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A B S T R A C T

Head motion generation task for speech-driven virtual agent animation is commonly explored with handcrafted
audio features, such as MFCCs as input features, plus additional features, such as energy and F0 in the
literature. In this paper, we study the direct use of speech waveform to generate head motion. We claim
that creating a task-specific feature from waveform to generate head motion leads to better performance than
using standard acoustic features to generate head motion overall. At the same time, we completely abandon
the handcrafted feature extraction process, leading to more effectiveness. However, the difficulty of creating a
task-specific feature from waveform is their staggering quantity of irrelevant information, implicating potential
cumbrance for neural network training. Thus, we apply a canonical-correlation-constrained autoencoder
(CCCAE), where we are able to compress the high-dimensional waveform into a low-dimensional embedded
feature, with the minimal error in reconstruction, and sustain the relevant information with the maximal
cannonical correlation to head motion. We extend our previous research by including more speakers in our
dataset and also adapt with a recurrent neural network, to show the feasibility of our proposed feature.
Through comparisons between different acoustic features, our proposed feature, WavCCCAE, shows at least a 20%
improvement in the correlation from the waveform, and outperforms the popular acoustic feature, MFCC, by
at least 5% respectively for all speakers. Through the comparison in the feedforward neural network regression
(FNN-regression) system, the WavCCCAE-based system shows comparable performance in objective evaluation.
In long short-term memory (LSTM) experiments, LSTM-models improve the overall performance in normalised
mean square error (NMSE) and CCA metrics, and adapt the WavCCCAEfeature better, which makes the proposed
LSTM-regression system outperform the MFCC-based system. We also re-design the subjective evaluation, and
the subjective results show the animations generated by models where WavCCCAEwas chosen to be better than
the other models by the participants of MUSHRA test.
1. Introduction

Communication, whether in whatever way, is deemed an essential
part in existing civilisation, consisting of verbal and nonverbal forms.
Hadar et al. (1983) argue that one important nonverbal form, head
motions, directly contribute to speech production. Research into head
motions could be going through enormous changes as the synthesis
of head motion moves towards fully operational and interactive im-
plementation of its potential. Such niche technology is being tested
to apply both head motion and lip-syncing to the creation of a more
human-like avatar. However, compared with lip-syncing, we may not
reach the point at which head motions could be easily captured and
analysed due to a weak link between speech and head motion and a
complex collective of speech, emotion, intention, and stance.

Stimulated by methods of input, speech-based (Busso et al., 2005;
Gregor et al., 2007) and text-based (Zhang et al., 2007; Jia et al., 2014)
approaches are then endowed with research priority. In the process of
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text mining, a generation algorithm is operating to predict the head
movement. On the other hand, a speech-based approach mainly targets
collecting acoustic features after audio acquisition, trying to build a
model linking head movement and acoustic signature. With such a
system running, researchers can obtain the predicted head movement
as output while taking the acoustic patterns as input.

The speech-based approach has been investigated with different in-
puts, e.g. MFCC (Ding et al., 2015), EMA (Ben Youssef et al., 2014), F0
and intensity (Sadoughi and Busso, 2018) etc. The reason for choosing
these acoustic features is mainly due to the analysis of the correlation
between acoustic features and head motion, which has been researched
in previous studies (Hadar et al., 1983; Kuratate et al., 1999; Yehia
et al., 2002; Munhall et al., 2004; Busso and Narayanan, 2007; Ishi
et al., 2007; Ishi et al., 2014; Sadoughi and Busso, 2017). As all of
these acoustic features are derived from speech waveforms, it would be
a good consideration to choose waveforms as the input to the system.
vailable online 1 March 2024
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This can leverage the advantages of each acoustic feature, maximising
the correlation between features and head motion by increasing the
amount of information available to predict head motion.

Waveforms intended to probe head motion are rarely noticed on
account of their high dimensionality and staggering quantity of ir-
relevant information, implicating potential cumbrance for neural net-
works training and high demand for hardware support. A canonical-
correlation-constrained autoencoder (CCCAE) (Lu and Shimodaira, 2020
is then proposed by us to address problems related to high dimensional-
ity and intricate information. It is expected to identify low-dimensional
patterns from waveforms by training hidden layers to minimise errors
in reconstruction as well as to maximise the canonical correlation with
head motion. Predictions for head motion are then possible after the
processing approach of the extracted low-dimension features happening
in another regression neural network. Features obtained in that way
proved to be more useful than those acquired from a previous standard
autoencoder, with comparisons with other acoustic features in place.
In this paper, we continue from the previous research to explore at
a deeper level. First, we have done a feature analysis among features
to further show the effectiveness of the objective loss of CCA at
the personality level. Then we expand the training data to include
more speakers for the model feasibility and upgrade the regression
model from FNN to LSTM. In the meantime, we also build an external
architecture (Haag and Shimodaira, 2016) for comparison. Last, we
conduct an extensive subjective evaluation for two aspects, motion
appropriateness and model assessment.

The rest of the paper is organised as follows. Section 3 describes
the architecture of the proposed approach. Sections 4, 5 and 6 dis-
cuss the setting of the experiments and analyse the results. Subjective
Evaluation is presented in Section 6.3. Finally, the overall conclusion,
limitations and future work are presented in Section 7.

