
Decidable structures between Church-style and
Curry-style
Ken-etsu Fujita1 and Aleksy Schubert2

1 Gunma University
Tenjin-cho 1-5-1, Kiryu 376-8515, Japan
fujita@cs.gunma-u.ac.jp

2 The University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland
alx@mimuw.edu.pl

Abstract
It is well-known that the type-checking and type-inference problems are undecidable for second
order λ-calculus in Curry-style, although those for Church-style are decidable. What causes the
differences in decidability and undecidability on the problems? We examine crucial conditions
on terms for the (un)decidability property from the viewpoint of partially typed terms, and
what kinds of type annotations are essential for (un)decidability of type-related problems. It is
revealed that there exists an intermediate structure of second order λ-terms, called a style of
hole-application, between Church-style and Curry-style, such that the type-related problems are
decidable under the structure. We also extend this idea to the omega-order polymorphic calculus
Fω, and show that the type-checking and type-inference problems then become undecidable.

1998 ACM Subject Classification D.3.1 Formal Definitions and Theory, F.4.1 Mathematical
Logic

Keywords and phrases 2nd-order λ-calculus, type-checking, type-inference, Church-style and
Curry-style

Digital Object Identifier 10.4230/LIPIcs.RTA.2013.190

1 Introduction

Traditionally, following the fathers [6, 7], we have two styles of λ-terms with types [2],
Church-style1 and Curry-style. Terms in the style of Church contain full type annotation, so
that this style enjoys uniqueness of typing derivations. On the other hand, terms in the style
of Curry are the same as those of the type free λ-calculus, and a type inference algorithm
may compute their types.

The two styles give no distinction to solvability of type-related problems of simply typed
λ-calculus. However, in the case of second order λ-calculus (Girard and Reynolds), it is
well-known that the type checking and type inference problems are decidable for Church-style2
but undecidable for Curry-style [32]. The two definitions of λ-terms are so different, and our
motivation behind this work is to make it clear what is a crucial condition on terms for the
(un)decidable property of the problems.

1 The terminology, Church-style terms here are also called pseudo-terms á la de Bruijn in the recent
literature [3].

2 The problems are, in general, decidable for normalizing PTS (Pure Type Systems) with a finite set of
sorts [31].

© Ken-etsu Fujita and Aleksy Schubert;
licensed under Creative Commons License CC-BY

24th International Conference on Rewriting Techniques and Applications (RTA’13).
Editor: Femke van Raamsdonk; pp. 190–205

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917820?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.190
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-53-8
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

K. Fujita and A. Schubert 191

Table 1 Decidability of TCP, TIP, and TPP for λ2-terms with intermediate styles.

Styles TCP TIP TPP

Church Yes ↪→ Yes ↪→ No [30]
Hole-application Y es ←→ Y es ↪→ No

Domain-free No [11] ←→ No [11] ←→ No [24]
Type-free No [13] ←→ No [13] ←↩ No [13]
Curry No [32] ←→ No [32] ←↩ No [32]

For this principal objective, we introduce three intermediate structures called domain-free,
hole-application, and type-free, see Table 1, between Church-style and Curry-style based
on the previous work [11]. In the table, TCP denotes type checking, TIP type inference,
and TPP typability problems, respectively. “Yes” means that a corresponding problem is
decidable, and “No” undecidable. Arrows (↪→,←→,←↩) denote reduction relations between
problems following forthcoming Proposition 4. Our idea on the intermediate structures
is quite natural from the viewpoints of type erasure mapping and partially typed terms.
Terms in the style of hole-application contain domains of λ-abstraction λx :A.M just like
Church-style, but omit the information on a polymorphic instance such as M [] instead of
M [A]. On the other hand, terms in the style of domain-free contain the information on a
polymorphic instance M [A] like Church-style, but omit domains of λ-abstraction such as
λx.M rather than λx :A.M . Terms in the style of type-free contain no type information
at all like Curry-style, but contain information holders [] to be filled with a type. We will
introduce an order on the styles via type erasure mappings, and in terms of the intermediate
structures, we will identify the boundaries between decidability and undecidability with
respect to the type-related problems, see also Figure 1 in the next section.

The partial type reconstruction problem can be regarded as a type inference problem
for mixed styles of the intermediate structures. Following Boehm [5] and Pfenning [26, 27],
partial type reconstruction is in general undecidable. From the viewpoint of partially typed
terms, the intermediate structures including Church and Curry-styles can be regarded as a
unifying framework, under which various systems can be compared comfortably.

Our work concerns both theoretical and practical aspects of programming. From the per-
spective of designing programming languages, we investigate a trade-off between decidability
for type-related problems and comfortable programming with less annotations (overheads) in
terms. This paper makes the following particularly theoretical contributions (i, ii, iii).

It is proved that (i) TIP is decidable (Y es in Table 1), but (ii) TPP is undecidable (No in
Table 1) for hole-application λ2. Hence, compared with Church-style, type inference problems
remain decidable even after deleting polymorphic instance information M [] from M [A], but
deleting a polymorphic domain λx.M from λx :A.M makes the problems undecidable. The
introduction of hole-application reveals that putting polymorphic domains on terms is very
important to design systems with decidable type inference. Notably, the annotation of
function signatures with types is used in main-stream languages such as C or Java, so this
annotational overhead seems to be acceptable for the community of programmers.

Finally, we extend this idea to the omega-order polymorphic calculus Fω, and then show
that (iii) TCP and TIP for hole-application Fω become undecidable.

This paper is organized as follows. We introduce the second order λ-calculus λ2 in five
styles and basic definitions, and show fundamental properties of the system in Section 2.
Section 3 demonstrates that the typability problem for hole-application λ2 is undecidable.
Next, a type inference algorithm for hole-application λ2 is provided, and we prove that the

RTA’13

192 Decidable structures between Church-style and Curry-style

algorithm is sound and complete. Then, the subject reduction property for hole-application
λ2 is proved. Section 4 handles hole-application Fω. Section 5 summarizes results for λ2 in
five styles (Table 1), concluding remarks, and related work.

