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Abstract. A sound and complete algorithm for nominal unification of
higher-order expressions with a recursive let is described, and shown to
run in non-deterministic polynomial time. We also explore specializations
like nominal letrec-matching for plain expressions and for DAGs and
determine the complexity of corresponding unification problems.
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1 Introduction

Unification [7] is an operation to make two logical expressions equal by find-
ing substitutions into variables. There are numerous applications in computer
science, in particular of (efficient) first-order unification, for example in auto-
mated reasoning, type checking and verification. Unification algorithms are also
extended to higher-order calculi with various equivalence relations. If equality in-
cludes α-conversion and β-reduction and perhaps also η-conversion of a (typed
or untyped) lambda-calculus, then unification procedures are known (see e.g.
[15]), however, the problem is undecidable [14,17].

Our motivation comes from syntactical reasoning on higher-order expressions,
with equality being alpha-equivalence of expressions, and where a unification al-
gorithm is demanded as a basic service. Nominal unification is the extension
of first-order unification with abstractions. It unifies expressions w.r.t. alpha-
equivalence, and employs permutations as a clean treatment of renamings. It is
known that nominal unification is decidable in exponential time [31,32], where
the complexity of the decision problem is polynomial time [9]. It can be seen also
from a higher-order perspective [10,19], as equivalent to Miller’s higher-order pat-
tern unification [23]. There are efficient algorithms [9,18], formalizations of nom-
inal unification [6], formalizations with extensions to commutation properties

⋆ This research has been partially founded by the MINECO/FEDER projects RASO
(TIN2015-71799-C2-1-P) and LoCoS (TIN2015-66293-R) and the UdG project
MPCUdG2016/055.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/93127706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1608.03771v1


within expressions [4], and generalizations of nominal unification to narrowing
[5], and to equivariant (nominal) unification [1]. We are interested in unification
w.r.t. an additional extension with cyclic let. To the best of our knowledge, there
is no nominal unification algorithm for higher-order expressions permitting also
general binding structures like a cyclic let.

The motivation and intended application scenario is as follows: constructing
syntactic reasoning algorithms for showing properties of program transforma-
tions on higher-order expressions in call-by-need functional languages (see for
example [24,27]) that have a letrec-construct (also called cyclic let) [3] as in
Haskell [21], (see e.g. [11] for a discussion on reasoning with more general name
binders, and [30] for a formalization of general binders in Isabelle). There may be
applications also to coinductive extensions of logic programming [29] and strict
functional languages [16]. Basically, overlaps of expressions have to be computed
(a variant of critical pairs) and reduction steps (under some strategy) have to
be performed. To this end, first an expressive higher-order language is required
to represent the meta-notation of expressions. For example, the meta-notation
((λx.e1) e2) for a beta-reduction is made operational by using unification vari-
ables X1, X2 for e1, e2. The scoping of X1 and X2 is different, which can be
dealt with by nominal techniques. In fact, a more powerful unification algorithm
is required for meta-terms employing recursive letrec-environments.

Our main algorithm LetrecUnify is derived from first-order unification
and nominal unification: From first-order unification we borrowed the decompo-
sition rules, and the sharing method from Martelli-Montanari-style unification
algorithms [22]. The adaptations of decomposition for abstractions and the ad-
vantageous use of permutations of atoms is derived from nominal unification
algorithms. Decomposing letrec-expression requires an extension by a permuta-
tion of the bindings in the environment, where, however, one has to take care of
scoping. Since in contrast to the basic nominal unification, there are nontrivial
fixpoints of permutations (see Example 2.2), novel techniques are required and
lead to a surprisingly moderate complexity: a fixed-point shifting rule (FPS) and
a redundancy removing rule (ElimFP) together bound the number of fixpoint
equations X

.
= π·X (where π is a permutation) using techniques and results

from computations in permutation groups. The application of these techniques
is indispensable (see Example 3.6) for obtaining efficiency.

Results: A nominal letrec unification algorithm LetrecUnify which is com-
plete and runs in nondeterministic polynomial time (Theorem 4.1). The nominal
letrec unification problem is NP-complete (Theorem 6.1). Nominal letrec match-
ing is NP-complete (Theorem 5.2,6.1). Nominal letrec matching for dags is in
NP and outputs substitutions only (Theorem 5.4), and a very restricted nominal
letrec matching problem is graph-isomorphism hard (Theorem 6.3).

2 The Ground Language of Expressions

We define the language LRL (LetRec Language) of expressions, which is a
lambda calculus extended with a recursive let construct. The notation is con-
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sistent with [31]. The (infinite) set of atoms A is a set of (constant) symbols a, b
denoted also with indices (the variables in lambda-calculus). There is a set F of
function symbols with arity ar(·). The syntax of the expressions e of LRL is:
e ::= a | λa.e | (f e1 . . . ear(f)) | (letrec a1.e1; . . . ; an.en in e)

We also use tuples, which are written as (e1, . . . , en), and which are treated as
functional expressions in the language. We assume that binding atoms a1, . . . , an
in a letrec-expression (letrec a1.e1; . . . ; an.en in e) are pairwise distinct. Se-
quences of bindings a1.e1; . . . ; an.en are abbreviated as env .

