
Christian Straßer
Mathieu Beirlaen

Frederik Van De Putte

Adaptive Logic
Characterizations of
Input/Output Logic

Abstract. We translate unconstrained and constrained input/output logics as introduced

by Makinson and van der Torre to modal logics, using adaptive logics for the constrained

case. The resulting reformulation has some additional benefits. First, we obtain a proof-

theoretic (dynamic) characterization of input/output logics. Second, we demonstrate that

our framework naturally gives rise to useful variants and allows to express important

notions that go beyond the expressive means of input/output logics, such as violations

and sanctions.

Keywords: Input/output logic, Adaptive logics, Proof theory, Nonmonotonic logic,

Deontic logic, Deontic conflicts.

1. Introduction

Input/output-logic. Input/output logic (henceforth I/O logic) was intro-
duced by Makinson and van der Torre [29,30] as a formal tool for modeling
non-monotonic reasoning with conditionals. It belongs to a broader family
of formal systems developed with this purpose in mind, such as, for instance,
Gabbay [17], Crocco et al. [16], Kraus et al. [24], Lehmann et al. [25], and
Boutilier [14]. I/O logics also provided the groundworks for Bochman’s pro-
duction inference relations that are useful to model causal and abductive
inferences [12]. As argued in [32], the main motivation for I/O logic con-
cerns problems of deontic logic.1 I/O logics have been used e.g. to model
various types of permissions [31,43], to capture the dynamics of normative
systems and regulations [13], and to formalize reasoning with contrary-to-
duty obligations [32].2

Technically speaking, I/O logics (without constraints, cf. infra) are op-
erations that map every pair 〈G,A〉 to an “output”, where (i) G is a set of

1 See also [20] for a survey of ten such problems, presented using the I/O terminology.
2 We speak of I/O logic (singular) to denote the overall framework that is common to

a number of systems, which we call I/O logics. Alternatively, we will sometimes call the
latter I/O operations or I/O functions.

Presented by Heinrich Wansing; Received December 28, 2015

Studia Logica (2016) 104: 869–916
DOI: 10.1007/s11225-016-9656-1 c© Springer Science+Business Media Dordrecht 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/84046830?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11225-016-9656-1&domain=pdf

870 C. Straßer et al.

“input/output pairs” (A,B) where A and B are propositional formulas; (ii)
A stands for “input”, i.e. a set of propositional formulas; and (iii) the output
is also a set of propositional formulas.

In a deontic setting, A usually represents factual information, G is a set
of conditional obligations (A,B) interpreted e.g. as “A commits you to B”
or “Under condition B you are obliged to bring about A”,3 and the output
consists of what is obligatory, given the facts at hand. However, as stressed
in [29,30], one may also apply I/O logic in other contexts. For instance, in
a default logic setting the output can be interpreted as a set of hypotheses,
derived from the data A and a set G of (normal) defaults.

In either of these interpretations of A and G, it is often useful to consider
a set C of constraints on the output—this notion was introduced in [30]. C
restricts the output in one of two senses, each corresponding to a different
style of reasoning. We can require the output as a whole to be consistent
with C, or we can impose the weaker requirement that, for each A in the
output, {A} ∪ C has to be consistent. Depending on the application context
C may represent physical constraints, human rights, etc.

In view of these two styles of reasoning, Makinson and van der Torre
define corresponding variants of their I/O logics. Given a set of I/O pairs
G, the basic idea is to reason on the basis of maximal subsets of G that
produce an output that is consistent with the constraints in C. See Section
2.3 for the exact definitions and more explanation. We will henceforth speak
of constrained I/O logics to denote these operations.

This paper. Our aim is to represent I/O logics as deductive systems within
a rich modal language.4 Meta-level expressions such as A ∈ A or (A,B) ∈ G
will be expressible in the object-level, resulting in expressions like inA and
inA ⇒ outB respectively, where in and out are unary modal operators and ⇒
is a binary connective. We will see that this language is not only sufficient to
characterize many well-known I/O logics (Sections 2, 3), but it allows us to
go beyond the expressive means of I/O logics so as to express useful notions
in deontic logic such as violations, sanctions, and permissions (Section 4).

3Many subtle distinctions arise when giving meaning to deontic modalities in the con-
text of formal normative systems (e.g., we can read them descriptively or prescriptively, we
can read them as ought-to-be or as ought-to-do, etc.): since in this paper these subtleties
are not crucial we will not discuss them any further.

4There are two representations for I/O logics: a semantic and a syntactic or axiomatic
one. In this paper we will focus on I/O logics that have an adequate axiomatic represen-
tation. It should be noted that although for many I/O logics presented in the literature
there is a known sound and complete axiomatization, there are exceptions such as [43].

Adaptive Logic Characterizations of Input/Output Logic 871

In order to characterize constraints, we use a framework for dynamic de-
ductive systems known from non-monotonic logic, namely the framework of
adaptive logics (henceforth ALs).5 First, in Section 2.4, we further extend the
modal language—e.g. adding a modal operator con to express constraints.
Second, the resulting monotonic modal logic is strengthened by means of a
defeasible deductive mechanism, which mimics the selection of maximal sets
of I/O pairs at the object-level—see Section 3.1.

Motivation. There are various independent motivations for the formal work
presented in this paper. First and foremost, characterizing I/O logics by
means of ALs enables us to use dynamic deductive systems for modeling
reasoning with conditionals (see Section 3.1). To the best of our knowledge,
deductive systems that are adequate with respect to the consequence rela-
tions of (constrained) I/O logic have not yet been presented in the literature.

Second, an important advantage of adaptive proofs is that they allow for
the representation of various forms of defeasible reasoning. As we argue in
Section 3.1, there are two facets of defeasibility both of which are explicated
via the dynamics of adaptive proofs. One concerns the non-monotonicity of
the consequence relation and is expressed via the notion of final derivabil-
ity (see Definition 12). Another concerns the more internalised dynamics
that occurs in the process of analyzing the given information (without any
new input) which is expressed by the notion of derivability-at-a-stage (see
Definition 11).

Our third point is related. A stage of an adaptive proof represents a
(possibly partial and defeasible) analysis of the given information and can
as such be reused and extended in contexts in which we have more input,
more rules, or more constraints. This modularity ensures that the reasoning
process (explicated by an adaptive proof) need not start from scratch again
when the context changes and more analysis is needed. Instead, the dynamic
retraction mechanism of adaptive proofs takes care of this.

Fourth, by means of a rich modal language we are able to express inputs,
outputs, contraints, and I/O pairs in the object language. As a result, our
formalism is more expressive than the original framework of I/O logics (see
Section 4) so that it is possible to also express violations, sanctions, and
permissions.

5ALs have been developed for various types of defeasible reasoning in the past. More
recently, deontic ALs have been used to model reasoning with conflicting obligations and
conditional detachment [10,11,18,33,44,46,50]. The dynamic proof theories of ALs are
sound and complete with respect to a selection semantics in the sense of [27]. In this
paper, we focus on the proof theory of the adaptive systems.

872 C. Straßer et al.

Fifth, due to its modularity, the modal framework allows for variation
in a controlled and systematic way (see Section 5.1). For instance, different
types of conflict-handling—so-called “strategies” in the AL terminology—
result in alternative, yet equally well-behaved systems, some of which have
not yet been defined in the context of I/O logic. As in I/O logic one can
easily alter the set of rules that govern the conditionals, adapting it to a
given application.

Overview. In Section 2 we present the framework of I/O logic in its uncon-
strained and constrained form, and we introduce a modal characterization
of the unconstrained I/O operations. Next, we extend our modal character-
ization within the adaptive logics framework so as to obtain non-monotonic
modal adaptive systems corresponding to the constrained I/O operations
(Section 3). Representation results are provided for our modal characteri-
zations in both the unconstrained setting (Theorem 2) and the constrained
setting (Theorem 3).

While the characterization of I/O logics is already possible in a fragment
of our modal language, we show in Section 4 that using the full language
results in a significant increase of expressive power.

In Section 5 we present some new natural variations on existing I/O
logics (Section 5.1), we offer some comparisons to existing systems (Section
5.2), and we make suggestions as to how our framework can be be further
extended with priorities, by allowing for quantitative considerations and
by using a predicative language (Section 5.3). We conclude the paper in
Section 6.

2. I/O Logics

2.1. Unconstrained I/O Logics

Preliminaries Let W be the set of all propositional formulas of classical
logic (CL) with the usual connectives ∧,∨,⊃,¬ and ≡ based on the propo-
sitional letters a, b, W also contains the verum constant � and the fal-
sum constant ⊥. We will use capital letters A, B, . . . as meta-variables for
propositional formulas.

Where L is a logic, Γ is a set of L-wffs (well-formed formulas) and A is
a wff of L, we write Γ
L A (A ∈ CnL(Γ)) to denote that A is L-derivable

Adaptive Logic Characterizations of Input/Output Logic 873

from Γ, and
L A to denote that A is L-derivable from the empty premise
set.

Characterizing the I/O logics. In this section, we define the unconstrained
I/O logics from [29]. These are defined as functions that map each pair
〈G,A〉 with a set of facts A ⊆ W and a set of I/O pairs G ⊆ W × W to
an output set outR(G,A) ⊆ W, where R is a set of rules for I/O pairs. We
sometimes refer to G as the set of generators. As shown in [29], each of
these functions can be characterized in two equivalent ways—one is called
“semantic”, the other “syntactic”. In the remainder of this section we define
the I/O functions along the lines of the syntactic characterization.6

Some candidate rules are:

If A
CL B and (B,C), then (A,C). (SI)

If A
CL B and (C,A), then (C,B). (WO)

If (A,B) and (A,C), then (A,B ∧ C). (AND)

If (A,C) and (B,C), then (A ∨ B, C). (OR)

If (A,B) and (A ∧ B,C), then (A,C). (CT)

(A,A). (ID)

(�,�) (Z)

(⊥,⊥) (F)

If A
CL B, B
CL A and (C,A), then (C,B). (EQ)

If (A,B) and (A ∧ B,C), then (A,B ∧ C). (ACT)

We will sometimes write R̂ denoting the set of rules in R together with all
the rules that are derivable from R. For instance, where R contains (WO),
(EQ) ∈ R̂.7

In this paper we will consider sets of rules R containing at least (SI),
(AND) and (EQ) (i.e., (SI), (AND), (EQ) ∈ R̂). We shall refer to such sets
as normal sets of rules. All the sets of rules originally defined in [29] are
normal (they consist of at least (SI), (AND) and (WO) which makes (EQ)
derivable). The production inference relations in [12] validate additionally

6Often the syntactic versions of I/O logics are written as derivR while outR is reserved
for the semantic versions. In this paper we will stick to outR for the syntactic versions due
to its suggestive name: the function produces output.

7More precisely, R̂ is the maximal superset of R such that for all sets of I/O-pairs G,

applying R to G results in the same set of I/O-pairs as applying R̂ to G.

874 C. Straßer et al.

Table 1. Some I/O functions in terms of the rules they use. The asterisk

indicates derivable rules

(Z) (SI) (WO) (AND) (OR) (CT) (ID) (EQ) (ACT)

out1 � � � � �*

out1′ � � �
out2 � � � � � �*

out2′ � � � �
out3 � � � � � �* �*

out3′ � � � �
out4 � � � � � � �* �*

out+1 �* � � � � �*

out+2 �* � � � � �* � �* �*

out+3 �* � � � � � �* �*

out+4 �* � � � � � � �* �*

the rule (F). Sets of rules without (WO) were defined in [35,36] which extend
on results in [41,42].8

By GR we denote the closure of G under R.9 The general form of the
syntactic construction is given by Definition 1.

Definition 1. B ∈ outR(G,A) iff there are A1, . . . , An ∈ A such that(∧n
1 Ai, B

) ∈ GR.

Fact 1. outR(G,A) =df

{
B | for some A ∈ CnCL(A), (A,B) ∈ GR

}
.10

Table 1 shows, among others, how the I/O operations out1 to out4 and
out+1 to out+4 from [29] are obtained by combinations of the rules defined
above.11 Note that all of them make use of (SI), (AND) and (WO). To cover
the border case where G = ∅, one needs to add the (zero premise) rule (Z) in
order to ensure that all tautologies are in the output (see [30, p. 157]). The
sets of rules out1′ , out2′ and out3′ have been defined in [35,36]. The main
difference with respect to the rules from [29] is that these rules give up on
(WO) and instead only make use of the weaker (EQ).

8More precisely, the reconstructions we offer in subsequent sections will be adequate

for normal sets of rules given that the set of facts A is CL-consistent or that (F) ∈ R̂.
Our reconstructions trivialize inconsistent sets of facts while the corresponding original
I/O logics do not trivialize them, except when rules such as (F) are derivable.

9As usual, the closure of a set X under a set of rules R is the smallest superset of X
that is closed under applications of rules in R.

10Here is why: (⇒) is trivial. (⇐) By CL-properties there are A1, . . . , An ∈ A such
that

∧n
1 Ai � A. By (SI),

(∧n
1 Ai, B) ∈ GR.

11out+2 and out+4 coincide. This was first noted in [30].

Adaptive Logic Characterizations of Input/Output Logic 875

When giving examples in this paper, we will only use the operation of
simple-minded output out1 which allows us to focus on the formal novelties
that are introduced in the current paper. For an elaborate discussion of the
other I/O functions, the reader is referred to [29,30,32,35,36,41,42].

Let us note some general properties of the I/O functions. The first two
facts show that Definition 1 warrants syntax-independency:

Fact 2. Where CnCL(A) = CnCL(A′), outR(G,A) = outR(G,A′).

Fact 3. Where GR = G′
R, outR(G,A) = outR(G′,A).

The output of normal sets of rules is closed under conjunction and under
classical equivalence:

Theorem 1. 1. If A,B ∈ outR(G,A) then A ∧ B ∈ outR(G,A).

2. If A ∈ outR(G,A), A
CL B, and B
CL A, then B ∈ outR(G,A).

Proof. Ad 1: Suppose A,B ∈ outR(G,A). Hence, there are C,D∈CnCL(A)
for which (C,A), (D,B) ∈ GR. By (SI), also (C ∧D,A), (C ∧D,B) ∈ GR. By
(AND), (C ∧D,A∧B) ∈ GR. Hence, also A∧B ∈ outR(G,A). Ad 2: Suppose
the antecedent holds. Thus, there is a C ∈ CnCL(A) for which (C,A) ∈ GR.
By (EQ), (C,B) ∈ GR and thus B ∈ outR(G,A).

Example 1 illustrates the interplay between input, generators and output
for the specific case of out1.

Example 1. Let A = {a, b},G = {(a, c), (b, d), (a ∧ b, e)}. By (SI) we can
derive (a ∧ b, c) and (a ∧ b, d) from (a, c) and (b, d) respectively. By (AND),
we obtain (a∧b, c∧d). Since a∧b ∈ CnCL(A), (c∧d) ∈ out1(G,A). Similarly,
we get e ∈ out1(G,A) since a ∧ b ∈ CnCL(A) and (a ∧ b, e) ∈ G.

2.2. An Alternative Characterization

In this section, we provide a modal logic characterization of the I/O op-
erations from the preceding section.12 As we will argue in Section 3, the

12In [29] Makinson and van der Torre also present modal characterizations of some
(unconstrained) I/O functions. However, their translation does not cover the four cases
where (OR) is invalid. Moreover, it is hard to see how this translation can be adjusted
to the context of constrained I/O logics. For this reason, we present a different modal
characterization. We return to this point in Section 5.1. Bochman in [12] presents another
semantic characterization of his ‘production inference relations’ (i.e., I/O logics that satisfy
(SI), (WO), (AND), (Z) and (F)) based on classical bimodels (i.e., pairs of CL-consistent
and CL-deductively closed sets).

