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Abstract 

 

As Web services grow in maturity and use, so do the methods which are being 

used to test and maintain them.  Regression Testing is a major component of most major 

testing systems but has only begun to be applied to Web services.  The majority of the 

tools and techniques applying regression test to Web services are focused on test-case 

generation, thus ignoring the potential savings of regression test selection.  Regression 

test selection optimizes the regression testing process by selecting a subset of all tests, 

while still maintaining some level of confidence about the system performing no worse 

than the unmodified system.  A safe regression test selection technique implies that after 

selection, the level of confidence is as high as it would be if no tests were removed.  

Since safe regression test selection techniques generally involve code-based (white-box) 

testing, they cannot be directly applied to Web services due to their loosely-coupled, 

standards-based, and distributed nature.  A framework which automates both the 

regression test selection and regression testing processes for Web services in a 

decentralized, end-to-end manner is proposed.  As part of this approach, special 

consideration is given to the concurrency issues which may occur in an autonomous and 

decentralized system.  The resulting synchronization method will be presented along with 

a set of algorithms which manage the regression testing and regression test selection 

processes throughout the system.  A set of empirical results demonstrate the feasibility 

and benefit of the approach. 

 
Keywords: Regression Testing, Regression Test Selection, Safe Regression Test 
Selection, Web services, Concurrency, Coverage Conflict, Test Inconsistency
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Chapter 1: Introduction 

 

1.1 General Introduction 

Web services have enabled business workflows to be extended beyond the 

boundaries of companies and organizations.  A single business process can be realized by 

utilizing possibly many different Web services either directly or indirectly in workflows 

which may flow internally or externally in/out of the enterprise.  Since the business world 

often involves very rapid change to keep up with current market conditions, the business 

processes inevitably need frequent adjustment, along with their supporting Web services.  

These rapid adjustments, or modifications, must also be supported by rapid verification in 

order to provide a desired level of quality assurance.  Every time the system is modified, 

we must ensure that the modification does not have an adverse affect on any unmodified 

areas, or regions, of code (the modification does not introduce new problems into the 

code).  Typically, this is done by running the test cases previously used to test the system 

prior to modification again.  This processing of “retesting” is called regression testing and 

its goal is to determine whether or not the system has been made worse by the 

modification.   

One of the key ideas associated with regression testing is to reduce the number of 

tests which has to be rerun to ensure that the system performs no worse than it did before 

the modification with some level of confidence.  Reducing the number of tests to be rerun 

is called regression test selection.  The need for regression test selection has been well 

established for traditional software systems [1].  Furthermore, a safe regression test 

selection technique which ensures that the level of confidence provided by the selection 
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mechanism is no worse than not removing any test cases, preventing any potentially 

modification-revealing and thus possibly fault-revealing, test cases from being left 

unselected in the regression test selection process.   

Although there are several safe regression test selection techniques which have 

been proven effective for traditional software applications [2], there has been very little 

work on safe regression test selection for verifying Web service systems.  This is a cause 

for concern especially considering that regression testing Web services can be much more 

costly than doing so for traditional software (all calls must be marshaled in and out of 

SOAP and sent over a network). 

 

1.2 An Ideal Regression Test Selection Technique for Web Services 

An ideal regression test selection technique for the verification of Web service 

systems would have the following properties: 1) safe, 2) interoperable, 3) composable, 4) 

decentralized, 5) end-to-end, and 6) automated.  Hardly any safe regression test selection 

techniques are available for Web services because safe regression test selection 

techniques involve code-based, or white-box, testing which is unlikely for a number of 

reasons.  There can be service interactions in which two or more of the services interacted 

are in different languages on different platforms or service providers who can never be 

counted on to share their source code due to copyright and other legal concerns. 

Interoperability, or the ability of services to interact with other services which are 

in different languages on different platforms, was the catalyst for the sudden popularity of 

Web services.  However, this particular benefit of Web services is a detriment to safe 
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regression techniques which require knowledge of the implementation of a system in 

order to ensure the safety of the technique. 

Web services may be composed to form more complex services and this particular 

feature also presents a set of challenges.  Since the explicit goal of regression testing is to 

ensure that a modification somewhere does not affect the system somewhere else it is 

important to know how the services are related to one another.  Long call chains could 

exist and a modification in one subsystem may require testing in several other 

subsystems.  If an entity is modified everything that depends on that entity must also be 

tested.  It is important that testing occur at each and every end point along the way to 

ensure that all the dependencies of all modifications are tested.  This is end-to-end testing 

and it gets its name because it tests from the point of view of every end point along the 

way.  To facilitate this type of testing through composite services the regression testing 

and regression test selection technique must be as composable as the underlying services. 

The autonomy and distributed nature of the Web services themselves, requires 

that the regression test selection and regression testing processes be decentralized 

because some service providers may wish to retain a desired level of control over the 

information they share. In general, not all services in an interaction will be developed by 

the same group and there may be interactions in which no central authority dictating the 

rules of engagement.  This means that some service providers will be reluctant to provide 

any details of their service and cannot be forced to do so.  In order to alleviate their 

concerns thus increase the likelihood of participation of more providers, the information 

which must be shared must be carefully considered.  Therefore, a decentralized solution 
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which carefully considers what information must be shared and how this information 

should be protected is essential. 

Finally, the regression testing and regression test selection processes which by 

definition must be repeatedly run should be automated to ensure timely feedback for all 

modifications.  Automating the regression testing and regression test selection processes 

also ensures that no modification is left untested.  If every modification in the system is 

not tested automatically, a careless operator could forget to test a modification which 

could lead to serious verification issues later on.  However, if the processes are automated 

this problem is alleviated. 

 

1.3 Main Contributions 

The main contributions of my work are threefold: First, a new safe regression test 

selection technique was developed for the verification of Web services in an end-to-end 

manner.  Second, a new framework was devised to monitor and synchronize the 

distributed modifications in order to automate the regression test selection and regressing 

testing processes.  Third, the concurrency challenges which present themselves in a 

decentralized, automated framework for performing regression test selection and 

regression testing were recognized and a set of solutions in the form of algorithms for 

agents to follow to handle the synchronization issues.  In addition, I have established a 

basis for experimental studies by providing a collection of Web services systems, the lack 

of which has hindered healthy comparison studies of regression testing and regression 

test selection research.   
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In this dissertation, an approach to perform safe regression test selection in an 

end-to-end manner for the verification of both intra- and inter-enterprise Web services is 

proposed.  The approach is based on a safe regression test selection technique developed 

by Rothermel and Harrold for monolithic applications using control flow graphs [1].  The 

proposed approach successfully ensures that safety is maintained by carefully ensuring 

the transitions from the model do not affect the safety of the proposed approach.   

A control-flow graph-based approach is ideal for performing safe regression test 

selection for Web services because control-flow graphs are an ideal medium for 

addressing the interoperability and composability concerns.  Control-flow graphs can be 

generated from any program written in any modern programming language, especially 

those used to develop Web services and since control-flow graphs are a special case of 

finite state machines, they can be composed.  Control-flow graphs are interoperable 

because if two control-flow graphs were generated for two systems each built on different 

platforms and in different languages the two control-flow graphs could be composed. 

The proposed approach particularly observes the autonomous, decentralized 

nature of Web service systems.  The approach only requires three elements from each 

participant: Control-flow graphs of each the operations the service provides, test cases for 

those control-flow graphs, and coverage information which maps the provided control-

flow graphs to the provided test cases.  Each of the participants will maintain control over 

the granularity of the control-flow graphs they provide which can vary from very detailed 

(statement level) to very abstract, depending on the need for security (someone who does 

not wish to share information will only share a operation level control-flow graph, 

whereas within an enterprise everyone can share statement level control-flow graphs).  In 
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order to ensure higher levels of participation, the source code is shielded from the tester 

using hashes of the code.  This allows the tester to determine if the underlying code was 

modified without being able to determine where or how the code was modified.  These 

tactics to attract more independent participants is a novel approach in regression test 

selection. 

This approach is designed to be automated by using a set of distributed agents, 

one each for every service and application in the system, which interact together to 

automatically perform both the regression testing and regression test selection processes 

over the entire enterprise.   These agents perform their work by monitoring, exchanging, 

and updating the control-flow graphs of the participants in a publish-subscribe method.  

This allows this automated system to perform end-to-end testing because if any of the 

participating services are modified, each and every service or application which calls this 

service either directly or indirectly will be notified.   

Automating the proposed approach presents an entirely new set of issues.  More 

specifically, issues related to concurrent modifications become increasingly important.  

These issues are: 1) coverage conflict, 2) test inconsistency, and 3) communication 

issues.  Coverage conflict issues arise from the manner in which the regression test 

selection technique is performed.  More specifically, it is possible for one modification to 

conflict with another because of its location.  Test consistency is related to the test cases 

having a consistent view of the system under test which implies that the system under test 

seen at the beginning of all the tests is the same system seen at the end of all the tests.  

These issues were carefully considered, recognized, and solved by synchronizing the 

modifications.   
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Since there was no preexisting benchmark for comparing regression test selection 

techniques for the verification of Web services, a group of systems was developed to 

perform an empirical study of the proposed approach.  The benchmark was used to 

compare the proposed safe regression test selection technique with the select-all 

regression test selection technique.  The select-all regression test selection technique is 

the technique in which the selection step is skipped and all tests are run every time.  In 

order to be effective, a regression test selection technique must perform better than the 

select-all technique which means that the cost of performing the technique and executing 

the selected test cases must be less than executing all test cases without performing the 

selection step.  The empirical study demonstrates that the proposed technique is feasible 

and can be effective.  Also, observing the lack of a common benchmark for comparison 

studies of regression test selection techniques, this collection of systems can be a 

promising seed of future regression test selection benchmark models. 

In summary, the proposed approach is unique in that it is the first safe regression 

test selection technique for the verification of Web service-based frameworks which is 

automated, decentralized, and end-to-end which manages the interoperability and 

composability of Web service frameworks.  This approach is also novel because it is the 

first approach to use techniques to increase participation through information hiding.  

Also, the issues related to concurrent modifications were carefully considered and 

recognized for the first time.  Lastly, a novel benchmark for comparing regression test 

selection techniques was developed and the first empirical study was performed on a 

regression test selection technique for the verification of Web services.  The results of 
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this empirical study were used to demonstrate that the proposed approach is feasible and 

can be effective in reducing the cost of performing regression testing. 