2 Second-order lambda-calculus λ2 in five styles

2.1 Church-style and Curry-style λ2

We introduce the second-order lambda-calculus λ2 (Girard and Reynolds) in the styles of
Church and Curry, respectively. Types, λ-terms for each style, and inference rules are usually
defined as follows:

I Definition 1 (λ2 in Church-style and Curry-style).
λ2-types:

A ::= X | (A→ A) | ∀X.A

λ2-terms in Church-style:

M ::= x | (λx :A.M) | (MM) | (ΛX.M) | (M [A])

Contexts:
A context denoted by Γ or Σ is a set of a declaration of the form x : A with distinct
variables as subjects. We write Γ(x) = A for x :A ∈ Γ and dom(Γ) for {x | x :A ∈ Γ}.
Inference rules for Church-style:

Γ, x :A `Ch x : A (var)

Γ, x :A1 `Ch M : A2
Γ `Ch λx :A1.M : A1 → A2

(→ I) Γ `Ch M1 : A1 → A2 Γ `Ch M2 : A1
Γ `Ch M1M2 : A2

(→ E)

Γ `Ch M : A
Γ `Ch ΛX.M : ∀X.A (∀I)? Γ `Ch M : ∀X.A

Γ `Ch M [A1] : A[X := A1]
(∀E)

where (∀I)? denotes that the eigenvariable condition X 6∈ FV(Γ) is imposed on the
application, such that X never appears free in Γ.
λ2-terms in Curry-style:

M ::= x | (λx.M) | (MM)

Inference rules for Curry-style:

Γ, x :A `Cu x : A (var)

Γ, x :A1 `Cu M : A2
Γ `Cu λx.M : A1 → A2

(→ I) Γ `Cu M1 : A1 → A2 Γ `Cu M2 : A1
Γ `Cu M1M2 : A2

(→ E)

Γ `Cu M : A
Γ `Cu M : ∀X.A (∀I)?

Γ `Cu M : ∀X.A
Γ `Cu M : A[X := A1]

(∀E)

where (∀I)? denotes the eigenvariable condition X 6∈ FV(Γ).

K. Fujita and A. Schubert 193

Figure 1 λ2-terms with intermediate structures between Curry-style and Church-style.

2.2 Intermediate structures between Church and Curry

Next we define λ-terms with intermediate structures [11] between Church-style and Curry-
style, which are called domain-free, hole-application, and type-free. We simply write Ch,
Df, Ha, Tf, and Cu, respectively, for the styles, and we employ the terminology λ-terms in
s-style for each s ∈ {Ch,Df,Ha,Tf,Ch}.

I Definition 2 (Domain-free, hole-application, and type-free).
Domain-free style λ2-terms:

M ::= x | (λx.M) | (MM) | (ΛX.M) | (M [A])

Hole-application style λ2-terms:

M ::= x | (λx :A.M) | (MM) | (ΛX.M) | (M [])

Type-free style λ2-terms:

M ::= x | (λx.M) | (MM) | (Λ.M) | (M [])

Inference rules for domain-free, hole-application, and type-free styles, respectively, are
defined similarly.

Based on the Curry-Howard isomorphism [17], well-typed λ2-terms play the role of codes
for proofs. From the viewpoint of proof codes, well-typed λ-terms contain three kinds of
information on proofs: (i) what inference rule is applied, (ii) where it is applied, and (iii) how
to instantiate a rule. A mapping, which erases some of above information one by one from
Church-style provides more abstract λ-terms with an intermediate structure. We examine
what kind of information on λ-terms is the most essential for (un)decidability of type-related
problems.

I Definition 3 (Order on styles and erasure mapping). We define an order on the styles,
see Figure 1, such that Cu < Tf < Df < Ch and Tf < Ha < Ch. For styles s, t ∈
{Cu,Tf,Ha,Df,Ch} with s < t, an erasure | · |ts is defined naturally as a function from t-style
λ2-terms to s-style λ2-terms as follows:
|x|Ch

Df = x, |λx :A.M |Ch
Df = λx.|M |Ch

Df , |M1M2|Ch
Df = |M1|Ch

Df |M2|Ch
Df ,

|ΛX.M |Ch
Df = ΛX.|M |Ch

Df , |M [A]|Ch
Df = |M |Ch

Df [A]; and similarly defined for the rest cases.

RTA’13

194 Decidable structures between Church-style and Curry-style

2.3 Basic properties of the systems
I Proposition 1 (Uniqueness of types for Church-style).

If Γ `Ch M : A1 and Γ `Ch M : A2 then we have A1 ≡ A2.

I Proposition 2 (Erasure and lifting). Let s, t ∈ {Cu,Tf,Ha,Df,Ch} with s < t.
1. If Γ `t M : A then Γ `s |M |ts : A.
2. If Γ `s M : A then there exists a t-style λ2-term N such that |N |ts = M and Γ `t N : A.

I Proposition 3 (Generation lemma). Let s ∈ {Tf,Df,Ha,Ch}.
1. If Γ `s x : A then Γ(x) = A.
2. If Γ `s λx : A0.M : A1 then Γ, x : A0 `s M : A2 and A1 = (A0 → A2) for some A2,

provided that s ≥ Ha.
3. If Γ `s λx.M : A1 then Γ, x : A0 `s M : A2 and A1 = (A0 → A2) for some A0, A2,

provided that s ≤ Df.
4. If Γ `s M1M2 : A1 then Γ `s M1 : A0 → A1 and Γ `s M2 : A0 for some A0.
5. If Γ `s ΛX.M : A1 then Γ `s M : A2 and A1 = ∀X.A2 together with X 6∈ FV(Γ) for

some A2, provided that s > Tf.
6. If Γ `Tf Λ.M : A1 then Γ `Tf M : A2 and A1 = ∀X.A2 together with X 6∈ FV(Γ) for

some A2.
7. If Γ `s M [A] : A1 then Γ `s M : ∀X.A2 and A1 = A2[X := A] for some A2, provided

that s ≥ Df.
8. If Γ `s M [] : A1 then Γ `s M : ∀X.A2 and A1 = A2[X := A] for some A,A2, provided

that s ≤ Ha.
Remarked that similar generation lemma holds for Curry-style λ2, see [2, 32].

2.4 Type-related problems and relations between problems
I Definition 4 (Type-related problems parameterized with styles).
1. Type checking problem of s-style terms denoted by TCP(s):

Given an s-style λ-term M , a type A, and a context Γ, determine whether Γ `s M : A.
2. Type inference problem of s-style λ-terms denoted by TIP(s):

Given an s-style λ-term M and a context Γ, determine whether Γ `s M : A for some
type A.

3. Typability problem of s-style terms denoted by TPP(s):
Given an s-style λ-term M , determine whether Γ `s M : A for some context Γ and type
A.

We show relations between type-related problems. For instance, if TCP(s) is reduced to
TIP(s), then we write TCP(s) ↪→ TIP(s) for this. We write TCP(s) ←→ TIP(s) for both
TCP(s) ↪→ TIP(s) and TIP(s) ↪→ TCP(s).