The scope of atom a in λa.e is standard: a has scope e. The letrec-construct
has a special scoping rule: in (letrec a1.s1; . . . ; an.sn in r), every free atom ai in
some sj or r is bound by the environment a1.s1; . . . ; an.sn. This defines the notion
of free atoms FA(e), bound atoms BA(e) in expression e, and all atoms AT(e) in
e. For an environment env = {a1.e1, . . . , an.en}, we define the set of letrec-atoms
as LA(env) = {a1, . . . , an}. We say a is fresh for e iff a 6∈ FA(e) (also denoted as
a#e). As an example, the expression (letrec f = cons s1 g; g = cons s2 f in f)
represents an infinite list (cons s1 (cons s2 (cons s1 (cons s2 . . .)))), where
s1, s2 are expressions. However, since our language LRL is only a fragment of
core calculi [24,27], the reader may find more programming examples there.

We will use mappings on atoms from A. A swapping (a b) is a function that
maps an atom a to atom b, atom b to a, and is the identity on other atoms. We
will also use finite permutations on atoms fromA, which are represented as a com-
position of swappings in the algorithms below. Let dom(π) = {a ∈ A | π(a) 6= a}.
Then every finite permutation can be represented by a composition of at most
(|dom(π)| − 1) swappings. Composition π1 ◦ π2 and inverses π−1 can be immedi-
ately computed. Permutations π operate on expressions simply by recursing on
the structure. For a letrec-expression this is π · (letrec a1.s1; . . . ; an.sn in e)
= (letrec π · a1.π · s1; . . . ;π · an.π · sn; in π · e). Note that permutations also
change names of bound atoms.

We will use the following definition of α-equivalence:

Definition 2.1. The equivalence ∼ on expressions e ∈ LRL is defined as fol-
lows:

– a ∼ a.
– if ei ∼ e′i for all i, then fe1 . . . en ∼ fe′1 . . . e

′
n for an n-ary f ∈ F .

– If e ∼ e′, then λa.e ∼ λa.e′.
– If for a 6= b, a#e′, e ∼ (a b) · e′, then λa.e ∼ λb.e′.
– letrec a1.e1; . . . ; an.en in e0 ∼ letrec a′1.e

′
1; . . . ; a

′
n.e

′
n in e′0 iff there is

some permutation ρ on {1, . . . , n}, such that λa1. . . . .λan.(e1, . . . , en, e0) ∼
λa′

ρ(1). . . . .λa
′

ρ(n).(e
′

ρ(1), . . . , e
′

ρ(n), e
′
0). ⊓⊔

Note that ∼ is identical to the equivalence relation generated by α-equivalence
of binding constructs and permutation of bindings in a letrec.

We need fixpoint sets of permutations π: We define Fix (π) = {e | π·e ∼ e}. In
usual nominal unification, these sets can be characterized by using freshness con-
straints [31]. Clearly, all these sets and also all finite intersections are nonempty,
since at least fresh atoms are elements and since A is infinite. However, in our
setting, these sets are nontrivial:
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Example 2.2. The α-equivalence (a b) · (letrec c.a; d.b in True) ∼
(letrec c.a; d.b in True) holds, which means that there are expressions t in
LRL with t ∼ (a b) · t and FA(t) = {a, b}.

In the following we will use the results on complexity of operations in per-
mutation groups, see [20], and [12]. We consider a set {a1, . . . , an} of distinct
objects (in our case the atoms), the symmetric group Σ({a1, . . . , an}) (of size n!)
of permutations of the objects, and consider its elements, subsets and subgroups.
Subgroups are always represented by a set of generators. If H is a set of elements
(or generators), then 〈H〉 denotes the generated subgroup. Some facts are:

– Permutations can be represented in space linear in n.
– Every subgroup of Σ({a1, . . . , an}) can be represented by ≤ n2 generators.

However, elements in a subgroup may not be representable as a product of
polynomially many generators.
The following questions can be answered in polynomial time:

– The element-question: π ∈ G?,
– The subgroup question: G1 ⊆ G2.

However, intersection of groups and set-stabilizer (i.e. {π ∈ G | π(M) = M})
are not known to be computable in polynomial time, since those problems are
as hard as graph-isomorphism (see [20]).

3 A Nominal Letrec Unification Algorithm

As an extension of LRL, there is also a countably infinite set of (unification)
variables X,Y also denoted perhaps using indices. The syntax of the language
LRLX (LetRec Language eXtended) is

e ::= a | X | π ·X | λa.e | (f e1 . . . ear(c)) | (letrec a1.e1; . . . ; an.en in e)

Var is the set of variables and Var(e) is the set of variables X occurring in e.
The expression π·e for a non-variable e means an operation, which is per-

formed by shifting π down, using the simplification π1·(π2·X) → (π1 ◦ π2)·X ,
apply it to atoms, where only expressions π ·X remain, which are called suspen-
sions.