 

1.4 Organization 

The rest of the dissertation will be organized as follows: In chapter 2, the 

background information regarding Web services, regression testing, regression test 

selection, and control-flow based regression test selection techniques will be discussed in 

detail.  Chapter 3 will provide a survey of related literature including topics such as: test 

case generation frameworks, automated test execution frameworks, mediums used to 

bridge disparate services, and a variety of regression test selection frameworks for Web 

services.  In chapter 4, the approach to perform regression test selection for the 

verification of Web service-based frameworks will be discussed in terms of construction 

of the three elements (control-flow graph, test cases, and coverage information) for the 

entire system and in terms of how the framework operates once constructed.  The 

material was published at the International Conference on Internet Applications and Web 

Services (ICIW) in 2007 under the title “A Safe Regression Test Selection Technique for 

Web Services”.  Chapter 5 will discuss the automation of the approach, the concurrency 

issues, and their solutions.  The material is based on a recent paper, “Towards 

Automating Regression Test Selection for Web Services” which was accepted for 

publication at the Testing Emerging Software Technology (TEST) Workshop which was 

held in conjunction with IEEE Computer and Software Applications Conference 

(COMPSAC) 2007.  The empirical study will be presented in chapter 6 including 

descriptions of the experiments, descriptions of the five systems developed for this 
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purpose, and the results of the empirical study.  Finally, chapter 7 will conclude and 

provide avenues for future work on this subject. 
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Chapter 2: Background 

 

In this chapter, an introduction to Web services, along with background 

information on regression testing techniques including safe regression test selection 

techniques, will be provided in detail. 

 

2.1 Web Services 

Broadly, Web services refer to self-contained web applications that are loosely 

coupled, distributed, capable of performing business activities, and possessing the ability 

to engage other web applications in order to complete higher-order business transactions, 

all programmatically accessible through standard internet protocols, such as HTTP 

(Hypertext Transport Protocol), JMS (Java Messaging Service), SMTP (Simple Mail 

Transfer Protocol), etc [3].  More specifically, Web services are Web applications built 

using a stack of emerging standards that form a service-oriented application architecture 

(SOA), an architectural style whose goal is to achieve loose coupling among interacting 

software components through the use of simple, well defined interfaces.  In [3], a stack of 

emerging standards on which Web services are built were described.  Figure 2.1 shows a 

conceptual overview of the Web Services stack. 

Extensible Markup Language (XML) provides the basis for most of the standards 

that Web services are based on.  XML is a standard that has been developed by the World 

Wide Web Consortium (W3C) [4].  XML is a text-based meta-language for describing 

data which is extensible and therefore used to define additional markup languages.  The 

mechanism with which a markup language is defined in XML is termed a schema 
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definition.  A schema definition is a set of rules that define the structure and content of an 

XML document.  Since XML is text-based and extensible, it provides the standard on 

which other standards are built in the realm of Web services. 

 
Figure 2.1: Conceptual Web services stack 

Service Description Layer 

Messaging Layer 

Network Layer 

Service Publication Layer 

Service Discovery Layer 
UDDI 

SOAP 
WSDL 

HTTP, SMTP, etc. 

The lowest layer of the Web services stack, the network layer, is defined since a 

Web service has to be network accessible in order to be invoked by its clients.  Although 

Web services are typically thought of as operating over HTTP, they are also capable of 

operating over many different types of transport layers, such as HTTPS (Secure HTTP), 

JMS, and even SMTP, providing a great deal of flexibility to application developers.  

Although, just about any internet traversable transport layer can be used underneath Web 

services, HTTP is by far the most commonly used Web service transport. 

The next logical layer in the stack is the messaging layer, and its related standard 

is SOAP [5].  SOAP defines a common message format for all Web services.  SOAP is 

designed to be a lightweight protocol for information interchange among disparate 

systems in a distributed environment.  The actual format consists of an envelope which 

define the contents of the messages and how to process those contents.  In the envelope 

there are a number of standard headers, and a body.  SOAP is entirely encoded in XML.  
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The minimum requirements of a service provider or consumer of Web services are to be 

able to build, process, and send (over the network layer) these SOAP messages.   

The layer above the messaging layer is the description layer.  Its specification is 

defined by the Web Service Definition Language (WSDL) [6].  It provides a mechanism 

for describing Web services in a standard way.  The description provides an interface for 

using the Web services, in terms of available operations, their names, parameters and 

return types.  The description binds a service, termed abstract endpoints in the 

specification, to concrete endpoints, which is a description of the service defined 

abstractly then bound to a concrete network protocol and message format.  This 

description is represented using XML as well.  This layer is the key element that gives 

Web services their loose coupling and allows for a new level of interoperability, platform 

and language neutrality [3]. 

The highest layer of the protocol stack is the discovery layer.  It is modeled by the 

Universal Description, Discovery and Integration (UDDI) [7] specification.  UDDI 

provides a means to locate and use Web Services programmatically.  Service providers 

publish high level descriptions of their Web services into a UDDI repository, with which 

their services can be looked up and used.  When an application wants to use a service 

published in the repository it downloads what the application needs to connect to and 

consume the Web services it found in the repository.  These standards have addressed the 

connectivity, messaging, description, and discovery issues for Web services, providing 

the simple, well-defined interfaces required for the loosely coupled, interoperable 

building blocks known as Web services. 
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2.2 Software Testing, Types, and Levels 

Software testing in general is the process of executing a given program P in an 

attempt to reveal possible failures in the program [8].  A test case is a set of inputs for P 

along with the expected output of program P when given said inputs.  A test suite is a set 

of test cases, and a test run is the execution of P with respect to some test suite T.  The 

adequacy of each test suite is normally determined by the level of coverage (normally a 

percentage) that the test suite covers the possible executions of P. 

There are two basic types of software testing: Black-box testing and White-box 

testing [9].  The two types depend on the point of view of the tester when developing test 

cases.  Black-box testing takes an external perspective of the test object to derive test 

cases, while white-box testing uses an internal perspective of the system.  In black-box 

testing, the test designer selects valid and invalid input and determines the correct output 

using no knowledge of the test object's internal structure. While this method can uncover 

unimplemented parts of the specification, one cannot be sure that all existent paths are 

tested.  White-box testing requires programming skills to identify all paths through the 

software. The tester would then choose test case inputs to exercise paths through the code 

and determine the appropriate outputs.  Since the tests are based on the actual 

implementation, if the implementation is modified the tests will also need to be modified.  

Though this method can uncover an overwhelming number of test cases, it might not 

detect unimplemented parts of the specification or missing requirements.  However, using 

white-box testing one can be sure that every path is exercised.  The focus of this work is 

on using white-box testing largely because when the system is being regression tested, 

the system has usually been completely implemented. 
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There are several levels of testing, which refer to the level, or view, of the system 

being tested [8].  The level of the system under test refers to how the parts of the system 

are grouped together for testing, such as individually, or the entire system as a whole. The 

levels which will be discussed are as follows: unit, integration, system, scenario testing 

(also known as use-case testing), and end-to-end testing.  Unit testing is a procedure used 

to validate that individual units of source code are working properly. A unit is the 

smallest testable part of an application.  The goal of unit testing is to isolate each part of 

the program and show that the individual parts are correct. A unit test provides a strict, 

written contract that the piece of code must satisfy. As a result, it affords several benefits 

including: facilitating changes (making it easier to test modifications) and simplifying 

integration (helps to eliminate uncertainty in the units themselves, making bottom-up 

approaches simpler).  However, unit testing will not catch every error in the program, 

since by definition it only tests the functionality of the units themselves.  Thus, unit 

testing is only effective if it is used in conjunction with the other testing levels.  In Web 

services testing, the smallest testable part of the system is testing each service 

independently of other services.  If the service is a composite service, stub 

implementations would normally be used in the place of the composed services.   

The next level of testing is integration testing in which individual software 

modules are combined and tested as a group. The purpose of integration testing is to 

verify functional, performance and reliability requirements placed on major design items.  

The general idea is a "building block" approach, in which verified assemblages are added 

to a verified base which is then used to support the integration testing of further 

assemblages.  There are several different types of integration testing, but only the most 
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common two will be discussed, which are: big-bang and bottom-up. The big-bang 

approach is when all or most of the developed modules are coupled together to form a 

complete software system or major part of the system and then used for integration 

testing.  This approach has one major benefit which is that it takes less time to design and 

test if everything goes well.  However, if everything does not go well it may be harder to 

pinpoint those problems.  This approach is most often used when the system was 

developed before the need for integration testing.   In the bottom-up approach, all the 

bottom or low level modules, procedures or functions are integrated and then tested. 

After the integration testing of lower level integrated modules, the next level of modules 

will be formed and can be used for integration testing.  This is the more common of the 

two approaches and is normally applied when the system was developed with testing in 

mind.  However, this approach requires all or most of the software to be completed 

before testing can begin.  The major issue with integration testing is that any conditions 

not stated in specified integration tests, outside of the confirmation of the execution of 

design items, will generally not be tested and integration tests can not include system-

wide modification testing.  In Web services testing, this implies that the composed 

systems are tested in terms of their interactions with other services.  If the service is a 

composite service, the composed services would be called rather than using stubs.  

The next level of testing, system testing occurs when the system is integrated 

together to form the entire system.  One can think of this as the final stage of integration 

testing with the exception that the system is not just being tested to determine if the parts 

work together correctly, but also whether or not the system works as a whole.  The goal 

of system testing is not only to determine whether or not the components play well 
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together, but also that the components work together to complete some goal.  This 

implies that system testing is determining whether or not the functional requirements are 

met.  It also determines whether or not the system meets its non-functional requirements 

as well, such as response times, etc.  Testing the functional requirements of the system 

involves testing the system as it would actually be used, normally using either use-cases 

(black-box) or white-box approaches.  This implies end-to-end testing, which simply 

means that the system end-points are being tested, using the actual components and 

control flows through the application from one end (the user) to the other (which 

completes the work).  Scenario testing [10], a variation of system testing, uses the black-

box approach which entails using design elements, such as use cases, to system test the 

application.  In the realm of Web services, system testing refers to the testing of the 

services as they would be used by the various applications and services.  This is precisely 

the testing level and approach which will be the focus of this work. 

 

2.3 Regression Testing and Regression Test Selection 

Regression testing is the process of validating modified software to provide 

confidence that the changed parts of the software behave as intended and that the 

unchanged parts have not been adversely affected by the modification [1].  Suppose there 

is program P, its modified version P’, and a test suite T.  Suppose also that after testing 

program P has a total of X faults.  After modifying P, resulting in P’, those same tests in 

T must be rerun on P’ to determine what effect the modifications had on P.  In other 

words, the goal is to determine whether or not the system is made worse in terms of 

having not more than X faults.  It is provably impossible to determine whether or not one 
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could make the system better even if the system determines that fewer than X faults were 

the result of the modification.  

There are five basic problems associated with regression testing: 1) Test case 

revalidation problem; 2) Regression test selection problem; 3) Test suite execution 

problem; 4) Coverage identification problem; 5) Test suite maintenance problem.  This 

section will briefly cover all of the problems in some detail, but this work is focused on 

solving the regression test selection problem in the realm of Web services, and therefore 

will only discuss the regression test selection problem in full detail. 

The test case revalidation problem is focused on maintaining test suite T.  Any 

framework attempting to solve this problem would be trying to identify and remove 

obsolete test cases from T when the specification of P is modified.  Test cases become 

obsolete when the test case no longer corresponds to a part of the system.  Suppose that 

there is a system S, which has feature F, and at some point later in time the developers of 

S remove feature F.  A framework which solved this problem would be able to identify 

that the tests which cover the old, but removed, feature F are no longer.  Although 

technically, regression test selection and execution are next on the list, they will be 

skipped for the time being so the other problems can be discussed first. 