I Proposition 4 (Reductions between type-related problems).
1. TCP(s) ↪→ TIP(s) for s ∈ {Cu,Tf,Df,Ha,Ch}.
2. TIP(s) ↪→ TCP(s) for s ∈ {Cu,Tf,Df,Ha} .
3. TIP(s) ↪→ TPP(s) for s ∈ {Df,Ha,Ch}.
4. TPP(s) ↪→ TIP(s) for s ∈ {Cu,Tf,Df}.

Proof. We show only the case of 3 where s = Df here.
3. Let Γ = {a1 : A1, . . . , an : An}. Γ `s M : B for some B if and only if Σ `s M0 : B for

some B and some Σ, where z0, z1, z, y, Y are fresh variables, and
M0 = z0(z1(z[∀X.X]))(z1z) (z[(A1 → · · · → An → Y)→ Y](λa1 . . . λan.yM)).

K. Fujita and A. Schubert 195

Suppose that Γ `s M : B for some B. Then M0 is typable under some context Σ such as
Σ(z) = ∀X.X.
In turn, ifM0 is typable then type of z should be a universal type, to say, ∀X.F(X), where
F is a second-order variable with arity 1. From consistent typability of the two occurrences
of z1, we have the following unification equation: F(∀X.X) .= ∀X.F(X). Observe that the
only solution to the unification equation is [F := (X 7→ X)], i.e., the identity function,
which implies that type of z is ∀X.X. Hence, we can recover the context Γ. J

3 Hole-application λ2

We show that typability problems for hole-application λ2 are undecidable. Next, in order
to show decidability of type checking and type inference problems for hole-application λ2,
we provide a sound and complete algorithm for type inference. First, inference rules for
hole-application λ2 are listed in the following:

Γ `hole x : Γ(x)
(var)

Γ, x :A1 `hole M : A2
Γ `hole λx :A1.M : A1 → A2

(→ I) Γ `hole M1 : A1 → A2 Γ `hole M2 : A1
Γ `hole M1M2 : A2

(→ E)

Γ `hole M : A
Γ `hole ΛX.M : ∀X.A (∀I)? Γ `hole M : ∀X.A

Γ `hole M [] : A[X := B]
(∀E)

3.1 TPP for hole-application λ2
In order to show that TPP(Ha) is undecidable, we first introduce a restricted version of
second-order unification, called a flat form [12], which can fit type constraints induced from
hole-application terms. Then the undecidable unification problem is reduced to TPP(Ha) for
hole-application λ2. Although this reduction method is similar to that used in the previous
work [12, 13, 14], we introduce the flat form and the encoding here to make the paper
self-contained.

3.2 Second-order unification in flat form
We define expressions for unification problems. For this, the set of type variables is divided
into three countable subsets: the set of first-order variables V1, the set of second-order
functional variables V2, and the set of first-order constants C. Then unification expressions
are defined from first-order variables denoted by X and constants denoted by C, together
with a binary constant → and second-order functional variables F(n)A1 · · ·An with arity n.
The set of first-order expressions is denoted by UE1, and the expressions of first-order part
are written by A,B as follows:

A,B ∈ UE1 ::= X | C | (A→ B).
The sets of variables, constants, and sub-expressions in unification expressions are defined
respectively as follows:

UVar(X) = {X}, UVar(C) = ∅, UVar(A→ B) = UVar(A) ∪UVar(B),
UVar(F(n)A1 · · ·An) = {F(n)}.
UCon(X) = ∅, UCon(C) = {C}, UCon(A→ B) = UCon(A) ∪UCon(B),
UCon(F(n)A1 · · ·An) = ∅.
UExp(X) = {X}, UExp(C) = {C}, UExp(A→ B) = {A→ B} ∪UExp(A) ∪UExp(B),
UExp(F(n)A1 · · ·An) = ∅.

RTA’13

196 Decidable structures between Church-style and Curry-style

The set E of unification equations in flat form is defined as follows:
E ::= ∅ | {A .= B} ∪ E
| {FX1 . . . Xn

.= X → A1 → · · · → An → o,FC1 . . . Cn
.= X ′ → C1 → · · · → Cn → o}∪E,

provided that F is a functional variable with arity n ≥ 1, X,X ′, Xi are fresh 1st-order
variables, C1, . . . , Cn are new and pair wise distinct constants appeared nowhere else, o is a
distinguished constant, and UVar(A1, . . . , An) = ∅.

We remark that each argument of a functional variable is restricted so that they are all
1st-order variables or pair wise distinct constants. Moreover, an equation with a functional
variable always consists in such a pair of two equations, and functional variables in flat form
appear only in this way.

Let E be a finite set of unification equations in flat form. Then UVar(E), UCon(E), and
UExp(E) are naturally defined as well. A substitution is a partial function from the set of
variables of unification expressions V1 ∪ V2 to UE1 ∪ {(X1, . . . , Xn) 7→ A | A ∈ UE1}. Let S,
S1, and S2 range over the set of substitutions. A substitution S is naturally extended into a
function S′ from UE1 ∪ V2 to UE1 ∪ {(X1, . . . , Xn) 7→ A | A ∈ UE1}, such that

S′(X) = S(X), S′(C) = C, S′(A→ B) = S′(A)→ S′(B), and
S′(FA1 . . . An) = B[X1 := S′(A1), . . . , Xn := S′(An)],

where F is a second-order variable with arity n and S(F) = (X1, . . . , Xn) 7→ B for B ∈ UE1.
We may write simply S for S′. An instance E is solvable if there exists a substitution S such
that S(A) = S(B) and S(FA1 . . . An) = S(B′) for all unification equations in E in the form
of either A .= B or FA1 . . . An

.= B′.

I Proposition 5 ([12]). The second-order unification problem in flat form is undecidable.

3.3 Reduction from flat form to TPP(Ha)
For encoding an instance of second-order unification E in flat form, we assume one-to-one
mappings between unification expressions and term variables of λ2. Based on this, we
write xA, yA for A ∈ UExp(B) where B ∈ UE1, and xF, yF for F ∈ V2. In particular, the
distinguished constant o ∈ C provides xo, yo, yo2 , and so on. We write ok → o for type
(o→ (· · · → (o→ o))) with (k + 1)-times o. As a shorthand, we define λ2-terms such that
M []n+1 = (M [])[]n, M []0 = M .

