

edit.

• A Spam Edit is a set of vandalism in a revision of a given page. In Figure 8.1, the topmost

highlighted statement is a spam edit.
7http://en.wikipedia.org/wiki/Utamaro August 16, 2010
8http://en.wikipedia.org/w/index.php?title=Utamaro&oldid=89481505 August 16, 2010
9http://en.wikipedia.org/w/index.php?title=Utamaro&oldid=312792364 August 16, 2010
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• A Ham Edit is an attempt to improve the content of the page. In Figure 8.1, the bottom

highlighted statement is a ham edit.

Finally, I define the problem of spam detection in Wikipedia as follows.

Problem 1 (Wikipedia Vandalism Detection) Given a set of unseen edits, decide whether

the edit is vandalism or not.

8.3 Previous work

Dynamic Markov Compression (DMC) [20] is a compression algorithm that compresses a file

by predicting the next bit based on previously seen bits. DMC has been used successfully for

classifying email and Web spam [5]. For classification, separate compression models are built for

ham and spam. The model that achieves the greatest compression ratio over new data indicates

the class of that data.

Little formal research has been conducted on the identification of vandalism in the Wikiepdia.

Potthast et al. [115] use logistic regression with 16 manually crafted features, to categorize an

edit as spam or ham. Smets et al. [129] use the Prediction by Partial Match (PPM) compression

model [17] to classify an entire revision of a page in the Wikipedia. Using the Simple English

Wikipedia as corpus, they sum probabilities of a revised page containing various types of spam.

They also include user groups and revision comments as additional features, but remove Wikipedia

tags from edits. Instead of parsing the actual edits, West et al. [2] use pure metadata such as

the time of the edit, and the length the editor is active to achieve performance comparable to

Smets et al.’s. Chin et al. [12] use language model to measure various features such as perplexity

of edits from previous edits. The features are then used to predict the classification.
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8.4 Experiments

Instead of classifying entire revision pages, which could include multiple types of spam as Smets

et al. [129] did, I break down the problem into smaller steps. The goal is to determine if it

is possible to identify two types of spam edits, insertion and change edits, separately. Thus I

consider a revision consisting solely of insertion or change edits to create a corpus. My Wikipedia

vandalism corpus is created as follows:

1. Collect random English Wikipedia pages by following “Random article” links.

2. For each page, obtain history pages.

3. In each of history page, find entries that contains the terms “revert” and “undid”. In

Figure 8.4 10, the circled entry in the top-most figure has a “reverted” comment.

4. For each revert/undid entry, collect a diff page that lists the difference between the previous

revision and the reverted/undid version. I retain the Wikipedia tags such as ‘[[link]]” for

internal links.

5. A pool of spam edits are collected from edits in the previous versions that are reverted.

6. Ham edits are collected from those that spam edits are reverted into.

7. Finally make the number of spam and ham edits in the corpus even. An edit that is later

reverted by a user by removal or change is treated as spam, and an edit that is reverted to

by addition or change is treated as ham.

Table 8.1 illustrates the number of edits in my corpus. It is not clear if Smets et al. [129] use

a balanced training corpus as Pothast et al. [115] did. Priedhorsky et al. [116] reports the rate of
10http://en.wikipedia.org/w/index.php?title=Utamaro&limit=500&action=history and http:

//en.wikipedia.org/w/index.php?title=Utamaro&diff=89484099&oldid=89481505 August 16, 2010
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Figure 8.4: Creating Test Collection
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Data Set # Spam Edits # Ham Edits

insertion training 5758 5768

insertion test 481 481

change training 5768 5768

change test 600 600

Table 8.1: Corpus Size

vandalism to be 5%. For my experiment, I collect the same number of spam and ham edits for

each set. For insertion edits, I also vary the ratio of spam to ham training data to determine its

effect on performance. The testing is carried out as follows:

1. Attach an unlabled test edit to both the spam and ham training texts.

2. Compute a compression ratio using a modified version of Cormack’s implementation of

DMC [19].

3. The test edit is judged to be spam if the compression ratio with the spam training set was

higher than the compression ratio with the ham training set.

Moreover, I change the threshold x such that the spam compression ratio must be higher than x

times the ham compression ratio to be classified as spam. Adjusting x allows me to compute a

recall precision break-even point (BEP) for each collection.