A freshness constraint in our unification algorithm is of the form a#e, where
e is an LRLX -expression, and an atomic freshness constraint is of the form a#X .

Definition 3.1 (Simplification of Freshness Constraints).

{a#b} ·∪∇

∇

{a#(f s1 . . . sn)} ·∪∇

{a#s1, . . . , a#sn} ·∪∇

{a#(λa.s)} ·∪∇

∇

{a#(λb.s)} ·∪∇

{a#s} ·∪∇

{a#(letrec a1.s1; . . . , an.sn in r)} ·∪∇

∇
if a ∈ {a1, . . . , an}
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{a#(letrec a1.s1; . . . , an.sn in r)} ·∪∇

{a#s1, . . . a#sn, a#r} ·∪∇
if a 6∈ {a1, . . . , an}

{a#(π ·X)} ·∪∇

{π−1(a)#X} ·∪∇

Definition 3.2. An LRLX-unification problem is a pair (Γ,∇), where Γ is a
set of equations s1

.
= t1, . . . , sn

.
= tn, and ∇ is a set of freshness constraints. A

(ground) solution of (Γ,∇) is a substitution ρ (mapping variables in Var(Γ,∇)
to ground expressions), such that siρ ∼ tiρ for i = 1, . . . , n and for all a#e ∈ ∇:
a 6∈ FA(eρ) holds.
The decision problem is whether there is a solution for given (Γ,∇).

Definition 3.3. Let (Γ,∇) be an LRLX -unification problem. We consider
triples (σ,∇′,X ), where σ is a substitution (compressed as a dag) mapping vari-
ables to LRLX-expressions, ∇′ is a set of freshness constraints, and X is a
set of fixpoint constraints of the form X ∈ Fix (π), where X 6∈ dom(σ). A
triple (σ,∇′,X ) is a unifier of (Γ,∇), if (i) there exists a ground substitution
ρ that solves (∇′σ,X ), i.e., for every a#e in ∇′, a#eσρ is valid, and for every
X ∈ Fix (π) in X , Xρ ∈ Fix (π); and (ii) for every ground substitution ρ that
instantiates all variables in V ar(Γ,∇) which solves (∇′σ,X ), the ground sub-
stitution σρ is a solution of (Γ,∇). A set M of unifiers is complete, if every
solution µ is covered by at least one unifier, i.e. there is some unifier (σ,∇′,X )
in M , and a ground substitution ρ, such that Xµ ∼ Xσρ for all X ∈ Var(Γ,∇).

⊓⊔

We will employ nondeterministic rule-based algorithms computing unifiers:
There is a clearly indicated subset of disjunctive (don’t know non-deterministic)
rules. The collecting variant of the algorithm runs and collects all solutions from
all alternatives of the disjunctive rules. The decision variant guesses one possi-
bility and tries to compute a single unifier.

Since we want to avoid the exponential size explosion of the Robinson-style
unification algorithms, keeping the good properties of Martelli Montanari-style
unification algorithms [22], but not their notational overhead, we stick to a
set of equations as data structure. As a preparation for the algorithm, all ex-
pressions in equations are exhaustively flattened as follows: (f t1 . . . tn) →
(f X1 . . . Xn) plus the equations X1

.
= t1, . . . , Xn

.
= tn. Also λa.s is re-

placed by λa.X with equation X
.
= s, and (letrec a1.s1; . . . , an.sn in r) is

replaced by (letrec a1.X1; . . . , an.Xn in X) with the additional equations
X1

.
= s1; . . . ;Xn

.
= sn;X

.
= r. The introduced variables are always fresh ones.

We may denote the resulting set of equations of flattening an equation eq as
flat(eq). Thus, all expressions in equations are of depth at most 1, where we do
not count the permutation applications in the suspensions.

A dependency ordering on Var(Γ ) is required: If X
.
= e is in Γ , and e is not

a variable nor a suspension and X 6= Y ∈ Var(e), then X ≻vd Y , Let >vd be the
transitive closure of ≻vd. This ordering is only used, if no standard rules and no
failure rules (see Definition 3.4) apply, hence there are no cycles.
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3.1 Rules of the Algorithm LetrecUnify

LetrecUnify operates on a tuple (Γ,∇, θ), where Γ is a set of flattened equa-
tions e1

.
= e2, where we assume that

.
= is symmetric, ∇ contains freshness

constraints, θ represents the already computed substitution as a list of replace-
ments of the form X 7→ e. Initially θ is empty. The final state will be reached,
i.e. the output, when Γ only contains fixpoint equations of the form X

.
= π·X

that are non-redundant, and the rule (Output) fires.
In the notation of the rules, we use [e/X ] as substitution that replacesX by e.

