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Abstract. Previous work in speech-driven head motion synthesis is cen-
tred around Hidden Markov Model (HMM) based methods and data that
does not show a large variability of expressiveness in both speech and
motion. When using expressive data, these systems often fail to produce
satisfactory results. Recent studies have shown that using deep neural
networks (DNNs) results in a better synthesis of head motion, in partic-
ular when employing bidirectional long short-term memory (BLSTM).
We present a novel approach which makes use of DNNs with stacked bot-
tleneck features combined with a BLSTM architecture to model context
and expressive variability. Our proposed DNN architecture outperforms
conventional feed-forward DNNs and simple BLSTM networks in an ob-
jective evaluation. Results from a subjective evaluation show a significant
improvement of the bottleneck architecture over feed-forward DNNs.

Keywords: Head motion synthesis, recurrent neural network, bottle-
neck feature, long-short-term memory, talking avatar

1 Introduction

Head motion plays an important role in human communication. It is used to give
emphasis to certain words or phrases, to convey emotions or to signal agreement
or disagreement when listening. In the domain of animation, where realistic
virtual agents are desired, it is crucial that head motion looks as natural as
possible. Well synthesised head motion can enrich communicative interaction,
while badly synthesised head motion is more likely to diminish it.

Work in speech-driven head motion synthesis is often based on Hidden Markov
Model (HMM) based methods [1, 2, 3, 4]. In general, frame-wise functions are
applied to map acoustic features to head motion angles. In order to compen-
sate for the frame-by-frame independence assumption of HMMs, head motion is
classified into typical head motion patterns, either manually or by using auto-
matic clustering. HMMs are then trained on each of these head motion clusters.
At synthesis time, for an unknown sequence of acoustic observations, the most
likely cluster given the observation has to be recognised first, and then the most
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likely head motion sequence is generated from the corresponding HMM that was
trained on this cluster.

The data used in these studies typically contains short sentences and/or
does not show a large variability of expressiveness in both speech and motion.
Constraining the number of possible contexts by pre-defining motion patterns
does not work well for expressive data with considerable variation. Furthermore,
there is not a one-to-one mapping between speech and head motion [5] and
many different output patterns are possible for a given acoustic input sequence.
Thus, treating head motion synthesis as a classification problem is not a feasible
approach.

DNNs can overcome some of the limitations of the conventional HMM ap-
proach. They provide a powerful architecture to capture the large range of vari-
ations that are found in expressive data without the need to pre-define motion
patterns. Their hidden layers are able to detect complex relationships between
input and output features and have been found to be more effective than de-
cision trees [6]. DNNs are also less prone to over-smoothing and preserve more
detail in the output signal than HMMs. DNNs have been widely and successfully
used in text-to-speech synthesis and often outperform HMM systems [6]. They
have also found their way into facial animation [7, 8] and speech-driven gesture
synthesis [9].

Ding et al. [10] were the first to use DNNs for speech-driven head motion
synthesis. They pre-trained a deep belief network (DBN) with stacked restricted
Boltzmann machines, then added a target layer on top of the DBN for parame-
ter fine-tuning. Their training data included broadcast speakers and they used
a context window of 11 acoustic frames as input to the DNN. While their ar-
chitecture performed better than a frame-by-frame DNN modelling approach, a
contextual window of this size is not large enough to capture distinctive motion
patterns such as nodding and shaking the head, which can span over a window
of one or two seconds. For modelling expressive data with a large variability in
different motions, an alternative framework is required.

In a further study Ding et al. [11] showed that good performance can be
gained by using bidirectional long short-term memory (BLSTM). They report
significant improvement of their BLSTM system over a feed-forward DNN, but
used data from a single speaker which was not very expressive. We extend on this
research and propose a framework which is novel to the domain of head motion
synthesis. It combines stacked bottleneck features and a BLSTM network, and
we use expressive data.