876 C. Straßer et al.

resulting systems allow us to model reasoning about inputs, conditionals
and output in a natural and very expressive language.

Where, as before, W is the set of well-formed formulas of CL, the set W ′

of well-formed formulas is given by the following grammar:

W ′ := 〈W〉 | in〈W〉 | out〈W〉 | 〈W ′〉 ⇒ 〈W ′〉 | ¬〈W ′〉 | 〈W ′〉 ∨ 〈W ′〉 |
〈W ′〉 ∧ 〈W ′〉 | 〈W ′〉 ⊃ 〈W ′〉 | 〈W ′〉 ≡ 〈W ′〉

Given a pair 〈G,A〉, the idea is to represent ‘factual’ inputs A ∈ A by
inA, I/O pairs (A,B) in G by in A ⇒ out B, and outputs by outB. Let us
henceforth abbreviate in A ⇒ out B by A → B.

Definition 2. ΓG,A = {A → B | (A,B) ∈ G} ∪ {inA | A ∈ A}
We interpret the input operator in as a KD-modality:

 in(A ⊃ B) ⊃ (inA ⊃ inB) (Kin)

 inA ⊃ ¬in¬A (Din)

If
 A then
 inA (NECin)

Note that in view of I/O logics that do not validate (WO) it would be
too strong to also model out as a K-modality. For such logics we can simply
let out be a property-less dummy-operator. For the characterization of other
I/O logics we can model out as a K-modality.13

The binary connective ⇒ is fully characterized by modus ponens:

A,A ⇒ B
 B (MP⇒)

Note that modus ponens for ⇒ allows to derive outB from inA and A → B.
We write (MP⊃) for modus ponens relative to ⊃.

Where R is given, let R→ denote the associated set of rules for condition-
als in which each rule in R (where Ai, Bi, Cj , Dj , E, F ∈ W) is translated
according to the translation schemes in Table 2.14

For instance, (CT) is translated to

 ((A → B) ∧ ((A ∧ B) → C)) ⊃ (A → C)

13It should be noted that our representation theorems do not depend on the fact that
out is interpreted as a K-modality. In other words, this interpretation is admissible as soon
as the corresponding I/O logic validates (WO).

14We opted for a conditional ⇒ that is weaker than material implication ⊃ since we
want to also characterise rather weak I/O logics. For instance, were we to choose ⊃ as our
⇒, OR→ would be a derived rule.

Adaptive Logic Characterizations of Input/Output Logic 877

Table 2. Translation schemes

Rule in R Translated rule in R→

If A1 �CL B1, . . . , An �CL Bn and (C1, D1),

. . . , (Cm, Dm) then (E,F).

If A1 � B1, . . . , An � Bn then �
(C1 → D1) ∧ . . . ∧ (Cm → Dm) ⊃
(E → F).

If (C1, D1), . . . , (Cm, Dm) then (E,F). � ((C1 → D1)∧. . .∧(Cm → Dm)) ⊃
(E → F)

and (WO) is translated to

If A
 B then
 (C → A) ⊃ (C → B).

Definition 3. (Modal I/O logics) The logic MIO−
R is defined by adding

(Kin) and (Din) to the axioms of CL, and by closing the resulting set under
(NECin), the rules in R→, (MP⊃), and (MP⇒). MIO+

R is defined analogously,
just that out is a K-modality.

We write MIOR whenever we refer to any of the two variants.

Definition 4. Where A is in W ′ and Γ ⊆ W ′, we write Γ
MIOR
A to

denote that A is MIOR-derivable from Γ.

This completes our modal characterization of the I/O functions, resulting
in the following representation theorem15:

Theorem 2. Where A is CL-consistent or (F) ∈ R̂:

1. A ∈ outR(G,A) iff ΓG,A
MIO−
R
outA

2. where (WO), (Z) ∈ R̂, A ∈ outR(G,A) iff ΓG,A
MIO+
R
outA.

Note that our representation theorem does not cover the border case
where A is inconsistent. In this case, it follows from the KD-properties of in
that ΓG,A
MIOR

⊥ and hence also ΓG,A
MIOR
outA for all A ∈ W. On the

other hand, where A is inconsistent, outR(G,A) need not be trivial in case
(F) is not derivable from R. In that case: outR(G,A) = {B | (A,B) ∈ GR}.

In the remainder, let MIO1 denote the modal logic that corresponds to
the operation of simple-minded output out1 defined in the previous section.
We briefly illustrate MIO1 by means of our previous example. Recall, A =
{a, b} and G = {(a, c), (b, d), (a∧ b, e)}. Applying Definition 2, we obtain the
premise set Γ1 = {ina, inb, a → c, b → d, (a ∧ b) → e}. By the KD-properties
of in, we can derive in(a ∧ b) from the first two premises. By the rule (SI),

15See Appendix 1 for the proof of Theorem 2.

878 C. Straßer et al.

we can derive (a∧ b) → c and (a∧ b) → d from the third and fourth premise
respectively. Applying (AND), we obtain (a∧b) → (c∧d). Finally, by (MP⇒),
we can derive out(c ∧ d) from in(a ∧ b) and (a ∧ b) → (c ∧ d). Also, from
in(a∧b) and the premise (a∧b) → e, we can derive oute by means of (MP⇒).

2.3. Constrained I/O Logics

In [30], Makinson and van der Torre extend their I/O framework in order
to deal with excess output. Such an excess can arise in various ways. The
output may be inconsistent per se, or the output may be inconsistent with
the input. Suppose, for instance, that G = {(�,¬a), (a, b)} and A = {a}.
Then out1(G,A) = Cn({¬a, b}) is consistent, but inconsistent with the input
a. For the operations that use the rule (ID), both types of excess coincide.

More generally, one may also think of excessive output as output which
conflicts with certain physical, practical or normative principles. To cover
all such cases, a constraint set C ⊆ W is introduced. The cases C = ∅ and
C = A allow us to express consistency of output, and its consistency with
input A respectively.

The strategy used by Makinson and van der Torre for eliminating excess
output is “to cut back the set of generators to just below the threshold
of yielding excess” [30, p. 160]. Using well-known techniques from non-
monotonic logic, they prune the set of generators to obtain its maximal
non-excessive subsets.

Definition 5. maxfamilyR(G,A, C) is the family of all maximal H ⊆ G such
that outR(H,A) is consistent with C.

Remark 1. outR(H,A) is inconsistent with C iff C′
CL A for some finite
C′ ⊆ C and where ¬A ∈ outR(H,A).16

Similar to the notions of skeptical resp. credulous consequence from non-
monotonic logic, Definition 5 gives rise to operations of full meet resp. full
join constrained output.17

Definition 6. (Full meet constrained output)

out∩
R(G,A, C) =df

⋂
{outR(H,A) | H ∈ maxfamilyR(G,A, C)}

16Here’s why: outR(H,A) ∪ C �CL ⊥ iff [by the compactness of CL] C′ ∪ O �CL ⊥
where C′ is a finite subset of C and O is a finite subset of outR(H,A) iff C′ �CL ¬ ∧ O.
The rest follows immediately since by Theorem 1 ¬¬ ∧ O ∈ outR(H,A).

17For readers unfamiliar with the notions of skeptical and credulous consequence, we
refer to [22,28] for more details.

Adaptive Logic Characterizations of Input/Output Logic 879

Definition 7. (Full join constrained output)

out∪
R(G,A, C) =df

⋃
{outR(H,A) | H ∈ maxfamilyR(G,A, C)}

Conventionally we set out∩
R(G,A, C) = W and out∪

R(G,A, C) = W for the
border case in which maxfamilyR(G,A, C) = ∅. Note that this is exactly the
case in which outR(∅,A) ∪ C is not consistent.

As mentioned in the introduction, there are two ways in which one may
pose constraints on the output. According to the first, the output set as
a whole is required to be consistent with C; according to the second, each
formula A in the output is required to be consistent with C. Definition 6 gives
us an operation that respects the first requirement, whereas Definition 7
results in an operation that respects the second.

Example 2. Let again G = {(a, c), (b, d), (a∧ b, e)} and A = {a, b}. We add
the constraint set C = {¬(c ∧ d)}. We have: maxfamily1(G,A, C) = {H,H′},
where H = {(a, c), (a ∧ b, e)} and H′ = {(b, d), (a ∧ b, e)}. By Definition 6,
c �∈ out∩

1 (G,A, C) and d �∈ out∩
1 (G,A, C). However, c ∨ d ∈ out∩

1 (G,A, C). To
see why, note that by (WO), (a, c ∨ d) ∈ HR and (b, c ∨ d) ∈ H′

R. Hence
c ∨ d ∈ out1(H,A) ∩ out1(H′,A).

By Definition 7, c ∈ out∪
1 (G,A, C) and d ∈ out∪

1 (G,A, C). However, c∧d �∈
out∪

1 (G,A, C).

In [30, Section 6] Makinson and van der Torre investigate constrained I/O
logics in terms of so-called constrained derivations. This way, they obtain a
syntactic characterization of the full join constrained I/O operations based
on out1, . . . , out4 and out+1 , . . . , out+4 for the specific case where C = A =
{A} for some A ∈ W (see [30, Observation 9]). In Sections 3.1 and 3.2, we
provide a proof theory for all constrained I/O operations, for the general
case of arbitrary A ⊆ W and C ⊆ W.

2.4. Extending the Alternative Characterization with Constraints

Before we can provide proof theories for the constrained I/O operations,
we need to extend our modal characterization from Section 2.2. We define
a new language Wc which enriches W ′ in two ways. First we add a modal
operator con for modeling constraints. Second, we add a unary operator •.
In the characterization of I/O logic we will use it for prefixing I/O pairs in
the set G (the role of the •-operator is addressed below).

Wc := 〈W〉 | in〈W〉 | out〈W〉 | con〈W〉 | 〈Wc〉 ⇒ 〈Wc〉 | •〈Wc〉 |
¬〈Wc〉 | 〈Wc〉 ∨ 〈Wc〉 | 〈Wc〉 ∧ 〈Wc〉 | 〈Wc〉 ⊃ 〈Wc〉 | 〈Wc〉 ≡ 〈Wc〉

880 C. Straßer et al.

The modal operator con is characterized as a KD-modality:

 con(A ⊃ B) ⊃ (conA ⊃ conB) (Kcon)

 conA ⊃ ¬con¬A (Dcon)

If
 A then
 conA (NECcon)

Moreover, we add an axiom schema expressing that outputs should re-
spect constraints:

 conA ⊃ ¬out¬A (ROC)

Definition 8. CMIOR
− is obtained by adding (Kcon), (Dcon), and (ROC)

to the axioms of MIOR
− and by closing the resulting set under (NECin)

(NECout), (NECcon), R→, (MP⊃) and (MP⇒). CMIOR
+ is defined analo-

gously, just that out is a K-modality.

We write CMIOR whenever we refer to any of the two variants.
As mentioned above, Makinson and van der Torre deal with constraints

by pruning the generating set G. Whereas in the constrained I/O systems
I/O pairs in G are selected, in our system conditionals are activated by
removing the bullet. First, I/O pairs in G are prefixed with the •-operator,
which functions as a dummy operator. Next, a non-activated conditional
•(A → B) is activated by inferring from it the conditional A → B. Once
activated, we can detach the output of triggered conditionals by means of
(MP⇒).

Definition 2 is adjusted accordingly:

Definition 9. ΓG,A,C =df {•(A → B) | (A,B) ∈ G} ∪ {inA | A ∈ A} ∪
{conA | A ∈ C}

For instance, where as before, G = {(a, c), (b, d), (a ∧ b, e)}, A = {a, b}
and C = {¬(c ∧ d)}, this is translated into the premise set {•(a → c), •(b →
d), •((a ∧ b) → e), ina, inb, con¬(c ∧ d)}.

The systems characterized in Definition 8 are not yet equipped with a rule
for activating conditionals. We cannot simply add the rule “If •(A → B),
then A → B”. Instead, we need a logic that can distinguish between cases
in which activating a conditional is sensible and cases in which it is not.
For instance, given the set {ina, inb, •(a → c), •(b → d), con¬d}, we want
to be able to derive a → c from •(a → c) so that outc is derivable by
means of (MP⇒). However, given the constraint ¬d we also want to block
the derivation of b → d from •(b → d), otherwise we could again apply
(MP⇒) in order to derive outd.

What we are looking for, then, is a defeasible mechanism for strength-
ening the logics from Definition 8. To simplify slightly, we are looking for

Adaptive Logic Characterizations of Input/Output Logic 881

a mechanism that enables us to infer activated conditionals A → B from
non-activated conditionals •(A → B), in such a way that B is in the out-
put of G given A whenever A ∈ A and (A,B) ∈ G unless e.g. there is a
constraint preventing the derivation of B.18 In what follows, we define such
a mechanism which is rich enough to characterize, for instance, all the I/O
functions defined in Section 2.3.

3. Adaptive Logic Characterizations of I/O Logics

3.1. Dynamic Proofs for I/O Logics

Adaptive logics. The proof theory to be provided for the constrained I/O
operations from Section 2.3 is that of the adaptive logics framework (see
e.g. [6,45] for a general introduction). An AL is usually characterized as a
triple:

(a) ALs are built ‘on top’ of a lower limit logic (LLL). The AL allows for
the application of all inferences valid in the LLL. The LLL has to be
monotonic, transitive, reflexive and compact.19

(b) ALs strengthen their LLL by considering a set of formulas as false ‘as
much as possible’. This set of formulas is called the set of abnormalities
and is denoted by Ω. The members of the set of abnormalities are re-
quired to be of a specific logical form, which depends on the application.
For instance, in the setting of inconsistency-tolerant (paraconsistent)
logic, the set may contain all formulas of the logical form A ∧ ¬A (see
e.g. [3]).

(c) The phrase ‘as much as possible’ in (b) is disambiguated by an adaptive
strategy. The strategy specifies how to proceed in cases where e.g. we
know that at least one of a number of abnormalities is true, but we do
not know which. In such cases, reasoners may proceed in various ways:
some more, some less cautious. We introduce various such strategies
below.

18The situation is more complex e.g. in cases where (A,B) ∈ GR \ G. We explain the
technical details in Section 3.

19Where L is a logic, Γ,Γ′ are sets of L-wffs, and A is an L-wff: L is reflexive iff, for all Γ,
Γ ⊆ CnL(Γ); it is transitive iff, for all Γ and Γ′, if Γ′ ⊆ CnL(Γ) then CnL(Γ∪Γ′) ⊆ CnL(Γ);
it is monotonic iff, for all Γ and Γ′, CnL(Γ) ⊆ CnL(Γ ∪ Γ′); and it is compact iff, for all
Γ,Γ′, A, if Γ �L A, then Γ′ �L A for some finite Γ′ ⊆ Γ.

882 C. Straßer et al.

We will present and illustrate the dynamic proof theory of ALs by means
of the ALs MIO∩

1 and MIO∪
1 , the adaptive counterparts of out∩

1 and out∪
1

respectively. In Section 3.2, we move to a more general level and define the
adaptive counterparts of all constrained I/O operations.

Let us start with MIO∩
1 . The LLL of this system is the logic CMIO+

1

as defined in Section 2.4 where 1 consists of the rules (Z), (WO), (SI) and
(AND) which characterize out1. The set Ω• of MIO∩

1 -abnormalities is de-
fined as follows:

Ω• =df {•A ∧ ¬A | A is of the form B → C}
In what follows, we use �A as an abbreviation for •A∧¬A. Abnormalities

are generated, for instance, when a conditional is ‘triggered’ by the input
while its consequent violates a constraint. Let, for example G = {(a,¬b)},
A = {a}, and C = {b}, such that ΓG,A,C = {•(a → ¬b), ina, conb}. We show
that the abnormality �(a → ¬b) is a CMIO1-consequence of ΓG,A,C.

