32 research outputs found

    Prediction of Head Motion from Speech Waveforms with a Canonical-Correlation-Constrained Autoencoder

    Get PDF
    This study investigates the direct use of speech waveforms to predict head motion for speech-driven head-motion synthesis, whereas the use of spectral features such as MFCC as basic input features together with additional features such as energy and F0 is common in the literature. We show that, rather than combining different features that originate from waveforms, it is more effective to use waveforms directly predicting corresponding head motion. The challenge with the waveform-based approach is that waveforms contain a large amount of information irrelevant to predict head motion, which hinders the training of neural networks. To overcome the problem, we propose a canonical-correlation-constrained autoencoder (CCCAE), where hidden layers are trained to not only minimise the error but also maximise the canonical correlation with head motion. Compared with an MFCC-based system, the proposed system shows comparable performance in objective evaluation, and better performance in subject evaluation.Comment: head motion synthesis, speech-driven animation, deep canonically correlated autoencode

    Speech-driven head motion generation from waveforms

    Get PDF
    Head motion generation task for speech-driven virtual agent animation is commonly explored with handcrafted audio features, such as MFCCs as input features, plus additional features, such as energy and F0 in the literature. In this paper, we study the direct use of speech waveform to generate head motion. We claim that creating a task-specific feature from waveform to generate head motion leads to better performance than using standard acoustic features to generate head motion overall. At the same time, we completely abandon the handcrafted feature extraction process, leading to more effectiveness. However, the difficulty of creating a task-specific feature from waveform is their staggering quantity of irrelevant information, implicating potential cumbrance for neural network training. Thus, we apply a canonical-correlation-constrained autoencoder (CCCAE), where we are able to compress the high-dimensional waveform into a low-dimensional embedded feature, with the minimal error in reconstruction, and sustain the relevant information with the maximal cannonical correlation to head motion. We extend our previous research by including more speakers in our dataset and also adapt with a recurrent neural network, to show the feasibility of our proposed feature. Through comparisons between different acoustic features, our proposed feature, WavCCCAE, shows at least a 20% improvement in the correlation from the waveform, and outperforms the popular acoustic feature, MFCC, by at least 5% respectively for all speakers. Through the comparison in the feedforward neural network regression (FNN-regression) system, the WavCCCAE-based system shows comparable performance in objective evaluation. In long short-term memory (LSTM) experiments, LSTM-models improve the overall performance in normalised mean square error (NMSE) and CCA metrics, and adapt the WavCCCAEfeature better, which makes the proposed LSTM-regression system outperform the MFCC-based system. We also re-design the subjective evaluation, and the subjective results show the animations generated by models where WavCCCAEwas chosen to be better than the other models by the participants of MUSHRA test

    Expressive movement generation with machine learning

    Get PDF
    Movement is an essential aspect of our lives. Not only do we move to interact with our physical environment, but we also express ourselves and communicate with others through our movements. In an increasingly computerized world where various technologies and devices surround us, our movements are essential parts of our interaction with and consumption of computational devices and artifacts. In this context, incorporating an understanding of our movements within the design of the technologies surrounding us can significantly improve our daily experiences. This need has given rise to the field of movement computing – developing computational models of movement that can perceive, manipulate, and generate movements. In this thesis, we contribute to the field of movement computing by building machine-learning-based solutions for automatic movement generation. In particular, we focus on using machine learning techniques and motion capture data to create controllable, generative movement models. We also contribute to the field by creating datasets, tools, and libraries that we have developed during our research. We start our research by reviewing the works on building automatic movement generation systems using machine learning techniques and motion capture data. Our review covers background topics such as high-level movement characterization, training data, features representation, machine learning models, and evaluation methods. Building on our literature review, we present WalkNet, an interactive agent walking movement controller based on neural networks. The expressivity of virtual, animated agents plays an essential role in their believability. Therefore, WalkNet integrates controlling the expressive qualities of movement with the goal-oriented behaviour of an animated virtual agent. It allows us to control the generation based on the valence and arousal levels of affect, the movement’s walking direction, and the mover’s movement signature in real-time. Following WalkNet, we look at controlling movement generation using more complex stimuli such as music represented by audio signals (i.e., non-symbolic music). Music-driven dance generation involves a highly non-linear mapping between temporally dense stimuli (i.e., the audio signal) and movements, which renders a more challenging modelling movement problem. To this end, we present GrooveNet, a real-time machine learning model for music-driven dance generation

