8 research outputs found

    Do System Test Cases Grow Old?

    Full text link
    Companies increasingly use either manual or automated system testing to ensure the quality of their software products. As a system evolves and is extended with new features the test suite also typically grows as new test cases are added. To ensure software quality throughout this process the test suite is continously executed, often on a daily basis. It seems likely that newly added tests would be more likely to fail than older tests but this has not been investigated in any detail on large-scale, industrial software systems. Also it is not clear which methods should be used to conduct such an analysis. This paper proposes three main concepts that can be used to investigate aging effects in the use and failure behavior of system test cases: test case activation curves, test case hazard curves, and test case half-life. To evaluate these concepts and the type of analysis they enable we apply them on an industrial software system containing more than one million lines of code. The data sets comes from a total of 1,620 system test cases executed a total of more than half a million times over a time period of two and a half years. For the investigated system we find that system test cases stay active as they age but really do grow old; they go through an infant mortality phase with higher failure rates which then decline over time. The test case half-life is between 5 to 12 months for the two studied data sets.Comment: Updated with nicer figs without border around the

    HITECS: A UML Profile and Analysis Framework for Hardware-in-the-Loop Testing of Cyber Physical Systems

    Get PDF
    Hardware-in-the-loop (HiL) testing is an important step in the development of cyber physical systems (CPS). CPS HiL test cases manipulate hardware components, are time-consuming and their behaviors are impacted by the uncertainties in the CPS environment. To mitigate the risks associated with HiL testing, engineers have to ensure that (1) HiL test cases are well-behaved, i.e., they implement valid test scenarios and do not accidentally damage hardware, and (2) HiL test cases can execute within the time budget allotted to HiL testing. This paper proposes an approach to help engineers systematically specify and analyze CPS HiL test cases. Leveraging the UML profile mechanism, we develop an executable domain-specific language, HITECS, for HiL test case specification. HITECS builds on the UML Testing Profile (UTP) and the UML action language (Alf). Using HITECS, we provide analysis methods to check whether HiL test cases are well-behaved, and to estimate the execution times of these test cases before the actual HiL testing stage. We apply HITECS to an industrial case study from the satellite domain. Our results show that: (1) HITECS is feasible to use in practice; (2) HITECS helps engineers define more complete and effective well-behavedness assertions for HiL test cases, compared to when these assertions are defined without systematic guidance; (3) HITECS verifies in practical time that HiL test cases are well-behaved; and (4) HITECS accurately estimates HiL test case execution times

    Automating Regression Test Selection for Web Services

    Get PDF
    As Web services grow in maturity and use, so do the methods which are being used to test and maintain them. Regression Testing is a major component of most major testing systems but has only begun to be applied to Web services. The majority of the tools and techniques applying regression test to Web services are focused on test-case generation, thus ignoring the potential savings of regression test selection. Regression test selection optimizes the regression testing process by selecting a subset of all tests, while still maintaining some level of confidence about the system performing no worse than the unmodified system. A safe regression test selection technique implies that after selection, the level of confidence is as high as it would be if no tests were removed. Since safe regression test selection techniques generally involve code-based (white-box) testing, they cannot be directly applied to Web services due to their loosely-coupled, standards-based, and distributed nature. A framework which automates both the regression test selection and regression testing processes for Web services in a decentralized, end-to-end manner is proposed. As part of this approach, special consideration is given to the concurrency issues which may occur in an autonomous and decentralized system. The resulting synchronization method will be presented along with a set of algorithms which manage the regression testing and regression test selection processes throughout the system. A set of empirical results demonstrate the feasibility and benefit of the approach

    The UML 2.0 Testing Profile and its Relation to TTCN-3

    No full text
    UML models focus primarily on the definition of system structure and behaviour, but provide only limited means for describing test objectives and test procedures. However, with the approach towards system engineering with automated code generation, the need for solid conformance testing has increased. In June 2001, an OMG Request For Proposal (RFP) on an UML2.0 Testing Profile (UTP) has been initiated. This RFP solicits proposals for a UML2.0 profile, which enables the specification of tests for structural and behavioural aspects of computational UML models, and which is capable to inter-operate with existing test technologies for black box testing. This paper discusses different approaches for testing with UML and discusses the ongoing work of the Testing Profile. Special emphasize is laid on the mapping of UML2.0 testing concepts to the standardized Testing and Test Control Notation (TTCN-3)

    Towards a Model-Centric Software Testing Life Cycle for Early and Consistent Testing Activities

    Get PDF
    The constant improvement of the available computing power nowadays enables the accomplishment of more and more complex tasks. The resulting implicit increase in the complexity of hardware and software solutions for realizing the desired functionality requires a constant improvement of the development methods used. On the one hand over the last decades the percentage of agile development practices, as well as testdriven development increases. On the other hand, this trend results in the need to reduce the complexity with suitable methods. At this point, the concept of abstraction comes into play, which manifests itself in model-based approaches such as MDSD or MBT. The thesis is motivated by the fact that the earliest possible detection and elimination of faults has a significant influence on product costs. Therefore, a holistic approach is developed in the context of model-driven development, which allows applying testing already in early phases and especially on the model artifacts, i.e. it provides a shift left of the testing activities. To comprehensively address the complexity problem, a modelcentric software testing life cycle is developed that maps the process steps and artifacts of classical testing to the model-level. Therefore, the conceptual basis is first created by putting the available model artifacts of all domains into context. In particular, structural mappings are specified across the included domain-specific model artifacts to establish a sufficient basis for all the process steps of the life cycle. Besides, a flexible metamodel including operational semantics is developed, which enables experts to carry out an abstract test execution on the modellevel. Based on this, approaches for test case management, automated test case generation, evaluation of test cases, and quality verification of test cases are developed. In the context of test case management, a mechanism is realized that enables the selection, prioritization, and reduction of Test Model artifacts usable for test case generation. I.e. a targeted set of test cases is generated satisfying quality criteria like coverage at the model-level. These quality requirements are accomplished by using a mutation-based analysis of the identified test cases, which builds on the model basis. As the last step of the model-centered software testing life cycle two approaches are presented, allowing an abstract execution of the test cases in the model context through structural analysis and a form of model interpretation concerning data flow information. All the approaches for accomplishing the problem are placed in the context of related work, as well as examined for their feasibility by of a prototypical implementation within the Architecture And Analysis Framework. Subsequently, the described approaches and their concepts are evaluated by qualitative as well as quantitative evaluation. Moreover, case studies show the practical applicability of the approach

    Architecture design in global and model-centric software development

    Get PDF
    This doctoral dissertation describes a series of empirical investigations into representation, dissemination and coordination of software architecture design in the context of global software development. A particular focus is placed on model-centric and model-driven software development.LEI Universiteit LeidenAlgorithms and the Foundations of Software technolog
    corecore