By (ROC), we know that ¬out¬b is derivable from conb. By (MP⇒) and
CL, it follows that ¬(ina ∧ (a → ¬b)). Since ina ∈ ΓG,A,C, it follows by CL
that ΓG,A,C
CMIO1 •(a → ¬b) ∧ ¬(a → ¬b).

The ‘motor’ that drives the activation of conditionals is the (defeasible)
assumption that abnormalities are false. Assume for instance that •(a → b).
Then since
CMIO1 (a → b) ∨ ¬(a → b) it follows that •(a → b)
CMIO1

(a → b) ∨ �(a → b). If we can safely assume the second disjunct to be false,
then the first must be true. This is—on an intuitive level—how the adaptive
proof theory will allow us to activate conditionals. Let us now make this
idea formally precise.

Adaptive proofs. A line in an annotated adaptive proof consists of four
elements: a line number l, a formula A, a justification (consisting of a list of
line numbers and a derivation rule), and a condition Δ. The condition of a
line is a (possibly empty) finite set of abnormalities. Intuitively, we interpret
a line l at which a formula A is derived on the condition Δ as “At line l of
the proof, A is derived on the assumption that all members of Δ are false”.

ALs have three generic rules of inference. The first is a premise introduc-
tion rule PREM, which allows formulas A from some set of premises Γ to
be introduced on the empty condition at any stage in the proof.

PREM If A ∈ Γ:
...

...
A ∅

The second rule is the unconditional rule RU, which allows for the use of
all CMIO1-inferences:

Adaptive Logic Characterizations of Input/Output Logic 883

RU If A1, . . . , An
CMIO1 B: A1 Δ1
...

...
An Δn

B Δ1 ∪ . . . ∪ Δn

The third generic rule of inference is the conditional rule RC. Where Θ
is a finite set of abnormalities, let Dab(Θ) denote the classical disjunction
of the members of Θ.20 The rule RC is defined as follows:

RC If A1, . . . , An
CMIO1 B ∨ Dab(Θ) A1 Δ1
...

...
An Δn

B Δ1 ∪ . . . ∪ Δn ∪ Θ
RC is the rule that allows for the activation (i.e., the removal of the ‘•’-

prefix) and the subsequent detachment of conditionals. For instance, let Γ2 =
{•(a → b), ina}. We can start a MIO∩

1 -proof by introducing the members
of Γ2 by means of the rule PREM:

1 •(a → b) PREM ∅
2 ina PREM ∅

By CL we know that •(a → b)
CMIO1 (a → b) ∨ �(a → b). Hence we
can derive (a → b) ∨ �(a → b) by an application of RU to line 1:

3 (a → b) ∨ �(a → b) 1; RU ∅
Note that the second disjunct of the formula derived at line 3 is a member

of Ω•. By RC, we can move this abnormality to the condition column:
4 a → b 3; RC {�(a → b)}

At stage 5 of the proof, we have derived the formula a → b on the
assumption that the abnormality �(a → b) is false. The conditional at line 1
has been activated at line 5. By (MP⇒), we know that ina∧(a → b)
CMIO1

outb. Hence we can detach the output outb by means of RU:
5 outb 2, 4; RU {�(a → b)}

Note that, as required by the definition of RU, the condition of line 5 is
carried over to line 4. The example shows how activated conditionals, when
triggered by a matching input, can be used to detach the output.

The inference of outb from •(a → b) and ina is conditional. It depends on
our assumption that �(a → b) is false. As we will now illustrate, assumptions

20“Dab” abbreviates “Disjunction of Abnormalities”. If Θ is a singleton {A}, then
Dab(Θ) = A.

884 C. Straßer et al.

made in adaptive proofs are sometimes treated as inadmissible. In such cases,
all inferences that depend on the assumptions in question are retracted from
the proof.

Retracting inferences. Consider the following adaptive proof from Γ3 =
{•(a → b), ina, con¬b}:

1 •(a → b) PREM ∅
2 ina PREM ∅
3 con¬b PREM ∅
4 outb 1,2; RC {�(a → b)}

As there is a constraint prohibiting that b is in the output, it seems
that we have jumped to an incorrect conclusion at line 4.21 In order to
deal with such cases, ALs are equipped with a mechanism that determines
the retraction or ‘marking’ of lines of which the condition can no longer be
upheld.

Note that, by (ROC), con¬b
CMIO1 ¬outb. By (MP⇒) and CL, con¬b

CMIO1 ¬(ina ∧ (a → b)). As ina, con¬b ∈ Γ3, it follows that Γ3
CMIO1

¬(a → b). But then Γ3
CMIO1 �(a → b), which falsifies our assumption
made at line 4:

4 outb 1,2; RC {�(a → b)}�5

5 �(a → b) 1–3; RU ∅
At line 4 we mistakenly assumed that �(a → b) is false. Once our as-

sumption is shown to be inadmissible (at line 5), line 4 is marked (using
the symbol �5), which means that this inference is now withdrawn from the
proof.

The retraction mechanism is governed by a marking definition, which de-
pends on the adaptive strategy. In the remainder of this section, we present
two such strategies and their respective marking definitions. They corre-
spond to various ‘styles’ of reasoning —skeptical versus credulous—, as we
will now illustrate.

Consider a proof from Γ4 = {•(a → c), •(b → d), ina, inb, con¬(c ∧ d)}:
1 •(a → c) PREM ∅
2 •(b → d) PREM ∅
3 ina PREM ∅
4 inb PREM ∅
5 con¬(c ∧ d) PREM ∅
6 outc 1,3; RC {�(a → c)}

21The application of RC at line 4 is valid since •(a → b), ina �CMIO1 outb ∨ �(a → b).

Adaptive Logic Characterizations of Input/Output Logic 885

7 outd 2,4; RC {�(b → d)}
As out is a normal modal operator, we can aggregate the formulas derived

at lines 6 and 7:
8 out(c ∧ d) 6,7; RU {�(a → c), �(b → d)}

Clearly, something went wrong here. As there is a constraint prohibiting
that the conjunction of c and d is in the output, we were too hasty in deriving
out(c ∧ d). And indeed, although no abnormality is by itself derivable from
the premises, the disjunction of abnormalities �(a → c) ∨ �(b → d) is a
CMIO1-consequence of Γ4:22

9 �(a → c) ∨ �(b → d) 1–5; RC ∅

At stage 9 of the proof, we know that one of the abnormalities �(a → c) or
�(b → d) holds, but we lack the information to determine which one. Clearly,
line 8 should be retracted, as at that line we assumed both abnormalities to
be false. But what about lines 6 and 7? If only the abnormality �(a → c)
turns out to be derivable, then our assumption at line 7 that �(b → d) is
false can safely be upheld. If only �(b → d) turns out to be derivable, then
the same holds for our assumption at line 6 that �(a → c) is false.

In view of this information a skeptical reasoner may consider both as-
sumptions too strong. As a result, she would retract lines 6 and 7 from the
proof. A more credulous reasoner, on the other hand, may continue to reason
on one assumption or the other, as none of them has been falsified beyond
doubt. The credulous reasoner, then, would leave lines 6 and 7 unmarked.

The minimal abnormality strategy explicates the more skeptical reason-
ing, while the normal selections strategy explicates the more credulous rea-
soning. MIO∩

1 uses the minimal abnormality strategy..

The minimal abnormality strategy. The marking definition for the mini-
mal abnormality strategy requires some further terminology. A Dab-formula
Dab(Δ) derived at stage s is minimal at that stage iff Dab(Δ) is derived on
the empty condition, and no Dab(Δ′) with Δ′ ⊂ Δ is derived on the empty
condition at stage s. Note that in the above proof, the only (minimal) Dab-
formula at stage 9 is the disjunction derived on line 9.

22 By (ROC), (†) con¬(c ∧ d) �CMIO1 ¬out(c ∧ d). By (MP⇒) and CL, ina �CMIO1

¬(a → c) ∨ outc and inb �CMIO1 ¬(b → d) ∨ outd. Altogether, ina, inb �CMIO1 ¬(a →
c) ∨ ¬(b → d) ∨ (outc ∧ outd). By KD, ina, inb �CMIO1 ¬(a → c) ∨ ¬(b → d) ∨ out(c ∧ d).
But then, by (†) and CL, con¬(c∧d), ina, inb �CMIO1 ¬(a → c)∨¬(b → d). By CL again,
Γ4 �CMIO1 (•(a → c) ∧ ¬(a → c)) ∨ (•(b → d) ∧ ¬(b → d)).

886 C. Straßer et al.

Let a choice set of Σ = {Δ1, Δ2, . . .} be a set that contains one element
out of each member of Σ. A minimal choice set of Σ is a choice set of Σ of
which no proper subset is a choice set of Σ. Where Dab(Δ1),Dab(Δ2), . . . are
the minimal Dab-formulas at stage s of a proof and Σs(Γ) = {Δ1, Δ2, . . .},
Φs(Γ) is the set of minimal choice sets of Σs(Γ). So in the above proof, we
have Φ9(Γ4) = {{�(a → c)}, {�(b → d)}}.

In order to understand the marking for minimal abnormality, recall first:
if A is derived on the condition Δ this encodes the assumption that none of
the abnormalities in Δ is true. The minimal choice sets Θ in Φs(Γ) represent
minimally abnormal interpretations of all the disjunctions of abnormalities
that have been derived on the empty condition so far. A formula A is consid-
ered successfully derived at stage s in case for each Θ ∈ Φs(Γ) it is derived
on an assumption (expressed by a condition ΔΘ) that is not violated in
Θ, i.e., Θ ∩ ΔΘ = ∅. This is expressed in requirement (ii) of the following
definition. Requirement (i) makes sure that lines get marked at which A is
derived on an assumption Δ that is violated in all minimal abnormal choice
sets.

Definition 10. Where A is derived at line l of a proof from Γ on a condition
Δ, line l is marked at stage s iff

(i) there is no Θ ∈ Φs(Γ) such that Θ ∩ Δ = ∅, or

(ii) for some Θ ∈ Φs(Γ), there is no line at which A is derived on a condition
Δ′ for which Θ ∩ Δ′ = ∅.

In view of this definition it follows that all of lines 6–8 are marked. For
line 8, this is obvious: clause (i) of Definition 10 clearly obtains. For lines
6 and 7, clause (i) fails, but clause (ii) holds. For instance, there is no line
in the proof at which outc is derived on a condition that has an empty
intersection with {�(a → c)}.

We now illustrate why Definition 10 refers to other lines than l in its
clause (ii). Suppose we continue our proof, weakening the output obtained
at lines 7 and 8:

10 out(c ∨ d) 6; RU {�(a → c)}
11 out(c ∨ d) 7; RU {�(b → d)}

Note that, since we have not derived any new Dab-formulas, Φ11(Γ4) =
Φ11(Γ4) = {{�(a → c)}, {�(b → d)}}. Note that for each Θ ∈ Φ11(Γ4),
out(c ∨ d) is derived on a condition that does not intersect with it. Hence,
by Definition 10, lines 10 and 11 are unmarked at stage 11 of the proof.

Adaptive Logic Characterizations of Input/Output Logic 887

Two notions of derivability. In adaptive proofs, markings may come and go.
Certain lines may be marked at some stage s, while they may not be marked
at a later stage s′. This can be so for several reasons:

(i) New minimal Dab-formulas may be derived at stage s′—hence certain
assumptions which were tenable at s are no longer tenable at s′.

(ii) Some Dab(Δ) may be a minimal Dab-formula at stage s, but not at
stage s′—hence certain assumptions which were not tenable at stage s
may again become tenable at stage s′ and vice versa.

(iii) Where A was already derived on marked lines l1, . . . , ln on the respec-
tive conditions Δ1, . . . ,Δn at stage s, it may be derived on additional
conditions Θ1, . . . ,Θm at stage s′ which may lead to the unmarking of
some of the lines l1, . . . , ln.

For an example of (iii), consider again the last proof from this section.
At stage 10, out(c ∨ d) is only derived on the condition {�(a → c)}, which
intersects with the minimal choice set {�(a → c)}. Hence, at this stage, line
10 is marked. However, at the next stage, we have derived out(c∨d) also on
the condition {�(b → d)}. As a result, line 10 is unmarked at stage 11.

A dynamic, stage-dependent notion of derivability is easy to define:

Definition 11. A formula A has been derived at stage s of an adaptive
proof iff, at that stage, A is the second element of some unmarked line l.

Apart from the stage-dependent derivability relation, we also need a
stage-independent, ‘final’ notion of derivability in order to define a syntactic
consequence relation for our logics.

Definition 12. A is finally derived from Γ at line l of a proof at a finite
stage s iff (i) A is the second element of line l, (ii) line l is not marked at
stage s, and (iii) every extension of the proof in which line l is marked can
be further extended in such a way that line l is unmarked.23

23Definition 12 has a game-theoretic flavor to it. In [7], this definition is interpreted as
a two-player game in which the proponent has a winning strategy in case she has a reply to
every counterargument by her opponent. As is clear from the definition, final derivability is
not established within the dynamic proof itself, but rather by meta-reasoning (one has to
quantify over possible extensions of the proof). For some this may be unsatisfactory (e.g., if
one is interested in automated proving). We refer to [5] where a technique is presented that
integrates a decision procedure for final derivability into dynamic proofs for the adaptive
logic CLuNr by means of turning proofs goal directed [8]. Adjusting this technique for
the systems presented in this paper is left for future work.

888 C. Straßer et al.

Definition 13. Γ
MIO∩
1

A (A is finally MIO∩
1 -derivable from Γ) iff A is

finally derived at a line of an MIO∩
1 -proof from Γ.

The disjunction �(a → c)∨�(b → d) is the only minimal Dab-consequence
of Γ4, i.e. the only minimal Dab-formula that is CMIO1-derivable from Γ4.
Consequently, the set Φ11(Γ4) = {{�(a → c)}, {�(b → d)}} will remain sta-
ble in any extension of the proof, such that lines 10 and 11 remain unmarked
whatever happens next. By Definition 12, out(c ∨ d) is finally derived from
Γ4. By Definition 13, Γ4
MIO∩

1
out(c ∨ d). It is safely left to the reader to

check that Γ4 �
MIO∩
1
outc,Γ4 �
MIO∩

1
outd, and Γ4 �
MIO∩

1
out(c ∧ d).

The normal selections strategy. We saw how the minimal abnormality strat-
egy is rather skeptical in its treatment of constrained outputs. In our example
we were able to derive the minimal Dab-consequence �(a → c) ∨ �(b → d).
This means that both conditionals together are not CMIO1-consistent with
our given inputs and constraints. Since the disjunction is minimal, both
a → c and b → d taken individually are consistent with the inputs and
constraints. Nevertheless, a line whose formula is only derived on the con-
dition {�(a → c)} or only on the condition {�(b → d)} is marked according
to minimal abnormality (e.g., lines 6 and 7). This motivates another ap-
proach according to which an assumption is considered admissible in case
its associated set of conditionals is consistent with the given inputs and
constraints. That is to say: where Δ = {�(A1 → B1), . . . ,�(An → Bn)}
is the condition of the line l, this line is marked only if Dab(Δ) is derived
on the empty condition since this expresses that the set of conditionals
{(A1 → B1), . . . , (An → Bn)} is not consistent with the given input and
constraints.