I Definition 5 (Encoding of unification expressions). 1. Case E of ∅: [[E]] = xo
2. Case E of {A .= B} ∪ E0: [[E]] = yo4 (yAxB) [[A]] [[B]] [[E0]]
3. Case E of Ef ∪ E0, where Ef = {FX1 . . . Xn

.= B1,FC1 . . . Cn
.= B2} together with

B1 = (X → A1 → · · · → An → o) and B2 = (X ′ → C1 → · · · → Cn → o):
[[E]] = yo9 (yFxF) (yF(ΛZ1 . . .ΛZn.(ΛZ.λz :Z.λz1 :Z1 . . . λzn :Zn.xo)[]))

(yB1(xF[]n)) (yB1((ΛZ.λz :Z.λz1 :A1 . . . λzn :An.xo)[]))
(yB2(xF[]n)) (yB2((ΛZ ′.λz′ :Z ′.λz1 :C1 . . . λzn :Cn.xo)[]))
[[B1]] [[B2]] [[E0]]

4. For A ∈ UE1, [[A]] is defined as follows:
a. [[X]] = yo1(yXxX)
b. [[C]] = yo1(yCxC)
c. [[A→ B]] = yo4 (yB(xA→BxA)) (yA→BxA→B) [[A]] [[B]]

5. Σ∆ = Σo ∪ Σ(∆), where Σo and Σ(∆) are defined as follows for ∆ = A or E:
a. Σo = {xo : o, yo1 : o→ o, yo2 : o→ o→ o, . . . , yok

: ok → o} for k = 9
b. Σ(∆) = {xC : C, yC : C → o | C ∈ UCon(∆)}

K. Fujita and A. Schubert 197

An idea on encoding of first-order follows the structure of expressions, such that a unification
expression provides an λ-term consisting of consecutive application of variables associated to
each sub-expression, which induces type constraints leading to substitutions for the unification
expression. An idea on encoding of second-order is such that a term variable xF associated
to a functional variable F of unification should have a universal type, whose instance by
application of (∀E) must be equivalent to a substitution instance of the right-hand side B of
the corresponding unification equation F(· · ·) .= B.

I Lemma 6. Let A ∈ UE1, ΣA = Σo ∪ Σ(A), and S be a substitution from UE1 to UE1.
Then we have ΣA,Γ `hole [[A]] : o for some context Γ such that Γ(xB) = S(B) and Γ(yB) =
(S(B)→ o) for each B ∈ UExp(A).
Proof. We remark that Γ should declare statements for all free variables xB , yB in [[A]] where
B ∈ UExp(A). By induction on the structure of A. We show one case here.
1. Case of A = (A1 → A2):

From the induction hypotheses, we have ΣA1 ,Γ1 `hole [[A1]] : o and ΣA2 ,Γ2 `hole [[A2]] : o,
such that Γ1(xB1) = S(B1), Γ1(yB1) = S(B1) → o for each B1 ∈ UExp(A1) and
Γ1(xB2) = S(B2), Γ1(yB2) = S(B2)→ o for each B2 ∈ UExp(A2). Then we can merge Γ1
and Γ2 into Γ so that Γ(xA1→A2) = S(A1)→ S(A2) and Γ(yA1→A2) = Γ(xA1→A2)→ o,
since Γ1(xB) = S(B) = Γ2(xB) for B ∈ UExp(A1) ∩ UExp(A2). Hence, We have
ΣA,Γ `hole [[A1 → A2]] : o for some Γ with the desired property. J

I Proposition 6. A flat form E is solvable if and only if ΣE ,Γ `hole [[E]] : o for some Γ.
Proof. The only-if part can be verified so that Γ is given by a unifier of E. We show here
the if-part. Suppose that the encoding [[E]] has type o under ΣE and some context Γ. From
consistent type of the encoding of first-order equations A′ .= B′ ∈ E, we have Γ(xA′) = Γ(xB′).
From this and Lemma 6, we can define a substitution S for first-order variables in UVar(E)
such that S(A′) = Γ(xA′) = Γ(xB′) = S(B′). Next, we verify a consistent type of the
encoding of second-order equations. Considering the first and second arguments of yo9 , the
term xF has type ∀Z1 . . . ∀Zn.(A→ Z1 → · · · → Zn → o) for some A. Here, we can assume
that A should contain no quantifiers ∀, since the type A is simply related to the first argument
type of xB1 and xB2 . Even if A contained for instance ∀Y.B, then one could replace this with
B[Y := Y ′] using a fixed type variable Y ′. Then, from consistent type of the three occurrences
of each argument of yB1 , the three terms, xB1 , xF[]n, and (ΛZ.λz :Z.λz1 :A1 . . . λzn :An.xo)[],
all have the same type (A[Z1 := A1, . . . , Zn := An] → A1 → · · · → An → o). Following a
similar pattern, the three arguments of yB2 are also well-typed. Therefore, a flat form E

becomes solvable under a substitution S such that
S(F) = (Z1, . . . , Zn) 7→ (A→ Z1 → · · · → Zn → o), S(Xi) = Ai for 1 ≤ i ≤ n,
S(X) = A[Z1 := A1, . . . , Zn := An], and S(X ′) = A[Z1 := C1, . . . , Zn := Cn]. J

I Theorem 7 (TPP for hole-application λ2). TPP is undecidable for hole-application λ2.
Proof. A flat form E is solvable

iff Γ,ΣE `hole [[E]] : o for some Γ by Proposition 6
iff Γ `hole λv :∀X.(X → o).v[](λ~z :ΣE(~z).[[E]]) : A for some A and some Γ.

Here, we write λ~z : ΣE(~z).[[E]] for λz1 : ΣE(z1) . . . λzn : ΣE(zn).[[E]] with {z1, . . . , zn} =
dom(ΣE). J

3.4 TCP and TIP for hole-application λ2
From Proposition 4, the problems TCP(Ha) and TIP(Ha) are equivalent, and we provide a
type inference algorithm type(Γ;M), which computes a type of a hole-application term M

under a context Γ. The algorithm involves a unification procedure, for which we introduce

RTA’13

198 Decidable structures between Church-style and Curry-style

new type variables called unification variables consisting of first-order variables denoted by
α, β and functional variables denoted by F. For the technical reason, the following syntax
Â ∈ Uexp is defined from types and first-order unification variables:

Â ∈ Uexp ::= X | α | (Â→ Â) | ∀X.Â
A substitution denoted by S used in unification should operate only on unification variables,
such that S(α), S(F)(β) ∈ Uexp and S(X) = X, i.e., the domain of substitutions is the set of
unification variables, and the range is Uexp.