2 Proposed System

2.1 Bottleneck Features

The features we use for head motion are highly correlated and their dependencies
span over long trajectories. The use of bottleneck features for modelling these
dependencies seems reasonable. Bottleneck features have been widely used in
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speech recognition [15, 16] and text-to-speech systems [17]. They can be used
in a similar way for speech-driven head motion synthesis. At first, a DNN with
a hidden bottleneck layer is trained on speech and head motion features. This
layer has a relatively small number of nodes compared to the other layers in the
network. The activations at the bottleneck layer (the bottleneck features) give us
a compact frame-wise representation of the input and output features. Multiple
bottleneck features of consecutive frames are then stacked using a sliding window
and combined with the original speech features as the input to a second DNN
network (Fig.1).

Fig. 1. Example for a bottleneck DNN architecture. Features from the bottleneck layer
are stacked and serve as input to a second DNN combined with the original speech
features.

2.2 BLSTM with Bottleneck Features

In this paper we investigate whether the use of bottleneck features as input to
a BLSTM network is beneficial. It can be argued that contextual information is
not required in training a BLSTM network because it already takes the preceding
and following context into account, and we will investigate whether this is indeed
the case. It should be noted that, although the second network in Fig.1 is trained
in a speaker dependent manner to predict an individual speaker’s head motion
trajectory, the first network can be trained with data from multiple speakers
rather than a single one to obtain robust bottleneck features. We found that
this results in better prediction of an individual speaker’s head motion trajectory.
The training procedure is as follows:

1. Train the first DNN which contains a bottleneck layer. The inputs to the
DNN are speech features, the output head motion features.

2. Make a forward pass through this network to generate bottleneck features for
the training, validation and test data. This is done frame by frame.

3. Stack bottleneck features from the current frame along with n preceding and
n following frames.

4. The bottleneck features are combined with the speech features and a second
DNN with a BLSTM layer is trained using these features as its input.
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5. A forward pass is made through the network to generate head motion features
from the second DNN.

2.3 BLSTM Training Issues

When using long segments of input data that go beyond the length of a single
sentence, for example when synthesising paragraphs or monologues, we found
that BLSTMs are difficult to train and do not generate satisfactory output tra-
jectories. This is especially the case for data with a large expressive variability.
One way to work around this is to divide the dataset into smaller segments and
employ mini-batch gradient descent. Instead of computing the gradient over all
training examples during one iteration, we use a window of w frames, perform
one update of the cost function per window and iterate until we reach the end of
the data stream. We found that employing mini-batch gradient descent improves
the overall performance of our system.

3 Experiments

3.1 Data

We used three male English native speakers from The University of Edinburgh
Speaker Personality and MoCap Dataset [18] for training and testing differ-
ent architectures. This database contains expressive dialogues between semi-
professional actors in extroverted and introverted speaking styles. The dialogues
were non-scripted and spontaneous. For the purpose of our experiments we se-
lected only the extroverted recordings because they show more variability in
head motion and speech.

Speech Features Audio in this database was recorded with a headset micro-
phone at 44.1kHz with 32-bit depth and a MOTU-8pre mixer [19]. Separate
recording channels were used for the two speakers and a synchronisation signal
was recorded on a third channel in the mixer. For the purpose of this work, the
audio signal was down sampled to 16kHz prior to feature extraction. 12 Mel-
cepstral coefficients, which represent the discrete log magnitude spectrum, were
extracted using SPTK [20]. Voicing probability and energy were computed us-
ing openSMILE [21], and smoothed with a moving average filter with a window
length of 10 frames.

It has been shown that articulatory features have a closer relationship with
head motion than acoustic features [22], even when estimated from speech.
Therefore we also extracted articulatory features, which were estimated us-
ing an acoustic-to-articulatory inversion technique [22]. They represent (x;y)-
coordinates of six active EMA coils (i.e. two coils attached to the upper and
lower lip, one to the jaw and three to the tongue). We will refer to them as EMA
features. All features were computed from the audio over 25 ms windows at a
frame rate of 10 ms to match the frame rate of the head motion data. We also
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added their first time derivatives (delta features). The dimension of the speech
features was 52.