In the rules, we may omit ∇ or θ if they are not changed. We will use a notation
“|” in the consequence part of one rule, perhaps with a set of possibilities, to
denote disjunctive (i.e. don’t know) nondeterminism. The only nondeterministic
rule that requires exploring all alternatives is rule (7) below. The other rules can
be applied in any order, where it is not necessary to explore alternatives.

Standard (1,2,3,3’) and decomposition rules (4,5,6,7):

(1)
Γ ·∪{e

.
= e}

Γ
(2)

Γ ·∪{π ·X
.
= s} s 6∈ Var

Γ ·∪{X
.
= π−1 · s}

(3)
Γ ·∪{X

.
= π·Y },∇, θ X 6= Y

Γ [π·Y/X ],∇[π·Y/X ], θ ∪ {X 7→ π·Y }
(3’)

Γ ·∪{X
.
= Y },∇, θ X 6= Y

Γ [Y/X ],∇[Y/X ], θ ∪ {X 7→ Y }

(4)
Γ ·∪(f s1 . . . sn)

.
= (f s′1 . . . s

′
n)}

Γ ·∪{s1
.
= s′1, . . . , sn

.
= s′n}

(5)
Γ ·∪(λa.s

.
= λa.t}

Γ ·∪{s
.
= t}

(6)
Γ ·∪(λa.s

.
= λb.t},∇

Γ ·∪{s
.
= (a b)·t},∇∪ {a#t}

(7)
Γ ·∪{letrec a1.s1; . . . , an.sn in r

.
= letrec b1.t1; . . . , bn.tn in r′}

|
∀ρ

Γ ·∪flat(λa1. . . . λan.(s1, . . . , sn, r)
.
= λbρ(1). . . . λbρ(n).(tρ(1), . . . , tρ(n), r′))

where ρ is a permutation on {1, . . . , n}.

Main Rules: The following rules (MMS) (Martelli-Montanari-Simulation) and
(FPS) (Fixpoint-Shift) will always be immediately followed by a decomposition
of the resulting set of equations.

(MMS)
Γ ·∪{X

.
= e1, X

.
= e2},∇

Γ ·∪{X
.
= e1, e1

.
= e2},∇

,
if e1, e2 are neither variables
nor suspensions.

(FPS)
Γ ·∪{X

.
= π1·X, . . . , X

.
= πn·X,X

.
= e}, θ

Γ ·∪{e
.
= π1·e, . . . , e

.
= πn·e}, θ ∪ {X 7→ e}

,

if X is maximal w.r.t. >vd,
X 6∈ Var(Γ ), and e is neither
a variable nor a suspension,
and no failure rule (see below)
is applicable.

(ElimFP)
Γ ·∪{X

.
= π1·X, . . . , X

.
= πn·X,X

.
= π·X}, θ

Γ ·∪{X
.
= π1·X, . . . , X

.
= πn·X}, θ

, if π ∈ 〈π1, . . . , πn〉.
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(Output)
Γ,∇, θ

θ,∇, {“X ∈ Fix (π)” | X
.
= π ·X ∈ Γ}

if Γ only consists
of fixpoint-equations.

We assume that the rule (ElimFP) will be applied whenever possible.
Note that the two rules (MMS) and (FPS), without further precaution, may

cause an exponential blow-up in the number of fixpoint-equations. The rule
(ElimFP) will limit the number of fixpoint equations by exploiting knowledge on
operations on permutation groups.

The rule (Output) terminates an execution on Γ0 by outputting a unifier
(θ,∇′,X ). Note that in any case at least one solution is represented:

The top symbol of an expression is defined as tops(X) = X , tops(π·X) = X ,
tops(f s1 . . . sn) = f , tops(a) = a, tops(λa.s) = λ, tops(letrec env in s) =
letrec. Let Fx := F ∪ A ∪ {letrec, λ}.

Definition 3.4. Failure Rules of LetrecUnify

Clash Failure: If s
.
= t ∈ Γ , tops(s) ∈ Fx, tops(t) ∈ Fx, but tops(s) 6= tops(t).

Cycle Detection: If there are equations X1
.
= s1, . . . , Xn

.
= sn where

tops(si) ∈ Fx, and Xi+1 occurs in si for i = 1, . . . , n − 1 and X1 occurs
in sn.

Freshness Fail: If there is a freshness constraint a#a.
Freshness Solution Fail: If there is a freshness constraint a#X ∈ ∇, and

a ∈ FA((X)θ).

The computation of FA((X)θ) can be done in polynomial time by iterating over
the solution components.

Example 3.5. We illustrate the letrec-rule by a ground example without flatten-
ing. Let the equation be:

letrec a.(a, b), b.(a, b) in b
.
= letrec b.(b, c), c.(b, c) in c).