2. Previous and related work

Researchers have been exploring the relationship between speech
and gestures over several decades (Birdwhistell, 1952; Bolinger, 1983;
Bolinger and Bolinger, 1986; Hadar et al., 1983; Kuratate et al., 1999;
Yehia et al., 2002; Munhall et al., 2004; Busso and Narayanan, 2007;
Ishi et al., 2007; Ishi et al., 2014; Sadoughi and Busso, 2017). The
findings strongly suggest that there is a link between speech and head
motion. With this supporting evidence, speech-driven head motion pre-
diction was investigated with different acoustic features (Ben Youssef
et al., 2014; Ding et al., 2015; Haag and Shimodaira, 2016; Sadoughi
and Busso, 2018). However, our assumption is that regarding those
handcrafted features (e.g. MFCCs, Fbank etc.) that are extracted from
waveforms, it is unclear to us that whether the handcrafted information
is related to the head motion. Thus, to make full use of the information
in the original observations, it is apparent to input waveforms directly
into the neural network.

2.1. Correlation between speech and head motion

One of the earliest studies concerning the correlation between
prosody and gesture was created by Birdwhistell (1952). It suggested
that there is an alignment between gestural movements and intona-
tion. Bolinger (1983) and Bolinger and Bolinger (1986) observed that
gestures followed pitch contours up and down, in their main direction
of movement. Hadar et al. (1983) also showed that speakers’ head
movements move along with the changes of the prosody, which peaks
and falls more noticeably in cases of high intensity.

In more recent years, further analyses have been made. Kuratate
et al. (1999) found that the sentence-level correlation between fun-
damental frequency (F0) and head motion was 0.83, but they also
claimed that this analysis was sensitive to the absolute values, rather
than the spatiotemporal patterning, of head postures. Yehia et al.
(2002) analysed the correlation between head motion and speech over
2

the fundamental frequency (F0) by experimenting with one American
English speaker (ES) and one Japanese speaker (JS), monitoring their
reading speech utterances. They showed that the correlation among F0
and the 6 DOF (degrees-of-freedom) (3 DOF for rotation and 3 DOF
for translation) of head motion was between 0.39 and 0.52 for ES,
and between 0.22 and 0.30 for JS, which, on average, is less than
0.50. Munhall et al. (2004) reported that the correlations between
head motion (in 6 DOF) and pitch, and amplitude of the talker’s voice,
were almost always over 0.50, on average about 0.63 in sentence-
level, in Japanese read-speech utterances. Busso and Narayanan (2007)
presented an Audio-Visual Mapping Framework, which maps the acous-
tic features onto the facial features space, producing the estimated
facial features through an affine minimum mean square error estimator
(AMMSE). These estimated facial features were then used to compute
the Pearson’s correlation with the real facial features. They showed that
head motion and mel-frequency cepstral coefficients (MFCCs) had a
strong sentence-level correlation of 0.8 after the mapping, for which
short-sentenced scripted audio data was used.

Overall, the above studies have demonstrated a high correlation
between scripted-speech and head motion. However, our experiments
pointed out that the variation of the degree in head motion is much
larger in natural human conversation and is impossible to spot such
strong correlation between speech and head motion in the same de-
gree. There are other studies to support our hypothesis as well. Ishi
et al. (2007) showed an analysis of spontaneous dialogue speech data
from one Japanese female speaker and claimed that a strong relation-
ship could not be found between head motion and prosodic features.
Sadoughi and Busso (2017) reported that the original head movements
and speech (F0 and energy with their delta and delta-delta features)
had a global correlation of 0.1931 with the dyadic interactions data.

2.2. Speech-driven head motion system

Researchers have been investigating different acoustic features and
their combinations to resolve the weak correlation between speech and
head motion for decades. Ben Youssef et al. (2014) built HMM-based
acoustic-to-articulatory inverse mapping to predict the articulatory
features from speech. The estimated articulatory feature vectors are
represented by the trajectories of (x,y)-coordinates of the 6 active
EMA coils and are subsequently used to predict head motion through
multi-stream HMMs. In their results, they showed that the estimated
articulatory feature vectors are more correlated with head motion than
acoustic features in local CCA. They also showed that the correlation
between the estimated head motion, using articulatory features, and
original head motion (or speech), is higher than the estimated head
motion using acoustic features. Ding et al. (2015) explored acoustic fea-
tures (including LPC, MFCC, and filter bank (FBank)) with deep neural
networks and showed that the FBank-based systems achieved the high-
est correlation between the predicted and original head motions. Haag
and Shimodaira (2016) built bottleneck features from the combination
of MFCC and EMA features, which were treated as an input to deep-
BiLSTM and used to generate head motion. Sadoughi and Busso (2018)
built a conditional-GAN with BLSTM using F0 intensity (plus first and
second derivatives) as an input feature to predict head motion. They
claimed that the proposed system outperformed the normal BLSTM
architecture models. Greenwood et al. (2017) proposed CVAE-BiLSTM
and fed the Fbank features as a condition to the decoder for generating
head motion. Ahuja et al. (2022) proposed a new architecture to com-
bine diffusion and discriminator together in gesture generation using
text and audio features. They showed that the proposed approach can
effectively address the shift in crossmodel grounding and the output dis-
tribution from the source to the target speaker with only a few minutes
of data. Fares et al. (2022) proposed a transformer-based multimodal
with text and speech F0 input to generate facial expression and head
motion. They claimed that the results of head motion generation are
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lower in difference and higher in correlation to the ground truth with
the proposed architecture compared to the LSTM baseline.

All these previous studies indicate that the combinations of the
different features outperform a single feature such as MFCC. However,
those different features are intrinsically extracted from waveforms. This
gives the motivation of the present study, which aims to directly extract
useful features from waveforms to predict head movements. We do
not consider those latest architectures, because it is not the purpose of
the present study to evaluate different speech features with the latest
architecture. Instead, we aim to extend the previous research Lu and
Shimodaira (2020) and conduct more detailed analyses and evaluations
of the proposed feature.