Head Motion Features The head motion of one speaker of the dialogue pair
was recorded with the NaturalPoint Optitrack [23] motion capture system at a
100Hz sampling rate. From the marker coordinates, rotation matrices for head
motion were computed using singular value decomposition [24]. The rotation
matrices were converted to Euler angles, which describe the motions of pitch,
yaw and roll (nodding, shaking and tilting the head). The first and second time
derivatives of the Euler angles were also added, resulting in a 9-dimensional
vector as the output feature. We used the delta features in training because this
resulted in better performance than when only using the static head motion
features, but they were not used at synthesis time.

3.2 Preliminary Experiments

We conducted preliminary experiments using data from one speaker to analyse
the effects of various hyper-parameters. The results are presented in Fig. 2. We
varied the position of the bottleneck layer in order to find its optimal position.
Canonical correlations between the original and synthesised head motion were
highest when the third layer was set as the bottleneck layer. We also varied the
number of nodes in the bottleneck layer. Correlations were highest when using
16 nodes and performance was degraded when using eight or 32 nodes. Thus, we
set the nodes in the bottleneck layer to 16. Furthermore, we analysed the effect
of the size of the contextual window. We found that highest correlations were
achieved when using 20 preceding and 20 following frames.

We also analysed different network topologies for the BLSTM network. An
architecture with one or more BLSTM layers and no feed-forward layers resulted
in worse performance than when using both feed-forward layers and BLSTM
layers. Best performance was achieved with one BLSTM layer on top of two
feed-forward layers, which conforms with the findings of text-to-speech synthesis
[13, 14]. However, it does not agree with the results of [11] who observed best
performance for head motion synthesis when using one BLSTM layers between
two feed-forward layers. This suggests that the optimal architecture is dependant
on the task and the data being used, and a careful analysis has to be carried out
prior to defining the system architecture.

3.3 Experimental Setups

While audio was recorded for both dialogue partners, head motion could only
be captured for one speaker. The following architectures use input and out-
put features from this single speaker and include listening pauses (i.e. silences).
All systems use the same input and output features. For each speaker we built
a speaker-dependent system using four recordings with a duration of approxi-
mately four minutes each. Two recordings were used for training, one for val-
idation and one for testing. This was the same for all systems. Training was
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Fig. 2. Analysis of the effect of bottleneck layer position (left) and the number of
stacked bottleneck features (right), a number of 10 means that 10 features to the left
and 10 features to the right of the current frame were concatenated. Global CCA is
defined as the CCA over the entire data stream.

conducted on a GPU using Theano version 0.6. The systems we implemented
are summarised as follows:

• DNN: This system is our baseline and uses a contextual window of acoustic
and EMA features as its input. It is similar to the work of [10] except that we
did not use RBMs in pre-training. Acoustic and EMA features were concate-
nated from a context of five frames to the left and fives frames to the right
of the current frame, resulting in a 572-dimensional input vector. We used
a conventional feed-forward network employing frame-wise minimum mean
squared error criterion and mini-batch in training. The network consisted of
three hidden layers with 768 hidden units each. The learning rate was set
to 0.002 and halved after 10 epochs, and momentum was 0.3 for the first
10 epochs and increased to 0.9 thereafter. The maximum epoch was 25 and
early stopping was applied. A tangent activation function was applied at the
bottom layers and a linear output activation function was used.

• DNN-BN For this system we used data from all three speakers to generate
bottleneck features. The bottleneck features were then used to train a second
feed-forward DNN for each of the speakers independently. The bottleneck
layer size was set to 16 and we stacked a context of 20 features to the left and
20 features to the right and combined them with our 52-dimensional acoustic
and EMA feature vector, resulting in a 708-dimensional input vector. The
second DNN had the same architecture as the DNN baseline system and was
trained in the same fashion.

• DNN-BLSTM For this system we stacked a BLSTM layer on top of two
feed-forward layers with tangent activation functions. This system processed
the input frame-by-frame using a mini-batch size of 300. The input vector
had 52 dimensions and the same hyper-parameters as previously were used.