Select the identity permutation ρ, which results in:

λa.λb.((a, b), (a, b), b)
.
= λb.λc.((b, c), (b, c), c). Then:

λb.((a, b), (a, b), b)
.
= (a b)·λc.((b, c), (b, c), c) = λc.((a, c), (a, c), c).

(The freshness constraint a# . . . holds). Then the application of the λ-rule gives
((a, b), (a, b), b)

.
= (b c)·((a, c), (a, c), c) (the freshness constraint b# . . . holds).

The resulting equation is ((a, b), (a, b), b)
.
= ((a, b), (a, b), b), which obviously

holds.

Example 3.6. This example shows that FPS (together with the standard and
decomposition rules) may give rise to an exponential number of equations on
the size of the original problem. Let there be variables Xi, i = 0, . . . , n and the
equations Γ = {Xn

.
= π·Xn, Xn

.
= (f Xn−1 ρn·Xn−1), . . . , X2

.
= (f X1 ρ2·X1)}

where π, ρ1, . . . , ρn are permutations.
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We prove that this unification problem may give rise to 2n−1 many equations,
if the redundancy rule (ElimFP) is not there.

The first step is by (FPS):
{

f Xn−1 ρn·Xn−1
.
= π·(f Xn−1 ρn·Xn−1),

Xn−1
.
= (f Xn−2 ρn−1·Xn−2), . . .

}

Using decomposition and inversion:







Xn−1
.
= π·Xn−1,

Xn−1
.
= ρ−1

n ·π·ρn·Xn−1,
Xn−1

.
= (f Xn−2 ρn−1·Xn−2), . . .







After (FPS)







(f Xn−2 ρn−1·Xn−2)
.
= π·(f Xn−2 ρn−1·Xn−2),

(f Xn−2 ρn−1·Xn−2)
.
= ρ−1

n ·π·ρn·(f Xn−2 ρn−1·Xn−2),
Xn−2

.
= (f Xn−3 ρn−2·Xn−3), . . .







decomposition and inversion:























Xn−2
.
= π·Xn−2,

Xn−2
.
= ρ−1

n−1·π·ρn−1·Xn−2,
Xn−2

.
= ρ−1

n ·π·ρn·Xn−2,
Xn−2

.
= ρ−1

n−1·ρ
−1
n ·π·ρn·ρn−1·Xn−2,

Xn−2
.
= (f Xn−3 ρn−2·Xn−3), . . .























Now it is easy to see that all equations X1
.
= π′·X1 are generated, with

π′ ∈ {ρ−1πρ where ρ is a composition of a subsequence of ρn, ρn−1, . . . , ρ2},
which makes 2n−1 equations. The permutations are pairwise different using an
appropriate choice of ρi and π. The starting equations can be constructed using
the decomposition rule of abstractions.

4 Soundness, Completeness, and Complexity of

LetrecUnify

Theorem 4.1. The decision variant of the algorithm LetrecUnify runs in
nondeterministic polynomial time. Its collecting version returns a complete set of
at most exponentially many unifiers, every one represented in polynomial space.

Proof. Note that we assume that the input equations are flattened before apply-
ing the rules, which can be performed in polynomial time.

Let Γ0,∇0 be the input, and let S = size(Γ0,∇0). The execution of a single
rule can be done in polynomial time depending on the size of the intermediate
state, thus we have to show that the size of the intermediate states remains
polynomial and that the number of rule applications is at most polynomial.

The termination measure (µ1, µ2, µ3, µ4, µ5, µ6), which is ordered lexicograph-
ically, is as follows: µ1 is the number of letrec expressions in Γ , µ2 is the number
of letrec-, λ-symbols, function-symbols and atoms in Γ , µ3 is the number of dif-
ferent variables in Γ , µ4 is the number of occurrences of variables in Γ , µ5 is the
number of equations not of the form X

.
= e, and µ6 is the number of equations.

Since shifting permutations down and simplification of freshness constraints
both terminate and do not increase the measures, we only compare states which
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are normal forms for shifting down permutations and simplifying freshness con-
straints. We assume that the algorithm stops if a failure rule is applicable, and
that the rules (MMS) and (FPS) are immediately followed by a full decomposi-
tion of the results (or failure).

Now it is easy to check that the rule applications strictly decrease µ: The
rules (MMS) and (FPS) together with the subsequent decomposition strictly de-
crease (µ1, µ2). Since expressions in equations are flat, (MMS) does not increase
the size: X

.
= s1, X

.
= s2 is first replaced by X

.
= s1, s1

.
= s2, and the latter is

decomposed, which due to flattening results only in equations containing vari-
ables and suspensions. Thus µ2 is reduced by the size of s2. In the same way
(FPS) strictly decreases (µ1, µ2). In addition µ2 is at most S2, since only the
letrec-decomposition rule can add λa.-constructs.