    Example Based Caricature Synthesis

    Get PDF
    The likeness of a caricature to the original face image is an essential and often overlooked part of caricature production. In this paper we present an example based caricature synthesis technique, consisting of shape exaggeration, relationship exaggeration, and optimization for likeness. Rather than relying on a large training set of caricature face pairs, our shape exaggeration step is based on only one or a small number of examples of facial features. The relationship exaggeration step introduces two definitions which facilitate global facial feature synthesis. The first is the T-Shape rule, which describes the relative relationship between the facial elements in an intuitive manner. The second is the so called proportions, which characterizes the facial features in a proportion form. Finally we introduce a similarity metric as the likeness metric based on the Modified Hausdorff Distance (MHD) which allows us to optimize the configuration of facial elements, maximizing likeness while satisfying a number of constraints. The effectiveness of our algorithm is demonstrated with experimental results

    CASA 2009:International Conference on Computer Animation and Social Agents

    Get PDF

    Speech wave-form driven motion synthesis for embodied agents

    Get PDF
    The main objective of this thesis is to synthesise motion from speech, especially in conversation. Based on previous research into different acoustic features or the combination of them were investigated, no one has investigated in estimating head motion from waveform directly, which is the stem of the speech. Thus, we study the direct use of speech waveform to generate head motion. We claim that creating a task-specific feature from waveform to generate head motion leads to better performance than using standard acoustic features to generate head motion overall. At the same time, we completely abandon the handcrafted feature extraction process, leading to more effectiveness. However, there are a few problems if we would like to apply speech waveform, 1) high dimensional, where the dimension of the waveform data is much higher than those common acoustic features and thus making the training of the model more difficult, and 2) irrelevant information, which refers to the full information in the original waveform implicating potential cumbrance for neural network training. To resolve these problems, we applied a deep canonical correlated constrainted auto-encoder (DCCCAE) to compress the waveform into low dimensional and highly correlated embedded features with head motion. The estimated head motion was evaluated both objectively and subjectively. In objective evaluation, the result confirmed that DCCCAE enables the creation of a more correlated feature with the head motion than standard AE and other popular spectral features such as MFCC and FBank, and is capable of being used in achieving state-of-the-art results for predicting natural head motion with the advantage of the DCCCAE. Besides investigating the representation learning of the feature, we also explored the LSTM-based regression model for the proposed feature. The LSTM-based models were able to boost the overall performance in the objective evaluation and adapt better to the proposed feature than MFCC. MUSHRA-liked subjective evaluation results suggest that the animations generated by models with the proposed feature were chosen to be better than the other models by the participants of MUSHRA-liked test. A/B test further that the LSTM-based regression model adapts better to the proposed feature. Furthermore, we extended the architecture to estimate the upper body motion as well. We submitted our result to GENEA2020 and our model achieved a higher score than BA in both aspects (human-likeness and appropriateness) according to the participant’s preference, suggesting that the highly correlated feature pair and the sequential estimation helped in improving the model generalisation

    Gesture and Speech in Interaction - 4th edition (GESPIN 4)

