780 research outputs found

    A Complete Axiomatization of Quantified Differential Dynamic Logic for Distributed Hybrid Systems

    Full text link
    We address a fundamental mismatch between the combinations of dynamics that occur in cyber-physical systems and the limited kinds of dynamics supported in analysis. Modern applications combine communication, computation, and control. They may even form dynamic distributed networks, where neither structure nor dimension stay the same while the system follows hybrid dynamics, i.e., mixed discrete and continuous dynamics. We provide the logical foundations for closing this analytic gap. We develop a formal model for distributed hybrid systems. It combines quantified differential equations with quantified assignments and dynamic dimensionality-changes. We introduce a dynamic logic for verifying distributed hybrid systems and present a proof calculus for this logic. This is the first formal verification approach for distributed hybrid systems. We prove that our calculus is a sound and complete axiomatization of the behavior of distributed hybrid systems relative to quantified differential equations. In our calculus we have proven collision freedom in distributed car control even when an unbounded number of new cars may appear dynamically on the road

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure

    Prompt interval temporal logic

    Get PDF
    Interval temporal logics are expressive formalisms for temporal representation and reasoning, which use time intervals as primitive temporal entities. They have been extensively studied for the past two decades and successfully applied in AI and computer science. Unfortunately, they lack the ability of expressing promptness conditions, as it happens with the commonly-used temporal logics, e.g., LTL: whenever we deal with a liveness request, such as \u201csomething good eventually happens\u201d, there is no way to impose a bound on the delay with which it is fulfilled. In the last years, such an issue has been addressed in automata theory, game theory, and temporal logic. In this paper, we approach it in the interval temporal logic setting. First, we introduce PROMPT-PNL, a prompt extension of the well-studied interval temporal logic PNL, and we prove the undecidability of its satisfiability problem; then, we show how to recover decidability (NEXPTIME-completeness) by imposing a natural syntactic restriction on it

    Verification of Agent-Based Artifact Systems

    Full text link
    Artifact systems are a novel paradigm for specifying and implementing business processes described in terms of interacting modules called artifacts. Artifacts consist of data and lifecycles, accounting respectively for the relational structure of the artifacts' states and their possible evolutions over time. In this paper we put forward artifact-centric multi-agent systems, a novel formalisation of artifact systems in the context of multi-agent systems operating on them. Differently from the usual process-based models of services, the semantics we give explicitly accounts for the data structures on which artifact systems are defined. We study the model checking problem for artifact-centric multi-agent systems against specifications written in a quantified version of temporal-epistemic logic expressing the knowledge of the agents in the exchange. We begin by noting that the problem is undecidable in general. We then identify two noteworthy restrictions, one syntactical and one semantical, that enable us to find bisimilar finite abstractions and therefore reduce the model checking problem to the instance on finite models. Under these assumptions we show that the model checking problem for these systems is EXPSPACE-complete. We then introduce artifact-centric programs, compact and declarative representations of the programs governing both the artifact system and the agents. We show that, while these in principle generate infinite-state systems, under natural conditions their verification problem can be solved on finite abstractions that can be effectively computed from the programs. Finally we exemplify the theoretical results of the paper through a mainstream procurement scenario from the artifact systems literature

    Quantum collapse as undecidable proposition in an Everettian multiverse

    Full text link
    Our representation of the Universe is built with sequences of symbols, numbers, operators, rules and undecidable propositions defining our mathematical truths, represented either by classical, quantum and probabilistic Turing Machines containing intrinsic randomness. Each representation is at all effects a physical subset of the Universe, a metastructure of events in space and time, which actively participate to the evolution of the Universe as we are internal observers. The evolution is a deterministic sequence of local events, quantum measurements, originated from the local wavefunction collapse of the complementary set of the observers that generate the local events in the Universe. With these assumptions, the Universe and its evolution are described in terms of a semantically closed structure without a global object-environment loss of decoherence as a von Neumann's universal constructor with a semantical abstract whose structure cannot be decided deterministically a-priori from an internal observer. In a semantically closed structure the realization of a specific event writing the semantical abstract of the constructor is a problem that finds a "which way" for the evolution of the Universe in terms of a choice of the constructor's state in a metastructure, the many-world Everett scenario from the specific result of a quantum measurement, a classical G\"odel undecidable proposition for an internal observer, exposing the limits of our description and possible simulation of the Universe.Comment: 27 page

    On algorithmic properties of propositional inconsistency-adaptive logics

    Get PDF
    The present paper is devoted to computational aspects of propositional inconsistency-adaptive logics. In particular, we prove (relativized versions of) some principal results on computational complexity of derivability in such logics, namely in cases of CLuNr and CLuNm , i.e., CLuN supplied with the reliability strategy and the minimal abnormality strategy, respectively

    Adaptive logic characterizations of input/output logic

    Get PDF
    We translate unconstrained and constrained input/output logics as introduced by Makinson and van der Torre to modal logics, using adaptive logics for the constrained case. The resulting reformulation has some additional benefits. First, we obtain a proof-theoretic (dynamic) characterization of input/output logics. Second, we demonstrate that our framework naturally gives rise to useful variants and allows to express important notions that go beyond the expressive means of input/output logics, such as violations and sanctions

    Counter Attack on Byzantine Generals: Parameterized Model Checking of Fault-tolerant Distributed Algorithms

    Full text link
    We introduce an automated parameterized verification method for fault-tolerant distributed algorithms (FTDA). FTDAs are parameterized by both the number of processes and the assumed maximum number of Byzantine faulty processes. At the center of our technique is a parametric interval abstraction (PIA) where the interval boundaries are arithmetic expressions over parameters. Using PIA for both data abstraction and a new form of counter abstraction, we reduce the parameterized problem to finite-state model checking. We demonstrate the practical feasibility of our method by verifying several variants of the well-known distributed algorithm by Srikanth and Toueg. Our semi-decision procedures are complemented and motivated by an undecidability proof for FTDA verification which holds even in the absence of interprocess communication. To the best of our knowledge, this is the first paper to achieve parameterized automated verification of Byzantine FTDA
    • …
    corecore