I Definition 8 (Type inference algorithm type).
1. type(Γ;x) = Γ(x)
2. type(Γ;λx :A.M) = (A→ type(Γ, x :A;M))
3. type(Γ;MN) =

let B̂1 = type(Γ;M) and (* α is a fresh unification variable *)
let B̂2 = type(Γ;N) and S = unify(B̂1, B̂2 → α) in S(α)

4. type(Γ; ΛX.M) = (* S is an arbitrary substitution for unification variables *)
let B̂ = type(Γ;M) and X 6∈ FV(Γ) in ∀X.S(B̂)

5. type(Γ;M []) =
let B̂ = type(Γ;M) and S = unify(∀X.F(X), B̂) (* β is a fresh unification variable,
in S(F)(β) and F is a fresh functional unification variable with arity 1 *)

We remark that second-order unification used in the algorithm is a special case of patterns
unification of Miller [23], such that arguments of a functional variable are distinct bound
variables in expressions. Since unification of patterns is decidable and gives a most general
unifier if unifiable [23], the unification problem such as unify(∀X.F(X), B̂) is decidable. Hence,
the unification procedure returns the most general solution to the type inference problem.
In this sense, type gives rise to a decidable sub-language of which is derived by the general
translation V of Pfenning [26] in the case of the omega-order calculus Fω.

Let ⊥ ≡ ∀X.X. We show an example of type(〈〉; ΛZ.λx :⊥.x[]x) in the following:
1. type(x :⊥;x[]) = (X 7→ X)β = β for a fresh unification variable β,

where unify(∀X.F(X),⊥) = [F := (X 7→ X)].
2. type(x :⊥;x[]x) = α for a fresh unification variable α,

where unify(β,⊥ → α) = [β := (⊥ → α)].
3. type(〈〉;λx :⊥.x[]x) = (⊥ → type(x :⊥;x[]x)) = (⊥ → α)
4. type(〈〉; ΛZ.λx :⊥.x[]x) = ∀Z.s(type(〈〉;λx :⊥.x[]x)))

= ∀Z.(⊥ → s(α)) for an arbitrary substitution s.
In addition, we show a proof figure below, which provides a type for the term. Although the
term may have yet another type, all possible types for ΛZ.λx :⊥.x[]x can be expressed by
the inferred type type(〈〉; ΛZ.λx :⊥.x[]x).

x :⊥ `hole x : ⊥
x :⊥ `hole x[] : ⊥ → Z

(∀E)
x :⊥ `hole x : ⊥

x :⊥ `hole x[]x : Z
(→ E)

`hole λx :⊥.x[]x : ⊥ → Z
(→ I)

`hole ΛZ.λx :⊥.x[]x : ∀Z.(⊥ → Z)
(∀I)?

One of the points of the algorithm is that any type to be filled into a hole [] can be represented
by a unification variable, which is handled by a decidable fragment of second-order unification.
Another point is that a universal type of a term ΛX.M should be in the form of ∀X.S(Â),
where Â is a type of M , and S is an arbitrary substitution for unification variables in Â. In
the process of unification, such an arbitrary substitution is handled as delayed substitutions
at an object level.

K. Fujita and A. Schubert 199

I Proposition 7 (Soundness and completeness of type).
1. If type(Γ;M) = Â then Γ `hole M : Â.
2. Given a context Γ and a term M , let A be a type such that Γ `hole M : A. Then we have

type(Γ;M) = B̂ such that A = S(B̂) under some substitution S for unification variables.

Proof. A type system for hole-application λ2 to handle Â can be naturally introduced, such
that infer Γ `hole M [] : A[X := B̂] from Γ `hole M : ∀X.A. We claim that if Γ `hole M : Â
then Γ `hole M : S(Â) for any substitution S for unification variables.

In the following, we show some the cases here. The algorithm is proved to be sound by
induction on the structure of M .

1-1. Case of type(Γ;M []) = S(F)(β), where S = unify(∀X.F(X), type(Γ;M)):
From the induction hypothesis, we have Γ `M : type(Γ;M), and then Γ `M : S(type(Γ;M))
where S(type(Γ;M)) = ∀X.S(F)(X). Hence, we establish that Γ `M [] : S(F)(β) where β
is a fresh unification variable.
1-2. Case of type(Γ; ΛX.M) = ∀X.S(type(Γ;M)) for any S, where X 6∈ FV(Γ):
From the induction hypothesis, we have Γ `M : type(Γ;M), and then Γ `M : S(type(Γ;M))
for any substitution S for unification variables. Hence, Γ ` ΛX.M : ∀X.S(type(Γ;M)).

The completeness property is proved by induction on the derivation of Γ `hole M : A.

2-1. Γ ` ΛX.M : ∀X.A from Γ `M : A, where X 6∈ FV(Γ):
From the induction hypothesis, we have type(Γ;M) = Â1 where A = S(Â1) for some S.
Then we confirm that ∀X.A = ∀X.S(Â1) = type(Γ; ΛX.M).
2-2. Γ `M [] : A[X := B] from Γ `M : ∀X.A:
From the induction hypothesis, we have type(Γ;M) = Â1 and ∀X.A = S(Â1) for some S.
Then we have a unifier S = unify(∀X.F(X), Â1), since ∀X.S(F)(X) = S(Â1) = ∀X.A where
S(F)(X) = A. Hence, A[X := B] = S(F)(B) = S(F)(β)[β := B] = S1(type(Γ;M [])) for
some S1, such that S1 = S ∪ {[β := B]} where β is a fresh unification variable.

J

3.5 Subject reduction of hole-application λ2
We define reduction rules for hole-application terms. The idea is to introduce a fresh and
distinguished type variable at each reduction of type variable abstraction. Then, from a
typing derivation, we can extract a concrete type, by which the fresh type variable should be
replaced.

I Definition 9 (Reduction rules for hole-application λ2).

(β) (λx :A.M)N →M [x := N]
(βt) (ΛX.M)[]→M [X := α] where α is a fresh type variable.

For instance, we have the following judgement: `hole ΛY.(ΛX.λx :X.x)[] : ∀Y.((Y → Y)→
Y → Y). Then ΛY.(ΛX.λx :X.x)[] → ΛY.λx :α.x where α is a fresh type variable. Now,
from a derivation of the judgement:

x :X ` x : X
` λx :X.x : X → X

(→ I)

` ΛX.λx :X.x : ∀X.(X → X)
(∀I)?

` (ΛX.λx :X.x)[] : (Y → Y)→ Y → Y
(∀E)

` ΛY.(ΛX.λx :X.x)[] : ∀Y.((Y → Y)→ Y → Y)
(∀I)?

RTA’13

200 Decidable structures between Church-style and Curry-style

a replacement for α can be extracted such that R(α) = (Y → Y). Note that this replacement
should not be called a substitution, since free Y in R(α) is to be in the scope of ΛY of the
example ΛY.λx :R(α).x.
I Proposition 8 (Subject reduction). If Γ `hole M : A and M → N , then Γ `hole R(N) : A for
some replacement R for fresh variables.