Let us spell out this more credulous alternative by means of the lower
limit logic CMIO1. We now use the so-called normal selections strategy.
The AL that has CMIO1 as its LLL, Ω• (as defined above) as its set of
abnormalities, and normal selections as its strategy is called MIO∪

1 . Thus,
MIO∪

1 differs from MIO∩
1 only in its use of a different strategy and, hence,

a different marking definition.
The marking definition for the normal selections strategy is straightfor-

ward:

Definition 14. Line l is marked at stage s iff, where Δ is the condition of
line l, Dab(Δ) has been derived on the empty condition at stage s.

We consider again the proof from Γ4, but this time we mark lines accord-
ing to the normal selections strategy.

Adaptive Logic Characterizations of Input/Output Logic 889

1 •(a → c) PREM ∅
2 •(b → d) PREM ∅
3 ina PREM ∅
4 inb PREM ∅
5 con¬(c ∧ d) PREM ∅
6 outc 1,3; RC {�(a → c)}
7 outd 2,4; RC {�(b → d)}
8 out(c ∧ d) 6,7; RU {�(a → c), �(b → d)}�9

9 �(a → c) ∨ �(b → d) 1–5; RC ∅
10 out(c ∨ d) 6; RU {�(a → c)}
11 out(c ∨ d) 7; RU {�(b → d)}

Lines 6, 7, 10 and 11 remain unmarked in view of Definition 14, as
their conditions have not been derived in the proof. Line 8 is marked since
Dab({�(a → c), �(b → d)}) is derived at line 9.

The stage-dependent and stage-independent criteria for derivability (De-
finitions 11, 12) are equally applicable to MIO∪

1 .24 A syntactic consequence
relation for MIO∪

1 is readily defined by adjusting Definition 13 as follows:

Definition 15. Γ
MIO∪
1

A (A is finally MIO∪
1 -derivable from Γ) iff A is

finally derived at a line of an MIO∪
1 -proof from Γ.

Since Γ4 �
CMIO1 �(a → c) and Γ4 �
CMIO1 �(b → d), there is no possible
extension of our proof in which any of lines 6, 7, 10 and 11 are marked. By
Definition 15, Γ4
MIO∪

1
outc, Γ4
MIO∪

1
outd, Γ4
MIO∪

1
out(c ∨ d), and

Γ4 �
MIO∪
1
out(c ∧ d).

Some more words on proof dynamics. I/O functions equip us with conse-
quence relations. In our characterization, the consequences of a given I/O
function correspond to the finally derivable formulas (Definition 12). Dy-
namic proofs come with an additional notion of derivability, namely deriv-
ability at a stage (Definition 11).

This corresponds to the fact that non-monotonic resp. defeasible rea-
soning has two flavors and for many applications it seems natural to model
both in an integrated way. From an abstract point of view non-monotonicity
means that the output of a function is disproportionate to its input: more
input may result in less output. The first and most commonly discussed

24In fact, the definition for final derivability can be simplified since a line that is once
marked will not be unmarked at any later stage of the proof according to the normal
selections strategy. Hence, we can simply define: A is finally derived on some unmarked
line l at stage s if the proof cannot be extended in such a way that line l is marked.

890 C. Straßer et al.

flavor concerns the consequence function and the fact that adding premises
may lead to a loss of conclusions. In adaptive proofs this is the dynamics be-
hind final derivability (Definition 12). The second flavor of non-monotonicity
we have with derivability-at-a-stage (Definition 11). Derivability-at-a-stage
viewed as a function takes as its input a (possibly incomplete) analysis
of a given premise set (represented by the proof at the given stage) and
outputs formulas that are considered derived. Given a more refined analy-
sis of the premise set at a later stage, some formulas may cease to be
derived (formulas at unmarked lines). Let us apply this insight to I/O
logics.

Consider a case where some I/O consequence B of 〈G,A, C〉 ceases to be
an I/O consequence of 〈G′,A′, C′〉 (where G ⊆ G′, A ⊆ A′ and C ⊆ C′).
An adequate proof theory is expected to reflect this dynamics: outB will
be (finally) derivable from ΓG,A,C, while it will not be (finally) derivable
in a proof from ΓG′,A′,C′

. In the presented proof format this dynamics that
is relative to adding premises is ‘internalized’ so that it is also relative to
the growing analysis of the premises which is represented by the proof at
a given stage. It works as follows: At each stage the given premises will
be analysed to some degree, depending on which premises have already
been introduced and depending on what rules have been already applied to
them. Derivability-at-a-stage equips us with a retraction mechanism that
is a function of this degree of analysis of the given premise set. This way
the very rationale behind the non-monotonicity of I/O logics, namely that
in face of new conflicts previous outputs may cease to be outputs, becomes
a structural property of the presented dynamic proofs (and not just of the
consequence relation).

This property of the presented proof theory is important since it models
the dynamics of a reasoner in one of the following two situations.

First, we have a reasoner who is confronted with new factual or norma-
tive information in view of which previously drawn inferences have to be
retracted: clearly a situation in which real life reasoners often find them-
selves. Pollock dubs this diachronic defeasibility [37] and Batens speaks of
the external dynamics of defeasible reasoning [6].

Another situation is that in which the given information is very complex
and a reasoner has practical constraints (e.g., concerning time) which make
it interesting for her to ‘jump’ to defeasible conclusions based on a given
analysis of the premises (which, given the practical constraints, she considers
to be sufficient). Pollock dubs this synchronic defeasibility and Batens speaks
of the internal dynamics of reasoning.

Adaptive Logic Characterizations of Input/Output Logic 891

In both situations it holds that, instead of starting the reasoning process
from scratch whenever new information enters the picture, a real life rea-
soner will build on some of her previous inferences, use them to draw new
inferences, and informed by these, will retract certain previous inferences.
Retraction is thus local and case-specific.25 The dynamic proof theory pre-
sented in this paper is adequate for such application contexts in that a user
need not analyze the premises exhaustively before she can come to a (de-
feasible) conclusion and her conclusions can be formed in a computationally
tractable way.

In situations in which a reasoner is confronted with (a) a finite set of (rel-
evant) facts and (b) a finite set of conditional norms, and (c) in which there
are no time-related or other types of constraints that motivate a reasoner
to proceed in a defeasible manner, a rational reasoner will make inferences
in a more cautious and controlled way. She will first carefully identify all
normative conflicts (i.e., all minimal Dab-consequences), and only then and
informed by the former, derive the output in such a way that no retraction
of previously derived formulas is necessary. Here it is important to notice
that nothing prevents a reasoner from applying this or some other heuristics
to the dynamic proofs characterized above. Indeed, she may first introduce
all the facts in A, all constraints in C and all conditional norms in G and on
this basis derive the minimal Dab-consequences. The latter are all Dab(Δ)
for which Δ ∈ Σ(Γ) where Σ(Γ) = {Δ ⊆ Ω• | ΓG,A,C
CMIOR

Dab(Δ) while
ΓG,A,C �
CMIOR

Dab(Δ′) for all Δ′ ⊂ Δ}. This way she brings the proof to
a stage s in which Σs(Γ) = Σ(Γ).26 Clearly, any (extension of a) proof in
such a stage is not dynamic in view of the following fact27:

Fact 4. If Σ(Γ) = Σs(Γ) and A is derived at the finite stage s, then A is
finally derived.

Irrespective of whether we are in a situation in which (a)–(c) hold, it is
interesting to have a criterion to decide whether a formula that is derived at
a stage is finally derived. The previous fact equips us with such a criterion.

25See also [51] where a similar case is made for belief revision.
26Note that CMIOR is decidable. Hence, for each G′ ⊆ G we can check whether

ΓG,A,C �CMIOR

∨
(A,B)∈G′ �(A → B) and whether for all (C,D) ∈ G′, ΓG,A,C

�CMIOR∨
(A,B)∈G′\{(C,D)} �(A → B). Thus, there are no computational obstacles in bringing the

proof to this stage. One may also make use of goal-directed decision procedures for adaptive
logics as presented in e.g. [8].

27Fact 4 holds for any AL defined as in Section 3.1 (i.e., for any AL in the standard
format).

892 C. Straßer et al.

3.2. Adaptive Characterizations of Constrained I/O Logics

Generic definition. We now move to a more abstract level, defining the adap-
tive logics that characterize the constrained I/O functions from Section 2.3.

Definition 16. Where † ∈ {∩,∪} and ‡ ∈ {+,−}, MIO‡,†
R is the AL

defined from

1. The lower limit logic CMIO‡
R (see Definition 8)

2. The set of abnormalities Ω• = {�(A → B) | A,B ∈ W}
3. The strategy:

◦ minimal abnormality if † = ∩
◦ normal selections if † = ∪

We write MIO†
R whenever we refer to any of the two variants MIO−,†

R

or MIO+,†
R .

By adjusting the subscripts in the definitions of the generic inference
rules from the previous section, we readily obtain a proof theory for MIO†

R.
By using the appropriate marking definition (see Definitions 10 and 14) and
applying Definitions 12 and 13, we obtain a consequence relation.

The following is proven in Appendix 3:

Theorem 3. Where † ∈ {∩,∪}, and A is CL-consistent or (F) ∈ R̂:

1. ΓG,A,C
MIO−,†
R

outA iff A ∈ out†
R(G,A, C)

2. Where (WO), (Z) ∈ R̂, ΓG,A,C
MIO+,†
R

outA iff A ∈ out†
R(G,A, C)

Like Theorem 2, Theorem 3 does not cover the border case where A is
inconsistent. As explained before, such cases are trivialized by our logics
whereas (in case (ID) /∈ R̂) neither out∩

R(G,A, C) nor out∪
R(G,A, C) need be

trivial.28

Proof outline. In the remainder of this section, we broadly explain how we
prove the equivalence set out in Theorem 3 between the adaptive conse-
quence relations on the one hand, and the constrained I/O operations on
the other. The reader is kindly referred to Appendix 3 for more details.

Let us first deal with the special case in which there are no maxfamilies.

Lemma 1. Where outR(∅,A) ∪ C is CL-inconsistent: ΓG,A,C
CMIOR
⊥ and

hence ΓG,A,C
MIO∩
R

⊥ and ΓG,A,C
MIO∪
R

⊥.

28Take the simple example where G = C = ∅ and A = {⊥} in which case out∩
R (G,A, C) =

out∪
R (G,A, C) = CnCL(∅).

Adaptive Logic Characterizations of Input/Output Logic 893

Proof. Suppose outR(∅,A) ∪ C
CL ⊥. If A
CL ⊥ then ΓG,A,C
CMIOR
⊥

since in is a KD-modality. Suppose A �
CL ⊥. By Remark 1, there is an A for
which C
CL A and ¬A ∈ outR(∅,A). By Theorem 2, Γ∅,A
MIOR

out¬A.
Thus by monotonicity and since CMIOR extends MIOR, ΓG,A,C
CMIOR

out¬A. Also, since con is a KD-modality, ΓG,A,C
CMIOR
conA and thus by

(ROC), ΓG,A,C
CMIOR
¬out¬A. Altogether, ΓG,A,C
CMIOR

⊥.

As a consequence, we know now that Theorem 3 holds whenever outR
(∅,A) ∪ C is CL-inconsistent. For the other case we need a more involved
argument for which it is useful to introduce some additional notation.

Notation. Let Θ ⊆f Δ denote that Θ is a finite subset of Δ. Where Δ is a
set of formulas of the form A → B, let Ω•(Δ) = {�(A → B) | A → B ∈ Δ}.
Where G is a set of I/O pairs we will just write Ω•(G) instead of Ω•({A →
B | (A,B) ∈ G}).

Recall from Section 3.1 that Dab(Δ) is a Dab-consequence of Γ iff Γ
CMIOR

Dab(Δ). It is a minimal Dab-consequence of Γ iff there is no Δ′ ⊂ Δ such
that Γ
CMIOR

Dab(Δ′). We let Σ(Γ) be the set of all Δ for which Dab(Δ)
is a minimal Dab-consequence of Γ and Φ(Γ) is the set of all minimal choice
sets of Σ(Γ).

Let us start with the operations out∩
R and logics MIO∩

R . The first theorem
which we need has been established for all ALs with the minimal abnormality
strategy in [6]:

Theorem 4. ([6], Theorem 8) Γ
MIO∩
R

A iff for all Θ ∈ Φ(Γ), there is a
Δ ⊆f Ω• − Θ such that Γ
CMIOR

A ∨ Dab(Δ).29

For the specific case where Γ = ΓG,A,C for some G,A, C, we can further
strengthen Theorem 4 to Corollary 1 in view of the following lemma:

Lemma 2. If ΓG,A,C
CMIOR
A∨Dab(Δ), then ΓG,A,C
CMIOR

A∨Dab(Δ∩
Ω•(G)).

Corollary 1. ΓG,A,C
MIO∩
R

A iff for all Θ ∈ Φ
(
ΓG,A,C)

, there is a Δ ⊆f

Ω•(G) − Θ such that Γ
CMIOR
A ∨ Dab(Δ).

The second property which we need is the following:

Theorem 5. Where outR(∅,A)∪C is CL-consistent and A is CL-consistent
or (F) ∈ R̂:

Φ
(
ΓG,A,C)

= {Ω•(G − H) | H ∈ maxfamilyR(G,A, C)}

29In this theorem and the results below we adopt the following writing convention:
where Δ = ∅, “∨Dab(Δ)” denotes the empty string.

894 C. Straßer et al.

The proof of this theorem is intricate—see Proof of Theorem 5 in Ap-
pendix 3. For instance, consider A = {a, b},G = {(a, c), (b, d), (a∧b, e)}, C =
{¬(c∧d)} from Example 1 and the corresponding premise set Γ5 = {ina, inb,
•(a → c), •(b → d), •((a∧b) → e), con¬(c∧d)}. As we saw before, maxfamily
(G,A, C) = {{(a, c), (a∧b, e)}, {(b, d), (a∧b, e)}}. On the other hand, Φ(Γ5) =
{{�(b → d)}, {�(a → c)}}. We leave it to the reader to check that this con-
forms to Theorem 5.

The third ingredient for the meta-proof is the following theorem, which
links outR to CMIOR:

Theorem 6. Where H ⊆ G, outR(H,A) ∪ C is CL-consistent, and A is
CL-consistent or (F) ∈ R̂: A ∈ outR(H,A) iff there is a Δ ⊆f Ω•(H) such
that ΓG,A,C
CMIOR

outA ∨ Dab(Δ).

With these properties at our disposal, the proof of Theorem 3 for the case
† = ∩ becomes relatively short. Suppose outR(∅,A) ∪ C CL-consistent and
A is CL-consistent or (F) ∈ R̂. The following five properties are equivalent
by Corollary 1 (items 1 and 2), Theorem 5 (items 2 and 3), Theorem 6 (item
3 and 4) and Definition 6 (item 4 and 5):

1. ΓG,A,C
MIO∩
R
outA;

2. for all Θ∈Φ(ΓG,A,C), there is a Δ ⊆f Ω•(G)−Θ such that ΓG,A,C
CMIOR

outA ∨ Dab(Δ);

3. for all H ∈ maxfamilyR(G,A, C), there is a Δ ⊆f Ω•(H) for which
ΓG,A,C
CMIOR

outA ∨ Dab(Δ)30;

4. for all H ∈ maxfamilyR(G,A, C), A ∈ outR(H,A);

5. A ∈ out∩
R(G,A, C).

For the full join constrained output functions, out∪
R , we can apply basi-

cally the same reasoning, relying on the following variant of Theorem 4:

Theorem 7. ([45], Theorem 2.8.3) Γ
MIO∪
R

A iff for some Θ ∈ Φ(Γ), there
is a Δ ⊆f Ω• − Θ such that Γ
CMIOR

A ∨ Dab(Δ).

In view of this fact, it suffices to replace “for all” by “for some” and the
reference to Definition 6 with Definition 7 in the above proof, in order to
obtain a proof for the case where † = ∪.