The coverage identification problem is also focused on maintaining the test suite 

T, but it is the opposite of the revalidation problem.  Any framework attempting to solve 

it would be trying to identify when new test cases are necessary, and when they are it 

would create them.  Supposing there is a system S, and we create feature F for it.  A 

framework which solved this problem would be able to determine that there is a new 

feature F and create test cases for the new feature. 
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The next problem focuses on maintaining the test suite, but at the overall test suite 

level rather than adding or removing groups of test cases.  This particular problem is 

more of a combination of problems rather than its own problem on its own.  Specifically, 

the test suite maintenance problem takes the result of the revalidation problem solution (a 

set of test cases to remove), the result of the coverage identification problem solution (a 

set of test cases to add), and the old test suite and amalgamate them together to form a 

new test case suite for P’. 

The test suite execution problem is focused on actually performing the tests in the 

test suite.  There are solutions to this in the Web services world, and they will be 

discussed in the related works section.  The goal of anyone solving this problem is to test 

P’ with T’ in order to establish the correctness of P’ with respect to T’.  A basic solution 

to this problem must be solved in order to attempt to solve the regression test selection 

and show how effective regression test selection can be, so a solution to this will be 

provided at least basically in the sections detailing implementations. 

Finally, the focus of this work will be discussed, which is the regression test 

selection problem.  As mentioned earlier, regression test selection is a key component of 

most regression testing systems because it helps to reduce the cost of the testing 

effectively.  The most straightforward method of regression test selection is simply to 

select all of the original test cases.  However, this can be excessively costly for any 

thorough test case suite which must test large-scale systems.  Regression test selection 

techniques attempt to reduce the cost of regression testing by selecting T’, a subset of T, 

and using T’ to test P’.  If the original testing suite is more expensive to run than the 

reduced testing suite, along with the cost of performing the regression test selection 
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technique deployed, then measurable cost reduction has been achieved by performing the 

regression test selection technique.  This equation is vital to determining whether or not 

performing the actual regression test selection mechanism was beneficial and will be 

calculated often in the empirical study sections. 

A safe regression test selection technique is a regression test selection technique 

which guarantees that no modification-revealing, and thus potentially fault-revealing, test 

case is left unselected when the technique is finished.  This establishes the same level of 

confidence that removing no test cases would.  It does not guarantee that if there is a fault 

the tests will catch it; it simply guarantees that if a modification would have been caught 

by running all the test cases, it will be caught by running the test cases selected during a 

safe technique.  Lastly, a regression test selection technique can only be safe if applied 

using controlled regression testing.  Controlled regression testing implies that when one 

tests a modified version of a program, all factors which could influence the output of the 

modified version, except for the code, are kept constant. 

 

2.4 Survey of Regression Test Selection Approaches 

There are many regression test selection techniques available which were 

developed for traditional monolithic software and in this section some of them will be 

discussed.  This particular work is focused only on safe regression test selection, and 

therefore this section will only cover those regression test selection mechanisms which 

are safe.  In [2], the authors present a set of categories with which to compare regression 

test selection.  These categories are: inclusiveness, precision, efficiency, and generality.  

Inclusiveness measures the extent to which a technique chooses tests that will cause the 
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modified program to produce different output that the original output, and therefore could 

expose faults caused by modifications.  This property for the majority of the techniques 

will be safe, which implies that no modification revealing test case will be left unselected.  

Precision measures the ability of the technique to avoid choosing tests which will not 

cause the modified program to produce output different than that of the original.  

Efficiency measures the computational cost, and thus the practicality of the approach.  

The following techniques will be discussed: linear equation, firewall, cluster 

identification, and modified entity.   

Using the linear equation regression test selection approach, the mechanism first 

analyzes the program and generates a set of matrices one each which represent the 

reachability, connectivity, test case dependency, and variable set/use of the software 

artifacts [11].  The connectivity matrix models the control flow of the program. The 

reachability matrix reflects the indirect and direct interconnections between segments 

(similar to data flow) which can be computed directly from the connectivity matrix.  The 

test-case dependency matrix models the test coverage of the test cases.  Finally, the 

variable set/use matrix reflects the use of variables throughout the segments.  Note that 

the connectivity matrix is nothing more than a control-flow graph and the coverage 

matrix holds the coverage information.  The selected approach is very similar since it 

uses the same two elements to perform its work.  However, the algorithm they use to 

compute the set of test cases which need to be rerun is much different.  The linear 

equation algorithm is based on a zero-one integer programming model with an objective 

function, which represents the minimum number of test cases that must be rerun after 

modifications.  Zero-one integer programming is a special case of integer programming, 
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in which all variables are integers, where the variables are required to be either 0 or 1 

(binary).  This objective function only chooses a minimum number of test cases that must 

be rerun after modification and may miss a modification-revealing test if other test cases 

cover all of the paths the test case covers.  However, if one were to remove the 

minimization requirement, the algorithm would be safe [2].  Even though this algorithm 

can be applied in a safe manner, this technique requires the use of algorithms to solve 

zero-one integer programming problems which may carry exponential in the worst-case 

time, and in fact, the underlying problem is NP-hard.  Even though there have been some 

optimizations bringing the cost down to a reasonable time frame [12] (around an hour for 

some large systems) the cost is still far too high to apply to a system repeatedly. 

Although the firewall technique is not completely safe, the technique and the 

conditions under which it is safe will be discussed.  The firewall technique developed by 

Leung and White [13] determines where to place a firewall around modified code 

modules.  Their technique selects unit tests for modified modules which lie inside the 

firewall and integration tests for groups of modules which interact with modules which 

lie inside the firewall.  Their technique is safe if and only if the unit and integration tests 

used to test the system are reliable.  Reliable test cases implies that correctness of 

modules exercised by those tests for the tested inputs implies correctness of those 

modules for all inputs, which was shown by Leung and White to never be the case in 

practice. 

The next technique to be discussed is cluster identification which was developed 

by Laski and Szermer [14].  Their technique identifies single-entry, single-exit subgraphs 

of a control flow graph, called clusters, which have been modified from one version of a 
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program to the next.  A control-flow graph is a graph in which each node represents a 

code entity and each edge represents the flow of control from one node to another.  In the 

next section, control-flow graphs will be discussed in more detail.  This approach 

computes control dependence information for a procedure and its changed version, and 

then computes the control scope of each decision statement in the procedure by taking the 

transitive closure of the control dependence relation.  This technique uses this 

information to identify clusters and establish a correspondence between the control-flow 

graphs (old and new) and selects the tests which cover modified, new, and deleted 

clusters in the process.  The downfall of this approach lies in its low efficiency.  The 

running of time of this algorithm is bounded by the time required to compute the control 

scope of decision statements, which is O(n3) for a program with n statements.  

Additionally, the algorithm for establishing a correspondence between clusters is 

quadratic in the size of the larger of P and P’.  Therefore, even though this algorithm is 

safe, it is excessively expensive compared to other approaches [2], especially considering 

that every time the system is modified, these algorithms must be performed. 

Chen, Rosenblum, and Vo presented the modified entry technique which is a 

regression test selection technique which selects modified code entities [15].  Code 

entities are defined as executable portions of code such as functions, or as non-executable 

components, such as storage locations.  Their technique selects all tests associated with 

modified entries.  The authors implemented the technique as a software tool, called 

TestTube, which performs regression test selection for programs written in the C 

programming language.  Program entities are kept in a database which facilitates the 

comparison of those entities to determine where modifications have occurred.  This 
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approach is safe, and certainly efficient which at worse case is equivalent to the size of 

the program (must scan it once) multiplied by the number of tests (must scan the list 

once).  However, since the approach uses a database to perform its work, which allows 

for some performance enhancements, the efficiency of this approach is the best approach 

in terms of performance.  Even though distributing this approach would be possible, it is 

unpractical for companies not wishing to share database access with outsiders, especially 

outsiders whom it may never actually meet, which would be the case with some services. 

 

2.5 Selected Regression Test Selection Approach 

Most safe RTS techniques rely on information about the program’s source code.  

The technique which has been adopted by the approach presented in this work involves 

generating control-flow graphs from the involved code [1].  As mentioned earlier, they 

are graphs in which each node represents a code entity and each edge represents the flow 

of control from one node to another.  An additional structure needed by this particular 

algorithm is a mapping of the test cases to the control-flow graphs.  Since each test case 

covers a path through the system it also covers a path through the control-flow graph and 

the algorithm uses this information to determine which test cases to select and which ones 

to pass by. 

The techniques involving control-flow graphs follow three basic steps, which will 

be covered in more detail: 1) It constructs a control-flow graph for P’; 2) Identifies 

dangerous edges by comparing the control-flow graph of P with the control-flow graph of 

P’; 3) Based on coverage information and the set of dangerous edges it selects from the 

test suite those tests that need to be rerun.  The three steps require an initialization phase 
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as well, since before they can begin, a control-flow graph must be generated for P, along 

with the supplemental coverage information providing the mapping between paths 

through the control-flow graph and the test cases which cover them.   

As mentioned earlier, a control-flow graph is a graph in which each node 

represents a code entity and each edge represents the flow of control from one node to 

another.  They are constructed directly from code artifacts.  These artifacts can either be 

source code, byte code, or machine instructions.  The entities themselves can be 

statements, blocks of statements, methods, and operations.  The choice of entity 

determines the granularity of the control-flow graph.  The first phase of the regression 

test selection technique is constructing a control-flow graph for P’.  This process is 

identical to the process of creating the original control-flow graphs.  The process of 

creating control-flow graphs is a well established part of compiler theory since control-

flow graphs are used in the optimization process of many compilers. 

For example, suppose there is a method with psuedocode presented in figure 2.2, 

the control-flow graph for this method would look like the one in figure 2.3.  

Additionally, note the brick and checkerboard nodes which represent the starting node 

(which denotes the beginning of execution) and end nodes (which represent the end of 

execution). 

 
Figure 2.2: Psuedocode for an ordering service 

1 order(item) { 
2   if (item exists) { 
3     if (item is in stock) { 
4        order item; 
5        return successful; 
      } else { 
6        return error(“ERROR: 104: item not in stock”); 
      } 
    } else { 
7        return error(“ERROR: 109: item does not exist”); 
    } } 
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Figure 2.3: Control-flow graph for the psuedocode in Figure 2.2 
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This particular control-flow graph is at statement level since each of the nodes 

corresponds to statements in the psuedocode.  Although the control-flow graph presented 

in figure 2.3 does not have any cycles, control-flow graphs are allowed to have them.  

Cycles are generally caused by either looping or recursion constructs in the programming 

language.   Since control-flow graphs are allowed to have cycles, all of the control-flow 

graphs in this work can be considered as directed graphs. 