8.5 Results

Table 8.2 shows the results of my experiments. Precision and recall values are calculated for

both spam and ham. Spam precision is computed as the number of spam edits correctly identified
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Figure 8.5: Insertion Edit: Precision-Recall Curve on Various Thresholds

Figure 8.6: Change Edit: Precision-Recall Curve on Various Thresholds
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Figure 8.7: Insertion Edit: ROC Curve

Figure 8.8: Change Edit: ROC Curve
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Experiment Precision Recall Break Even Point

spam insertion 86.56 69.65 78.26

ham insertion 74.61 89.19 78.26

spam change 74.07 53.33 65.28

ham change 63.54 81.33 65.28

Table 8.2: Precision, Recall, and Break Even Point for Spam and Ham Test Set

as spam over all edits identified as spam. Spam recall is computed as the number of spam edits

correctly identified as spam over all spam edits. Ham precision and recall values are computed

similarly. Figure 8.5 and Figure 8.6 show the precision-recall curves for change and insertion

spam and ham edits by varying thresholds. The break even points are obtained by varying the

threshold x, the spam to ham compression ratio, to categorize a test edit as spam. Figure 8.7

and Figure 8.8 show ROC curves for insertion and change edits. We see that the curve is very

steep for insertion edits, while the curve for change edits is gradual. Table 8.3 shows the results

of varying spam to ham edits ratio in the training set. It shows that when they are even, we

obtain the best F-measure.

8.6 Discussion

The results indicate that identifying insertion spam is reasonably effective. On the other hand,

change spam seems harder to identify. This may be because change edits tend to contain chunks

of non-consecutive phrases that are changed and may need some surrounding context to improve

effectiveness.

In practical application, at least for email spam filtering, we would like to avoid false positives;

ham messages classified into a spam folder, as not so many people check their spam folders. In
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Spam/Ham Ratio Spam Prec. Spam Rec. Ham Prec. Ham Rec. Spam F Best F

0.125 94.39 38.46 61.36 97.71 54.65 73.91

0.25 91.79 51.14 66.14 95.43 65.68 75.16

0.5 90.37 60.5 72.58 93.56 72.48 76.19

1 86.56 69.65 74.61 89.19 77.19 78.26

2 79.53 76.72 77.51 80.25 78.10 77.02

4 70.5 82.74 79.15 65.49 76.13 74.53

8 63.02 88.57 80.77 48.02 73.64 73.29

Table 8.3: Varying Spam to Ham Edit Ratio in the Training Set

this case, we may choose the threshold to be lower than 1 to have higher spam precision and ham

recall. It is unclear, however, if this also applies in the case of Wikipedia vandalism detection.

To keep the quality of article high, an administrator may want to classify all edits suspected of

vandalism as spam. In this case, we may choose our threshold to be higher than 1. Alternatively,

instead of changing the threshold values, we could change the spam/ham edits ratio in the training

set. To decrease false positives, one needs to increase more ham edits in the training set. To

increase spam recalls, one needs to increase the number of edits in the training set.

My performance may be compared with the results reported in Smets et al. [129]. Overall,

my results appear to outperform theirs, even those that use probabilistic sequence modeling.

Their precision and recall values for classifying revision pages using only insertions models are

12.74% and 92.81%, and those using only change models are 11.77% and 83.62%. When they

combine various predictors to judge if a revision page is a spam or not, their reported precision

is 32.09% and their reported recall is 91.71%. However, their test edits contained multiple types

of vandalism, where I focus on single-type edits. Moreover, I do not attempt to reproduce their
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results, and I may have misinterpreted some aspects of their experiments. Nonetheless, in contrast

to their conclusions, my results suggest that compression models may provide a useful method

for identifying spam edits.

My differing performance might stem from a more balanced training corpus than that used

by Smets et al. [129]. The effect of preserving Wikipedia tags may also have contributed to the

overall performance.

My performance may also be compared with that of Potthast [115]. I slightly underper-

form their approach. However, I demonstrate that compression algorithms alone can compete

reasonably well against classifiers that use hand crafted features.

8.7 Conclusions

In this chapter, I employ the DMC compression model to classify new edits in Wikipedia articles

as spam or ham. In contrast to previous work, my results suggest that compression models

might provide a useful method for classifying these edits. I also showed that having a balanced

training set is important. Future work might combine the results of compression models with

other features and methods. It may also be possible to vary training methods, or increase the

size of the training sets, to obtain additional improvements.
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Chapter 9

Conclusions and Future Work

9.1 Contributions of my Thesis

In this thesis, I study the problem of focused heterogeneous information retrieval. Focused

retrieval provides a concise summary to a user’s information needs, as opposed to presenting to

a user entire documents, such as whole books. Current search engines such as Google do provide

pseudo-focused results in the form of snippets, but because their goals are to rank relevant

documents, some relevant passages of rather irrelevant documents may be omitted.