30In the special case in which maxfamilyR(G,A, C) = {∅} our Δ will be empty. Recall
that then “∨Dab(Δ)” denotes the empty string.

Adaptive Logic Characterizations of Input/Output Logic 895

4. Expressive Power: Going Beyond I/O Logic

By considering complex formulas other than inA and outB on the left resp.
the right side of ⇒, our framework enables us to express more facets of
normative reasoning than I/O logic. In this section we explore some of the
possibilities.

We first note that in the I/O formalism we have only two ways to intro-
duce negations into I/O pairs (A,B):

(i) negating the input: (¬A,B) which may be read e.g. as “The input ¬A
is a reason to have B in the output.”

(ii) negating the output: (A,¬B) which may be read e.g. as “The input A
is a reason to have ¬B in the output.”

In our framework these cases are covered by in¬A ⇒ outB and inA ⇒ out¬B
respectively. Linguists and logicians have pointed out that allowing for other
uses of negation in the context of conditionals significantly enriches the ex-
pressiveness and makes the formal model more apt to capture argumentation
and defeasible reasoning [1,2]. These authors mention, for instance,31

(iii) “The input A is not a reason to have B in the output.”

(iv) “The input A is a reason against having B in the output.”

In our framework we can cover these cases by

(iii’) ¬(in A ⇒ out B) and

(iv’) in A ⇒ ¬out B respectively.

Moreover, we can express, e.g.,

(v) ¬inA ⇒ outB: “Not having A in the input is a reason to have B in the
output.”

More generally, we may allow for other complex formulas on the left side
of ⇒. We now demonstrate how the additional expressive power is useful for
the modelling of various central notions in deontic logic such as sanctions,
violations, exceptions, and permissions.

31The presentation is adjusted to our formalism.

896 C. Straßer et al.

Violations and sanctions. It has been noted in [19] that in I/O logics it is not
possible to express violations and sanctions.32 The authors use the following
example:

1. In general you ought not to have a dog (�,¬d), and

2. If you have a dog and the obligation to not have a dog is actual, then
you ought to pay a fine.

(2) cannot be expressed by means of a normal I/O pair since the condition
includes deontic information. In our setting we can express (2) with ease.
For instance, where f represents the paying of a fine, we can express (2) by
(out¬d ∧ in d) ⇒ out f . Altogether, the example is then phrased as Γvio =
{in d, •(in� ⇒ out¬d), •((out¬d ∧ in d) ⇒ out f)}. Since now we do not only
want to ‘actualize’ formulas of the form •(inA ⇒ outB) but more generally
formulas of the form •(A ⇒ B), we generalize Ω• to Ω+

• = {•A ∧ ¬A | A ∈
Wc}.

With this generalization we get, for instance, Γvio
CMIO∩
R
out¬d ∧ outf

where R is the rule set of out1 consisting of (WO), (AND) and (SI).

Dealing with exceptions. We can also express combinations of positive and
negative conditions such as

(¬in A ∧ in A′) ⇒ out B: “Not having A in the input and having A′ in
the input is a reason to have B in the output.”

This can be used to explicitely express exceptions as e.g.,

(¬ina∧ inm) ⇒ out¬f which may express that being served a meal (m)
which is not asparagus (a) we’re obliged not to eat with fingers f .

In non-monotonic logics the modelling of conditionals that allow for ex-
ceptions often takes place under a closed world assumption: while positive
(relevant) information is presented (like the fact that a meal is served inm),
negative information is omitted (like the fact that it is not the case that
asparagus is served ¬in a). For instance, given Γdefneg = {inm} ∪ {•((inm ∧
¬in a) ⇒ out¬f), •(inm ∧ in a ⇒ out f)} we expect to derive out¬f , while if
we add in a to Γ we expect to derive out f .

The adaptive systems presented above can easily be enhanced so that the
negation in ¬inA is interpreted as a default negation which holds whenever

32In [19] the authors present an embedding of I/O logics into parametrized logic
programming that overcomes this difficulty. See Section 5.2 for a comparison with our
approach.

Adaptive Logic Characterizations of Input/Output Logic 897

there is no input to the contrary. A simple way to achieve this is to use the set
of abnormalities Ωdefneg = {in A | A ∈ W}. Various techniques are available
that allow to define adaptive logics in which both sets of abnormalities
Ωdefneg and Ω+

• are considered (see e.g., [48,49]). The most straightforward
way is to use an adaptive logic based on Ω•

defneg = Ωdefneg∪Ω+
• . From Γdefneg

we then can derive ¬in a and out¬f .
Some examples motivate a further refinement of our approach. Take

Γ′
defneg = {inb, ine, •((ine∧¬ina) ⇒ outc), •(inb ⇒ out¬c), •((inb∧¬ina) ⇒

out d)}. With Ω•
defneg we have the minimal Dab-formula in a ∨ �(in b ⇒

out¬c) ∨ �((in e ∧ ¬in a) ⇒ out c). This implies that out d is not deriv-
able since it can only be derived on the condition {in a,�((in b ∧ ¬in a) ⇒
out d)}.

Under a more strict reading of ‘negation as failure to derive’ we want to
derive ¬inA iff inA is not derivable (via CMIOR) from the given premises.
For Γ′

defneg this means that we expect ¬in a to be derivable. Given ¬in a, we
have a conflict between the two triggered conditionals (in e ∧ ¬in a) ⇒ out c
and in b ⇒ out¬c. Since (in b ∧ ¬in a) ⇒ out d is triggered and not related to
the conflict we expect also that outd is derivable. One way to achieve this is
to sequentially combine adaptive logics—say AL1 and AL2—such that the
combined logic AL has the consequence set: CnAL(Γ) = CnAL2(CnAL1(Γ)).
By letting AL1 be based on Ωdefneg we first minimize abnormalities of the
form inA and hence interpret the given facts under negation as failure. AL2

is then based on Ω+
• which allows to apply detachment to conditionals ‘as

much as possible’. Dynamic proof theories for such combinations are defined
in [45,47]. Another option is e.g. to use lexicographic adaptive logics [49]. In
such adaptive logics, both ¬in a and out d are derivable from Γ′

defneg, while
neither out c nor out¬c are.

Permissions by default. A similar approach can be used to model weak or
negative permissions [9,31]. The idea is that A is permitted whenever we can
deduce that there is no obligation to ¬A. Arguably, in many applications this
notion of weak permissions is too restrictive and a stronger principle seems
more adequate which allows us to derive the permission to bring about
A whenever out¬A is not derivable (and not just if ¬out¬A is derived,
see also [9]). This can be modelled by ¬out¬A where the negation with
the wide scope (the one preceding ‘out’) is a default negation (i.e., it is
interpreted as a ‘negation as failure to derive’). As an illustration, take
Γperm = {in p, in q, •(p → s), •(q → ¬s), •(q → (t ∨ r))}. Note that we
have the minimal Dab-formula �(p → s) ∨ �(q → ¬s). This means that
out(t ∨ r) is derivable and hence also ¬out¬(t ∨ r) (the permission to bring

898 C. Straßer et al.

about t∨ r). Now, were we to interpret negations preceeding ‘out’ as default
negations we would also get, for instance, ¬out¬t and ¬out¬r which makes
t and r permitted. Indeed, we can neither derive the obligation to ¬t nor the
obligation to ¬r and hence, according to the notion of negative permission
both t and r are permitted.

Technically this way of modelling weak permissions is realized by letting
Ωwper = {out A | A ∈ W} and by using combined adaptive logics that first
minimize according to the abnormalities in Ω• (resp. Ω+

•) and then according
to the abnormalities in Ωwper.33

Permissive norms. In some applications it is useful to have permissive norms
as part of the conditional norms in the premise set. An option is to use
inA ⇒ ¬out¬B: given A we have a reason to suppose that ¬B is not obliged
resp. that B is permitted.34

Since in our lower limit logics CMIOR we have modus ponens for ⇒,
we can derive ¬out¬B from in A and in A ⇒ ¬out¬B. Depending on the
rules in R we get other properties for conditional permissions. E.g., if out is
a KD-modality (i.e., in all CMIOR variants) we get,

 (out A ∧ ¬out¬B) ⊃ ¬out¬(A ∧ B)

Where, additionally, ⇒ supports right-weakening (where A
 B,
 (C ⇒
A) ⊃ (C ⇒ B)), we also have

If A
 B then
 (in C ⇒ ¬out¬A) ⊃ (in C ⇒ ¬out¬B)

Here’s a simple example for an adaptive proof with the lower limit logic
CMIOR (where R contains (SI), (WO) and (AND)), the set of abnor-
malities Ω+

• , the minimal abnormality strategy, and the premise set Γ =
{in p, in q, •(in p ⇒ out¬s), •(in q ⇒ ¬out¬s), •(in p ⇒ ¬out¬t)}.

1 •(in p ⇒ out¬s) PREM ∅
2 •(in q ⇒ ¬out¬s) PREM ∅
3 •(in p ⇒ ¬out¬t) PREM ∅
4 in p PREM ∅
5 in q PREM ∅

�6 out¬s 1,4; RC {�(in p ⇒ out¬s)}
�7 ¬out¬s 2,5; RC {�(in q ⇒ ¬out ¬s)}

33See the paragraph on exceptions above for more details.
34To simplify things, in our discussion of conditional permissions we here only consider

the option of using the definition of permissions as known from Standard Deontic Logic
where P is ¬O¬ (which translates to ¬out¬ in our setting). Another option would be to
use a dedicated permission operator pout.

Adaptive Logic Characterizations of Input/Output Logic 899

8 ¬out¬t 3,4; RC {�(in p ⇒ ¬out¬t)}
9 �(in p ⇒ out¬s) ∨ �(in q ⇒

¬out¬s)
1,2,4,5; RU ∅

It is easy to see that ¬out¬t is finally derivable while neither out¬s nor
¬out¬s are finally derivable due to the minimal Dab-formula at line 9.

An interesting further extension of this embedding of permissions in our
approach is to prioritize (conditional) permissions over conflicting condi-
tional obligations. Technically this is straightforward: we first minimize
abnormalities in ΩcondPerm = {�A | A is of the form in B ⇒ ¬out C}
and only then the abnormalities in Ω•. This way, whenever we have in A,
•(in A ⇒ out B) and •(in A ⇒ ¬out¬B), we will only be able to detach
¬out¬B. In our example above, this would lead to the derivability of the
permission ¬out¬s detached at line 7 in the proof, whereas the obligation
out¬s at line 6 is not derivable. Prioritizing permissions in this way gives us
a concept that is similar to Stolpe’s notion of ‘permission as derogation’ [43].
We return to this point in Section 5.3 where we discuss prioritized norms.

5. Discussion

5.1. Modularity and Variants

Recall that all I/O operations are obtained by varying two parameters: (i)
the way the maxfamily is used when generating output (join vs. meet of
the outfamily), and (ii) the rules under which the set of generators G is
closed. Both are mirrored by a specific feature of our systems. The adaptive
strategy provides the counterpart of (i), whereas the rules mentioned in
(ii) are translated literally into inference rules for conditionals of the lower
limit logic (in line with Table 2). Hence, structural properties of the original
system are mirrored by structural properties of the system into which it is
translated. This makes our translation procedure very unifying and natural.
As a result, one may alter these frameworks in various straightforward ways,
while preserving the representation theorems.

Below, we briefly discuss additional variations with respect to (i) and (ii),
showing how these are translated into our adaptive framework. We will in-
dicate why these variations seem interesting, but leave their full exploration
for a later occasion. Additional options for variation will be discussed in
Section 5.3.

Free output. Consider the following example: A = {a, b},G = {(a, c), (b, d),
(a ∧ b, e)} and C = {¬(c ∧ d)}. As explained before, both e and c ∨ d are in

900 C. Straßer et al.

out∩
1 (G,A, C). However, there is a difference between both outputs in view of

the way they are generated from the two maxfamilies H = {(a, c), (a∧ b, e)}
and H′ = {(b, d), (a ∧ b, e)}.

Using terminology from default logic, conclusions such as c ∨ d may be
called floating conclusions [28]. In our terms, they can be defined as those
formulas in out∩

R(G,A, C) which cannot be generated from the I/O pairs that
are shared by every member of maxfamilyR(G,A, C). Note that c∨d can only
be obtained by applying the pairs (a, b), resp. (c, d), neither of which are in
H∩H′. In contrast, e is obtained by the application of a conditional (a∧b, e)
which is contained in both H and H′.

The status of floating conclusions has been the subject of vigorous de-
bate. Following [28], some have argued that we should accept them just as
any other non-monotonic consequence (see also [38]), whereas others have
come up with various examples in order to show they are problematic [23].
Consequently, several non-monotonic logics have been modified in order to
allow or disallow the derivation of floating conclusions (e.g., [23,37]).

It is not our aim to take a stance in this long-lasting debate. For the
present purposes, note that there is a straightforward alternative to Defini-
tion 6 in view of which floating conclusions are avoided35:

Definition 17. (Free output)

out�
R(G,A, C) =df outR

(⋂
maxfamilyR(G,A, C),A

)

Our nomenclature echoes that from [40] where a similar technique is
applied in a more narrow setting.36 In the above example, we have e ∈
out�

1 (G,A, C) and c ∨ d �∈ out�
1 (G,A, C).

The operation of free output can be characterized in our adaptive frame-
work by using the so-called reliability strategy. Let us illustrate the basic
idea behind this strategy in terms of the above example. We take another
look at Γ5 and show how oute can be derived.

1 •(a → c) PREM ∅
2 •(b → d) PREM ∅
3 ina PREM ∅
4 inb PREM ∅

35This proposal is completely analogous to the one from [23, Chap. 7], where a default
logic is proposed that invalidates floating conclusions.

36More precisely, the Free Rescher-Manor consequence relation from [40] reduces to the
specific case where A = C = ∅ and all members of G are of the form (�, A). We leave the
verification of this claim to the interested reader.

Adaptive Logic Characterizations of Input/Output Logic 901

5 con¬(c ∧ d) PREM ∅
6 outc 1,3; RC {�(a → c)}�14

7 outd 2,4; RC {�(b → d)}�14

8 out(c ∧ d) 6,7; RU {�(a→c), �(b→d)}�14

9 �(a → c) ∨ �(b → d) 1–5; RC ∅
10 out(c ∨ d) 6; RU {�(a → c)}�14

11 out(c ∨ d) 7; RU {�(b → d)}�14

12 •((a ∧ b) → e) PREM ∅
13 in(a ∧ b) 3,4;RU ∅
14 oute 12,13; RC {�((a ∧ b) → e)}

The idea behind marking for the reliability strategy is straightforward:
a line is marked at stage s iff some member of its condition occurs in a
minimal Dab-formula at stage s. Formally:

Definition 18. Where Dab(Δ1),Dab(Δ2), . . . are the minimal Dab-formulas
derived at stage s, Us(Γ) = Δ1 ∪ Δ2 ∪ . . . is the set of formulas that are
unreliable at stage s.

Definition 19. A line l with condition Δ is marked at stage s iff Δ ∩
Us(Γ) �= ∅.

Using this strategy, not only lines 6–8 are marked at stage 14 (as was the
case with the minimal abnormality strategy), but also line 10 and line 11.
However, line 14 is not marked.