It should be noted that there is a recent trend in the speech com-
munity towards utilisation of representation learning techniques, which
can automatically learn an intermediate representation of the input
signal that better suits the task at hand, hence leading to improved
performance. A common approach for implementing such represen-
tation learning is to build an upstream model and a downstream
model (Chung and Glass, 2020; rahman Mohamed et al., 2022). The up-
stream model utilised information extracted from the input data itself,
and then the downstream model used either the learned representation
from the frozen upstream model or fine-tuned the entire pre-trained
model in a supervised phase. However, both ways of training have
drawbacks in that either the learned representation was not related
to the downstream tasks or the fine-tuning process required heavy
computational cost. Thus we would like to propose a system which
could extract meaningful representation related to the downstream task
without fine-tuning. Our recent work (Lu and Shimodaira, 2020; Lu
et al., 2021) brought the idea of the Correlational Neural Network
(CorrNN) to fulfil our goals.

2.3. Correlational neural network

CCA was first introduced by Hotelling (1936) and Anderson (2009)
to find linear projections of two random vectors that are maximally
correlated in standard statistics. CCA is useful in learning represen-
tations of two data views such that each view’s representation is
simultaneously the most predictive of, and the most predictable by, the
other (Andrew et al., 2013). Andrew et al. (2013) raised the idea of a
deep Canonical Correlation Analysis (DCCA), which correlates the two
resulting embedded features into a common subspace with a strong lin-
ear relationship. Chandar et al. (2015) and Wang et al. (2016) extended
the idea of DCCA into a Deep Canonically Correlated Autoencoder
(DCCAE), which is to not only maximise the correlation between the
two ‘bottleneck’ features, but also minimise the reconstruction error of
the autoencoders. They proved DCCAE to be effective in cross-language
tasks and multi-view feature learning, and capable in the creation of
highly correlated feature pairs. The differences between the above work
and the present work are that both input and output in our work are
streaming data and the correlation between speech and head-motion
features is much weaker. These differences make the task to be more
careful in designing and training the system.

3. Proposed system

Waveforms have been successfully applied in several speech tasks,
and one of the more common ways of extracting a representation from
a waveform in these end-to-end systems is to use generative models
(e.g. autoencoder, GAN) (Phan et al., 2020; Chorowski et al., 2019) and
convolutional-based neural networks (Sainath et al., 2015; Ghahremani
et al., 2016; Tüske et al., 2018; Hoshen et al., 2015; Loweimi et al.,
2020). These approaches have shown a significant improvement by
creating and using task-specific features over other approaches using
hand-crafted features (e.g. MFCC and Filter bank (Fbank)). Another
advantage of these end-to-end systems is that they completely abandon
the hand-crafted feature extraction process (Chung and Glass, 2020;
3

rahman Mohamed et al., 2022). However, it is not easy to directly
apply them in our head motion generation task because previous liter-
ature shows a weak correlation between speech and head motion (Ishi
et al., 2007; Sadoughi and Busso, 2017). The standard bottleneck
representation/direct training from waveforms may extract irrelevant
information and hinder the generation process (Lu and Shimodaira,
2020). To resolve this problem, we proposed building CCCAE (Lu and
Shimodaira, 2020; Lu et al., 2021) on top of the correlational neural
network, compressing the input into a low-dimensional representation
to raise high correlations between the compressed representations and
the target data stream.

Fig. 1 shows an overview of our proposed system, which can be
viewed as three main modules: (1) a canonical-correlation-constrained
autoencoder (CCCAE) for compressing from a high dimension to dis-
tribute to a low dimension whilst sustaining correlated information
between the waveform input and head motion; (2) a regression neural
network for generating the head motion from the compact and corre-
lated embedding; (3) a neural-network-based post filter for constructing
smooth head motion from the generated output. In the training proce-
dure, we apply mean square error (MSE) normalised by the variance of
the ground truth for these three models.

3.1. Waveform embedding

Chandar et al. (2015) and Wang et al. (2016) started the idea of
compressing a set of two data streams into a common subspace with au-
toencoders. Wang et al. (2016) proposed DCCAE, which consists of two
autoencoders for the two data streams respectively. His idea was to not
only maximise the correlation between the two ‘bottleneck’ features,
but also to minimise the reconstruction error of the autoencoders. In
our study, head motion does not require further dimensional reduction
with an autoencoder as it is computed with a time series of rotation
vectors of three dimensions. CCCAE (Lu and Shimodaira, 2020), in our
present work differs from the original idea of DCCAE (Wang et al.,
2016); we only employ a single autoencoder, in which hidden layers
are trained in optimising the combination of the correlation between
the embedded features and head motion, and the reconstruction errors.
Thus, the task of the study now is to project waveforms to a subspace
with a single autoencoder, with which the resulted embedded features
have a high correlation with head motion. Those more advanced ar-
chitectures such as VAE/CVAE (Greenwood et al., 2017; Kingma and
Welling, 2014; Sohn et al., 2015) are not in our consideration because
this type of autoencoders tend to map the input to a latent space that
corresponds to the parameters of a variational distribution, whereas our
aim is to do feature extraction and information retrieval.