Retrieval of heterogeneous sources such as books and web pages would be helpful in real life.

Although the major search engines studied in the thesis do perform heterogeneous search, only

Google performs heterogeneous focused search of books and web pages by returning the relevant

book parts.

To arrive at a unified framework for focused heterogeneous retrieval, I look at the three

questions that arise when comparing traditional homogeneous document retrieval against the
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heterogeneous focused retrieval.

• Efficiency: Scoring all possible passages in a document takes O
(
n2

)
times more than

scoring an entire document. Is it possible to reduce the computational overload?

• Size: A passage can be as short as a single character (or even a single bit) to as long as

an entire document. What is the best unit of retrieval?

• Extra-textual Information: One way to define passage boundaries is to use markup

such as XML. Is it possible to take advantage of such structural information?

9.1.1 Mathematical Model of Information Retrieval

Chapter 3 helps answer the first question of computational overload inherent in focused retrieval,

by presenting a possible approach to an almost linear time algorithm to perform passage retrieval.

Having an almost linear time algorithm means we only need to look at each term in the text once,

whereas my current approach of passage retrieval requires scoring overlapped parts multiple times.

Here, I rephrase the mathematical problem of passage retrieval colloquially:

A document with n query terms has O
(
n2

)
possible passages that start and end

with query terms. Of these, return a set of passages such that the passages are in

decreasing order of scores, and no passage of lesser score overlaps with any passages

of higher scores.

This problem is motivated by Ad Hoc track Focused task where overlapped text are not

permitted to return. To devise an algorithm, I also need a scoring function. For this purpose, I

created a simple passage scoring function based on pivoted length normalization [128]:
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∑
pi∈[u,v]

Wi

l + ∆
. (9.1)

When Equation 9.1 is applied to an overlapping pair of passages, the comparison of the scores

becomes the comparison of term densities. I show that this could be used to help reduce the

problem of passage retrieval into that of finding a densest segment that contains the mid-point

of a passage.

My final goal in Chapter 3 is to analyze the two commonly-used scoring functions, BM25 [122]

and language model [114] in the passage retrieval setting. For a single-term BM25, I show that

comparing two passages with single-BM25 is the same as comparing the passages with density

function, with a constant ∆ added to the denominator.

S [u, v] ≥ S [u′, v′] (9.2)

⇔ ~f
l1+∆ ≥

~g
l2+∆ . (9.3)

This leads to the similar reduction as Equation 9.1.

For language modeling, I show that comparison of two single-term LM score reduces into the

form similar to, but more convoluted than, Equation 9.1.

S [u, v] ≥ S [u′, v′] (9.4)

⇔ t1α+1
βl1+1 ≥

t2α+1
βl2+1 . (9.5)

where α = (lC) / (ntµ) and β = 1/µ.

My contributions are as follows.
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• A Reduction of finding the highest scoring passage using my pivoted-length-normalization-

based scoring function into that of finding the densest segment that contains the mid-point.

• Derivations of the single-term BM25, and the single-term language modeling scores into

the form of my scoring function. The derivations give a new perspective of how each scoring

function performs length normalization.

9.1.2 Granularity of Retrieval

Using the model and the problem of focused retrieval established in Chapter 3, Chapter 4 explains

implementation details of the model I use for experiments in this thesis. Chapter 5 then explores

the second question of focused retrieval; the ideal unit of retrieval.

The first experiment shows that simply scoring XML elements is superior to Trotman and

Geva’s proposition [133] of turning the best passages into elements by taking the smallest elements

that completely contains the passages.

The second experiment runs my focused retrieval approach in Chapter 4, but with five different

levels of granularities of retrieval. Surprisingly, when trained on mean average precision, retrieving

only documents performed better than any other retrieval strategies. In fact, the performance of

different retrieval units is in the order of article, single elements, range of elements, semi-arbitrary

passages, and arbitrary passages. However, most of the differences between different granularity

of retrieval on both iP[0.01] and MAP are not statistically significant and thus I can not draw

a firm conclusion other than that, for the purpose of INEX Ad Hoc track Focused task on the

Wikipedia collection [25], retrieving single element suffices.

I conclude as follows:

• Single XML Elements are indeed a reasonable unit of retrieval for focused retrieval

on Wikipedia documents, hence closing an open question in INEX as well as my second
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question to focused retrieval.