The process of identifying dangerous edges by comparing the control-flow graphs 

of P and P’ is one of the important parts of the process which will be discussed in detail.  

Dangerous edges correspond to program entities that may behave differently under a 

single test case due to differences between P and P’.  The regression test selection 

algorithm compares the two control-flow graphs by traversing the two control-flow 

graphs simultaneously looking for differences between them.  If the two nodes are 
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different in terms of their children or their values, the algorithm adds the node to the 

dangerous edge list.  Since it compares the node and its children the algorithm is capable 

of finding both structural (new branches, i.e. new case clauses) and textual differences 

(altered lines of code, i.e. changing x < 3 to x < 5). The algorithm is recursive and stops 

either when it finds a difference in the control-flow graph, when it reaches a node it has 

already compared, or when it reaches an exit node without finding a difference.  The 

recursive algorithm ensures that any modification in the graph will be found (since the 

entire graph is traversed) and that if one is found, it is added to the set of dangerous 

edges.   

For example, suppose that service A is represented by the psuedocode and the 

control-flow graph presented above which was presented in figure 4.2 and 4.3 

respectively.  Suppose after some time, the developers of service A modify the 

psuedocode to what is shown in figure 2.4.  The differences are shown in italics. 

 
Figure 2.4: Altered psuedocode for ordering service from Figure 2.2 

1 order(item) {
 
2   if (item exists) { 
3      if (item is in stock) { 
4         if (customer has money) {   
5            order item; 
6            return successful; 
        } else { 
7            return ERROR: 103: customer lacks funds  
   } 
     } else {  
8         return error(“ERROR: 104: item not in stock”); 
     } 
  } else { 
9      return error(“ERROR: 110: item does not exist”); 
  } } 

The regression test selection approach must build the control-flow graph for this 

new version of the order service and that is shown with the original one in figure 2.5. 
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Figure 2.5: CFGs for the psuedocode in Figure 2.2 (a) and Figure 2.4 (b) 

The algorithm which determines the set of dangerous edges compares the two 

control-flow graphs by performing a dual-traversal as described.  The result of the dual-

traversal marks the following edges dangerous: 1-2, 2-3, 2-7, and, 3-4.  It selects these 

edges because the node corresponding to four is structurally different than the original 

and because the node corresponding to seven is textually different. 

The last part of the process is very important, since it selects the test cases that 

will be actually run and completes the process of regression test selection.  The algorithm 

uses the coverage information provided during the initialization step, which maps test 

cases to the original control-flow graph, along with the set of dangerous edges produced 
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by the second step to select the tests from the test suite which must be rerun.  The process 

of actually performing this step is very straightforward.  The coverage information can 

easily be thought of as a table and the process is simply a table lookup using that 

coverage information.  The technique guarantees that any test case which does not cover 

a dangerous edge, or entity, will behave exactly the same in both P and P’, and thus can 

never expose a new fault in P’.  Since it is guaranteed to only remove those tests which 

can never expose new faults in P’, this technique is safe because it minimizes the number 

of test cases while maintaining the same level of confidence provided by the selecting all 

test cases. 

For example, suppose that the original service A was augmented with test cases 

and coverage information which are both shown in figure 2.6.  Note that since the code 

shown is psuedocode, the test cases will follow suit. 

 
Figure 2.6: Three test cases and their coverage information for service A 

1. 1-2-7 
2. 1-2-3-6 
3. 1-2-3-4-5 

Test Cases 
 
Inputs corresponding to three test cases 

1. Order item which does not exist 
2. Order item which does exist but is not in stock 
3. Order item which does exist and is in stock  

    
   Expected outputs corresponding to the three test cases 

1. return error 
2. return error 
3. return successful 

 
Coverage Information 
 

Suppose that the modification described in figures 2.4 and 2.5 occur and the 

following edges are marked dangerous: 1-2, 2-3, 2-7, and, 3-4.  The coverage table is 
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used as lookup table and tests numbered one and three are selected for retesting.  These 

tests are selected because the dangerous edge list prefixes these two tests completely. 

Another method is an extension of the selected approach by the one of the same 

authors, Mary Jean Harrold, and her research group which must be discussed in the 

context of this work [16].  This technique was developed to apply regression test 

selection to Java software.  They develop a graph structure, an extension to control-flow 

graphs, which handles the features of the Java programming language, such as exception 

handling, non-complete programs (code which uses libraries), and polymorphism.  The 

most important point of this work is that in their analysis they ignore libraries which do 

not change.  Programmers often make use of these libraries, without access to the 

underlying code.  However, since these libraries never change from release to release, 

they can be safely omitted from analysis. 
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Chapter 3: Survey of Related Literature 

 

In this chapter, a survey of related works will be presented with special emphasis 

on how these works are related and how this work is differs from theirs.  In terms of 

service-oriented architecture, most of the existing approaches focus either on test case 

generation or test execution.  They ignore the potential cost reduction of regression test 

selection.  There is also some research which delves into the use of other representative 

models to perform regression test selection, as well as automated frameworks for 

regression testing.  Lastly, there have been some researchers working to perform 

regression test selection on Web based systems. Each of these items will be presented, 

along with a discussion of the techniques which have been proposed for regression test 

selection for Web services. 

 

3.1 Test Case Generation and Automated Test Execution 

Test case generation is related to this work because in order to provide some level 

of confidence that the system is fault-free the system must be tested using test cases.  

Offutt and Wu [17] designed an approach to generate test cases for Web services using 

data perturbation. Their proposal works at the messaging layer of the Web services 

protocol stack, SOAP. Existing XML messages are modified based on a set of rules 

defined on a set of message grammars, and then used as test cases.  Their proposed 

approach uses both data value perturbation, which works as described, and interaction 

perturbation, which classifies communication messages into two broad categories: RPC 

communication and data communication.  The data communication category is used for 
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those messages which would normally carry a payload of some type and RPC would 

normally simply be any other type of communication, such as requests and other control 

messages.  Their approach can be considered a “black box” approach because it only 

perturbs the SOAP messages based on their modifications and make no use of internal 

implementation artifacts.   

Another approach aimed at test case generation for Web services was developed 

by Siblini and Mansour [18].  Their approach uses mutation analysis, which is a fault-

based testing method which measures the adequacy of a set of externally created test 

cases [19].  It works by inducing faults into software by creating many versions, called 

mutants, of the software each containing a fault.  Mutants are limited to simple 

modifications to the original program on the basis of a coupling effect, which simply 

implies that there is a relationship between complex faults and simple faults in that a test 

data set that detects all simple faults will detect most complex faults.  After creating the 

mutants, they are executed, and killed if necessary.  A mutant is killed when the result is 

different than that of the original program.  After executing all mutants, the test is left 

with two pieces of information: the number of dead mutants and the number of still living 

mutants.  The still living mutants are compared to pre-existing test cases to determine 

equivalence based on input to produce a number of equivalent mutants.  Along with the 

count of all mutants, a final mutant score is computed.  This mutant score is the kill ratio, 

or number of dead mutants divided by the number of still living mutants, ignoring the 

equivalent mutants.  However, mutation analysis can not be directly applied to Web 

services since the tester may not have all the requisite information, such as code, 

specification, etc.  Their approach uses mutation analysis which is based on applying a 
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set of mutation operators to a given WSDL document in order to generate mutated Web 

service interfaces that will be used to test the given Web service.  Their set of mutant 

operators is specific to WSDL documents.  Finally, they presented a set of empirical 

analysis to show the usefulness of their approach.  The two approaches to generating test 

cases are very interesting but are only relevant in the sense that test cases are required to 

perform regression test selection, and thus are only marginally related. 

Researchers at North Carolina State University have developed a framework 

which automatically generates test cases and executes them [20].  Their approach relies 

on using a given WSDL document to generate a client for the given service, then leverage 

existing automated test case generation tools, and finally execute those test cases.  Their 

approach is focused on unit testing, specifically the JUnit framework.  The test cases are 

executed using the JUnit framework, which is a regression testing framework.  However, 

JUnit itself provides no facility for determining when or how the system was modified.  It 

simply executes the test cases when the developer tells it to execute them.  The 

automation they have achieved is through the one time execution of the tests post-

generation.  This approach is related in that it focuses on automating the generation and 

execution of test cases for Web services, however, the approach is focused on unit testing 

and not at the system level, much less end-to-end testing.  Additionally, the approach has 

no mechanism in place for the automation of determining when the tester needs to run. 

Another approach, developed by Fu et al, is focused on testing the error recovery 

code of Web services using white-box def-use testing [21].  Some error recovery code 

may handle situations which occur with a very small frequency due to interactions with 

the computing environment and these situations cannot be tested simply by manipulating 
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program inputs.  Their analysis techniques identify program points which are vulnerable 

to certain faults and the corresponding error recovery code for these specific system 

faults.  Their techniques allow compiler-inserted instrumentation to inject appropriate 

faults as necessary and to gather recovery code coverage information, which enables a 

tester to systematically exercise the error recovery code. In their approach it is important 

to be able to precisely locate where an exception was thrown in response to an 

experienced fault, which is termed a def, and where that exception was handled, which is 

termed a use.  A key concern of their use of def-use testing is to minimize the number of 

spurious def-uses reported in the analysis.  They use exception-catch link analysis, which 

is performed at compile-time, to minimize them.  This analysis is essentially an 

interprocedural def-use dataflow analysis calculation with two refinements: 1) it inlines 

constructer code, and uses the absence of data reachability through object references to 

confirm the infeasibility of links.  Lastly, their approach automates the program 

instrumentation directed by the analysis.  However, the services they discuss are simply 

Web applications which follow a client-server model, and they are focused solely on the 

server, ignoring the interaction between the two.  Additionally, their approach also is not 

language neutral since it only works for servers built in Java. 

 

3.2 Other Mediums to Support the Interoperability of Web Services 

The use of a medium to handle the issues that arise as the result of the 

interoperability of Web services is a common theme.  The mediums which have been 

discussed are interoperable containers for sharing test cases.  However, there are 

approaches which use other means to determine what has changed in a system using other 
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models, such as UML (the Unified Modeling Language).  While not many of these 

approaches have been applied to Web services, they merit mentioning because of the 

application of the medium to handle the issues related to interoperability.   

