2,073 research outputs found

    Undecidability of the unification and admissibility problems for modal and description logics

    Full text link
    We show that the unification problem `is there a substitution instance of a given formula that is provable in a given logic?' is undecidable for basic modal logics K and K4 extended with the universal modality. It follows that the admissibility problem for inference rules is undecidable for these logics as well. These are the first examples of standard decidable modal logics for which the unification and admissibility problems are undecidable. We also prove undecidability of the unification and admissibility problems for K and K4 with at least two modal operators and nominals (instead of the universal modality), thereby showing that these problems are undecidable for basic hybrid logics. Recently, unification has been introduced as an important reasoning service for description logics. The undecidability proof for K with nominals can be used to show the undecidability of unification for boolean description logics with nominals (such as ALCO and SHIQO). The undecidability proof for K with the universal modality can be used to show that the unification problem relative to role boxes is undecidable for Boolean description logic with transitive roles, inverse roles, and role hierarchies (such as SHI and SHIQ)

    Verification of PCP-Related Computational Reductions in Coq

    Full text link
    We formally verify several computational reductions concerning the Post correspondence problem (PCP) using the proof assistant Coq. Our verifications include a reduction of a string rewriting problem generalising the halting problem for Turing machines to PCP, and reductions of PCP to the intersection problem and the palindrome problem for context-free grammars. Interestingly, rigorous correctness proofs for some of the reductions are missing in the literature

    Nominal Unification from a Higher-Order Perspective

    Full text link
    Nominal Logic is a version of first-order logic with equality, name-binding, renaming via name-swapping and freshness of names. Contrarily to higher-order logic, bindable names, called atoms, and instantiable variables are considered as distinct entities. Moreover, atoms are capturable by instantiations, breaking a fundamental principle of lambda-calculus. Despite these differences, nominal unification can be seen from a higher-order perspective. From this view, we show that nominal unification can be reduced to a particular fragment of higher-order unification problems: Higher-Order Pattern Unification. This reduction proves that nominal unification can be decided in quadratic deterministic time, using the linear algorithm for Higher-Order Pattern Unification. We also prove that the translation preserves most generality of unifiers

    On the Limits of Second-Order Unification

    Get PDF
    Second-Order Unification is a problem that naturally arises when applying automated deduction techniques with variables denoting predicates. The problem is undecidable, but a considerable effort has been made in order to find decidable fragments, and understand the deep reasons of its complexity. Two variants of the problem, Bounded Second-Order Unification and Linear Second-Order Unification ¿where the use of bound variables in the instantiations is restricted¿, have been extensively studied in the last two decades. In this paper we summarize some decidability/undecidability/complexity results, trying to focus on those that could be more interesting for a wider audience, and involving less technical details.Peer Reviewe

    Unification in the Description Logic EL

    Full text link
    The Description Logic EL has recently drawn considerable attention since, on the one hand, important inference problems such as the subsumption problem are polynomial. On the other hand, EL is used to define large biomedical ontologies. Unification in Description Logics has been proposed as a novel inference service that can, for example, be used to detect redundancies in ontologies. The main result of this paper is that unification in EL is decidable. More precisely, EL-unification is NP-complete, and thus has the same complexity as EL-matching. We also show that, w.r.t. the unification type, EL is less well-behaved: it is of type zero, which in particular implies that there are unification problems that have no finite complete set of unifiers.Comment: 31page

    Constructive Many-One Reduction from the Halting Problem to Semi-Unification

    Get PDF
    Semi-unification is the combination of first-order unification and first-order matching. The undecidability of semi-unification has been proven by Kfoury, Tiuryn, and Urzyczyn in the 1990s by Turing reduction from Turing machine immortality (existence of a diverging configuration). The particular Turing reduction is intricate, uses non-computational principles, and involves various intermediate models of computation. The present work gives a constructive many-one reduction from the Turing machine halting problem to semi-unification. This establishes RE-completeness of semi-unification under many-one reductions. Computability of the reduction function, constructivity of the argument, and correctness of the argument is witnessed by an axiom-free mechanization in the Coq proof assistant. Arguably, this serves as comprehensive, precise, and surveyable evidence for the result at hand. The mechanization is incorporated into the existing, well-maintained Coq library of undecidability proofs. Notably, a variant of Hooper's argument for the undecidability of Turing machine immortality is part of the mechanization.Comment: CSL 2022 - LMCS special issu

    The Undecidability of Typability in the Lambda-Pi-Calculus

    Full text link
    The set of pure terms which are typable in the λ\lambdaΠ\Pi-calculus in a given context is not recursive. So there is no general type inference algorithm for the programming language Elf and, in some cases, some type information has to be mentioned by the programmer

    Undecidability of Semi-Unification on a Napkin

    Get PDF
    Semi-unification (unification combined with matching) has been proven undecidable by Kfoury, Tiuryn, and Urzyczyn in the 1990s. The original argument reduces Turing machine immortality via Turing machine boundedness to semi-unification. The latter part is technically most challenging, involving several intermediate models of computation. This work presents a novel, simpler reduction from Turing machine boundedness to semi-unification. In contrast to the original argument, we directly translate boundedness to solutions of semi-unification and vice versa. In addition, the reduction is mechanized in the Coq proof assistant, relying on a mechanization-friendly stack machine model that corresponds to space-bounded Turing machines. Taking advantage of the simpler proof, the mechanization is comparatively short and fully constructive

    Nominal Unification of Higher Order Expressions with Recursive Let

    Get PDF
    A sound and complete algorithm for nominal unification of higher-order expressions with a recursive let is described, and shown to run in non-deterministic polynomial time. We also explore specializations like nominal letrec-matching for plain expressions and for DAGs and determine the complexity of corresponding unification problems.Comment: Pre-proceedings paper presented at the 26th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2016), Edinburgh, Scotland UK, 6-8 September 2016 (arXiv:1608.02534

    Decidable structures between Church-style and Curry-style

    Get PDF
    It is well-known that the type-checking and type-inference problems are undecidable for second order lambda-calculus in Curry-style, although those for Church-style are decidable. What causes the differences in decidability and undecidability on the problems? We examine crucial conditions on terms for the (un)decidability property from the viewpoint of partially typed terms, and what kinds of type annotations are essential for (un)decidability of type-related problems. It is revealed that there exists an intermediate structure of second order lambda-terms, called a style of hole-application, between Church-style and Curry-style, such that the type-related problems are decidable under the structure. We also extend this idea to the omega-order polymorphic calculus F-omega, and show that the type-checking and type-inference problems then become undecidable
    corecore