• Evaluation Measure that only considers the first two results may not capture the effec-

tiveness of focused retrieval.

• Different Strategies may be needed for different units of retrieval.

9.1.3 Scoring Function

Chapter 6 answers the last question of focused retrieval; utility of XML structure and extra-

textual information. It develops on the prior work by Robertson et al. [92,119] to utilize BM25F

in a simpler manner. It introduces only two fields, the body field and the characteristic field.

The latter field can contain information that characterizes the element of interest by absorbing

contextual information such as section titles. The characteristic field can also accept extra-textual

information such as keywords and Library of Congress classification numbers. My contributions

are as follows.

• Characteristic field lets us take advantage of structural information as well as extra-

textual information. It answers my third question of focused retrieval.

• Heterogeneous Retrieval is made easier by having a characteristic field that is not

necessarily tied to an XML element.

9.1.4 Focused Links

Focused retrieval applies to more than a retrieval of texts. Chapter 7 studies linking focused

part of texts to another focused part of texts; finding an anchor phrase and a destination best-

entry-point in a Wikipedia page without link annotations.
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I first showed the ST algorithm to be a simple, yet effective way of linking Wikipedia pages

together. The ST algorithm builds a statistics of frequency of anchor phrase-destination arti-

cle pairs, and then finds and embeds the most frequent pairs into a new Wikipedia document

without any link information. The ST algorithm is successfully extended to anchor-to-best-entry-

point linkage. This approach and its variations have been implemented by different participants

including myself at INEX Link-the-Wiki Tracks to show difficult-to-beat performance [57,58,60].

In trying to improve over the ST algorithm, I combine the popularity of a page measured

by PageRank [6] with the semantic similarity of pages by Topical PageRank [112] using K-L

divergence. The result show that the new approach, KPR algorithm, gives an improvement at an

early recall level over the ST algorithm. Though the KPR algorithm targets embedding outgoing

links from a new Wikipedia page, I successfully apply the inverted version of the KPR algorithm

in finding incoming links to a new Wikipedia page [60,69]. My contributions are as follows:

• The ST algorithm and its variation is sufficient to reproduce outgoing links from a

linkless Wikipedia page, hence closing an open question at INEX Link-the-Wiki Track.

• Topical Links and Structural Links The former is characterized by ST algorithm, latter

by KPR algorithm.

• The KPR algorithm improves over the ST algorithm a little on embedding outgoing

links, however its main contribution is to embedding incoming links to a linkless Wikipedia

page.

9.1.5 Focused Spam Filtering

Another application of focused retrieval is focused spam filtering. Unlike traditional email or

web pages, in which only the entire content can be a spam, any part of a Wikipedia document

can be a vandalism, or spam.
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In my experiment, I used a pre-marked-up edit on Wikipedia history pages to detect whether

a new edit is a vandalism or not. I improve on the similar prior work of Smets et al. [129] by,

among other things, only judging a page with similar kinds of edits. In this limited framework, a

compression model can be shown to be effective on detecting vandalism. I also show that having

a balanced spam and ham training sets help in improving the F-measure. My contributions are

as follows.

• A Compression Model can work well in a specific setting, in my case, when only one

kinds of edits are judged.

• A Balanced Training Set produces better prediction than a training set that consists

mostly of ham edit, reflecting the real-world scenario.

9.2 Future Work

This thesis can be extended in various ways. Most of the future work described in this section

would strengthen my points in the thesis. However, I think there is a strong need to move forward

to a new open problem; a more interesting data set and applications in either focused retrieval

or XML retrieval.

9.2.1 Mathematical Model of Information Retrieval

I reduced the problem of finding the highest scoring passage in linear time into that of finding

the densest passage that contains the mid-point in linear time. I also found an algorithm by

Chung and Lu [13] that may help me in constructing a linear time algorithm to find the densest

extent that passes through the mid-point. Their motivation implies bioinformatics application.

The next step would be to decide how I actually apply their algorithm in my setting. Specifically,
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Figure 9.1: Fixed Min v.s. Variable Min

in the first part of their paper, Chung and Lu discusses a linear-time algorithm to find the densest

segment with a minimum length constraint. That is, in the setting of information retrieval, in

an article, we are looking for a sequence of words of at least certain length, that contains the

most number of query terms per word. The algorithm moves the end point of a segment from

the beginning of the entire segment till the end. In Figure 9.1, an end point moves from the

left to the right. For each end point, the algorithm finds the matching start point of the current

segment ending at the end point that maximizes the density with the minimum length constraint.