Bernard Stepien at the University of Ottawa developed an interesting approach to 

automating the testing of Web services [22].  Their approach focuses on using the Testing 

and Test Control Notation (TTCN-3) [23] and mapping the XML data descriptions in 

SOAP and WSDL to TTCN-3.  TTCN-3 is the third version of a programming language 

developed specifically for testing which is used to define test procedures to be used for 

black-box testing of distributed systems.  TTCN-3 is also used as a test specification 

language since the system is capable of specifying test input as well as how the test 

should be executed.  Stepien provided a means to translate SOAP messages into a format 

that TTCN-3 can understand and utilize to generate and execute test cases.  A later work 

builds on this by noting that TTCN-3 forms an abstract test suite (ATS) which is 

language and platform neutral [24].  More importantly in the second work, the authors 

describe mechanisms for distributing the testing.  On the server side, the testers would 

generate the ATS and publish it.  On the client side, the testers would use the generated 

ATS from the server side to test the service.  There is no mechanism for handling the 

composition aspect of Web services and no mechanism for composing the test suites so 

that test can be end-to-end.  However, this approach is very interesting because it uses a 

specification language of TTCN-3 as a medium to handle the interoperability aspects of 

Web services.  Additionally, their approach publishes test related meta-data for use in 

testing.  Some of their colleagues worked on a very similar approach using an arbiter to 

manage the testing [25].  This works identifies an architecture which is almost identical 
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the one just presented with the additional of the arbiter to manage the ATS.  This 

particular work is interesting only because it attempts to map the testing concepts in 

UML 2.0 to the TTCN-3 language in a standard way.     

Another approach aiming to automate testing Web services which uses a medium 

for handling the interoperability concerns of Web services was developed by Dustdar and 

Haslinger [26].  Their approach uses a meta-language in XML to define test cases for 

services.  Their framework, which is named Service Integration Test Tool (SITT), was 

developed to handle test case execution and monitoring to ensure correct behavior.  The 

test execution for their approach is distributed, with one test agent per service running on 

the same machine as the service.  These agents run the actual tests and log incoming and 

outgoing messages of every service in the system.  They send the important items in the 

log to a master which parses the log and performs the testing.  This master determines if 

the logged inputs match to correct outputs for each service endpoint in an interaction.  

This particular study is very interesting and related in that it handles composition using a 

medium for sharing test cases and that it uses a distributed scheme for testing even if the 

scheme uses a centralized controller to determine the results. 

Yet another approach aimed at the execution of Web services testing is the work 

by the researchers at RCOST (Research Centre on Software Technology) at the 

University of Sannio [27].  This particular work aims to use test cases as a contract to 

ensure service compliance across releases.  Specifically, they wish to annotate each 

service with test cases in a standard way, using an XML based medium, and provide this 

to the users of the service so they can test the service.  The standardized test cases are 

called testing facets and are a mixture of JUnit tests and tests generated from static and 
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dynamic analysis of the source code.  The testing facets are published along with the 

service so that users of the service can perform the testing of the service.  Their work also 

presents a set of perspectives of who might wish to use such a framework and those are: 

providers, users, certifiers.  This work is highly related to this because they share test 

cases using XML, but there is no attempt to perform regression test selection which is the 

central focus of this work. 

Another of these approaches was developed by Heckel and Lohmann at the 

University of Paderborn [28].  The testing in this paper is focused on developing a means 

to test Web services by using Design of contract to add behavioral information to the 

specification of a Web service.  They use graph transformation rules to describe the 

contracts at the level of UML models which allow for the simulation of the required 

service by accomplishing the contracts during the execution of a test case.  It translates 

UML class diagrams into contract graphs which are represented by UML object 

diagrams.  These contracts graphs are visual representations of the details required to 

correctly identify service assertions.  For instance if an ordering service took only credit 

cards, the ordering service would be only be connected to that data type.  Once the 

contracts are generated, a test case generation tool, specifically JUnit, is run to create the 

test cases and tester.  This approach, as mentioned before, is important and related 

because the medium it uses to solve the issues related to interoperability, namely UML, is 

being used not to share, but as a major part of the approach. 

Another approach related to the use of UML was developed by researchers at the 

Software Quality Engineering Laboratory at Carleton University [29].  The approach 

focuses on using the class and sequence diagrams in UML to perform impact analysis.  
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Impact analysis is highly related to regression testing and regression test selection in that 

they both focus on the how the modification changes the system.  The difference between 

the two is that while regression testing requires a modified system to determine the 

difference between the old and new, impact analysis does not.  Impact analysis is focused 

on determining the impact before the modification occurs.  However, in this particular 

work, the two terms are identical.  The authors first use impact analysis to determine 

what and how the system has changed and then they use this information to determine 

(select) which test cases need to be rerun.  The test cases are associated with a sequence 

of triplets consisting of: Method signature, Source class, and Target Class.  This triplet is 

the path through the diagrams that the test would take.  In a later work [30], they describe 

a set of rules to check the consistency of the UML models post modifications to ensure 

preconditions of impact analysis.  Additionally, they prioritize the results of the impact 

analysis using a distance measure.  These studies are related to this work in that a 

representative model of the system under test is being used directly to support test 

selection.  However, their approach is only capable of handling modifications at the 

design level since it is a black-box based approach.  Finally, these frameworks use 

program slicing to determine which test cases to run.  Program slicing tries to eliminate 

all parts from the program that are not currently of interest to the programmer.   More 

specifically, dependency graphs are built using program entities as nodes and the edges 

follow a dependent relationship.  The program entities used to develop dependency 

graphs in their frameworks are specification based entities such as UML design elements.  

Once a dependency graph is built, the slicing technique slices the graph to only include 

those nodes which are dependent on the modified node [31].  This approach to regression 
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test selection is unsafe [2] since it misses test cases in situations in which code was 

inserted into the program, since there were no dependency relations on the code in the 

previous iteration. 

Another related work was performed by researchers at Siemens Corporate 

Research which uses UML statecharts as a means to generate and execute test cases [32]. 

Their work entails the use of statecharts which are generated by the developers of the 

system under test.  These statecharts specify the interactions amongst the components 

interacting in the system and must be annotated with test requirements.    Their approach 

uses these annotated statecharts to generate test cases using a tool designed to perform 

this.  The resulting test cases are then executed using another tool designed for this 

purpose.  The tools were designed separately so that a user could manually create 

additionally test cases and execute them using the second tool, or a user could generate 

the test cases and execute the test cases using a different tool.  Their approach hinges on 

the ability of their statecharts, which are very much like control-flow graphs, to be 

composable.  They argue, just like this work does, that since statecharts are nothing more 

than special cases of finite state machines they can be composed just as finite state 

machines can.  This work is especially related since it uses a composable medium to 

perform its work, which is test case generation and test case execution and not test case 

selection.  Additionally, this approach is predicated on using user defined statecharts 

which may not actually represent the system at hand, which would call into question the 

reliability of this approach.  Even though these techniques and tools handle the 

interoperability and composability of Web services using interchangeable mediums, none 

of them could ever be safe since they are all specification-based.   
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3.3 Regression Test Selection Techniques for Web-based Systems 

At the time of writing, there are very few techniques available for performing 

regression test selection on Web services.   The largest and most related body of work on 

performing regression test selection was developed by researchers at the Arizona State 

University, Wei-Tek Tsai, and the Department of Defense, Raymond Paul. They reported 

a framework which requires the use of enhanced WSDL specifications [33].  In another 

work, they describe specifically what enhancements are required [34]. They describe 

testing Web services as being equivalent to black box testing since only interfaces are 

known, and the specifications for the interfaces are written in WSDL.  They argue that in 

order to support black box testing more information that what is provided in WSDL is 

necessary.  This additional information is fourfold: input/output dependency, invocation 

sequences, hierarchal functional description, and concurrent sequence specifications.  

Their framework uses the enhanced WSDL documents to develop what the authors call 

scenarios [10].  A scenario describes a function from an end-users point of view [35] and 

can be thought of as thin-threads that trace a path through the system under test starting 

with the user, much like a use-case would.  Scenarios in their view are directly related to 

use-cases, but with detailed design information incorporated.  In their work, scenarios can 

be generated in a variety of ways, namely user-generated, generated from enhanced 

WSDL documents, or generated from design elements such as UML diagrams.  The 

information which accompanies a scenario in their systems is: 1) an ID, 2) a name, 3) a 

context, which relates the circumstances under which the scenario is used, 4) reference, 

link to artifact the scenario was developed from (could be code, the service, WSDL, etc), 
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5) Inputs, the input required to trigger the scenario, 6) outputs, the data or product of the 

execution of the scenario, 7) precedents, scenarios which should be executed before this 

one, 8) successors, scenarios which should be executed after this one, and 9) a description 

of the scenario.  It is important to differentiate between a scenario and a control-flow 

graph.  A scenario is an artifact which is generated to support black box testing which 

does not require insight into the development of the implementation of the system 

components.  The control-flow graphs that will be used throughout this work do require 

information regarding the inner workings of the system it is testing, and thus is a white-

box approach.  However, their work is related in that their approach as well as this work 

is interesting in verifying the system under test from the point of view of the end user.  

These scenarios can also be used to generate test cases by using the input/output fields of 

the scenario [35].   

The framework they propose in [36] specifically looks at using the scenarios to 

run the test cases using two different approaches including: a centralized tester and a test 

master with distributed testers.  They argue that the distributed testers must collaborate 

while sharing information during the process.  They mention that several synchronization 

schemes are available to coordinate the testers, but the architecture requires a master for 

logging and other shared facilities so the schemes must all use the master coordinate the 

testers.  This is related to the approach presented in this work as well since the testers in 

this work will also be distributed and missing a master, thus use decentralized algorithms 

to handle concurrency.   

In another work from their group, they present an approach to support functional 

regression testing, and selection, based on scenarios [37].  Their approach uses what the 
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authors call scenario-slicing which is based on program slicing.  Their scenario-slicing 

technique uses the input and output, along with the dependencies which are in the 

scenarios to perform a kind of program-slicing.  Specifically, if any field of the scenario 

contains a given attribute which matches one described by the modification, that scenario 

is selected for testing.  This is not a safe regression test selection technique, just as 

program slicing is unsafe [2], for the same reasons.  Suppose one of the services in the 

system under test was modified to include a new artifact, the algorithm would not select 

these because there is no dependency information on that artifact which did not exist 

during the creation of the scenarios.   

They build on this framework in [38] providing an object-oriented framework to 

perform end-to-end testing on systems of systems, which performs scenario-based 

regression test selection, scenario-based test case generation, and automates the testing 

using a centrally controlled distributed group of testers.  The framework presented in [39] 

adds to this monitoring capabilities and change management.  Their test monitors monitor 

the messages being exchanged throughout the system and keep track of system state 

using the information.  This state is sent to the test master and is used to determine if the 

interaction, or behavior, of the services was correct.  Change management is performed 

using an enhanced UDDI server [40].  Their approach enhances a UDDI by adding 

check-in and check-out capabilities.  The UDDI server tests services upon check-in and 

clients are provided with test cases upon check-out.  The clients can then test the services 

before using them if they need to.  The client is only directed to the test cases when the 

service has been checked in and thus modified.  This is how the UDDI server handles 
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change management for the system.  Important to note, that the user of the service is not 

directed to retest the service until the user attempts to look up the server again. 