• DNN-BLSTM-BN This system had a similar architecture to the DNN-BN
using stacked bottleneck features and acoustic and EMA input features, but
the second DNN used a BLSTM layer stacked on top of two feed-forward
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layers with tangent activation functions. The second DNN was the same as
in DNN-BLSTM.

After generating the output features, the variance of the head motion was re-
scaled to match the variance of the head motion in the training data. We applied
a least-squares 3-order polynomial smoothing filter on the DNN output.

3.4 Objective Evaluation

We employed canonical correlation analysis (CCA) to measure the correlation
between original and synthesised head motion features. Given that X ∈ Rp and
Y ∈ Rq are column vectors with random variables, canonical correlation seeks
to find vectors a and b that maximise the correlation τ :

τ = max
a,b

corr(aTX, bTY ) (1)

The advantage of CCA over standard correlation is that CCA can be calculated
over multi-column vectors rather than single column vectors. This way we can
look at the three Euler angles simultaneously. It is claimed that this procedure
finds the highest possible correlation that can be achieved [25].

We define a local CCA which computes the canonical correlations over sub-
sets of the data streams [26]. Head motion trajectories change over time and
linear correlations rarely hold over the whole data. Therefore it is useful for us
to measure the similarity of the original and synthesised head motion using a
smaller time window of n frames that starts at tth frame such that

rt =
1

d

(
d∑

i=1

corr
(
A[i]TX[t:t+n−1], B

[i]TY[t:t+n−1]

))
(2)

where A[i], B[i] are the canonical coefficients obtained in the global CCA and d
the dimension of features. For local CCA, we used a time window of 300 frames
and calculated the average from the resulting scores.

Results The highest local CCA was achieved for DNN-BLSTM-BN while the
DNN baseline performed worst. DNN-BLSTM is slightly better than DNN-BN
and comes second best. These results suggest that combing stacked bottleneck
features and a BLSTM architecture works best, however the difference to the
remaining systems is only subtle.

3.5 Subjective Evaluation

A mean opinion score (MOS) test was carried out to evaluate the naturalness
of the head motion generated by the four presented systems. Head motion was
mapped onto a talking head using the Poser Pro 2012 [27] animation software.
Audio was provided as a reference but we refrained from using lip-sync to make
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the subjects focus only on the head motion. For each system, 16 videos between
8-12 seconds long were animated and four videos with natural speech were added
for sanity checking of the ratings. A Latin Square design with four groups was
used so that subjects did not watch an animation with the same audio more
than once. The subjects were asked to rate the naturalness of the animated
head motion on a scale from 1 (very unnatural) to 5 (very natural). 20 English
native speakers took part in the test, four of them were excluded in the analysis
due to poor naturalness ratings of the natural head motion. Each system was
rated 64 times.

Results A MOS was calculated for each system by subject, results are shown
in Fig. 4. Listeners were conservative in their judgement of natural head motion,
but it was still considered the most natural. We assume that subjects treat the 5-
point MOS scale as an interval rather than an ordinal scale [28], thus we applied
a one-way ANOVA to compare the means instead of the medians.

The DNN-BLSTM-BN system was only marginally considered as more natu-
ral than DNN-BLSTM, but the difference is not significant. DNN-BN seemed to
be regarded as slightly more natural than the combined DNN-BLSTM-BN and
the DNN-BLSTM system, but no significance can be reported. The only signif-
icant difference is between the DNN baseline and DNN-BN (F=11.5, p<0.05).

4 Conclusions and Further Work

In this paper we proposed using stacked bottleneck features and BLSTMs for
expressive head motion synthesis. Our objective evaluation suggests that com-
bining bottleneck features with a BLSTM network outperforms systems that
make use of either stacked bottleneck features or BLSTMs. It would also appear
that BLSTMs generally work better than feed-forward architectures. However,
our subjective evaluation does not confirm this; all contextual systems are on
a similar level when rated by subjects. It should be noted that we used a chal-
lenging dataset with expressive speech and head motion, better results might be
achieved using data with less variation in expressiveness.
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