We show that the unification problem `is there a substitution instance of a
given formula that is provable in a given logic?' is undecidable for basic
modal logics K and K4 extended with the universal modality. It follows that the
admissibility problem for inference rules is undecidable for these logics as
well. These are the first examples of standard decidable modal logics for which
the unification and admissibility problems are undecidable. We also prove
undecidability of the unification and admissibility problems for K and K4 with
at least two modal operators and nominals (instead of the universal modality),
thereby showing that these problems are undecidable for basic hybrid logics.
Recently, unification has been introduced as an important reasoning service for
description logics. The undecidability proof for K with nominals can be used to
show the undecidability of unification for boolean description logics with
nominals (such as ALCO and SHIQO). The undecidability proof for K with the
universal modality can be used to show that the unification problem relative to
role boxes is undecidable for Boolean description logic with transitive roles,
inverse roles, and role hierarchies (such as SHI and SHIQ)