Proof. By induction on the derivation M → N . We show some of the interesting cases.
1. Γ ` (ΛX.M)[] : A and (ΛX.M)[]→M [X := α]:

From the generation lemma, we have Γ ` ΛX.M : ∀X.A′ where A = A′[X := B] and
Γ `M : A′ where X 6∈ FV(Γ) for some A′, B. Then we have Γ `M [X := B] : A′[X := B].
Hence, Γ ` R(M [X := α]) : A′[X := B] for some replacement R such that R(α) = B.

2. Γ `M [] : A and M []→M1[]:
From the generation lemma, we have Γ ` M : ∀X.A′ with A = A′[X := B] for some
A′, B. From the induction hypothesis w.r.t. Γ ` M : ∀X.A′ and M → M1, we have
Γ ` R(M1) : ∀X.A′ for some R, and hence Γ ` R(M1)[] : A′[X := B]. J

Finally, we extend the idea of hole-application to an omega-order system Fω.

4 Hole-application Fω

We introduce a formal system of hole-application Fω. The system consists of kinds K, type
constructors A, hole-application terms M , and contexts Γ. For a kind K, an order ord(K) is
defined, such that ord(?) = 2 and ord(K1 → · · · → Kn → ?) = max{ord(Ki) | 1 ≤ i ≤ n}+ 1.
A fragment of Fω restricted to K = ?, i.e., ord(K) = 2, coincides with λ2.

Compared with hole-application λ2, hole-application Fω has a hole []K with a kind K,
which is to be filled with a type constructor of kind K, see the inference rule (ΠE) in the
following. Such a hole has already been introduced in Pfenning [26].

I Definition 10 (Hole-application Fω).
1. Kinds

K ::= ? | (K → K)

2. Type constructors

A ::= X | (A→ A) | ΠX :K.A | ΛX :K.A | AA

3. Hole-application terms

M ::= x | λx :A.M |MM | ΛX :K.M |M []K

4. Contexts
Γ ::= 〈〉 | X :K,Γ | x :A,Γ

Next we define inference rules for well-formed contexts, well-formed kinds, well-formed
elements of a kind, and well-formed elements of a type, respectively. Here, we show rules
only for well-formed elements of a type.
1. Well-formed elements of a type:

` Γ x :A ∈ Γ
Γ ` x : A (var)

Γ ` A1 : ? Γ, x :A `M : A2

Γ ` (λx :A1.M) : (A1 → A2)
(→ I) Γ `M1 : (A1 → A2) Γ `M2 : A1

Γ `M1M2 : A2
(→ E)

K. Fujita and A. Schubert 201

Γ ` K Γ, X :K `M : A
Γ ` (ΛX :K.M) : (ΠX :K.A)

(ΠI)
Γ `M : (ΠX :K.A1) Γ ` A2 : K

Γ `M []K : A1[X := A2]
(ΠE)

Γ `M : A1 Γ ` A2 : ? A1 =βη A2

Γ `M : A2
(conv)

Even in the case of omega-order, the two problems TCP(Ha) and TIP(Ha) are equivalent
each other as proved by Proposition 4. Toward type inference for hole-application Fω, type
constructors are extended with fresh type variables called unification variables denoted by
α, β, F,G, as follows:

Â ::= X | α | (Â→ Â) | ΠX :K.Â | ΛX :K.Â | ÂÂ.
Here, we show that TIP and TCP for hole-application Fω are undecidable. For this, we give
a reduction from higher-order unification [16, 15] to TCP for hole-application Fω.

The theory of simply type λ-calculus is defined as usual, but in terms of type constructors
of Fω. Here, we assume the following variable conventions: F,G for free variables, and X,Y, Z
for constants or bound variables. In addition, ? stands for an atomic type.

Terms
t, s ::= X | F | ΛX.t | (t s)

Types
K ::= ? | (K → K)

Given a well-typed term t of simply typed λ-calculus, then define a type constructor t] of
hole-application Fω as follows, where a free variable F will be interpreted as a bound variable
such as ΠF :K.(· · ·) in Fω.
1. X] = X

2. F] = F
3. (ΛX.t)] = ΛX] :K.t], where X has type K
4. (t s)] = t] s]

Given an instance s .= t of higher-order unification, where {F1 : L1, . . . ,Fn : Ln} = FV(s)
together with type Li for each free variable Fi in s, {G1 : L′

1, . . . ,Gm : L′
m} = FV(t) with type

L′
i for each free variable Gi in t, and the terms s and t both have type (K1 → · · · → Kp → ?).

Then define a context Γs=t of hole-application Fω as follows:
{X1 : K1, . . . , Xp : Kp, Z : ?,
xs : (ΠF1 :L1 . . .ΠFn :Ln.(s]X1 . . . Xp → Z)), xt : (ΠG1 :L′

1 . . .ΠGm :L′
m.t

]X1 . . . Xp)}
I Proposition 9 (TCP(hole-Fω)). An instance of higher-order unification s .= t is solvable if
and only if Γs=t ` xs[]n~L(xt[]m~L′) : Z in hole-application Fω.

Proof. We show the if-part here. Suppose that Γs=t ` xs[]n~L(xt[]m~L′) : Z in hole-application
Fω. Then we have the following judgements by a chain of applications of (ΠE):

Γs=t ` xs[]n~L : (s]X1 . . . Xp → Z)[F1 := α1, . . . ,Fn := αn], and
Γs=t ` xt[]m~L′ : t]X1 . . . Xp[G1 := β1, . . . ,Gm := βm],

where αi, βj are fresh type variables called unification variables with appropriate kinds. From
consistent type of xs[]n~L(xt[]m~L′) under Γs=t, there exists a unifier for the unification equation:

(s]X1 . . . Xp → Z)[F1 := α1, . . . ,Fn := αn] .= t]X1 . . . Xp[G1 := β1, . . . ,Gm := βm]→ α,
where α is a unification variable with kind ?. That is, the following equation is solvable:

s]X1 . . . Xp[F1 := α1, . . . ,Fn := αn] .= t]X1 . . . Xp[G1 := β1, . . . ,Gm := βm].
Hence, s] .= t] is unifiable, and then exactly so is s .= t. J

I Theorem 11 (TCP(hole-Fω),TIP(hole-Fω)). TCP(hole-Fω) and TIP (hole-Fω) are equival-
ent and undecidable.
Proof. From Propositions 4 and 9. J

RTA’13

202 Decidable structures between Church-style and Curry-style

Remarked that the use of kind-labels annotated to holes is not essential in the proof for
undecidability. Since the context has xs : (ΠF1 :L1 . . .ΠFn :Ln.(s]X1 . . . Xn → Z)), we can
apply (ΠE) to A only with kind L1. In the next section, we will observe that another kind
of labels is essential for undecidability of TCP(hole-λ2) and TIP(hole-λ2), contrary to this
case of omega-order.