Another stem of their work involves test case generation based on scenarios 

which include both positive and negative test cases [41].  This work involves all of the 

other works presented thus far by their group and specifically focuses on adding the 

negative testing capability to their frameworks.  Another work aims to improve the 

completeness of the specification of their scenarios using what they term consistency and 

completeness criteria [42].  They try to identify coverage gaps in their scenarios using 

min-terms of Boolean expressions that combine multiple conditions into a single 

checkable item.  The more important artifact of their approach is that post generation they 

use OWL-S to share their test cases.  OWL-S supplies Web service providers with a core 

set of markup language constructs for describing the properties and capabilities of their 

Web services in unambiguous, computer-interpretable form. OWL-S markup of Web 

services will facilitate the automation of Web service tasks including automated Web 

service discovery, execution, interoperation, composition and execution monitoring [43].  

Yet another work by the researchers at Arizona State provides an in-depth discussion of 

collaborative verification and validation (CV&V) contrasted with independent 

verification and validation (IV&V).  This collaborative view of testing allows for voting 

algorithms and group testing which aims to rank services in order to select the best 

service on functional criteria.  Lastly, the researchers at Arizona State present a 

framework which takes an OWL-S specification of a Web service interaction, converts it 

into C, uses the BLAST toolkit to then transform the C code into a control-flow graph, 

and finally generates test cases for the Web services using them [44].  This is related only 
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in that it uses control-flow graphs to generate test cases.  The OWL-S specification 

supports only Web services as the level of granularity and thus is a black-box approach, 

even though it uses a white-box method to get there.  Although there are a number of 

similarities between their approaches and the approach outlined in this work, there are 

also a number of fundamental differences: 1) the proposed approach is safe, 2) requires 

no extensions to Web service standards, and 3) requires no modifications to the Web 

services themselves.   

Another related work developed by the researchers at North Carolina State 

University and ABB Inc. in which the researchers report a regression test selection 

technique which works even when source code is unavailable [45].  Their work aims to 

perform regression test selection on commercial off the shelf (COTS) component 

software for which the tester has access to glue code, the binaries of the software, and the 

test suite for the glue code.  The first step of their process is to decompose the binary files 

of the components into code sections and exported functions using a set of binary parsing 

tools.  The next step is to compare the code sections between the two versions using 

standard differencing tools.  The ultimate goal of this is to feed the change information 

into code-based regression test selection mechanisms.  The regression test selection 

algorithm they use is the firewall method developed by Leung and White, which as 

mentioned in the background is unsafe.  More importantly, the approach presented in this 

work could never be applied to Web services for which neither source nor binary code 

are available. 

Another approach to apply regression test selection to Web services was 

presented by Tarhini, Fouchal, and Mansour [46].  They present a way to generate test 
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cases based on three elements: 1) WSDL files, 2) the specification of the component 

services, and 3) the specification of the system as a whole.  The first set of test cases is 

generated using the WSDL files using boundary analysis.  The second set is generated 

using a notion of the TLTS specifications.  TLTS, or time labeled transition system, is a 

graph where each node is an abstract representation of a single component that models 

the behavior of a component.  The edges represent flow of actions.  Additionally, these 

edges are annotated with timing constraints.  Essentially, their model can be though of as 

a UML statechart annotated with timing constraints, which is very similar to the control-

flow-based approach presented by this work.  They even present a technique to compose 

the TLTS automatically.  The third set of test cases is generated using the global TLTS.  

Once generated all test cases are stored in a central log file which stores the URLs of all 

services and their test cases.  The test history is updated as well.  Their regression test 

selection algorithm given a new TLTS, creates a global TLTS based on the TLT'S given.  

It then generates a new set of test cases given this new global TLTS, T’.  The newly 

created set of test cases is compared to the original set of test cases, T, and all those test 

cases found in T’ but not in T are executed..  All test cases found in T but not in T’ are 

deleted from the log, and are thus removed.  Finally, all test cases found in both T and T’ 

are kept but not executed.  Effectively, they are performing the path analysis regression 

test selection technique, which performs precisely as they describe [47].  This technique 

misses test cases for which the path has been removed or the path has been newly added.  

However, their use of the log solves these two problems because the test cases would not 

be generated for the missing path and would be generated for the newly added path.  

However, the path analysis problem is part of their solution and is computationally 
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expensive.  The technique, without generating a single test case, carries an exponential 

worst-case running time.  This approach is excessively costly considering that there may 

be thousands of test cases generated every time the services are modified in addition to 

the cost of performing the path analysis. 

Another related work by Harrold et al, is a mechanism to perform regression test 

selection on component-based software [48].  Their approach, which is very similar to the 

approach presented here, revolves around publishing and using metadata.  Their version 

of metadata is provided by vendors in lieu of source code in such cases where that 

content may be restricted by patent or copyright law.  Their metadata is threefold: edge 

coverage achieved by the test suite with respect to the component, component version, 

and a mechanism to query each component for the edges affected by the modifications 

between any two versions.  The coverage information is obtained using the following 

procedure: 1) The component is first told to turn on instrumentation facilities by the 

application, 2) for each test case you want coverage information on run it and gather 

coverage information for the component, and 3) turn off instrumentation.  A very 

important point to note here is that there is no way to determine that the component is 

being fully tested.  That is to say, the component only responds to the test cases it is 

presented with and therefore, the tester has no way of knowing how well they are 

covering the component (may miss modification revealing tests if they fail to provide 

adequate coverage).  However, this does not affect the safety of the technique since the 

only thing safety requires is that all tests which could be modification revealing are 

selected.  In the approach presented here, the Web service needs only to publish the 

coverage information for a set of test cases developed for their purposes and never need 
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to provide coverage information for arbitrary test cases.  Additionally, the component 

version in their work is used to identify if a modification has occurred since the last test.  

However, there is no facility presented which informs interested parties automatically 

upon modification.  Additionally, the authors do not propose a mechanism to support a 

component which calls another component which in turn calls yet another component. 

A second facet of their approach is based on specification-based regression test 

selection.  In this approach, the developers of the component provide a statechart as 

metadata, with no test cases or coverage information.  The testers would need to generate 

this information using the provided statechart which is composed into the statechart of 

the application using the component.  For a provider to only provide statecharts as meta-

data for a service, the statecharts must have decision information which can be used to 

determine what makes one execution go down one path and another go down another.  

The approach presented by this work prevents this kind of information sharing which 

would not be tolerated by a vendor which would not wish to share how his service works. 

 Table 3.1 will further clarify the differences between the proposed technique and 

the related techniques by describing the features of the proposed approaches in 

comparison to the listed approaches.  Note that the approach from the NCSU is not listed 

since it cannot be used for systems such as Web services in which the binary code itself is 

not made available. 

Regression test selection approaches Decentralized End-To-End Safe Automated
Scenario-based Approach N Y N N 

TLTS Approach N Y Y N 
Georgia Tech Approach Y N Y N 

Proposed Approach Y Y Y Y 
Table 3.1: Regression test selection approaches comparison 
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Note that none of the works presented involve distributed regression test selection 

and testing.  More specifically, none of the automated testing approaches are distributed 

approaches without a centralized controller, and none of the test selection approaches are 

automated.  An automated test selection technique would determine automatically that a 

modification has occurred, and inform all the necessary parties to perform regression test 

selection and regression testing if necessary. 
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Chapter 4: Safe RTS Approach for Web Services 

 

In this chapter, the safe regression test selection technique for Web services will 

be discussed in detail.   

 

4.1 Introduction 

The foundation of the approach is the control-flow based approach proposed by 

Rothermel and Harrold for traditional monolithic applications [7].  Their approach was 

chosen since control-flow graphs are ideal for use in Web service environments for a 

number of reasons.  First, control-flow graphs can be generated from programs written in 

any language, or extracted from designs at any granularity.  Thus, they can be used as a 

common representation mechanism among Web services which could be written in any 

language on any platform.  Second, since control-flow graphs are special cases of finite-

state machines, they can be composed into global finite state machines [18].  These two 

characteristics of control-flow graphs are essential for supporting both the interoperability 

and composition of Web services.     

In a Web services environment, each service is autonomous and can be thought of 

as its own development island because each service is developed independently of other 

services.  However, any service may interact with any number of other services at any 

time to perform more complex business functions.  To carry out safe regression test 

selection for composite services there needs to be some information sharing.  This 

information is called meta-data since it is information describing the system in operation 

and can be shared in a standard way among all services.  Specifically, each service will 
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share its terminal (complete) control-flow graph, a set of test cases, and a mapping of the 

test cases to the control-flow graph.  All of these items can be encoded in XML and 

shared with each other using standard Web interfaces, such as using simple standardized 

Web services or using the WS-MetadataExchange framework [19].  The WS-

MetadataExchange framework allows users of a Web service to query the Web service 

for meta-data the developers of the service wish to publish.  These standard Web 

interfaces are called meta-methods since they are used to handle meta-data and there will 

be one for each of the three items of interest: a control-flow graph meta-method, a test 

case meta-method, and a test coverage meta-method.   

The approach involves two phases of operation which must be discussed: the 

initialization and critical phases.  In the initialization phase, all the required artifacts are 

initially generated and stored in their appropriate places for use later by the approach.  

This is a complicated process which cannot always be performed automatically, and will 

be discussed before the critical phase in terms of the three requisite artifacts.  The critical, 

or operating, phase happens when a modification in the system occurs and the testing 

harness is awoken to test the modification.  The majority of the events that take place 

during this phase are self-explanatory.  This phase will be discussed last. 

 

4.2 Initialization Phase 

As mentioned in the previous section, the three pieces of meta-data which need to 

be shared are as follows: terminal control-flow graph for the site, a set of test cases for 

the site, and coverage information which maps the test cases to the paths they cover in the 
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control-flow graphs.  This phase does require human intervention which will be described 

in detail.   

To simplify the construction, there are two cases which will be considered 

separately: a simple operation which is an operation which never calls another operation 

to perform its work, and a composite operation which calls other operations (either 

simple or composite) to perform its work.  The construction of the three elements for the 

simple operation will be discussed first, followed by the construction of the three 

elements for composite operations.  

4.2.1 Simple Operation Initialization  

The construction of the three elements (control-flow graphs, test cases, and 

coverage information) for simple operations follows the same pattern as traditional 

monolithic applications.  Control-flow graphs can be constructed directly since the 

responsible party has all the necessary code artifacts for the simple operation.  The code 

artifacts can be specifications, such as communication diagrams, or even lower level 

artifacts such as source code, byte code, or machine code.  Additionally, the control-flow 

graphs can be generated in a variety of granularities, such as statement level (in which the 

statements form the nodes), block level (in which blocks of code form the nodes), method 

level (in which methods form the nodes), and finally, operation level (in which the entire 

operation is represented by a single node).  Design level is an additional level, which is 

used when the control-flow graph is generated from specification.  There may be many 

different reasons for the selection of each individual level, including performance, level 

of confidence, and security (a developer who wishes to keep some code information 
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private).  The nodes are connected, regardless of granularity, using a relationship based 

on execution order. 