The following objective function is used to train our proposed
CCCAE,

ObjCCCAE = ObjAE − 𝛼 CCA (𝑓 (𝑿), 𝒀 ) (1)

bjAE =
∑

𝑡
‖X𝑡 − 𝑝

(

𝑓
(

X𝑡
))

‖

2 (2)

here the input waveform vector is viewed as 𝑿𝑡 at a time stamp 𝑡 to
he encoder , while 𝑓 ( ) represents the projection with the encoder, 𝑝( )

represents, therefore, the reconstruction with the decoder, 𝑿 represents
the input sequences of waveform vectors and 𝒀 denotes the corre-
sponding head motion vectors, and CCA( ) is the canonical correlation
function. 𝛼 ≥ 0 is the weighting factor, where 𝛼 = 0 corresponds to a
standard autoencoder with an MSE loss function, ObjAE. For ObjCCCAE,
the 𝛼 is set to be 1.
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Fig. 1. Overview of the proposed system comprised of three modules: (A) waveform embedding with CCCAE, (B) head motion regression from the features, (C) post filter with
an autoencoder.
3.2. Head motion regression

To predict head movements from the proposed feature, we con-
sidered two model architectures depending on the use of context. A
feed-forward neural network (FNN) was employed as the model that
uses short temporal information with a sliding time window, whereas
a long short-term memory (LSTM) network was chosen as the one
that uses longer temporal information. We did not consider the auto-
regressive (AR) model or other advanced models, because it is not the
purpose of the present study to seek better models.

3.2.1. Feed-forward neural network (FNN)
The regression model is constructed by 7 feed-forward layers with

different numbers of hidden nodes to predict head motion from the
waveform embedded features, shown in Fig. 1(B). The architecture
and hyperparameters are the same as in the previous work (Lu and
Shimodaira, 2020), and we take it as the baseline model.

3.2.2. LSTM
Different from the FNN baseline model, we have built two LSTM-

based models: 1-Layer-LSTM (replaced 4096-FNN) and 2-Layer-LSTM
(replaced 4096-FNN and 64-FNN).

3.3. Post-filter

Previous research (Haag and Shimodaira, 2016; Ding et al., 2015;
Busso and Narayanan, 2007; Sadoughi and Busso, 2018) commonly
applied a linear filter or key frames filter to smooth the generated
head motion as the generated trajectories were noisy or discontinuous
due to the nature of speech. However, there are limitations of such
linear/key frame filters. These filters do not know the characteristic
of the head motion trajectories, which may result in filtering the key
frames instead. Therefore, we built a neural network based de-noising
autoencoder based on our previous study (Lu and Shimodaira, 2019),
which suggests training the model with the ‘clean’ data.
4

4. Experimental setup

4.1. Data

The dataset used in this work is the University of Edinburgh Speaker
Personality and Mocap Dataset (Haag and Shimodaira, 2015), which
contains 13 native English speaking semi-professional actors’ expres-
sive dialogues. These actors were asked to perform with extroverted,
introverted and natural speaking styles in non-scripted and spontaneous
dialogues. Ishi et al. (2014) proved that intra- and inter-speaker vari-
ability can have the effect of varying head motion. Speaker-dependent
practice was carried out in our training for each speaker as this is
common in speech-driven head motion synthesis (Busso et al., 2005;
Ding et al., 2015; Sadoughi and Busso, 2018). We selected a total of six
speakers, three males (Speaker A, B, C) and three females (Speaker D, E,
F), from the dataset whereas the remaining seven speakers’ recordings
do not fulfil the amount of training data in our work. A total of 10
data files (around 50 min long) for each speaker were split into 6/2/2
for training, validation and testing respectively without considering the
speaking styles of each data file. IEMOCAP, a benchmark dataset in
the field, was chosen to be an external data against which to evaluate
our proposed method. The female speaker’s recordings of Section 1 in
IEMOCAP were selected and followed the same method of splitting the
data as Sadoughi and Busso (2018).

Speech Features Audio in the database was recorded with a headset
microphone at 44.1 kHz with 32-bit depth and a MOTU 8pre mixer.
Separate recording channels were used for the two speakers and a
synchronisation signal was recorded on a third channel in the mixer.
For the purpose of this work, the audio signal was downsampled to
4 kHz prior to the feature extraction. In this work, we followed the same
configuration as the previous work (Lu and Shimodaira, 2020), 25 ms
windows with 10 ms shifting, to pre-process and extract the acoustic
features, 100-dimension of waveform and 39-MFCCs, for each speaker.
Moreover, we also extracted 6-dim F0+Energy, 27-dim Fbank and 100-
dim waveform to enable feature analysis with the proposed feature and
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MFCCs. All of these features were normalised in terms of variance for
each dimension.

Head Motion Features Movements of the head as a 3D rigid-body
were recorded with the NaturalPoint Optitrack motion capture system
at a 100 Hz sampling rate. From the marker coordinates, rotation
matrices for the head motion were computed using singular value
decompositions (Soderkvist and Wedin, 1994), which were further
converted to rotation vectors of three dimensions.

4.2. Model setup

Fig. 1 shows the depth and width of the models, which are decided
by the preliminary experiments we conducted. To ensure the robustness
of the model training and the relationship between speech and head
motion was learnt by the model through the training, we only applied
the speaking frame of the target speaker for head motion prediction.
During the inference time, we made use of all the frames (including
both speaking and listening) to the model for generating head motion
trajectories. The model notations described below are used in the rest
of the sections, where ‘XX’ donates a speech feature such as MFCC.

• WavAE: Embedded features extracted from waveform with the
standard autoencoder, ObjAE

• WavCCCAE: Embedded features extracted from waveform with the
proposed CCCAE, ObjCCCAE with 𝛼 = 1

• FNN𝑋𝑋 : FNN-regression model trained with XX feature
• LSTM1

𝑋𝑋 : Regression model with 1-Layer-LSTM trained with XX
feature

• LSTM2
𝑋𝑋 : Regression model with 2-Layers-LSTM trained with XX

feature
• BiLSTM𝑋𝑋 : Regression model that adapts from external (Haag

and Shimodaira, 2016) with few modifications trained with XX
feature

FNNMFCC, FNNAE, and FNNCCCAE use the FNN-regression network in
Fig. 1(B) to generate head motion and the difference is the size of
the input layer of each model. Tensorflow version 1.12 was used in
building and training with Adam optimisation (learning rate 0.0002)
on a GPU machine and a multi-CPU machine. Layer-wide pre-training
technique (Takaki and Yamagishi, 2016) was also employed during
training.