The number of fixpoint-equations for every variable X is at most c1 ∗ S ∗
log(S)) for some (fixed) c1, since the number of atoms is never increased,
and since we assume that (ElimFP) is applied whenever possible. The size
of the permutation group is at most S!, and so the length of proper subset-
chains and hence the maximal number of generators of a subgroupp is at most
log(S!) = O(S ∗ log(S)). Note that the redundancy of generators can be tested
in polynomial time depending on the number of atoms.

Now we prove a (global) upper bound on the number µ3 of variables: An
application of (7) may increase µ3 at most by S. An application of (FPS) may
increase this number at most by c1 ∗ S log(S) ∗ S, where the worst case occurs
when e is a letrec-expression. Since (MMS) and (FPS) can be applied at most S
times, the number of variables is smaller than c1 ∗ S3 log(S).

The other rules strictly decrease (µ1, µ2), or they do not increase (µ1, µ2),
and strictly decrease (µ3, µ4, µ5, µ6) and can be performed in polynomial time.

⊓⊔

The problematic rule for complexity is (FPS), which does not increase µ1 and
µ2, but may increase µ3, µ4 and µ6 (see Example 3.6). This increase is defeated
by the rule (ElimFP), which helps to keep the numbers µ4 and µ6 low.

Theorem 4.2. The algorithm LetrecUnify is sound and complete.

Proof. Soundness of the algorithm holds, by easy arguments for every rule, sim-
ilar as in [31], and since the letrec-rule follows the definition of ∼ in Def. 2.1.
A further argument is that the failure rules are sufficient to detect final states
without solutions.

Completeness requires more arguments. The decomposition and standard
rules (with the exception of rule (7)), retain the set of solutions. The same
for (MMS), (FPS), and (ElimFP). The nondeterministic Rule (7) provides all
possibilities for potential ground solutions. Moreover, the failure rules are not
applicable to states that are solvable.

A final output of LetrecUnify has at least one ground solution as instance:
we can instantiate all variables that remain in Γout by a fresh atom. Then all
fixpoint equations are satisfied, since the permutations cannot change this atom,
and since the (atomic) freshness constraints hold. This ground solution can be
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represented in polynomial space by using θ, plus an instance X 7→ a for all
remaining variables X and a fresh atom a, and removing all fixpoint equations
and freshness constraints. ⊓⊔

Theorem 4.3. The nominal letrec-unification problem is in NP.

Proof. This follows from Theorems 4.1 and 4.2.

5 Nominal Matching with Letrec: LetrecMatch

Reductions in higher order calculi with letrec, in particular on a meta-notation,
require a matching algorithm, matching its left hand side to an expression.

Example 5.1. Consider the (lbeta)-rule, which is the version of (beta) used in
call-by-need calculi with sharing [2,24,27].

(lbeta) (λx.e1) e2 → letrec x.e2 in e1.

An (lbeta) step, for example, on (λx.x) (λy.y) is performed by switching to the
language LRL and then matching (app (λa.X1) X2) ✂ app (λa.a) (λb.b), where
app is the explicit representation of the binary application operator. This results
in σ := {X1 7→ a;X2 7→ (λb.b)}, and the reduction result is the σ-instance of
(letrec a.X2 inX1), which is (letrec a.(λb.b) in a). Note that only the sharing
power of the recursive environment is used here.

We derive a nominal matching algorithm as a specialization of LetrecUnify.
We use nonsymmetric equations written s ✂ t, where s is an LRLX -expression,
and t does not contain variables. Note that neither freshness constraints nor
suspensions are necessary (and hence no fixpoint equations). We assume that
the input is a set of equations of (plain) expressions.

The rules of the algorithm LetrecMatch are:

Γ ·∪{e ✂ e}

Γ

Γ ·∪{(f s1 . . . sn) ✂ (f s′1 . . . s
′
n)}

Γ ·∪{s1 ✂ s′1, . . . , sn ✂ s′n}

Γ ·∪{λa.s ✂ λa.t}

Γ ·∪{s ✂ t}

Γ ·∪{λa.s ✂ λb.t}

Γ ·∪{s ✂ (a b)·t}
if a#t, otherwise Fail.

Γ ·∪{letrec a1.s1; . . . , an.sn in r ✂ letrec b1.t1; . . . , bn.tn in r′}

|
∀ρ

Γ ·∪{λa1. . . . λan.(s1, . . . , sn, r) ✂ λaρ(1). . . . λaρ(n).(tρ(1), . . . , tρ(n), r′)}

where ρ is a (mathematical) permutation on {1, . . . , n}

Γ ·∪{X ✂ e1, X ✂ e2}

Γ ·∪{X ✂ e1}
if e1 ∼ e2, otherwise Fail

The test e1 ∼ e2 will be performed by the (nondeterministic) matching rules.
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Clash Failure: if s
.
= t ∈ Γ , tops(s) ∈ Fx, tops(t) ∈ Fx, but tops(s) 6= tops(t).