5 Concluding remarks and summary of results

The type-related problems (TCP, TIP, TPP) have been studied extensively from various
viewpoints, e.g., type ranks [19, 20, 11], type levels [21, 13, 14], partially typed terms
[5, 26, 27, 11]. Here, we discussed mainly from a perspective of type erasure mapping.
We have examined three intermediate λ2-terms between Church-style and Curry-style. In
particular, TCP and TIP for hole-application λ2-terms turn out to be decidable, providing a
type inference algorithm that is sound and complete. The algorithm involves two important
features: one is decidable second-order unification, which is a special case of patterns
unification [23, 8], and another is delayed substitutions, which are employed to denote
arbitrary substitutions at an object level. On the other hand, TPP(Ha) is undecidable for
hole-application λ2.

Next, we extended the idea of hole-application to Fω, and proved that TCP and TIP
then become undecidable for the system. Strictly speaking, the problems are undecidable for
F3 from undecidability of second-order unification [15].

We summarize the results on the type-related problems for λ2. Table 1 shows the
decidability results for λ2 and relations on the type-related problems. Reduction relations
(↪→,←→,←↩) between problems follow Proposition 4. To our knowledge, it is a new result that
TCP, TIP, and TPP are all equivalent in the case of domain-free, which implies a corollary
such that typability of domain-free λ2 is undecidable [24]. While the table shows that TPP
is undecidable for any style, TCP and TIP have the boundaries between hole-application
and domain-free. Compared with Church-style, TIP remains decidable even after deleting
polymorphic instance information on application of (∀E). However, on application of (→ I),
deleting polymorphic domains makes TIP undecidable. Following [11], finding out deleted
polymorphic domains is to find a polymorphic context, which leads to undecidable unification
(simple instances). Therefore, the introduction of hole-application reveals that polymorphic
domains are considered as the most essential information for (un)decidable TIP.

We make some observations on our results from the viewpoint of partially typed terms.

Partial type reconstruction

Partially typed terms (preterms) are defined as follows:
P ::= x | λx :A.P | PP | ΛX.P | P [A] | λx.P | P []

The problem of partial type reconstruction is a problem: given a context Γ and a preterm
P , determine whether there exists a term M in Church-style such that Γ `Ch M : A and
|M | = P for some A. The problem has been studied extensively and proved to be, in
general, undecidable by Boehm [5] and Pfenning [27]. Moreover, Pfenning [26] shows the
precise correspondence such that the problem in the n-th order λ-calculus is equivalent to
n-th order unification that is undecidable in general for n ≥ 2. Along this line, partial
type reconstruction problems for s-style terms can be defined naturally. Then TIP(s) (type
inference for s-style terms) is equivalent to partial type reconstruction for s-style terms.

Some of intermediate structures, e.g., domain-free and type-free, are already known and
investigated.

K. Fujita and A. Schubert 203

Domain-free style

Pure Type Systems [2] in domain-free style were studied in detail in Barthe and Sørensen
[4]. Domain-free systems serve as a good source language for CPS-translation. For instance,
domain-free λ2 and λ∃ are demonstrated in [10]. Parigot’s λµ-calculus [25] in domain-free
style is investigated in [9] for call-by-value second-order language with control operators.

Type-free style

The type reconstruction problem for type-free style λ2 was described in Pfenning [27] as an
instance for terms completely devoid of types except for [] and Λ, and this restricted problem
had been open. Recently, a negative answer to the problem is proved in [13]. The type-free
style gives a compact proof description, such that this style contains the complete information
on which and where inference rules are applied á la Church-style, but no information on
what types are involved in the rules á la Curry-style.

Partially typed terms with labels

Another interesting variant of λ2-terms is partially typed terms together with labels [11].
Labels denoted by a are introduced into preterms as follows:

P ::= x | λx : [A]a.P | PP | ΛX.P | P [A]a | λx : []a.P | P []a
Here, the placeholder []a indicates that a type has been erased, and moreover, the label a in
[]a will be used to identify the occurrences of [], i.e., the holes [] with the same label should
be obtained by erasing the same type.

Preterms with no labels can be translated to preterms with labels using fresh ones, such
that bλx.Mc = λx : []a.bMc for a fresh label a and bM []c = bMc[]a for a fresh label a. Hence,
Γ ` P : A without labels iff Γ ` bP c : A with labels, which implies that the type-related
problems of preterms can be embedded into those with labels. For instance, the type-related
problems of domain-free style with labels:

M ::= x | λxa.M |MM | ΛX.M |M [A],
and the problems of type-free style with labels:

M ::= x | λxa.M |MM | Λ.M |M []a
are also undecidable. In addition, TPP of hole-application style with labels:

M ::= x | λx :A.M |MM | ΛX.M |M []a
is undecidable by a reduction from TPP for Church-style [30] without labels, as follows:

Γ `Ch M : A for some Γ and some A if and only if Γ `holea dMe : A for some Γ and some
A, where dM [A]e = (λv : (A→ A).dMe[]a)(λx :A.(ΛX.λy :X.y)[]ax).
Although TCP and TIP for hole-application without labels are to be decidable in this paper,
the two problems with labels become undecidable by a reduction from TPP of hole-application
with labels, as follows: Let {x1, . . . , xn} = FV(M).

Γ `holea M : A for some Γ, A iff z1 : ∀X.X, . . . , zn : ∀X.X `holea 〈M〉 : A for some A,
where 〈xi〉 = zi[]ai for a fresh variable zi and a fresh label ai.
Hence, the type checking problem for hole-application with labels becomes undecidable by
Proposition 4. These observations mean the use of labels for hole-application λ2 is essential
for undecidability of TCP(hole-λ2) and TIP(hole-λ2), contrary to the use of kind-labels in
TCP(hole-Fω) and TIP(hole-Fω) in the previous section.

Related work (Scrap type applications [18] and MLF [22, 28])

From the viewpoint of compiler writers, Jay and Peyton Jones [18] introduced implicit System
F, called System IF. System IF allows redundant type arguments of M [A] to be implicit such
as M with no placeholders, whereas a scrapped argument A can be recovered via matching.

RTA’13

204 Decidable structures between Church-style and Curry-style

Our principal objective on this work is to find out an essential type annotation that governs
(un)decidability of type-related problems. Compared with System IF, hole-application terms
still have placeholders [], where our type inference mechanism is based on a decidable fragment
of second-order unification. The detailed comparison must be interesting and should be given
somewhere for practical application.