In the inference time, test data of the same speaker is first fed to the
trained CCCAE to extract the embedded feature, and then to generate
head motion frame by frame from the trained regression model. The
generated head motion is then concatenated 50 time frames to be a
distinct head motion and fed to the de-noising model consecutively.
Lastly, the overlap-add method is applied to average the filtered head
motion for animation.

4.3. Objective measures

To evaluate the similarity between two sequences of vectors, we
employed a normalised mean-squared error (NMSE), where MSE is
normalised by the variance of ground truth, local canonical correlation
analysis (local CCA) (Haag and Shimodaira, 2016), and KL (Kullback–
Leibler) divergence. The difference between global CCA and local CCA
is that global CCA measures the correlation over the whole sequence,
whereas local CCA only calculates the sub sequence’s CCA score within
a time window and then takes the mean value of all the obtained
scores. The reason of selecting local CCA is that there is rarely linear
correlation held over long sequences, which calculated by global CCA,
as the head motion trajectories are changing over times. We used a
5

n

Table 1
Comparison of different widths of WavCCCAE, where NMSE and local CCA are calculated
between WavCCCAE and the original head motion for Speaker A. 𝑥𝑘 represents the audio
sample rate.

Width NMSE CCA

Train Valid Test Train Valid Test

154𝑘 0.411 0.507 0.480 0.245 0.216 0.219
304𝑘 0.173 0.239 0.221 0.264 0.234 0.248
604𝑘 0.233 0.261 0.250 0.220 0.194 0.194
3016𝑘 0.219 0.278 0.247 0.267 0.282 0.281

time window of 300 frames (or 3 s) with a 50% overlap. We use the
following formula to calculate local CCA:

𝑇 = {𝑇1, 𝑇2, 𝑇3,… ..., 𝑇𝑛}

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
1
|𝑇 |

1
𝑑

(

∑

𝑡∈𝑇

𝑑
∑

𝑖=1
corr

(

𝐴[𝑖]𝑋[𝑡∶𝑡+𝑙−1],

𝐵[𝑖]𝑌[𝑡∶𝑡+𝑙−1]
)

)

(3)

here 𝐴[𝑖], 𝐵[𝑖] are the 𝑖th canonical coefficients obtained in the global
CA, 𝑑 is the dimension of features, 𝑛 denotes the number of time
indows and 𝑇𝑘, 𝑘 = 1......𝑛, is the start frame of the 𝑘th time window

such that 𝑇1 = 0, 𝑇2 = 150, 𝑇3 = 300, and so on. 𝑙 is the window length.
KL divergence is used to measure the similarity between two prob-

bility distributions. It is useful in our evaluation because it shows
hether there is the capacity for common patterns in the acoustic

eatures and personal dependency of the different speakers. Such per-
onal dependency would result in distinct pattern distribution in the
ater motion generation. In the evaluation, we applied symmetric KL
ivergence, which is defined below:

ymmetric𝐾𝐿 = D𝐾𝐿(𝑃 ∥ 𝑄) + D𝐾𝐿(𝑄 ∥ 𝑃 ) (4)

here 𝑃 , 𝑄 are the two probability distributions.

. Analysis of the speech feature

In the following section, we first tackled the high dimensional
roblem of the waveform. Next, we made comparison between hand-
rafted audio features and our proposed feature in two aspects: (1) the
orrelation between audio feature and original head motion; (2) the
nalysis of the features in speaker dependency.

.1. Width of the proposed embedding

High dimensionality has been affecting the popularity of the usage
f waveform as the input to neural networks, even though the wave-
orm contains the original information of the acoustic features. Here,
e seek to resolve this problem by using our proposed model, CCCAE.

n the previous section, CCCAE has been described as not only reducing
he dimension of the input feature effectively, but also maximising the
orrelation between the embedding feature and the target. We first
xplore the possible dimensions of embedding features with sizes of
5, 30 and 60 compared to the dimension of the waveform is 100. This
ould give us a clear idea about the trade-off between the recovery of
aveforms and the correlating information.

Looking at Table 1, the result of the validation set shows that
he higher the dimension of the embedding feature is, the better the
ecovery of the waveform is. It is clear that the size 15 is the worst
n term of recovering the waveform as there is too little information.
n the other hand, the size 60 is the least correlated to the head
otion because there is still too much irrelevant information. Overall,

he results show that the size of sample 30 is the best choice to provide
he clearest results. The result of the test set is provided as well but is
ot involved in selecting the architecture. Furthermore, we argue that
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Fig. 2. Local CCA between speech features and original head motion for the test set.
Table 2
Average symmetric KL divergence over speakers, to indicate the similarity of the feature
distribution in all dimensions whether there is common pattern in the acoustic feature
among speakers.

Measure Feature

F0+Energy FBank MFCC Waveform WavAE WavCCCAE

Symmetric KL 6.59 11.87 6.00 5.69 6.96 8.98

audio with the sample rate of 4 kHz has a huge information loss, we
also investigate the audio with the sample rate of 16 kHz with the same
architecture. We notice that there is not much difference in terms of
NMSE with the size of 30 for different sample rates. The local CCA
for the valid and test data have about 20% and 16% improvement
respectively. However, due to the computational cost, we can only use
the audio with the sample rate of 4 kHz in the rest of the paper.