    Get PDF
    International audienceThe fourth edition of Gesture and Speech in Interaction (GESPIN) was held in Nantes, France. With more than 40 papers, these proceedings show just what a flourishing field of enquiry gesture studies continues to be. The keynote speeches of the conference addressed three different aspects of multimodal interaction:gesture and grammar, gesture acquisition, and gesture and social interaction. In a talk entitled Qualitiesof event construal in speech and gesture: Aspect and tense, Alan Cienki presented an ongoing researchproject on narratives in French, German and Russian, a project that focuses especially on the verbal andgestural expression of grammatical tense and aspect in narratives in the three languages. Jean-MarcColletta's talk, entitled Gesture and Language Development: towards a unified theoretical framework,described the joint acquisition and development of speech and early conventional and representationalgestures. In Grammar, deixis, and multimodality between code-manifestation and code-integration or whyKendon's Continuum should be transformed into a gestural circle, Ellen Fricke proposed a revisitedgrammar of noun phrases that integrates gestures as part of the semiotic and typological codes of individuallanguages. From a pragmatic and cognitive perspective, Judith Holler explored the use ofgaze and hand gestures as means of organizing turns at talk as well as establishing common ground in apresentation entitled On the pragmatics of multi-modal face-to-face communication: Gesture, speech andgaze in the coordination of mental states and social interaction.Among the talks and posters presented at the conference, the vast majority of topics related, quitenaturally, to gesture and speech in interaction - understood both in terms of mapping of units in differentsemiotic modes and of the use of gesture and speech in social interaction. Several presentations explored the effects of impairments(such as diseases or the natural ageing process) on gesture and speech. The communicative relevance ofgesture and speech and audience-design in natural interactions, as well as in more controlled settings liketelevision debates and reports, was another topic addressed during the conference. Some participantsalso presented research on first and second language learning, while others discussed the relationshipbetween gesture and intonation. While most participants presented research on gesture and speech froman observer's perspective, be it in semiotics or pragmatics, some nevertheless focused on another importantaspect: the cognitive processes involved in language production and perception. Last but not least,participants also presented talks and posters on the computational analysis of gestures, whether involvingexternal devices (e.g. mocap, kinect) or concerning the use of specially-designed computer software forthe post-treatment of gestural data. Importantly, new links were made between semiotics and mocap data

    The Role of Emotional and Facial Expression in Synthesised Sign Language Avatars

    Get PDF
    This thesis explores the role that underlying emotional facial expressions might have in regards to understandability in sign language avatars. Focusing specifically on Irish Sign Language (ISL), we examine the Deaf community’s requirement for a visual-gestural language as well as some linguistic attributes of ISL which we consider fundamental to this research. Unlike spoken language, visual-gestural languages such as ISL have no standard written representation. Given this, we compare current methods of written representation for signed languages as we consider: which, if any, is the most suitable transcription method for the medical receptionist dialogue corpus. A growing body of work is emerging from the field of sign language avatar synthesis. These works are now at a point where they can benefit greatly from introducing methods currently used in the field of humanoid animation and, more specifically, the application of morphs to represent facial expression. The hypothesis underpinning this research is: augmenting an existing avatar (eSIGN) with various combinations of the 7 widely accepted universal emotions identified by Ekman (1999) to deliver underlying facial expressions, will make that avatar more human-like. This research accepts as true that this is a factor in improving usability and understandability for ISL users. Using human evaluation methods (Huenerfauth, et al., 2008) the research compares an augmented set of avatar utterances against a baseline set with regards to 2 key areas: comprehension and naturalness of facial configuration. We outline our approach to the evaluation including our choice of ISL participants, interview environment, and evaluation methodology. Remarkably, the results of this manual evaluation show that there was very little difference between the comprehension scores of the baseline avatars and those augmented withEFEs. However, after comparing the comprehension results for the synthetic human avatar “Anna” against the caricature type avatar “Luna”, the synthetic human avatar Anna was the clear winner. The qualitative feedback allowed us an insight into why comprehension scores were not higher in each avatar and we feel that this feedback will be invaluable to the research community in the future development of sign language avatars. Other questions asked in the evaluation focused on sign language avatar technology in a more general manner. Significantly, participant feedback in regard to these questions indicates a rise in the level of literacy amongst Deaf adults as a result of mobile technology
    corecore