Le Botlan and Rémy [22] introduced a type system MLF, by extending ML with full
polymorphism as in System F. The language MLF has a family of systems, and Rémy and
Yakobowski [28] presented a Church-style version xMLF with full type information. As a
generalization of a polymorphic type ∀α.τ of System F, a significant feature of MLF is a
flexible quantification ∀(α ≥ σ)τ , where type variables intuitively range over instances of σ.
Accordingly, type abstractions are extended such as Λ(α ≥ σ)a. Moreover, as a generalization
of type application, xMLF uses type instantiation aφ, such that Γ ` aφ : τ2 if Γ ` a : τ1 and
Γ ` φ : τ1 ≤ τ2. Here, intuitively the instantiation φ transforms the type τ1 of a into another
type τ2 that is an instance of τ1. In order to handle instantiation formally, besides typing
rules and β-reductions as usual, they introduced type instance rules, type instantiation on
types, and reduction rules for terms with instantiations. In this way, MLF established the
powerful expressiveness successfully. Although the idea of hole-application is orthogonal, our
work also proceeds from the same motivation as theirs using type annotations, still under
the traditional framework.

Acknowledgements
We would like to thank deeply all the referees for their careful reading and constructive
comments.

References
1 H.P.Barendregt: The lambda Calculus. Its Syntax and Semantics, North-Holland, second,

revised edition, 1984.
2 H.P.Barendregt: Lambda calculi with types, In S.Abramsky, et al. editors, Handbook of

Logic in Computer Science, Vol II, pp. 117–309, Oxford University Press, 1992.
3 H.P.Barendregt, W.Dekkers, R. Statman: Lambda Calculus with Types, Cambridge Uni-

versity Press, 2012.
4 G.Barthe, M.H. Sørensen: Domain-Free Pure Type Systems, Lecture Notes in Computer

Science 1234, pp. 9–20, 1997.
5 H. -J. Boehm: Partial polymorphic type inference is undecidable, Proc. IEEE 26th Annual

Symposium on Foundations of Computer Science, pp. 339–345, 1985.
6 A.Church: A formulation of the simple theory of types, J. Symbolic Logic 5, pp. 56–68,

1940.
7 H.B.Curry: Functionality in combinatory logic, Proc. Nat. Acad. Science USA, 20, pp.

584–590, 1934.
8 G.Dowek: Higher-order unification and matching, In A.Robinson and A.Voronkov editors,

Handbook of Automated Reasoning, Elsevier Science Publishers B.V. 2001.
9 K.Fujita: Domain-free λµ-calculus, Theoretical Informatics and Applications 34, pp. 433-

466, 2000.
10 K.Fujita: CPS-translation as adjoint, Theoretical Computer Science 411 (2), pp. 324–340,

2010.
11 K.Fujita, A. Schubert: Partially typed terms between Church-style and Curry-style, Lecture

Notes in Computer Science 1872, pp. 505-520, 2000.

K. Fujita and A. Schubert 205

12 K.Fujita, A. Schubert: Existential type systems with no types in terms, Lecture Notes in
Computer Science 5608, pp. 112-125, 2009.

13 K.Fujita, A. Schubert: The undecidability of type related problems in type-free style System
F, Leibniz International Proceedings in Informatics 6, pp. 103–118, 2010.

14 K.Fujita, A. Schubert: The undecidability of type related problems in the type-free style
System F with finitely stratified polymorphic types, Information and Computation 218, pp.
69–87, 2012.

15 W.D.Goldfarb: The undecidability of the second-order unification problems, Theoretical
Computer Science 13, pp. 225–230, 1981.

16 G.Huet: The undecidability of unification in third order logic, Information and Control 22,
pp. 257–267, 1973.

17 W.A.Howard: The formulae-as-types notion of construction, In J. P. Seldin and
J.R.Hindley editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, Academic Press, 1980.

18 B. Jay, S. Peyton Jones: Scrap your type applications, Lecture Notes in Computer Science
5133, pp. 2–27, 2008.

19 A. J.Kfoury, J. Tiuryn: Type Reconstruction in Finite Rank Fragments of the Second-Order
λ-Calculus, Information and Computation 98, pp. 228–257, 1992.

20 A. J.Kfoury, J. B.Wells: A direct algorithm for type inference in the rank-2 fragment of
the second-order λ-calculus, Proc. ACM LISP and Functional Programming, pp. 196–207,
1994.

21 D.Leivant: Polymorphic type inference, POPL ’83: Proc. 10th ACM Symposium on Prin-
ciples of Programming Languages, pp. 88–98, 1983.

22 D.Le Botlan, D. Rémy: Recasting MLF, Information and Computation 207, pp. 726–785,
2009.

23 D.Miller: A logic programming language with lambda-abstraction, function variables, and
simple unification, J. Logic and Computation 1 (4), pp. 497–536, 1991.

24 K.Nakazawa, M.Tatsuta, Y.Kameyama, H.Nakano: Type checking and typability in
domain-free lambda calculi, Theoretical Computer Science 412, pp. 6193–6207, 2011.

25 M.Parigot: λµ-Calculus: An algorithmic interpretation of classical natural deduction, Lec-
ture Notes in Computer Science 624, pp. 190–201, 1992.

26 F.Pfenning: Partial polymorphic type inference and higher-order unification, Proc. ACM
Conference on LISP and Functional Programming, pp. 153–163, 1988.

27 F.Pfenning: On the undecidability of partial polymorphic type reconstruction, Fundamenta
Informaticae 19 (1,2), pp. 185–199, 1993.

28 D.Rémy, B.Yakobowski: A Church-style intermediate language for MLF , Theoretical Com-
puter Science 435, pp. 77–105, 2012.

29 W.Synder, J.H.Gallier: Higher order unification revisited: Complete sets of transforma-
tions, J. Symbolic Computation 8 (1,2) pp. 101–140, 1989.

30 A. Schubert: Second-order unification and type inference for Church-style polymorphism,
POPL ’98: Proc. 25th ACM Symposium on Principles of Programming Languages, pp.
279–288, 1998.

31 L. S.Van Benthem Jutting: Typing in Pure Type Systems, Information and Computation
105, pp. 30–41, 1993.

32 J. B.Wells: Typability and type checking in system F are equivalent and undecidable, Ann.
Pure Appl. Logic 98, pp. 111–156, 1999.

RTA’13

	Introduction
	Second-order lambda-calculus 2 in five styles
	Church-style and Curry-style 2
	Intermediate structures between Church and Curry
	Basic properties of the systems
	Type-related problems and relations between problems

	Hole-application 2
	TPP for hole-application 2
	Second-order unification in flat form
	Reduction from flat form to TPP(Ha)
	TCP and TIP for hole-application 2
	Subject reduction of hole-application 2

	Hole-application F
	Concluding remarks and summary of results