5.2. Local CCA between speech feature and original head motion

A basic correlation analysis of local CCA was carried out between
speech features and head motions before the regression training and
evaluation. Results of local CCA for each speech feature and for each
speaker are displayed in Fig. 2. The findings suggest that F0+Energy
gives the smallest score, and MFCC achieves the largest in the hand-
crafted features, and WavCCCAE achieves the largest in all the features.
Comparing the waveform and the proposed feature, we can see a large
improvement (at least 30% is achieved on average) in the results of the
test set with WavCCCAE for each speaker, but only a small improvement
is made with WavAE.

In the meantime, we have used an external dataset, IEMOCAP
(Busso and Narayanan, 2007), to evaluate our proposed model. We
then calculated a similar correlation result between MFCC and head
motion for the findings reported by Busso and Narayanan (2007). Our
proposed feature has an improvement of 6% respectively for MFCC and
27% respectively for waveform, respectively.

5.3. Analysis of the features

We visualised the features using T-SNE, where the proposed features
were taken from the third layer of DCCCAE (where the layer is specified
as 30-d in Fig. 1). Observing at Fig. 3, we noticed the pattern that
the sparser the point that each speaker’s feature is, the lower the
CCA between the feature and the head motion. Moreover, WavAE and
WavCCCAE show the effects of gathering these points compared with
waveforms. This is also shown in Table 2, which shows the average
6

symmetric KL divergence between the speakers. In each feature, the
smaller the value is, the larger the overlapped area of the distributions.
In terms of the values, we can observe that the value of WavCCCAE is
much larger than WavAE, this refers that a smaller overlapped area
for WavCCCAE. Thus, we believe that WavCCCAE has a better effect than
WavAE showing a clear distinct cluster for each speaker. We also notice
that FBank feature has the largest value in this KL divergence result, but
it has the second lowest correlation in Fig. 2. This implies that little
speaker-independent information is carried in terms of head motion.
It is because those bank pass filters are designated to capture the
information related to the human vocal tract, which is one of the main
distinguishing characteristics of individual (Chougule et al., 2014).

We also assume that each speaker has their own person dependent
mannerisms and this affects the head movement in multiple ways, but
there are still some patterns of the head movement that remain un-
changed in all speakers. With the CCA loss objective, WavCCCAE shows
a well-organised and distinct distribution of each speaker’s feature
data as there are some feature points where speakers overlapping each
other (key properties of the head movement were not changed), and
some feature points are spread in different directions (this was person
dependent). This distribution has not been shown in the graph of any
other feature. The value of WavCCCAE in Table 2 further demonstrates
these surmisings, it is the second highest value and we believe that the
overlapped areas show the properties of the head motion amongst all
the speakers. As the correlation between this feature and head motion
is still unclear, future academic study could develop these areas of
research.

6. Evaluation of the head motion synthesis

Beside showing correlation analysis, which was presented in the
previous section, we also investigated the effectiveness of the feature
by building a neural network to predict head motion using those audio
features. In this section, we built a simple FNN to generate head motion,
then continued to apply the state-of-the-art architecture, LSTM. Lastly,
we carried out a subjective evaluation. We selected MFCC, WavAE, and
WavCCCAE, where these features were outstanding in the basic analysis,
to use in the later evaluation of the regression models in the following
section.

6.1. Evaluation of predicted head motion from speech

Fig. 4 reveals how NMSE and local CCA with the ground truth
(original head motion) are involved between FNN system trained with
different features, which are used to investigate the evaluation of
predicted motion. Another coping strategy, which is expected to seek a
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Fig. 3. T-SNE visualisation of the feature distribution for speaker A–F, to visualise whether there is common pattern in the head motion among speakers.
Table 3
The local CCA between the ground truth and randomised sequences of another speaker,
to show the lowest bound of the CCA between two head motion streams.

Measure Speaker

A B C D E F IEMOCAP

Unsynchronised CCA 0.14 0.11 0.11 0.11 0.10 0.10 0.12

chance score, is also developed on the grounds of well-computed local
CCA between existing motion and randomised sequences that charac-
terise totally different and unsynchronised speakers. The hypothesised
chance score for the speakers is shown in Table 3.

It is notable that, regardless of the lowest NMSE, the result of FNNAE
could be biased. Little movement of predicted head motion directly
results in NMSE being close to 1.0. This explains why the chance score
mechanism is better than FNNAE for all speakers. FNNCCCAE has a better
performance for most of the speakers except Speaker B and Speaker C in
terms of NMSE. However, FNNMFCC achieved the highest local CCA for
all speakers. This suggests that FNNCCCAE and FNNMFCC have different
strength in different metric domains. Overall, the local CCA of FNNMFCC
and FNN in the test dataset is higher than the chance scores.
7

CCCAE
6.2. Comparison between FNN and LSTM

LSTM is proven to be good in dealing with sequential data from
the existing literature. Reflecting upon the above experiments, our
proposed regression model in FNN achieves reasonable results. Thus,
we would like to investigate how much improvement would be gained
by switching FNN to LSTM. In this experiment, we tried two versions of
1-Layer-LSTM (replaced 4096-FNN), named LSTM1, and 2-Layer-LSTM
(replaced 4096-FNN and 64-FNN), named LSTM2.