In Figure 9.1, in the top, we see the matching start points that maximizes the density of segments

ending at end points a and b. Both matching start points are at least 20 words away from the

end points because the minimum length constraint is 20 words. Thus, in the case of Chung and

Lu, at each end point, the minimum length is fixed.

However, if it was possible to change the minimum length at every end point without affecting

the run-time, I could do the following to find the densest segment that includes the mid point:

After the end point passes the mid-segment, increase the minimum length such that all segments
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considered after passing the mid point must include the midpoint. In Figure 9.1 bottom, the

minimum length for the end point a was increased from the original 20 words to 50 words; if it

was less than 50 words, the densest segment ending at an end point a might not include the mid

point. Similarly, the minimum length for a segment ending at an end point b was increased from

20 to 100 words.

Thus the algorithm used to find the densest segment with minimum length may possibly be

converted into an algorithm to find the densest segment that includes the mid point. Though

the proofs of the paper seem applicable in the variable minimum length constraint, I have been

unable to provide a simple reduction to prove this.

Once I found a linear time algorithm to find the densest segment that contains the mid point,

I could use it to find the highest scoring passage, by pivoted-length normalization function, in

O (n log n). From there, my goal is to find all highest scoring passages in a similar time frame.

Once I solve my passage retrieval problem on my own scoring function, I would like to solve

the problem using BM25 and language modeling as scoring functions. So far, I reduced the

single-term BM25 and language model scores in forms similar to my scoring function, but the

multiple-term counterparts seems to have an added convolutedness.

9.2.2 Granularity of Retrieval

My first conclusion in Section 9.1.2 implies that I need to look for a more appropriate venue

in which XML will be helpful in the retrieval of textual data. One such venue is the new INEX

2010 Data-Centric Track 1. It uses the Internet Movie Database 2 as a corpus. The IMDB corpus

has annotations such as movie titles, actors, and directors, that may be useful for a retrieval of

information that answers various user needs. For example, a user may be looking for a movie
1http://www.inex.otago.ac.nz/tracks/strong/strong.asp
2http://www.imdb.com/
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title in which a particular actress has appeared.

My second conclusion in Section 9.1.2 implies that I need to look for a good evaluation metrics

that better reflects the user’s view. As I discussed in Section 5.3.3, the current official metrics

of interpolated precision at 0.01 recall level for focused retrieval at INEX Ad Hoc Track only

considers the first couple of results returned by search systems. The mean average precision

measure may be reasonable, however, when my article-only retrieval system performs the best

when trained on MAP, either a different evaluation measure is needed or a different way of

implementing varied-granularity retrieval system is needed.

This leads to the discussion of the third conclusion in Section 9.1.2. It is possible that under

some metrics, all units of retrieval perform the same. What it should not be possible is a true

arbitrary passage retrieval system performing much worse than an article-only retrieval system.

Since my arbitrary passage retrieval system returns a passage starting and ending with a query

word, whereas a user’s highlighted passage would highly likely to start at least at the beginning

of a sentence, if not the beginning of a paragraph, it is natural for my arbitrary passage retrieval

system to perform slightly worse than other systems. My task then is to realize how an arbitrary

passage retrieval system performs when the beginning of a passage is pushed back to the beginning

of a sentence or paragraph boundaries. A comparison of highlighted passages against the results

returned by my algorithm is also needed.

Overall, I think the best course of action for the next step in the research of XML text retrieval

is to shift into a more data-centric retrieval task such as using IMDB as a corpus as in INEX 2010

Data-centric track. The problems I see as a current state (up until 2009) of INEX are the kind

of markup used and the kind of information to retrieve. First, when a user reads text, sections

and paragraphs seem like a natural unit of retrieval. It would only seem to me to be of help if

other textual information is marked up. For example, proper nouns can be marked up to indicate

if it is a person or a brand of cars. Second, even with the help of non-structural markup, I am
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not sure if the retrieval of text itself is interesting. Information extraction, such as extracting

relationships of royalties or proteins may be more useful with markup.