Where † ∈ {+,−}, let MIO†,�
R be the AL defined by (i) the lower limit

logic CMIO†
R, (ii) the set of abnormalities Ω• = {�(A → B) | A,B ∈ W},

and (iii) the strategy Reliability. We write MIO�
R to refer to any of the two

variants. As before, the adaptive proofs are dynamic. So we need to apply
Definitions 12 and 13 to obtain a stable consequence relation for the logics
MIO�

R . The following holds37:

Theorem 8. Where A is CL-consistent or (F) ∈ R̂:

1. ΓG,A,C
MIO−,�
R

outA iff A ∈ out�
R(G,A, C)

2. where (WO), (Z) ∈ R̂, ΓG,A,C
MIO+,�
R

outA iff A ∈ out�
R(G,A, C)

Let us make one last remark before leaving the matter. Recall that the
strategy only affects the marking definition, whereas the generic inference

37See Appendix 4 for the proof.

902 C. Straßer et al.

rules are independent of it. Hence, simply by considering different marking
definitions for an adaptive proof one can switch between the various strate-
gies to check whether (according to our insights at the present stage of the
proof) some conclusion is e.g. a member of the free constrained output, or
whether it only follows by the full meet constrained output.

Other rules for conditionals. Given the existing variation in terms of rules
for I/O pairs, one may also consider additional rule systems for conditionals.
Such systems can be obtained by skipping some of the rules or by adding
others. Makinson and van der Torre make a similar remark in Section 9
of [29], where they discuss several other rules, e.g. contraposition (CONT),
(full) transitivity (T), and conditionalisation (COND)38:

If (A,B), then (¬B,¬A). (CONT)

If (A,B) and (B,C), then (A,C). (T)

If (A,B) then (�, A ⊃ B). (COND)

Both in the unconstrained and the constrained case, our modal framework
can easily deal with the addition of such extra rules. That is, the represen-
tation theorems mentioned in preceding sections can be shown to hold for
arbitrary R as long as R is normal and contains only rules of the form: “If
A1
CL B1, . . . , An
CL Bn and (C1, D1), . . . , (Cm, Dm), then (E,F)”. The
rules in R are translated into rules for conditionals in the associated lower
limit logic CMIOR. Thus, we can characterize the operations out∩

R , out∪
R

and out�
R in terms of adaptive proof theories.

5.2. Comparison

Besides our characterization of constrained I/O logics there have been other
reconstructions in terms of non-monotonic logics. Already in [29] a link
was established between extensions of Reiter’s default logic [39] and the
outfamilies of out+3 : the former form a (usually) strict subset of the latter
(given an appropriate translation).

In [19] we find a stronger embedding of constrained I/O logics based
on out+1 and out+3 , this time into parametrized logic programming. Similar
to the lower limit logic of adaptive logics, parametrized logic programs are
built on top of a Tarskian core logic L (this time called the parameter logic).

38Note that (T) follows from (CT) and (SI).

Adaptive Logic Characterizations of Input/Output Logic 903

A (normal) L-parametrized logic program consists of a set of rules of the
form39:

C ← A1, . . . , An, notB1, . . . , notBm (1)
where C,Ai, Bj (1 ≤ i ≤ n, 1 ≤ j ≤ m) are L-formulas and not is interpreted
in terms of ‘negation as failure’.40 For instance, out+3 is characterized by the
following logic program based on 〈G,A〉 (disregarding constraints), where
the language of CL is enriched by a set Φ of auxiliary constants rΦ for every
r = (A,B) in G encoding that r is ‘discharged’41:

P3 =
{
B ← A, not rΦ | r = (A,B) ∈ G} ∪ {

A ← | A ∈ A} ∪
{
rΦ ← A, notB | r = (A,B) ∈ G}

The idea is to select stable models of P3 that verify formulas rΦ (where r =
(A,B) ∈ G) ‘as little as possible’. This in turn makes sure that detachment is
applied to I/O pairs (A,B) as much as possible (in view of B ← A, not rΦ).

Hence, the basic idea is rather similar to our characterization in terms of
adaptive logics. In both characterizations it is warranted that detachment is
applied to as many I/O pairs (A,B) as possible: in the characterization by
ALs this is done by avoiding abnormalities of the type •(A → B) ∧ ¬(A →
B), in the characterization in terms of logic programs this is taken care of by
avoiding formulas of the type rΦ (where r = (A,B) ∈ G). Both representa-
tions provide a characterization of the maxfamilies: in the representation by

39The structural similarities between parametrized logic programming and ALs clearly
motivate future investigations concerning comparisons between the two frameworks and
possible embeddings. E.g., we know that default and autoepistemic logic can be embedded
in ALs on the basis of the modal characterization in [26]. This motivates modal translations
of the rules of parametrized logic programming. E.g., a possible path is to translate (1)
to (�A1 ∧ . . . ∧ �An ∧ ¬�B1 ∧ . . . ∧ ¬�Bm) ⊃ �C for a suitable normal �-operator.
Negation as failure may then be implemented by treating �A as an abnormality. In order
to embed ALs with the minimal abnormality strategy in parametrized logic programs rules
such as ¬A ← notA (for all abnormalities A) may be used for implementing the idea that
abnormalities are classically negated as little as possible.

40The essential difference with orthodox logic programs is that parametrized logic pro-
grams allow for complex formulas in the language of L in the head and in the body of the
rules.

41The original characterization in [19, Theorem 1.2] contained a mistake. In correspon-
dence with the authors we present here a corrected version. Compared with the original
characterization we have two main changes: 1. there is no need for the additional · -
operator, instead constants of the type rΦ are introduced to encode that a rule is not
applied; 2. in addition to selecting the stable models of the program P3, a post-selection is
needed that selects all stable models that validate minimally many formulas in Φ (the idea
is to apply detachment to as many I/O pairs as possible). A similar correction is needed
in order to obtain a correct characterization of out+1 in [19, Theorem 1.1].

904 C. Straßer et al.

means of ALs the minimal choice sets correspond exactly to the maxfamilies
in view of Theorem 5, in the representation by means of logic programs a
subset of the stable models corresponds exactly to the maxfamilies (see [19,
Theorem 1] and Fn. 41).

5.3. Outlook

Just like I/O logics, our adaptive characterizations can easily be varied,
enriched, and adjusted for different application contexts. This has already
been explicated for some straightforward variants in Section 5.1. Let us in
this outlook give some examples of how the presented framework can be fur-
ther enhanced by enriching the formal language or changing the underlying
monotonic logic.

Priorities. In some applications it may be useful to introduce priorities
among the I/O pairs. This idea is not new in the context of logics based on
maximal consistent subsets. For instance, in Brewka’s ‘preferred
subtheories’-approach [15] priorities among formulas are considered when
the maximal consistent subsets are selected that form the basis for his con-
sequence relations. A similar procedure can be realized by a slight gen-
eralization of the framework presented in this paper. Instead of modeling
all given I/O conditionals on a par by means of •, we encode priorities
among them by prefixing them with •i (i ∈ N) where i indicates the priority
we attach to the conditional. The abnormalities are then presented by the
set Ω = {•iA ∧ ¬A | i ≥ 1, A ∈ W ′}. Moreover, we can make use of so-
called lexicographic ALs [49,50] that take care of the priorities in a natural
way.

Instead of ‘hard-coding’ priorities one may also consider priorities that
arise in view of logical relationships among norms such as specificity cases
in which more specific norms override conflicting norms (see e.g. [44,52]).
One challenge is that specificity introduces an additional level of defea-
sibility, since norms are in force unless they are canceled by more spe-
cific norms with which they conflict. This may also motivate giving up
on (SI) (or at least to restrict it) which is currently not possible in our
systems.42

Quantitative considerations. In other applications also quantitative consid-
erations may play a role: if we have two maxfamilies to choose from, but

42A systematic investigation into a particular case of specificity in the context of I/O
logic is provided in Stolpe’s [43] where permission is thought of as derogation. See also the
paragraph on permissions in Section 4.

Adaptive Logic Characterizations of Input/Output Logic 905

in one (significantly) more I/O pairs are ‘violated’, we may have good rea-
sons to choose the option to violate fewer norms. A format for ALs that
is expressive enough to embed also quantitative variants has been recently
investigated in [45, Chap. 5]. In view of these results it is easy to devise
variants of the logics presented in this paper that implement quantitative
considerations.

Inconsistent facts. I/O logics only deal with conflicts among the I/O pairs
but are not designed for applications where also the factual input may be
conflicting. This can easily be fixed in a way that is coherent with one of the
main mechanisms behind I/O logics: namely to work with maximal consis-
tent families. The idea is simply to first form maximal consistent subsets of
the factual input and subsequently to apply to each of these sets the respec-
tive I/O function. Both steps can straightforwardly be integrated in an AL
framework that generalizes the framework presented in this paper by means
of combining it with the techniques presented in [34].

Going predicative. Using our framework opens the prospect of applying the
constrained I/O mechanism to predicate logic: i.e., for instance to allow
for input of the form in(∀xP (x)) or conditionals of the form (∀xP (x)) →
(∃xQ(x)) or ∀x(P (x) → Q(x)). The reason why the original (constrained)
I/O functions are suboptimal for the explication of defeasible reasoning in
this context is due to the undecidability of predicate logic: there is no ef-
fective way to perform the consistency check that is necessary to calculate
the maxfamilies.43 The dynamic proof theory of ALs comes in handy since
it doesn’t force us to make consistency checks ‘on the spot’. Instead, we can
defeasibly assume that a set of conditionals is consistent. E.g., in a MIO∪

R -
proof from ΓG,A,C we may derive outA on the condition Δ = {�(B → C) |
(B,C) ∈ H} where H ⊆ G. This means that we derive outA on the assump-
tion that H is consistent with the given input and the given constraints (i.e.,
it is a subset of a maxfamily of 〈G,A, C〉). In case this doesn’t hold we know
that we will be able to derive Dab(Δ) on the empty condition eventually
and hence we will be forced to mark the line.44

43A similar observation has been made by Horty [21, p. 50] in the context of his
dyadic enrichment of an older system by Van Fraassen [53] that is based on consistency
considerations.

44The merits of the dynamic proofs of ALs when a positive test for consistency is not
available have been pointed out before, e.g. by Batens in the context of ALs for inductive
generalizations [4].

906 C. Straßer et al.

6. Conclusion

We reconstructed I/O logics as modal adaptive logics and proved this recon-
struction to be equivalent to the original definition. Apart from the purely
technical interest in translating systems from one formal framework to an-
other, we argued that our characterization has some additional advantages.

First, our logics come with a proof theory that mirrors various types of
defeasible reasoning. Both of Pollock’s notions of synchronic and diachronic
defeasibility are modeled in adaptive proofs. Moreover, the proof theory can
deal with the case-specific retraction of conclusions in the light of new input
(Section 3.1).

Second, our reconstruction allows for more flexibility in the formulation
of the premises. E.g., in order to express violations and sanctions deontic
information may appear in the body of our conditionals that express I/O
rules (Section 4).

Third, making use of techniques from the adaptive logics framework, we
obtain new and interesting variations of the original I/O functions. This can
be achieved by varying either the adaptive strategy or by varying the rules
of the lower limit logic (Section 5.1).

Acknowledgements. The contributions of Christian Straßer and Mathieu
Beirlaen were supported by a Sofja Kovalevskaja award of the Alexander
von Humboldt Foundation, funded by the German Ministry for Education
and Research. In addition, the contribution of Mathieu Beirlaen was sup-
ported by the project Logics of discovery, heuristics and creativity in the
sciences (PAPIIT, IN400514) granted by the National Autonomous Univer-
sity of Mexico (UNAM), and by the Programa de Becas Posdoctorales of the
Coordinación de Humanidades at UNAM. The contribution of Frederik Van
De Putte was supported by subventions of the Flemish Fund for Scientific
Research (FWO—Vlaanderen).

Appendices

In this appendix we assume a fixed normal set of rules R for I/O-pairs (i.e., (SI),
(EQ), (AND) ∈ R̂). Hence we do not restrict ourselves to the rules that are con-
sidered in Section 2.1. The considered rules have one of the two forms of the left
column of Table 2 and are translated as described there.

We use the following notations. Where Γ ⊆ W and π ∈ {in, out, con}, Γπ = {πA |
A ∈ Γ}. Where G is a set of I/O-pairs, G→ = {A → B | (A,B) ∈ G}.

Adaptive Logic Characterizations of Input/Output Logic 907

Appendix 1: Proof of Theorem 2

The proofs of the following two facts follow immediately by the way the rules are
translated in Table 2.

Fact 5. (A,B) ∈ GR iff G→
MIOR
A → B.

Fact 6. If G→
MIOR
A ⇒ B then there are A′ and B′ such that A = inA′ and

B = outB′.

The following is a well-known fact about the modal logic K.

Fact 7. A ∈ CnCL(A) iff Ain
MIOR
inA.

Theorem 9. If A ∈ outR(G,A), then ΓG,A
MIOR
outA.

Proof. Suppose A ∈ outR(G,A). So there is a B ∈ CnCL(A) such that (B,A) ∈
GR. By Facts 5 and 7 respectively, G→
MIOR

B → A and Ain
MIOR
inB. By the

monotonicity of MIOR and (MP⇒), ΓG,A
MIOR
outA.

The next fact follows by the definition of outR, (F) and since in is a KD-modality.

Fact 8. Where A is CL-inconsistent and (F) ∈ R̂, outR(G,A) is CL-inconsistent
and ΓA,G
MIOR

⊥.

Theorem 10. Where A is CL-consistent or (F) ∈ R̂,

1. If ΓA,G
MIO−
R
outA, then A ∈ outR(G,A).

2. Where (WO), (Z) ∈ R̂, if ΓA,G
MIOR
+ outA, then A ∈ outR(G,A).

Proof. In case A is CL-inconsistent and (F) ∈ R̂, the theorem follows by Fact 8.
Suppose A is CL-consistent and A �∈ outR(G,A). Let Γ = Γ1 ∪ Γ2 ∪ Γ3, where

Γ1 = {inB | B ∈ CnCL(A)} ∪ {¬inC | C ∈ W − CnCL(A)}
Γ2 = {B → C | (B,C) ∈ GR} ∪ {¬(B ⇒ C) | there are no B′, C ′ ∈ W for
which B = inB′, C = outC ′ and (B′, C ′) /∈ GR}
Γ3 = {outB | B ∈ outR(G,A)} ∪ {¬outC | C ∈ W − outR(G,A)}

We first show that Γ is CL-consistent.45 Since in, out, and ⇒ have no meaning
in CL we only need to show that there are no B,C ∈ W ′ for which B ⇒ C,¬(B ⇒
C) ∈ Γ2. By the construction of Γ2 we have to show that there are no B,C ∈ W
for which B → C,¬(B → C) ∈ Γ2. This follows directly by the construction of Γ2.

Let Γ′ be a maximal CL-consistent extension of Γ. Note that (†) B ⊃ C ∈ Γ′ iff
B /∈ Γ′ or C ∈ Γ′ and (‡) ¬B ∈ Γ′ iff B �∈ Γ′. We now prove for all D ∈ W ′:

Γ′
MIOR
− D iff D ∈ Γ′ (2)

where (WO), (Z) ∈ R̂,Γ′
MIOR
+ D iff D ∈ Γ′ (3)

45Note that at this point we do not yet establish that Γ is MIOR-consistent.

908 C. Straßer et al.

To prove (2) (resp. (3)) it suffices to show that (i) whenever D is a MIOR
−-axiom

(resp. a MIOR
+-axiom), then D ∈ Γ′ and (ii) Γ′ is closed under all the MIOR

−-
rules (resp. all the MIOR

+-rules).
Ad (i). For the CL-axioms, this follows immediately in view of the construction.

So we move on to the KD-axioms for in.
Ad (Kin). in(B ⊃ C) ⊃ (inB ⊃ inC) ∈ Γ′ iff [by (†)] in(B ⊃ C) �∈ Γ′ or inB /∈ Γ′

or inC ∈ Γ′ iff [by (‡)] ¬in(B ⊃ C) ∈ Γ′ or ¬inB ∈ Γ′ or inC ∈ Γ′ iff [by the
construction] B ⊃ C �∈ CnCL(A) or B �∈ CnCL(A) or C ∈ CnCL(A). The latter
holds by modus ponens.