From Figs. 5 and 6, lower NMSE/higher CCA indicates a better
performance for the models. LSTM1 and LSTM2 models have better
results than FNN models in MFCC and WavCCCAE. Results for the models
with WavAE reflect that there is not much difference for the models
switching to LSTM compared to those who do not. A reason for this
could be that WavAE is a low correlated feature so, even with the
advantage of LSTM, the model hardly maps the acoustics features to the
head motions. Surprisingly, LSTM2 models perform worse than LSTM1

in the IEMOCAP as the NMSE is higher and CCA is lower; this may
indicate a vanishing gradient for deeper models and higher correlation
features compared to Speaker A and D. Moreover, LSTM1 and LSTM2

models show better adaption for highly correlated features. LSTM1
CCCAE

and LSTM2
CCCAE outperform FNNMFCC in CCA for Speaker A and Speaker

D.
Besides making comparisons among our proposed models, we also

built an external algorithm (Haag and Shimodaira, 2016) for feature
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Fig. 4. Comparison of different features in terms of performance of head motion prediction for different speakers, where NMSE (Figure a and b) and local CCA (Figure c and d)
are calculated between predicted head motion and ground truth.
validation. Shown at Table 4, the external algorithm is even better
at boosting the proposed feature to reach the highest local CCA for
Speaker A without much work on model optimisation. This further
proves that Bi-LSTM with forward and backward content informa-
tion (Huang et al., 2015) could also adapt to the proposed embedded
features. Nevertheless, the same performance is achieved with WavAE.

6.3. Subjective evaluation

Objective evaluation only shows the numerical differences between
the ground truth and the generated head motion, whereas subjective
evaluation is able to reflect the opinions of the human observers on
whether the generated motion is a close match to human-likeness.
Compared to our previous work (Lu and Shimodaira, 2020), which
only evaluated the performance with the criteria of naturalness, we
validated our models’ performance in the following subjective studies.
We evaluated our models in two regards:
8

• Appropriateness — This study mainly focused on the correlation
between the speech audio and the animated motion by asking
the participants ‘How appropriate are the head motions for the
speech?’

• Model Assessment — This study asked participants to select
‘Which of the following head motions are the most natural’,
intending to investigate which model architecture generates the
most natural head movement using the same input features.

Jonell et al. (2020) indicate that we can trust the online platforms, as
there is no difference between the in-lad and the Prolific platform in
terms of the perceptual evaluation results. Therefore, we conducted
our evaluation over an online platform entirely. A larger group of
50 participants was recruited in this work to ensure the reliability
through the crowdsourcing platform Prolific, restricted to a set of
English-speaking countries, and native speakers only, in this evaluation
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Fig. 5. Comparison of FNN and LSTM systems in terms of performance of head motion prediction, where NMSE is calculated between predicted head motion and ground truth.
FNN model, LSTM1: 1-Layer-LSTM that replaces 4096-FNN, LSTM2: 2-Layers-LSTM that replaces 4096-FNN and 64-FNN.
and they were asked to evaluate both studies. Video samples of the
animation are available on the web.1

How appropriate are the head motion for the speech?
A perceptual test was carried using a similar method to Multiple

Stimuli with Hidden Reference and Anchor (MUSHRA) (International
Telecommunication Union, 2015). Compared to the mean opinion score
(MOS) test, MUSHRA is able to obtain a better quality to scores with
a minimal number of participants. We created the head motion anima-
tions with the randomly selected audio samples in the test set using 8
models: Ground Truth (GT), Anchor and both FNN and LSTM models
trained with three selected features respectively (FNNAE, FNNCCCAE,
FNNMFCC, LSTM2

AE, LSTM2
CCCAE, LSTM2

MFCC). A total of 10 audio samples
from each Speaker A and Speaker D is selected (160 animations are
generated in total) and each animation lasts 8−12 s long. The anchor

1 https://homepages.inf.ed.ac.uk/s1569197/phd_project_demo/.
9

in MUSHRA is to calibrate the scale of the scores, where the minor
artifacts are not badly penalised. The creation of the anchor is to select
a different stream of head motion from another speaker with different
utterances, where the resulted anchor animations are natural in term
of head motion, but unsynchronised with the audio. Furthermore, a
reference animation is provided as well, but it is generated with a
different audio utterance to the evaluated one. This reference video
was used to reinforce to the participants how to recognise what an
appropriate head motion associated with speech audio looks like. The
evaluation was performed so that each participant was assigned 10 test
questions and the animations of each test question were shuffled so
as to be displayed in a random order.(Fig. 7). Each participant then
was requested to watch each animation carefully and wholeheartedly,
and gave a score, between 0–100, for each animation. Compared to the
original MUSHRA, we did not force the participants to rate the anchor
to be the worst one or the ground truth to be the best. We requested
that participants to score at least one of the animations to the value of
100 to indicate that is the ‘ground truth’. Moreover, an attention check

https://homepages.inf.ed.ac.uk/s1569197/phd_project_demo/
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Fig. 6. Comparison of FNN and LSTM systems in terms of performance of head motion prediction, where local CCA is calculated between predicted head motion and ground
truth. FNN model, LSTM1: 1-Layer-LSTM that replaces 4096-FNN, LSTM2: 2-Layers-LSTM that replaces 4096-FNN and 64-FNN.
for each speaker was incorporated during the test questions for each
participant, which involved displaying a text sentence in the video such
as, ‘Please rate this video XX’. This ‘XX’ would be a specific number
between 10 to 100, and the participant had to set the corresponding
slider to the requested value in order to get through the attention check.

The result is displayed in Fig. 9. From both speakers, we can initially
observe that GT scored the highest, and the anchor scored about 38.
This indicates that the participants were able to consistently determine
the most synchronicity and the non-synchronicity between the head
motion and audio. Our proposed models with WavCCCAE outperformed
MFCC models and WavAE models. Participants had different opinions
on the performance between MFCC models and WavAE models for
Speaker A and Speaker D respectively.