Theorem 5.2. LetrecMatch is sound and complete for nominal letrec match-
ing. It decides nominal letrec matching in nondeterministic polynomial time. Its
collecting version returns a finite complete set of an at most exponential number
of matching substitutions, which are of at most polynomial size.

Proof. This follows by standard arguments.

Theorem 5.3. Nominal letrec matching is NP-complete.

Proof. The problem is in NP, which follows from Theorem 5.2. It is also NP-hard,
which follows from the (independent) Theorem 6.1.

A slightly more general situation for matching occurs, when the matching
equations Γ0 are compressed using a dag. We construct a practically more ef-
ficient algorithm LetrecDagMatch from LetrecUnify as follows. First we
generate Γ1 from Γ0, which only contains (plain) flattened expressions by en-
coding the dag-nodes as variables together with an equation. An expression is
said Γ0-ground, if it does not reference variables from Γ0 (also via equations). In
order to avoid suspension (i.e. to have nicer results), the decomposition rule for
λ-expressions with different binder names is modified as follows :

Γ ·∪(λa.s
.
= λb.t},∇

Γ ·∪{s
.
= (a b)·t},∇∪ {a#t}

λb.t is Γ0-ground

The extra conditions a#t and Γ0-ground can be tested in polynomial time.
The equations Γ1 are processed applying LetrecUnify (with the mentioned
modification) with the guidance that the right-hand sides of match-equations
are also right-hand sides of equations in the decomposition rules. The resulting
matching substitutions can be interpreted as the instantiations into the variables
of Γ0. Since Γ0 is a matching problem, the result will be free of fixpoint equations,
and there will be no freshness constraints in the solution. Thus we have:

Theorem 5.4. The collecting variant of LetrecDagMatch outputs an at
most exponential set of dag-compressed substitutions that is complete and where
every unifier is represented in polynomial space.

6 Hardness of Nominal Letrec Matching and Unification

Theorem 6.1. Nominal letrec matching (hence also unification) is NP-hard, for
two letrec expressions, where subexpressions are free of letrec.

Proof. We encode the NP-hard problem of finding a Hamiltonian cycle in regular
graph [25,13]: Let a1, . . . , an be the vertexes of the graph, and E be the set of
edges. The first environment part is env1 = a1.(node a1); . . . ; an.(node an), and
a second environment part env2 consists of bindings b.(f a a′) for every edge
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(a, a′) ∈ E for fresh names b. Then let s := (letrec env1; env2 in 0) representing
the graph. Let the second expression encode the question whether there is a
Hamiltonian cycle in a regular graph as follows. The first part of the environment
is env ′

1 = a1.(node X1), . . . , an.(node Xn). The second part is env ′
2 consisting

of b1.f X1 X2; b2.f X2 X3; . . . bk.f Xn X1, and the third part consisting of a
number of (dummy) entries of the form b.f Z2 Z3, where b is always a fresh atom
for every binding, and Z2, Z3 are fresh variables. The number of these dummy
entries can be easily computed from the number of nodes and the degree of the
graph, and it is less than the size of the graph.

Then the matching problem is solvable iff the graph has a Hamiltonian cycle.

Theorem 6.2. The nominal letrec-unification problem is NP-complete.

Proof. This follows from Theorems 4.3 and 6.1.

We say that an expression t contains garbage, iff there is a subexpression
(letrec env in r) , and the environment env can be split into two environments
env = env1; env2, such that env1 is not trivial, and the atoms from LA(env1)
do not occur in env2 nor in r. Otherwise, the expression is free of garbage. Since
α-equivalence of LRL-expressions is Graph-Isomorphism-complete [26], but α-
equivalence of garbage-free LRL-expressions is polynomial, it is useful to look
for improvements of unification and matching for garbage-free expressions. As
a remark: Graph-Isomorphism is known to have complexity between PTIME
and NP ; there are arguments that it is weaker than the class of NP-complete
problems [28]. There is also a claim that it is quasi-polynomial [8], which means
that it requires less than exponential time.

Theorem 6.3. Nominal letrec matching with one occurrence of a single variable
and a garbage-free target expression is Graph-Isomorphism-hard.

Proof. Let G1, G2 be two graphs. Let s be (letrec env1 in f a1 . . . an) the
encoding of a graph G1 where env1 is the encoding as in the proof of Theorem
6.1 and the nodes are encoded as a1 . . . an. Then the expression s is free of
garbage. Let the environment env2 be the encoding of G2 in the expression
t = letrec env2 in X . Then t matches s iff the graphs are isomorphic. Hence
we have GI-hardness. If there is an isomorphism of G1 and G2, then it is easy to
see that this bijection leads to an equivalence of the environments, and we can
instantiate X with (f a1 . . . an).

7 Nominal Letrec Matching with Environment Variables

Extending the language by variables Env that may encode partial letrec-
environments would lead to a larger coverage of unification problems in reasoning
about the semantics of programming languages.