9.2.3 Scoring Function

In order to support my first conclusion in Section 9.1.3 of the effectiveness of the characteristic

field, more experiments are needed. For example, in the Wikipedia focused retrieval, I only

use two-levels of titles, article and section titles, as part of the characteristic field. With the

new INEX 2009 Wikipedia collection with deeper sub-headings, I can expand the content of

the characteristic field. In addition to titles, I could incorporate other parts of a Wikipedia

article, marked-up by XML, into the characteristic field. For example, the Wikipedia article on

“Impressionism” contains four <category> elements in the heading; “Semi-protected”, “French

art”, “Impressionism”, and “Art movements”. Though the first category does not make sense,

adding the other three categories into the characteristic field, in addition to the article and section

headings may be useful.

My second point in Section 9.1.3 is only tested half-way. Using the characteristic field does give

improvement over different collections, Wikipedia and Books, when tested separately, but I did

not test on a heterogeneous collection. One way to test is to use data from INEX Heterogeneous

Track from 2004 to 2007, however it is unclear if there exists an entire test set with relevance

assessments [31].

9.2.4 Focused Links

The ST algorithm seems to have closed the open question of embedding Wikipedia links and I

think it is time to move on to a different task. There are still two open questions in the INEX

Link-the-“Wiki” track. The first question is to embed a set of incoming links into a new linkless

Wikipedia page. The other is to embed links in pages from a corpus that does not contain existing
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link structure. INEX provides TeAra collection 3, an encyclopedia about New Zealand to perform

this task.

To embed a set of incoming links, the KPR algorithm performs well in my INEX 2009 submis-

sion [58, 69]. Recall, however, that the KPR algorithm filters the number of candidate incoming

pages by the existence of a topic title in the pages. The baseline incoming run, on the other

hand, in which I return the top documents when a topic title is used as a query, does not have

this filtering process. Thus the first thing I should do, is to evaluate the performance of incoming

baseline run when the existence of a topic title is used to filter the candidate pages.

To tackle the TeAra corpus, I would first use the statistics I use for the ST algorithm to embed

outgoing links in the TeAra corpus. The incoming links would be created by querying each page

title into all other pages in the corpus. On top of that KPR algorithm could be performed on

both incoming and outgoing links.

9.2.5 Focused Spam Filtering

In 2010, there was a new initiative of Wikipedia vandalism detection, at CLEF 4. Submitting

runs based on my algorithm for the next year’s iteration to compare the performance against

others is the first step of my future work.

For Wikipedia documents, each edit is already annotated as insertion or change edits, reducing

the problem of focused retrieval of vandalized passages into judgements of passages. From the

administrator’s point of view, they need only check the edit against vandalism. From a user’s

point of view, however, they may not have an access to the older version of the page. In this

case, if a user wants to be sure that there is no vandalism in a document, the user needs to find

parts of a document that may be vandalized.
3www.teara.govt.nz/
4http://www.uni-weimar.de/medien/webis/research/workshopseries/pan-10/
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When there is no “edit” markup, the task of focused vandalism retrieval becomes similar to

a plagiarism detection, in a way that one looks for passages whose stylistic is dissimilar to the

overall text. In these scenarios, I would keep track of a compression ratio of the passage starting

from the beginning of a document/paragraph and ending at each character/bits. Any change

of compression ratio may indicate the start or end of plagiarism. CLEF has also been offering

plagiarism detection track since 2007, so participating in CLEF is the next step.

9.3 Conclusion

In summary, I closed two open problems, one large, and one small, in INEX, and XML text

retrieval in general.

• What is the ideal granularity of retrieval? (Ad Hoc Track) Single XML elements

suffice for the purpose of Ad Hoc retrieval at least on the current and past Wikipedia

collections.

• How do we link Wikipedia pages together? (Link-the-Wiki Track) Create a sta-

tistics on anchor-phrase-destination-page pairs from the Wikipedia corpus, find the anchors

in the new Wikipedia page.

My work is limited by the corpora used, and both strategies are simple, however, multiple

experiments by myself and other participants failed to submit any run that performs statistically

significantly better in the Ad Hoc Track, and no better run was submitted in the Link-the-Wiki

Track [33,45,57,58,60,73] during 2007 and 2009.

In addition, my answers to the questions asked in Section 1 are as follows.

• Unit of Retrieval: This is one of the open questions I closed above.

180



• Computational Overload: The answer to the above question implies that the number

of passages we need to score is limited.

• Extratextual Information: The characteristic field lets us lump extra-textual informa-

tion, be it an XML element or not, into the single field for BM25F-based retrieval.
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[50] Nobert Gövert and Mohammad Abolhassani. Content-oriented XML retrieval with HyREX.

In Proceedings of the First Workshop of the INitiative for the Evaluation of XML Retrieval

(INEX), pages 26–32, 2003.
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