Ad (Din). inB ⊃ ¬in¬B ∈ Γ′ iff [by (†)] inB /∈ Γ′ or ¬in¬B ∈ Γ′ iff [by (‡)]
¬inB ∈ Γ′ or ¬in¬B ∈ Γ′ iff [by the construction] B �∈ CnCL(A) or ¬B �∈ CnCL(A).
The latter holds by the consistency of A.

Ad (NECin). This follows immediately by the construction of Γ1.
Suppose now (WO), (Z) ∈ R̂. Ad (Kout). Suppose out(B ⊃ C), outB ∈ Γ′.

Hence, B ⊃ C,B ∈ outR(G,A). By Definition 1, there are (A,B ⊃ C), (A′, B) ∈ GR

for some A,A′ ∈ CnCL(A). By (SI) and (AND), (A ∧ A′, B ∧ (B ⊃ C)) ∈ GR. By
(WO), (A ∧ A′, C) ∈ GR. Hence, C ∈ outR(G,A) and thus, outC ∈ Γ3 ⊆ Γ′. By (†),
out(B ⊃ C) ⊃ (outB ⊃ outC) ∈ Γ′.

Ad (NECout). Suppose
CL A. Hence, by (Z) and (WO), (�, A) ∈ GR. Thus,
also A ∈ outR(G,A). By the construction of Γ3, outA ∈ Γ3 ⊆ Γ′.

Ad (ii). Ad (MP⇒). Let A,A ⇒ B ∈ Γ′. By the construction of Γ2, there are
A′, B′ ∈ W such that A = inA′, B = outB′, and (A′, B′) ∈ GR. By the construction
of Γ1, A′ ∈ CnCL(A). Hence, by Definition 1, B′ ∈ outR(G,A). By the construction
of Γ3, outB′ ∈ Γ3 and hence outB ∈ Γ′.

As for the rules in R→ this follows immediately by the translation schemes in
Table 2, the construction of Γ2, and Facts 5 and 6.

By (2) (resp. (3)), Γ′ �
MIOR
⊥ since ⊥ /∈ Γ′. Hence since ¬outA ∈ Γ3 ⊆ Γ′,

outA /∈ Γ′ and thus, by (2) (resp. (3)), Γ′ �
MIOR
outA. Note that ΓG,A ⊆ Γ′. By

the monotonicity of MIOR, ΓG,A �
MIOR
outA.

Theorem 2 is an immediate consequence of Theorems 9 and 10.

Appendix 2: Some Properties of CMIOR

In this section, we prove some properties of the systems CMIOR which will be
helpful for establishing the representation theorems in the next two sections. The
properties and their proofs are strongly linked to those from the previous section.

Notation: To avoid clutter, we shall use
 (
−,
+) to abbreviate
CMIOR
(
CMIOR

− ,

CMIOR

+) in the remainder of this appendix.
By Theorem 9 and since CMIOR is a monotonic extension of MIOR, we have:

Corollary 2. Where C ⊆ W: If A ∈ outR(G,A), then ΓG,A ∪ Ccon
 outA.

Fact 9. C ∈ CnCL(C) iff Ccon
 conC.

Adaptive Logic Characterizations of Input/Output Logic 909

Theorem 11. Where A is consistent or (F) ∈ R̂:

1. outR(G,A) ∪ C
CL ⊥ iff ΓG,A ∪ Ccon
− ⊥.

2. Where (WO), (Z) ∈ R̂, outR(G,A) ∪ C
CL ⊥ iff ΓG,A ∪ Ccon
+ ⊥.

Proof. The case where A is CL-inconsistent and (F) ∈ R̂ is trivial (see also Fact
8). Suppose thus that A is CL-consistent.

(⇒) Suppose outR(G,A) is CL inconsistent with C. By Remark 1, there is an A
for which C
CL A and ¬A ∈ outR(G,A). By Corollary 2, ΓG,A ∪ Ccon
 out¬A. By
Fact 9 and the monotonicity of CMIOR, ΓG,A ∪ Ccon
 conA and thus by (ROC),
ΓG,A ∪ Ccon
 ¬out¬A. Altogether, ΓG,A ∪ Ccon
 ⊥.

(⇐) Suppose outR(G,A) ∪ C �
CL ⊥. Let Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where Γ1,
Γ2 and Γ3 are defined as in the proof for Theorem 10, and Γ4 = {conA | A ∈
CnCL(C)} ∪ {¬conB | B ∈ W − CnCL(C)}.

By an analogous argument to the one in Theorem 10 we can show that Γ is
CL-consistent. Let Γ′ be a maximal CL-consistent extension of Γ. We have:

Γ′
− A iff A ∈ Γ′ (4)

where (WO), (Z) ∈ R̂,Γ′
+ A iff A ∈ Γ′ (5)

This can be shown by an analogous argument to the argument for (2) (resp. (3))
in Theorem 10. For (Kcon) and (Dcon) we proceed analogously as for (Kin) and
(Din). For the axiom (ROC), we have: conA ⊃ ¬out¬A ∈ Γ′ iff [by (†)] conA /∈ Γ′

or ¬out¬A ∈ Γ′ iff [by (‡) and the construction] A �∈ CnCL(C) or ¬A �∈ outR(G,A).
The latter holds in view of the supposition and Remark 1.

By the construction, ΓG,A∪Ccon ⊆ Γ′. By the monotonicity of CMIOR
− (resp. of

CMIOR
+), (4) (resp. (5)), and the CMIOR-consistency of Γ′, ΓG,A ∪

Ccon �
 ⊥.

Theorem 12. Where outR(G,A) ∪ C is CL-consistent and (A is CL-consistent or
(F) ∈ R̂):

1. A ∈ outR(G,A) iff ΓG,A ∪ Ccon
− outA.

2. Where (WO), (Z) ∈ R̂, A ∈ outR(G,A) iff ΓG,A ∪ Ccon
+ outA.

Proof. (⇒) Immediate in view of Corollary 2. (⇐) Suppose A �∈ outR(G,A).
Let Γ′ be constructed as in the proof of Theorem 11. By the construction and the
supposition, ¬outA ∈ Γ′. By the consistency of Γ′, outA �∈ Γ′. Since ΓG,A∪Ccon ⊆ Γ′,
by the monotonicity of CMIOR, (4), ΓG,A ∪ Ccon �
 outA.

910 C. Straßer et al.

Appendix 3: Proof of Theorem 3

We refer to Section 3.2 for the outline of the proof. As shown there, it suffices to
prove Lemma 2, Theorems 5 and 6, which we shall do here.

Preliminaries. Let W 	 • denote the set of all formulas in Wc without occurrences of
•, and W→ = {A → B | A,B ∈ W}. Where Δ ⊆ W→, let Δ• = {•A | A ∈ Δ}.
Recall that Ω•(Δ) = {�(A → B) | A → B ∈ Δ} and, where G is a set of I/O-pairs,
Ω•(G) is an abbreviation for Ω•(G→). We will in the remainder sometimes use the
inverse function �, which is defined as follows: where Θ ⊆ Ω•, �(Θ) = {A → B |
�(A → B) ∈ Θ}.

Proof of Lemma 2

Since • is a dummy operator in CMIOR, we have:

Fact 10. Where Γ ⊆ W 	 •, Δ ∪ {A} ⊆ W→ and B ∈ Wc: Γ ∪ Δ•
 B ∨ •A iff
(Γ ∪ Δ•
 B or A ∈ Δ).

Lemma 3. Where Γ ⊆ W 	 •, Δ ⊆ W→, Θ ⊆f Ω• and A ∈ Wc: if Γ ∪ Δ•

A ∨ Dab(Θ), then Γ ∪ Δ•
 A ∨ Dab(Θ ∩ Ω•(Δ)).

Proof. Suppose Γ ∪ Δ•
 A ∨ Dab(Θ). Let Θ − Ω•(Δ) = {•A1 ∧ ¬A1, . . . , •An ∧
¬An}. Hence, (�) Ai �∈ Δ where 1 ≤ i ≤ n.

By the supposition and CL, Γ ∪ Δ•
 A ∨ Dab(Θ − {•A1 ∧ ¬A1}) ∨ •A1. By (�)
and Fact 10, Γ ∪ Δ•
 A ∨ Dab(Θ − {•A1 ∧ ¬A1}). Repeating the same reasoning
for A2, . . ., and An, we can derive that Γ ∪ Δ•
 A ∨ Dab(Θ − (Θ − Ω•(Δ))), and
hence Γ ∪ Δ•
 A ∨ Dab(Θ ∩ Ω•(Δ)).

Lemma 2 is a special case of Lemma 3 where Γ = Ain ∪ Ccon and Δ = G→.

Proof of Theorem 5

Since • is a dummy operator in CMIOR, we have:

Fact 11. Where Γ ∪ {A} ⊆ W 	 • and Δ ⊆ W→: Γ ∪ Δ•
 A iff Γ
 A.

Lemma 4. Where Γ ⊆ W 	 • and Δ ⊆ W→: (i) if Θ ∈ Σ(Γ ∪ Δ•) and Γ �
 ⊥, then
�(Θ) ⊆ Δ, (ii) if Θ ∈ Φ(Γ ∪ Δ•) and Γ �
 ⊥, then �(Θ) ⊆ Δ.

Proof. Ad (i). Suppose the antecedent holds. Hence Γ ∪ Δ•
 ∨
Θ. By addition,

Γ ∪ Δ•
 ⊥ ∨ ∨
Θ. By Lemma 3, Γ ∪ Δ•
 ⊥ ∨ ∨

(Θ ∩ Ω•(Δ)). Assume first
that Θ ∩ Ω•(Δ) = ∅. In that case Γ ∪ Δ•
 ⊥ and hence by Fact 11 also Γ
 ⊥,—a
contradiction. Thus, Θ∩Ω•(Δ) �= ∅ and Γ∪Δ•
 ∨

(Θ∪Ω•(Δ)). Were Θ−Ω•(Δ) ⊂ Θ
then

∨
Θ would not be a minimal Dab-consequence. Thus, Θ∩Ω•(Δ) = Θ and hence

�(Θ) ⊆ Δ. Ad (ii). This follows immediately by (i) since for each Θ ∈ Φ(Γ ∪ Δ•),
Θ ⊆ ⋃

Σ(Γ ∪ Δ•).

Theorem 13. Where Γ ⊆ W 	 •, Δ ⊆ W→, Θ ⊆ Ω• and Γ �
 ⊥: Θ is a choice set of
Σ(Γ ∪ Δ•) iff Γ ∪ (Δ − �(Θ)) � ⊥.

Adaptive Logic Characterizations of Input/Output Logic 911

Proof. (⇒) Suppose Γ ∪ (Δ − �(Θ))
 ⊥. By compactness and the deduction
theorem, there is a finite Λ ⊆ Δ − �(Θ) such that Γ
 ¬∧

Λ. Hence also Γ ∪
Δ•
 ¬∧

Λ. Note that, since Λ ⊆ Δ, also Γ ∪ Δ•
 •A for all A ∈ Λ. Hence,
Γ ∪ Δ•
 ∨

Ω•(Λ). It follows that there is a Λ′ ⊆ Λ with Ω•(Λ′) ∈ Σ(Γ ∪ Δ•). Note
that also Ω•(Λ′) ∩ Θ = ∅. Hence Θ is not a choice set of Σ(Γ ∪ Δ•).

(⇐) Suppose Θ is not a choice set of Σ(Γ∪Δ•). Let Λ ∈ Σ(Γ∪Δ•) be such that
Θ ∩ Λ = ∅. By Lemma 4, we have two cases: (1) Γ
 ⊥, or (2) �(Λ) ⊆ Δ.

Ad (1): By the monotonicity of CMIOR, Γ ∪ (Δ − �(Θ))
 ⊥.
Ad (2): Since Λ ∈ Σ(Γ ∪ Δ•), Γ ∪ Δ•
 ∨

Λ. Hence also Γ ∪ Δ•
 ∨{¬A | A ∈
�(Λ)}. By Fact 11, Γ
 ∨{¬A | A ∈ �(Λ)}, and hence (�) Γ ∪ �(Λ)
 ⊥. Since
Λ ∩ Θ = ∅, �(Λ) ⊆ Δ − �(Θ). Hence by (�) and the monotonicity of CMIOR,
Γ ∪ (Δ − �(Θ))
 ⊥.

Theorem 14. Let Γ ⊆ W 	 •, Δ ⊆ W→, Θ ⊆ Ω• and Γ �
 ⊥. We have:

Θ ∈ Φ(Γ ∪ Δ•) iff Δ − �(Θ) ∈ M(Γ,Δ),

where M(Γ,Δ) is the set of all ⊂-maximal Δ′ ⊆ Δ such that Γ ∪ Δ′
� ⊥.

Proof. (⇒) Suppose Θ ∈ Φ(Γ ∪ Δ•). Assume Δ − �(Θ) /∈ M(Γ,Δ). Hence, by
Theorem 13 there is a Λ ⊆ Δ such that Λ ⊃ Δ − �(Θ) and Γ ∪ Λ � ⊥. Let
Θ′ = Ω•(Δ − Λ). It follows that Λ = Δ − �(Θ′) and (1) Θ′ ⊂ Θ. By the right-
left direction of Theorem 13, (2) Θ′ is a choice set of Σ(Γ ∪ Δ•). By (1) and (2),
Θ /∈ Φ(Γ ∪ Δ•),—a contradiction.

(⇐) Suppose Δ− �(Θ) ∈ M(Γ,Δ). Hence Γ∪ (Δ− �(Θ)) � ⊥. By the right-left
direction of Theorem 13, Θ is a choice set of Σ(Γ ∪ Δ•). Assume that Θ is not a
minimal choice set of Σ(Γ∪Δ•). Let Θ′ ⊂ Θ be a choice set of Σ(Γ∪Δ•). By the left-
right direction of Theorem 13, Γ∪(Δ−�(Θ′)) � ⊥. Note that Δ−�(Θ) ⊂ Δ−�(Θ′).
Hence Δ − �(Θ) �∈ M(Γ,Δ)—a contradiction.

We can now prove Theorem 5. Suppose outR(∅,A) ∪ C and A are CL-consistent
sets. By Theorem 11 (where G = ∅), Ain ∪ Ccon

� ⊥. Hence we can rely on Theorem
14, letting Γ = Ain ∪ Ccon and Δ = G→, such that ΓG,A,C = Γ ∪ Δ•.

(⊆) Suppose Θ ∈ Φ(ΓG,A,C). By the left-right direction of Theorem 14, H→ =
G→ − �(Θ) is a maximal subset of G→ for which Ain ∪ Ccon ∪ H→

� ⊥. In other
words, H is a maximal subset of G such that H→ ∪ Ain ∪ Ccon

� ⊥. By Theorem
11, H is a maximal subset of G such that outR(H,A) ∪ C �CL ⊥. By Definition
5, H ∈ maxfamily(G,A, C). By Lemma 4 (where Γ = Ain ∪ Ccon and Δ = G→) we
immediately get Θ ⊆ Ω•(G) and hence Θ = Ω•(G − H).

(⊇) Let H ∈ maxfamily(G,A, C). By Definition 5, H is a maximal subset of G
such that outR(G,A) ∪ C �CL ⊥. By Theorem 11, (�) H→ is a maximal subset of
G→ such that H→ ∪ Ain ∪ Ccon

� ⊥. Let Θ = Ω•(G − H). Hence, H→ = G→ − �(Θ).
By (�) and the right-left direction of Theorem 14, Θ ∈ Φ

(
ΓG,A,C)

.