The head motion generated from MFCC achieves better in the
objective, but lower in the subjective than the head motion generated
from WavCCCAE. A possible reason for this is that while the speaker is in
listening, MFCC is a spectral feature and does not effectively represent
10
silence information on the absolute magnitude spectrum after filter ex-
traction and log operation, whereas waveforms are well-presented. This
affects models with MFCC predicting active head motion whereas mod-
els with WavCCCAE produce minor head movements whilst listening. An
example is shown in Fig. 10, which demonstrates noise in the silence
region shown from the Log Energy curve, and the active head motion is
generated by FNNMFCC. Another observation from Fig. 10 is that there is
a minor head motion in the ground truth, but not in our proposed model
for the silence region. This is another reason why the objective result
of FNNCCCAE performed worse than FNNMFCC. Participants may have
felt that active head motion went against natural human instincts while
listening. Even though the ground truth showed animated head motion
in the listening region as well, participants still preferred the ground
truth over models with WavCCCAE, which indicates that the head motion
generated by MFCC is unnatural. This also suggests that an objective
approach is quantifiable, whereas subjective approaches are open to
greater interpretation based on personal feeling (Leahu et al., 2008).
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Table 4
Comparison of different systems in terms of performance of head motion prediction,
where NMSE and local CCA are calculated between predicted head motion and ground
truth. Red bold represents the best result for Speaker A and blue bold represents the
best result for Speaker D.

System Speaker Training Test

NMSE CCA NMSE CCA

FNNAE
A 1.00 0.17 1.06 0.21
D 1.15 0.09 1.14 0.09

FNNCCCAE
A 0.55 0.42 1.39 0.35
D 0.66 0.39 1.24 0.32

LSTM2
AE

A 1.25 0.19 1.32 0.19
D 1.03 0.07 1.02 0.05

LSTM2
CCCAE

A 0.58 0.33 1.58 0.29
D 0.61 0.53 1.28 0.41

BiLSTMAE
A 1.02 0.0 1.05 0.0
D 1.01 0.0 1.07 0.0

BiLSTMCCCAE
A 0.72 0.52 1.73 0.41
D 0.81 0.45 1.64 0.38

ig. 7. A screenshot of a MUSHRA question from the evaluation interface. Each
nimation was generated with the same audio utterances, but different in input features
nd model architecture.

ig. 8. A screenshot of a A/B test from the evaluation interface. Both animation was
enerated with the same input feature, but different in the model architecture. Right:
STM, Left: FNN.

We also applied the significance test (paired t-test) to the mean
core distributions across different pairs of the models. We compared
n three perspectives, (1) whether the ground truth motion is signifi-
antly different from the predicted ones (GT VS LSTM2 and GT VS
11

CCCAE
LSTM2
MFCC); (2) whether the LSTM model is significantly different to the

FNN model (LSTM2
CCCAE VS FNNCCCAE and LSTM2

MFCC VS FNNMFCC); (3)
whether WavCCCAE is better than MFCCs (LSTM2

CCCAE VS FNNMFCC and
LSTM2

CCCAE VS LSTM2
MFCC).

Observing the results of the significance test in Fig. 9, LSTM2
CCCAE

significantly outperforms the models trained with MFCCs, and the
difference between GT and LSTM2

CCCAE is not statistically significant
in Speaker A. However, LSTM2

CCCAE is only comparable to the models
trained with MFCCs and worse than GT in Speaker D. Lastly, the differ-
ence between the LSTM models and the FNN models in both speakers
is not statistically significant. This implies that their performances are
comparable.

Which of the following head motions is the most natural? We
conducted this second study using an A/B test to select which video
is more natural than the other (Fig. 8). Our intention was to compare
the feed-forward neural network and recurrent neural network with the
same input features.

In Fig. 11, participants selected that LSTM2
CCCAE was always better

than FNNCCCAE, whereas they had different preference for MFCC mod-
els in both speakers. From the results we observe that it is clearly shown
that LSTM always performed better in Speaker A, as well as generating
more preferable head motion with the proposed feature WavCCCAE
according to participants. Moreover, the results of the proposed features
WavCCCAE and WavAE were consistent in both studies as the LSTM was
better than FNN for WavCCCAE in both speakers, and LSTM was better
than FNN in Speaker A but not in Speaker D for WavAE in the above
MUSHRA study as well.

7. Conclusion

In this paper, we extended our previous research with additional
data in training, feature analysis and an advance regression model,
and further proved the effectiveness of WavCCCAE, which extracted
data from the waveform with CCCAE. From the objective evaluations,
we can conclude that (1) the proposed feature, WavCCCAE, is more
strongly correlated than WavAE and other popular spectral features
such as MFCC and Fbank amongst different speakers; (2) in the test
data, the FNNCCCAE achieved better in NMSE, but worse in local CCA
than FNNMFCC; (3) the analysis of the features distribution amongst the
speakers showed a clear distinct cluster for each speaker in WavCCCAE
only; (4) the LSTM-based regression models were able to boost the
overall performance in NMSE and CCA, adapt better with the pro-
posed feature (WavCCCAE) than MFCC; (5) MUSHRA suggests that the
animations generated by models with WavCCCAE were chosen to be
better over the other models by the participants of MUSHRA test. (6)
A/B test further that the LSTM-based regression model adapts better
with the proposed feature WavCCCAE. (2), (3) and (4) suggest that with
the help of the CCCAE, WavCCCAE has the potential to be one of the
task-specific features for generating head motion, which achieves state-
of-the-art results. Overall, the models trained with the proposed feature,
WavCCCAE, show better or comparable performance than the models
trained with MFCCs.
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Fig. 9. The Boxplot of the MUSHRA score for both speakers’ animation of each model — horizontal line indicates the median with confidence interval. The values between a pair
of systems are the 𝑃 -value to indicate the statistical significance.
Fig. 10. An example of trajectory-Y generated from different models. The square wave
at the bottom indicates whether the speaker is speaking (Up) or listening (Down). The
text above the square wave is the corresponding transcript.
12
Fig. 11. The barplot of the A/B test for different model architectures. The star position
indicates the 50% border line.
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