All nodes are given a node identifier to uniquely identify each node in the control-

flow graph.  These identifiers are used in the test selection process when identifying 

dangerous edges and when selecting test cases based on identified dangerous edges.  The 

values of each of the nodes are a string representation of the code which represents the 

node at the nodes level of granularity.  The string representation is simply a one-way hash 

of the code itself.  This makes the tester capable of determining whether a specific region 

of code has been modified without requiring that the region of code be revealed to the 

tester.  In summary, each and every node in a control-flow graph carries two pieces of 

information: 1) An identifier which uniquely identifies each node in the control-flow 

graph and 2) a value which is a one-way hash representation of the code itself.  Since the 

mechanism to generate control-flow graphs is well-known (control-flow graphs are used 

in several steps in the compiler optimization process of most compilers), it will not be 

discussed in further detail. 

 
Figure 4.1: Terminal control-flow graph of B  
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For example, assume that we have a simple operation B which performs some 

work.  Since all the requisite artifacts to generate a complete control-flow graph for B 

will be present at the site, the control-flow graph can be generated directly.    The control-

flow graph for this operation is presented in figure 4.1. 

Test cases can be generated in a wide variety of mechanisms using a variety of 

artifacts.  Test cases can be generated using specifications, or using code-based artifacts.  

Test cases are the set of inputs to the operation along with the expected result of calling 

the operation with the given inputs.  The mechanisms used to generate test cases for 

simple operations are identical to the mechanisms in place for traditional monolithic 

applications, which are all well established mechanisms, and thus will not be discussed 

any further.   

The coverage information which must be generated along with the test cases and 

the control-flow graphs is attained by instrumenting the code so that when the test cases 

are run over the system, the path through the system is recorded.  Therefore, the coverage 

information is a lookup table consisting of test case identifiers along with the paths 

through the system the test case covers.  Again, since simple operations have all the 

artifacts, the mechanism to handle simple operations is identical to the mechanism for 

traditional monolithic applications.  The mechanism which provides the coverage 

information is well-established, and therefore will not be discussed in any more detail. 

4.2.2 Composite Operation Initialization  

The approaches to the generation of the three required pieces of meta-data for 

simple operations are identical to those for traditional applications, but none of these are 

directly applicable to composite operations since all of the necessary artifacts will not be 
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available at generation time.  In fact, considering that operations are developed by 

different groups of people and can be developed in different languages, there may be 

cases in which the necessary pieces may be unavailable or unusable.  The construction of 

each of the three required elements for composite operations will be discussed in detail.   

The construction of each of the elements requires two assumptions: 1) all call 

graphs for all composite operations are acyclic, and 2) the underlying WSDL for each 

operation is monitored and handled separately.  Suppose we have a system S, with a call 

graph shown in figure 4.2.  This diagram is being called a “call graph” simply because it 

describes how operations call one another throughout the system of systems.   

A 

B 

C 

D 

 
Figure 4.2: A call graph of a system 

The nodes in this diagram are operations and the edges form a “Can call” 

relationship meaning that during the operation to perform the operation the operation may 

call other operations to perform its work.  For instance, operation A can call either B, D, 

both of them, or even none of them during any given execution depending on the logic 

present in A, but the graph connects A to B and D because A may call them during its 

operation.  The first assumption implies that recursive calls and looping are not allowed 

in any call graph, thus every call graph can only form directed acyclic graphs.  An 

additional point is that each and every operation only is aware of the operations it calls 
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directly so the notion of a call graph is outside of the scope of control of each operation 

and must be controlled via policy decisions externally.  WSDL can and should be 

monitored and handled separately since WSDL modifications are analogous to interface 

modifications which are outside of the scope of any regression testing system.  

An additional assumption is that the called operations (the operations the 

composite services call directly) must have already finished producing the three elements 

they are responsible for which are necessary for the composite service to produce its three 

elements.  After the three elements of every simple operation are generated, the three 

elements of the composite operations that only call simple operations will be generated.  

As more operations complete the generation of their three elements, the more operations 

are ready to be generate their three elements.  Eventually, every operation will have 

completed generating their three elements.  Thus this assumption does not impose any 

limit to the approach but can simplify our discussions in the next subsection. 

4.2.2.1 Composite Control-flow Graph Construction  Initially, since composite 

operations do not yet possess all of the required artifacts to produce a complete control-

flow graph, an intermediary graph must be used.  The intermediary graph is called a non-

terminal control-flow graph and the final, complete control-flow graph is termed a 

terminal control-flow graph.  The difference between the two is that terminal control-

flow graphs have no “call” nodes.  Call nodes are the nodes in a non-terminal control-

flow graph which correspond to the location in the code which calls another operation.  

Call nodes will be discussed in greater detail later in this section.   

Similar to the construction of terminal control-flow graphs for simple operations, 

the code for the composite operations must be analyzed to determine which operations 
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the operation is calling.  In other words, a control-flow graph is generated, but 

everywhere the operation would call another operation “call nodes” are placed.  “Call 

nodes” are special nodes which contain information regarding the call, specifically the 

URI of the service and the name of the operation being called.  This information is 

obtained by analyzing the source code and recognizing where service operation calls take 

place using prior knowledge about how the Web service toolkit builds its “glue code”, 

which handles the message packing, unpacking, transportation, security, and auditing,.   

 
Figure 4.3: Class diagram of “glue code” generated using Apache Axis 

For example, when using the Apache Axis Web service toolkit, the “glue code” to 

call an operation of a service is generated using the WSDL document describing the 

service.  The classes it produces are shown in figure 4.3, which is a UML Class Diagram 

of the “glue code” for a “Business Loan Processor” service.  Each of these classes is 

produced every time the “glue code” is generated.  In the client code, the developer uses 

the “glue code” to call the remote operation as if it were a local Java object as shown in 

55 
 

55



figure 4.4.  In order to call the service, the service “locator” object is instantiated and that 

object is queried for a “stub” object.  The “stub” object then acts as a local Java object 

even though it is carrying out the remote Web service calls.  If the framework were to use 

the information known about how Web services calls take place within the code and how 

the Apache Axis stores it, the required information to build a call node can be easily 

attained. 

 
Figure 4.4: Client code using Axis “glue code” 

lap.LoanApplicationProcessorServiceLocator locator = new 
   lap.LoanApplicationProcessorServiceLocator(); 
         
lap.LoanApplicationProcessor processor =  
   locator.getLoanApplicationProcessorService(); 
         
processor.processLoanApplication(loanApp); 

The “locator” object which is instantiated in the client code always extends the 

class org.apache.axis.client.Service, and it holds the URI of the service in 

a variable post fixed with “_address”.  In the example provided above, the 

LoanApplicationProcessorServiceLocator object holds the URI of the 

service in its local variable: LoanApplicationProcessorService_address.  

This variable is always generated by the Apache Axis toolkit and is always a string 

holding the URI of the service. 

However, scanning for the method name is not as straightforward.  After creating 

a new “locator” class, a “get” method is called on that “locator” object which returns the 

“stub” object.  This object is the object which is responsible for actually transforming a 

local Java call into a remote Web service call.  It holds the names of all operations for the 

service.  In the example provided above, the “stub” object is named: 

LoanApplicationProcessorServiceBindingStub.  In order to call the 
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service this object will be directly used.  However, the “get” method of the “locator” 

object returns an interface which has the names of all the operations.  In the example, this 

is the LoanApplicationProcessor interface.  This interface is scanned and the 

signature of all of the operations is saved.  In the client code, the “stub” class will be 

called and the name of the method can be retrieved and correlated to the signature of the 

operation saved earlier.  This yields the name of the operation and completes necessary 

information to create a call node. 

Although the Apache Axis toolkit is the most popular toolkit for generating “glue 

code”, it is only one of many which do so.  However, which one of the toolkits is used to 

build the glue code is known to the developers of the service and thus the information 

about how each of toolkits specifically function can be used to produce the information 

required for call nodes.  Important also is that each of the toolkits perform similar 

functions and generally produce a standard set of classes and methods.  At this point, the 

call nodes are simply nodes in a non-terminal control-flow graph. 

 
Figure 4.5 Non-terminal control-flow graph for A 

2 

  1 

  B 

As an example, assume there is a new composite operation A which calls 

operation B, the operation shown in figure 4.1, to perform its work.  Since A calls B to 
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perform its work, there is a call node in the non-terminal control-flow graph for A, shown 

in figure 4.5, which is labeled with the letter B to show it is a call node. 

Once the non-terminal control-flow graph is generated, including the information 

necessary for all of the “call nodes”, this special control-flow graph is saved for future 

use, since it provides a blueprint of how to compose this operation correctly.  It will be 

used in virtually every step involving the composition of control-flow graphs.  The saved 

non-terminal control-flow graph maintains two other pieces of information to make the 

rebuilding of the control-flow graphs inexpensive when necessary.  This information is 

acquired when replacing the “call nodes” with terminal control-flow graphs to complete 

the terminal control-flow graph for this operation.  The first piece of additional 

information is a list of control-flow predecessors to the “call node” and the second is a 

list of all the control-flow successors to the “call node”.  These two pieces of information 

are required to replace the control-flow graphs of the composed operations at will, while 

maintaining a low insertion cost. At this point, the non-terminal control-flow graph is 

complete with regards to the code which is internal to this operation and the operations 

this operation calls.  However, the task is still not complete until a terminal control-flow 

graph has been generated for this operation. 

As mentioned earlier, terminal graphs are control-flow graphs which have no “call 

nodes”, therefore the ultimate goal of this phase is to replace all of the “call nodes” 

present with the terminal control-flow graphs each of the “call nodes” represent.  This is 

where the special meta-data operations become critical.  The information in each of the 

“call node” is used to call the control-flow graph meta-method.  The control-flow graph 

meta-method returns the terminal control-flow graph of the service the meta-method 
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responsible for.  Although any entity may request a control-flow graph at any time, the 

control-flow graph meta-method transfers only terminal control-flow graphs because this 

avoids unnecessary communication.  Once the terminal control-flow graph is received, 

the “call node” is replaced with terminal control-flow graph.  It performs this step by 

using the saved lists of predecessors and successors in the following way: each of the 

predecessors now has the start node of the terminal control-flow graph as its successor, 

and each of the end nodes of the terminal control-flow graph now has the successors of 

the call node as successors.   

The nodes may require renumbering due to the uniqueness requirement of the 

identifiers in the control-flow graphs.  Renumbering is performed rather than prefixing 

the already present identifiers to ensure that the anonymity of the involved operations is 

preserved.  If one were to prefix the identifiers they would be presenting the tester with 

too much information regarding how the composed system works.  Suppose that X calls 

A which in turn calls both B and C and prefixing is being used.  The information about A 

calling B and C is unnecessarily revealed to the tester at X.  To ensure that no 

unnecessary information is shared, renumbering is performed. 

The framework treats the “glue code” as library code and removes it from 

analysis.  It is safe to do so because this code is guaranteed not to be modified unless the 

underlying WSDL of the operation is modified.  As mentioned earlier, having stable 

WSDL interfaces is a precondition of the regression test selection technique.  Thus, the 

terminal control-flow graph of each operation the composite operation calls will be 

inserted into the composite non-terminal control-flow graph of the composite operation 

directly, using only those nodes which actually implement the operation.  Once all “call 
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nodes” are replaced with their respective terminal control-flow graph, the result is a 

terminal control-flow graph for the composite operation which is ready for use in the 

regression test selection process.  At this point, this operation can send its terminal 

control-flow graph to any entity which had requested it. 