Example 7.1. Consider as an example a rule (llet-e) that merges letrec environ-
ments (see [27]):
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(letrec Env1 in (letrec Env2 in X)) → (letrec Env1;Env2 in X)).
It can be applied to an expression (letrec a.0; b.1 in letrec c.(a, b, c) in c)
as follows: The left-hand side (letrec Env1 in (letrec Env2 in X)) of the
reduction rule matches (letrec a.0; b.1 in (letrec c.(a, b, c) in c)) with the
match: {Env1 7→ (a.0; b.1);Env2 7→ c.(a, b, c);X 7→ c}, producing the next ex-
pression as an instance of the right hand side (letrec Env1;Env2 in X), which
is: (letrec a.0; b.1; c.(a, b, c) in c). Note that in the application to extended
lambda calculi, a bit more care (i.e. a further condition) is needed w.r.t. scoping
in order to get valid reduction results in all cases.

We will now also have partial environments as syntactic objects.
The grammar for the extended language LRLXE (LetRec Language

eXtended with Environments) is:

env ::= Env | π · Env | a.e | env ; env
e ::= a | X | π ·X | λa.e | (f e1 . . . ear(c)) | letrec env in e

We define a matching algorithm, where environment variables may occur
in left hand sides. This algorithm needs a more expressive data structure in
equations: a letrec with two environment-components, (i) a list of bindings that
are already fixed in the correspondence to another environment, and (ii) an
environment that is not yet fixed. We denote the fixed bindings as a list, which
is the first component. In the notation we assume that the (non-fixed) letrec-
environment part on the right hand side may be arbitrarily permuted before the
rules are applied. The justification for this special data structure is the scoping
in letrec expressions. Note that suspensions do not occur in this algorithm.

Definition 7.2. The matching algorithm LetrecEnvMatch for expressions
where environment variables Env and expression variables X may occur only in
the left hand sides of match equations is described below. The rules are:

Γ ·∪{e ✂ e}

Γ

Γ ·∪{(f s1 . . . sn) ✂ (f s′1 . . . s
′
n)}

Γ ·∪{s1 ✂ s′1, . . . , sn ✂ s′n}

Γ ·∪{λa.s ✂ λa.t}

Γ ·∪{s ✂ t}

Γ ·∪{λa.s ✂ λb.t}

Γ ·∪{s ✂ (a b)·t}
if, a#t otherwise Fail

Γ ·∪{(letrec ls; a.s; env in r) ✂ (letrec ls′; b.t; env ′
in r′)}

|
∀(b.t)

Γ ·∪{(letrec ((a.s) : ls); env in r) ✂ (a b)(letrec ((b.t) : ls′; env ′ in r′)}

if a#(letrec ls′; b.t; env ′in r′), otherwise Fail.

Γ ·∪{(letrec ls;Env ; env in r) ✂ (letrec ls′; env ′
1; env

′
2 in r′)}

|
env

′

1

Γ ·∪{(letrec (Env : ls); env in r) ✂ (letrec ((env′1) : ls
′); env ′

2 in r′)}

Γ ·∪

{

(letrec ls; ∅ in r)
✂ (letrec ls′; ∅ in r′)

}

Γ ·∪{ls ✂ ls′; r ✂ r′}

Γ ·∪{[e1; . . . ; en] ✂ [e′1; . . . ; e
′
n]}

Γ ·∪{e1 ✂ e′1; . . . ; en ✂ e′n}
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Γ ·∪{X ✂ e1, X ✂ e2}

Γ ·∪{X ✂ e1, e1
.
= e2}

Γ ·∪{Env ✂ env1,Env ✂ env2}

Γ ·∪{Env ✂ env1, env1
.
= env2}

Testing e1
.
= e2 and env1

.
= env2 is done with high priority using the (non-

deterministic) matching rules.

Clash Failure: If s
.
= t ∈ Γ , tops(s) ∈ Fx, tops(t) ∈ Fx, but tops(s) 6= tops(t).

After successful execution, the result will be a set of match equations with
components X ✂ e, and Env ✂ env , which represents a matching substitution.

Theorem 7.3. The algorithm 7.2 (LetrecEnvMatch) is sound and complete.
It runs in non-deterministic polynomial time. The corresponding decision prob-
lem is NP-complete. The collecting version of LetrecEnvMatch returns an
at most exponentially large, complete set of representations of matching substi-
tutions, where the representations are of at most polynomial size.

Proof. The reasoning for soundness, completeness and termination in polynomial
time is a variation of previous arguments. The nonstandard part is fixing the
correspondence of environment parts step-by-step and keeping the scoping.

8 Conclusion and Future Research

We constructed a nominal letrec unification algorithm, several nominal letrec
matching algorithms for variants, which all run in nondeterministic polynomial
time. Future research is to investigate extensions with environment variables
Env , and to investigate nominal matching together with equational theories.
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