Proof of Theorem 6

Lemma 5. Where Γ ⊆ W 	 •, Δ ⊆ W→, and Δ′ ⊆ Δ: Γ ∪ Δ′
 A iff there is a
Θ ⊆f Ω•(Δ′) such that Γ ∪ Δ•
 A ∨ ∨

Θ.

912 C. Straßer et al.

Proof. (⇒) Suppose Γ ∪ Δ′
 A. By the compactness of CMIOR, there is a
Δ′′ ⊆f Δ′ such that Γ ∪ Δ′′
 A. Let Θ = Ω•(Δ′′), whence Θ ⊆f Ω•(Δ′). By the
deduction theorem, Γ
 A ∨ ∨{¬B | B ∈ Δ′′}. Note that for all B ∈ Δ′′, •B ∈ Δ•

since Δ′′ ⊆ Δ. Hence Γ ∪ Δ•
 A ∨ ∨
Θ.

(⇐) Suppose Γ∪Δ•
 A∨∨
Θ, where Θ ⊆f Ω•(Δ′). Hence, Γ∪Δ•
 A∨∨{¬B |

B ∈ �(Θ)}. By Fact 11, Γ
 A ∨ ∨{¬B | B ∈ �(Θ)}. Hence by the monotonicity
of CMIOR and disjunctive syllogism, Γ ∪ �(Θ)
 A. Since �(Θ) ⊆ Δ′ and by the
monotonicity of CMIOR, Γ ∪ Δ′
 A.

Letting Γ = Ain ∪ Ccon, Δ = G→, Δ′ = H→, we get by Lemma 5:

Corollary 3. Where H ⊆ G, ΓH,A ∪ Ccon
 outA iff there is a Θ ⊆f Ω•(H) such
that ΓG,A,C
 outA ∨ Dab(Θ).

Theorem 6 follows directly by Theorem 12 and Corollary 3. To see this, suppose
outR(H,A)∪C and A are CL-consistent sets where H ⊆ G. We have: A ∈ outR(H,A)
iff [by Theorem 12] ΓH,A ∪ Ccon
 outA iff [by Corollary 3] there is a Θ ⊆f Ω•(H)
such that ΓG,A,C
 outA ∨ Dab(Θ).

Appendix 4: Proof of Theorem 8

The following property is known to hold for adaptive logics with the reliability
strategy.46

Theorem 15. Γ
MIO�
R

A iff there is a Δ ⊆f Ω• − ⋃
Φ(Γ) such that Γ
CMIOR

A ∨ Dab(Δ).

By Lemma 2, we have:

Corollary 4. Γ
MIO�
R

A iff there is a Δ ⊆f Ω•(G)−⋃
Φ(Γ) such that Γ
CMIOR

A ∨ Dab(Δ).

From Theorem 5, we can derive:

Theorem 16. Where outR(∅,A) ∪ C and A are CL-consistent sets or (F) ∈ R̂:
⋃

Φ
(
ΓG,A,C)

= Ω•
(
G −

⋂
maxfamily(G,A, C)

)

We now prove Theorem 8.
For special case in which there are no maxfamilies we can use Lemma 1. If

outR(∅,A) ∪ C is CL-inconsistent then ΓG,A,C
 ⊥ and hence ΓG,A,C
CMIO�
R

⊥.
Hence, Theorem 8 holds for the case in which outR(∅,A) ∪ C is CL-inconsistent.

Suppose now that outR(∅,A) ∪ C and A are CL-consistent sets. The following
four properties are equivalent by Corollary 4 (item 1 and 2), Theorem 16 (items 2
and 3), and Theorem 6 (items 3 and 4):

1. ΓG,A,C
MIO�
R
outA

46It follows immediately from Theorems 6 and 11.5 in [6].

Adaptive Logic Characterizations of Input/Output Logic 913

2. There is a Δ ⊆f Ω•(G) − ⋃
Φ(Γ) such that ΓG,A,C
CMIOR

outA ∨ Dab(Δ).

3. There is a Δ ⊆f Ω•(
⋂
maxfamily(G,A, C)) such that ΓG,A,C
CMIOR

outA ∨
Dab(Δ).

4. A ∈ outR(
⋂

maxfamily(G,A, C),A).

References

[1] Amgoud, L., and H. Prade, Towards a logic of argumentation, in E. Hüllermeier,

S. Link, T. Fober, and B. Seeger (eds.), Scalable Uncertainty Management, vol. 7520

of Lecture Notes in Computer Science, Springer, Berlin, 2012, pp. 558–565.

[2] Apothéloz, D., P.-Y. Brandt, and G. Quiroz, The function of negation in argu-

mentation, Journal of Pragmatics 19(1):23–38, 1993.

[3] Batens, D., A survey of inconsistency-adaptive logics, in D. Batens, G. Priest, and

J.-P. van Bendegem (eds.), Frontiers of Paraconsistent Logic, Research Studies Press,

Kings College Publication, Baldock, 2000, pp. 49–73.

[4] Batens, D., The need for adaptive logics in epistemology, in Logic, Epistemology,

and the Unity of Science, Springer, Berlin, 2004, pp. 459–485.

[5] Batens, D., A procedural criterion for final derivability in inconsistency-adaptive

logics, Journal of Applied Logic 3:221–250, 2005.

[6] Batens, D., A universal logic approach to adaptive logics, Logica Universalis 1:221–

242, 2007.

[7] Batens, D., Towards a dialogic interpretation of dynamic proofs, in C. Dégremont,

L. Keiff, and H. Rückert (eds.), Dialogues, Logics and Other Strange Things. Essays

in Honour of Shahid Rahman, College Publications, London, 2009, pp. 27–51.

[8] Batens, D., and D. Provijn, Pushing the search paths in the proofs. A study in

proof heuristics, Logique et Analyse 173–175:113–134, 2001.

[9] Beirlaen, M., and C. Straßer, Two adaptive logics of norm-propositions, Journal

of Applied Logic 11(2):147–168, 2013.

[10] Beirlaen, M., and C. Straßer, Nonmonotonic reasoning with normative conflicts in

multi-agent deontic logic, Journal of Logic and Computation 24(6):1179–1207, 2014.

[11] Beirlaen, M., C. Straßer, and J. Meheus, An inconsistency-adaptive deontic logic

for normative conflicts, Journal of Philosophical Logic 42(2):285–315, 2013.

[12] Bochman, A., Explanatory Nonmonotonic Reasoning, OECD Publishing, Paris, 2005.

[13] Boella, G., and L. van der Torre, Institutions with a hierarchy of authorities in

distributed dynamic environments, Artifical Intelligence and Law 16:53–71, 2008.

[14] Boutilier, C., Conditional logics of normality: a modal approach, Artificial Intelli-

gence 68(1):87–154, 1994.

[15] Brewka, G., Preferred subtheories: an extended logical framework for default reason-

ing, in Proceedings of the 11th International Joint Conference on Artificial Intelligence

(IJCAI’89), 1989, pp. 1043–1048.

[16] Crocco, G., and P. Lamarre, On the connection between non-monotonic infer-

ence systems and conditional logics, in B. Nebel and E. Sandewall (eds.), Proceedings

of the 3rd International Conference on Principles of Knowledge Representation and

Reasoning, 1992, pp. 565–571.

914 C. Straßer et al.

[17] Gabbay, D., Conditional implications and non-monotonic consequence, in G. Crocco,

L. Farinhas del Cerro and A. Herzig (eds.), Conditionals: From Philosophy to Com-

puter Science, vol. 5 of Studies in Logic and Computation, Oxford University Press,

Oxford, 1995, pp. 337–359.

[18] Goble, L., Deontic logic (adapted) for normative conflicts, Logic Journal of IGPL

22(2):206–235, 2014.

[19] Gonçalves, R., and J. J. Alferes, An embedding of input-output logic in deontic

logic programs, in T. Ågotnes, J. Broersen, and D. Elgesem (eds.), Proceedings of the

11th International Conference on Deontic Logic in Computer Science, vol. 7393 of

Lecture Notes in Artificial Intelligence, Springer, Berlin, 2012, pp. 61–75.

[20] Hansen, J., G. Pigozzi, and L. van der Torre, Ten philosophical problems in

deontic logic, in G. Boella, L. van der Torre, and H. Verhagen (eds.), Normative Multi-

agent Systems, No. 07122 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007,

Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss

Dagstuhl, Germany.

[21] Horty, J. F., Moral dilemmas and nonmonotonic logic, Journal of Philosophical

Logic 23(1):35–65, 1994.

[22] Horty, J. F., Skepticism and floating conclusions, Artificial Intelligence 135:55–72,

2002.

[23] Horty, J. F., Reasons as Defaults, Oxford University Press, Oxford, 2012.

[24] Kraus, S., D. J. Lehmann, and M. Magidor, Nonmonotonic reasoning, preferential

models and cumulative logics, Artificial Intelligence 44:167–207, 1990.

[25] Lehmann, D. J., and M. Magidor, What does a conditional knowledge base entail?,

Artificial Intelligence 55(1):1–60, 1992.

[26] Lin, F., and Y. Shoham, Epistemic Semantics for Fixed-Points Non-monotonic Log-

ics, Morgan Kaufmann Publishers Inc., Pacific Grove, CA, 1990.

[27] Lindström, S., A semantic approach to nonmonotonic reasoning: inference operations

and choice, Uppsala Prints and Reprints in Philosophy 10, 1994.

[28] Makinson, D., and K. Schlechta, Floating conclusions and zombie paths: two deep

difficulties in the “directly skeptical” approach to defeasible inheritance nets, Artificial

Intelligence 48:199–209, 1991.

[29] Makinson, D., and L. van der Torre, Input/output logics, Journal of Philosophical

Logic 29:383–408, 2000.

[30] Makinson, D., and L. van der Torre, Constraints for input/output logics, Journal

of Philosophical Logic 30:155–185, 2001.

[31] Makinson, D., and L. van der Torre, Permission from an input/output perspec-

tive, Journal of Philosophical Logic 32(4):391–416, 2003.

[32] Makinson, D., and L. van der Torre, What is input/output logic? input/output

logic, constraints, permissions, in G. Boella, L. van der Torre, and H. Verhagen

(eds.), Normative Multi-agent Systems, No. 07122 in Dagstuhl Seminar Proceedings,

Dagstuhl, Germany, Internationales Begegnungs- und Forschungszentrum für Infor-

matik (IBFI), Schloss Dagstuhl, Germany, 2007.

Adaptive Logic Characterizations of Input/Output Logic 915

[33] Meheus, J., M. Beirlaen, and F. Van De Putte, Avoiding deontic explosion by

contextually restricting aggregation, in G. Governatori and G. Sartor (eds.), Proceed-

ings of the 10th International Conference on Deontic Logic in Computer Science, vol.

6181 of Lecture Notes in Artificial Intelligence, Springer, 2010, pp. 148–165.

[34] Meheus, J., C. Straßer, and P. Verdée, Which style of reasoning to choose in the

face of conflicting information? Journal of Logic and Computation, 2013. doi:10.1093/

logcom/ext030.

[35] Parent, X. , and L. Van Der Torre, Aggregative deontic detachment for normative

reasoning, Short paper, to appear in Proceedings of the 14th International Conference

on Principles of Knowledge Representation and Reasoning, 2014.

[36] Parent, X. , and L. Van Der Torre, Sing and dance!, in F. Cariani, D. Grossi,

J. Meheus and X. Parent (eds.), Deontic Logic and Normative Systems. Springer,

Berlin, 2014, pp. 149–165.

[37] Pollock, J., Defeasible reasoning, in J. E. Adler and L. J. Rips (eds.), Reasoning.

Studies of Human Inference and Its Foundations, Cambridge University Press, Cam-

bridge, 2008, pp. 451–470.

[38] Prakken, H., Intuitions and the modelling of defeasible reasoning: some case stud-

ies, in S. Benferhat and E. Giunchiglia (eds.), Proceedings of the 9th International

Workshop on Non-Monotonic Reasoning, 2002, pp. 91–102.

[39] Reiter, R., A logic for default reasoning, Artificial Intelligence 13:81–132, 1980.

[40] Rescher, N., and R. Manor, On inference from inconsistent premises, Theory and

Decision 1:179–217, 1970.

[41] Stolpe, A., Normative consequence: the problem of keeping it whilst giving it up,

in R. van der Meyden and L. van der Torre (eds.), Proceedings of the 9th Interna-

tional Conference on Deontic Logic in Computer Science, vol. 5076 of Lecture Notes

in Computer Science, Springer, Berlin, 2008, pp. 174–188.

[42] Stolpe, A., Norms and Norm-System Dynamics, PhD Thesis, Department of Phi-

losophy, University of Bergen, Norway, 2008.

[43] Stolpe, A., A theory of permission based on the notion of derogation, Journal of

Applied Logic 8(1):97–113, 2010.

[44] Straßer, C. A deontic logic framework allowing for factual detachment, Journal of

Applied Logic 9(1):61–80, 2011.

[45] Straßer, C., Adaptive Logic and Defeasible Reasoning. Applications in Argumenta-

tion, Normative Reasoning and Default Reasoning, Springer, Berlin, 2014.

[46] Straßer, C., M. Beirlaen, and J. Meheus, Tolerating deontic conflicts by adap-

tively restricting inheritance, Logique & Analyse 219:477–506, 2012.

[47] Straßer, C., and F. Van De Putte, Proof theories for superpositions of adaptive

logics, Logique et Analyse 25(230), 2015

[48] Van De Putte, F., Hierarchic adaptive logics, Logic Journal of the IGPL 20:45–72,

2012.

[49] Van De Putte, F., and C. Straßer, Extending the standard format of adaptive

logics to the prioritized case, Logique et Analyse 55(220):601–641, 2012.

[50] Van De Putte, F., and C. Straßer, A logic for prioritized normative reasoning,

Journal of Logic and Computation 23(3):563–583, 2013.

http://dx.doi.org/10.1093/logcom/ext030
http://dx.doi.org/10.1093/logcom/ext030

916 C. Straßer et al.

[51] Van De Putte, F., and P. Verdée. The dynamics of relevance: Adaptive belief

revision, Synthese 187(1):1–42, 2012.

[52] Van Der Torre, L., and Y.-H. Tan, Cancelling and overshadowing: two types of

defeasibility in defeasible deontic logic, in Proceedings of the 14th International Joint

Conference on Artificial Intelligence (IJCAI’95), 1995, pp. 1525–1532.

[53] Van Fraassen, B. C., Values and the heart’s command, Journal of Philosophy 70:5–

19, 1973.

C. Straßer, M. Beirlaen, F. Van De Putte

Centre for Logic and Philosophy of Science
Ghent University
Ghent, Belgium
and
Institute for Philosophy II
Ruhr-University Bochum
Bochum, Germany
Christian.Strasser@ruhr-uni-bochum.de

M. Beirlaen

Instituto de Investigaciones Filosóficas
Universidad Nacional Autónoma de México
México, Mexico
mathieubeirlaen@gmail.com

	Adaptive Logic Characterizations of Input/Output Logic
	Abstract
	1. Introduction
	2. I/O Logics
	2.1. Unconstrained I/O Logics
	2.2. An Alternative Characterization
	2.3. Constrained I/O Logics
	2.4. Extending the Alternative Characterization with Constraints

	3. Adaptive Logic Characterizations of I/O Logics
	3.1. Dynamic Proofs for I/O Logics
	3.2. Adaptive Characterizations of Constrained I/O Logics

	4. Expressive Power: Going Beyond I/O Logic
	5. Discussion
	5.1. Modularity and Variants
	5.2. Comparison
	5.3. Outlook

	6. Conclusion
	Acknowledgements
	References