As an example, suppose the non-terminal control-flow graph for A shown in 

figure 4.5 is to be transformed into a terminal control-flow graph for A.  In this case, 

since A calls B, A requests from B its terminal control-flow graph (shown in figure 4.1).  

Once A receives the control-flow graph from B, A replaces its call node for B with the 

control-flow graph of B.  It would repeat this process for all call nodes to produce a 

terminal control-flow graph.  However, since this particular case only had a single call 

node after replacing it, the terminal control-flow graph has been produced, which is 

shown in figure 4.6. 

 

 
Figure 4.6: Terminal control-flow graph for A 
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4.2.2.2 Composite Test Case Construction The process of building the test cases 

requires human intervention in the construction.  As mentioned earlier, test cases are 

inputs to an entity, such as an operation, which produce an expected output.  The goal of 

this step in the process is to generate a set of test cases, along with coverage information 

for each test case, which exercise the entire composite control-flow graph including 

inside the composed parts of the control-flow graph (where another operation’s control-

flow graph will be inserted).  Again, meta-methods are employed to assist in the process, 

and the test case meta-method, which returns the test cases for the operation.  However, 

the test cases returned from the meta-method are for the operation which is called inside 

the composite operation, and must be made valid at the “call node” of the composite 

operation.  For instance suppose that one of the test cases for the operation being called 

takes an input of “2”.  Upon composition of test cases, the tester would have to find an 

input to the composite operation which results in the called operation being called with a 

“2”.  The test cases are uniquely numbered for each operation, thus the test cases which 

need to be added, are added to the end of the list of test cases generated thus far for this 

operation, and then renumbered to ensure uniqueness.  The input part of these test cases 

are valid for the entry point of the called operation, not the calling operation, and this 

information is relayed to the testers responsible for generating test cases for the 

composite operation.  Since each test case represents an input, which must be valid at the 

point of the “call node”, the tester must determine the inverse, what input must be 

delivered to the composite operation to deliver the input required by the test case at the 

point of the call node.  If this is impossible, one of the two types of manual manipulation 

is required: test case removal and data augmentation.   
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Test case removal requires an assertion about the test input in order for the test 

case to be removed safely.  If the human tester can assert that the calling operation can 

never call the called operation with the same input as the test case because of type then 

the test case can be removed without missing any test cases that are possibly fault 

revealing in the calling operation because the calling operation will never make such a 

call.  For example, suppose that a book seller calls Amazon’s purchase order service.  

Even though Amazon provides test cases for purchase books and electronics, the book 

seller only sells books and therefore never deals with electronics.  If this is the case, the 

book seller would remove the test cases involving electronics and would do so safely due 

to the strong assertion that the book seller does not sell electronics.   

Data augmentation involves informing the calling system of data it was not 

previously aware of.  If the input of the test case is not within the calling operation’s 

available data, but is reasonably similar, the calling operation must add the proper data to 

its database to be able use the given test case.  For example, suppose in the previous 

example the book seller does not sell the book “Algebra I” and is given a test case by 

Amazon for selling the book “Algebra I”.  The database manager could add the title 

“Algebra I” so that the test case could be directly used.   

In both scenarios, a human is directly involved in manipulating the construction 

of the set of test cases. Once this process is finished for all composed operations, the 

second required element for regression test selection has been created. 

4.2.2.3 Composite Coverage Information Construction The final step in the 

process is generating a mapping between the test cases and the control-flow graphs.  The 

coverage information is a lookup table consisting of test case identifiers and the paths 
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through the control-flow graph they cover.  As the test cases were being renumbered in 

the previous step, the test case identifiers on the lookup table were updated as well.  

Finally, the paths are updating by prefixing each of the paths of the composed tables with 

the path to the composed call node of the composite operation.  Once this final step is 

performed, all the information required is ready for use in the safe regression test 

selection process. 

 

4.3 Critical Phase 

The process of actually performing regression test selection is an adaptation of the 

three phase process outlined in the background in section 2.5.  The first step of the 

process is building the control-flow graph of the modified operation, the second step is to 

identify dangerous edges, and the final step is to select the test cases which need to be 

rerun based on the set of dangerous edges resulting from the second step and the 

coverage information provided in the initialization phase.   

The composition of the control-flow graph for the modified version of the 

operation is identical to the process outlined earlier in the initialization phase.  The 

operation uses its original “call node” representation of the operation to assemble the 

terminal control-flow graphs of the called operations to the non-terminal control-flow 

graph of the composite graph to create a new modified terminal control-flow graph.  The 

control-flow graph for each of the called operations is saved separately during 

construction and this information is used as much as possible in this phase of the process.  

For instance, suppose that a local composite operation was modified, the graph would be 

rebuilt and provided the operation calls the same simple operations, the building of the 
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modified control-flow graph would use the same terminal control-flow graph for those 

operations.  Suppose also that a remote operation which this operation calls was 

modified.  The newly generated terminal control-flow graph for that operation would be 

inserted into the original non-terminal control-flow graph along with the other intact 

terminal control-flow graphs.  If a local modification occurs which leads to calling a new 

operation, the framework simply gets the information for that operation and informs the 

tester that additional “human” work must be done.  In other words, this would be outside 

of the scope of automatic operation. 

Once the modified control-flow graph is generated, the process of the rest of this 

approach is identical to the approach outlined in the background in section 2.5.  It 

compares the original control-flow graph with the modified control-flow graph to identify 

a set of dangerous edges.  Once the dangerous edge list is computed, the tests which need 

to be rerun can be determined from using the test coverage information and the dangerous 

edge list, and executed.    
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Chapter 5: Automation of the RTS Approach 

 

This chapter will discuss the automation of the approach to perform regression 

test selection on Web services.  The chapter will begin by discussing the overall high-

level architecture of the involved objects, including two broad approaches to automating 

the regression test selection technique outlined in the previous chapter.  The adopted 

approach involves a new set of challenges which will also be discussed.  Finally, the 

solutions to these new challenges will be presented in the form of agents. 

 

5.1 Approaches to Automate Regression Test Selection for Web Services 

This section will focus on the types of approaches applicable to automating the 

regression test selection technique and will begin with the discussion of two broad 

architectural systems which could be applied to produce the automation, the selected 

approach, and why the selected approach was adopted.  Lastly, this section will briefly 

discuss some of the new challenges the adopted approach presents. 

There are two broad mechanisms by which the approach could be automated: 1) 

A centralized solution, which monitors and controls all parties’ modifications and testing; 

and 2) a distributed solution, in which each service monitors its own modifications, 

notifies interested parties, and performs the regression test selection process and the 

regression testing for it.  The first approach is straightforward to implement, but may not 

be feasible for some parties which want to maintain a certain level of control over the 

processes for any number of purposes such as information security and granularity 

control.  The second approach alleviates these concerns because it allows everyone to 
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maintain a full level of control over the process.  The approach adopted for use in 

regression test selection will be the distributed solution, since distributed solutions will 

allow greater levels of control over the process for the individual parties. 

In a distributed solution, testing Agents, one for each service, will be responsible 

for monitoring the service they are responsible for, and when necessary perform 

regression test selection and then the regression testing processes.  However, since 

modifications can occur concurrently, the challenges which arise from this concurrency 

must be carefully analyzed, since the agents will ultimately be responsible for handling 

this as well.   

 

5.2 Concurrency Challenges 

This section will discuss the concurrency issues which can occur in a distributed 

automated regression test selection system.  The section will describe the types of issues 

which can occur and provide some example scenarios for each.  The types of issues 

which can arise are test consistency, coverage issues, and communications issues. 

 5.2.1 Coverage Conflict Coverage issues arise from the manner in which the 

regression test selection technique is performed.  As described in the background, the 

regression test selection technique uses three pieces of information, which were all built 

as described in Chapter 4.  The first piece of requisite information is the control-flow 

graph of the operation.  After construction, each control-flow graph is a directed graph 

with nodes corresponding to code artifacts, such as statements or blocks, and edges 

representing control-flow between them.  The second piece of information required is a 

set of test cases.  After construction, the set of test cases is an ordered list of the inputs to 
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the service along with the outputs which correspond to the given inputs.  The last part is 

the coverage information, which after construction, is a list of test case identifiers of the 

test cases (from the second piece of information) and paths each of those test cases cover 

in the control-flow graph (from the first piece of information).  Upon receiving a 

modification, a new control-flow graph is built and the regression test selection algorithm 

performs a dual-traversal over both the newly created control-flow graph and the original 

one.  This is performed exactly as described in the background in section 2.5.  The result 

is a set of dangerous edges, which is directly used to determine which test cases to select.  

The set of dangerous edges form all the paths which begin at the start node of the control-

flow graph and lead to all modifications.   

Definition: A revealing path is a path in a control-flow graph which starts at the start 

node of the control-flow graph and leads to a modification. 

This definition will help simplify any discussion involving dangerous edge lists, 

because a dangerous edge list can now be described as the set of all revealing paths.  

Since the regression test selection algorithm uses the location of each modification to 

select test cases, the location of the multiple concurrent modifications can have a negative 

impact on the result.  More specifically, if two, or more, modifications result in the 

selection of the same group of test cases, two basic issues arise: 1) if any of the shared 

test cases (selected by both the algorithm for both modifications) result in a fault, the 

tester will not be capable of determining which modification was responsible.  This issue 

is known as fault locatability.  2) Redundant test cases are being run which result in a 

waste of resources.  Any two or more modifications which suffer from issues due to the 
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location of their modifications in relation to one another are said to be in coverage 

conflict.   

Coverage conflict will be defined more formally.  The following notation will be 

used throughout this section:  M1 is the first modification and M2 is the second 

modification.  Each of these modifications corresponds to modified control-flow graphs, 

which will be denoted using C1 and C2 for M1 and M2 respectively, each of which will be 

compared to the original control-flow graph C.  A dual-traversal shall be performed on C1 

and C as well as on C2 and C which will result in two corresponding dangerous edge lists, 

DE1 and DE2.  The dangerous edge lists will be used to select corresponding test cases T1 

and T2. 

Definition: Two modifications, M1 and M2 are in coverage conflict if the regression test 

selection algorithm selects some common test cases.  In other words, M1 coverage 

conflicts with M2 if T1 ∩ T2 ≠ ∅. 

Since the number of test cases can be arbitrarily large, another way to determine 

when conflict occurs is required.  Let us begin by looking at how two modifications in 

coverage conflict relate to one another. 

Theorem 5.1: Two modifications, M1 and M2 are in coverage conflict if one of the 

revealing paths from one dangerous edge list is a subgraph of one of the revealing paths 

of the other dangerous edge list.   

Let us focus on those situations in which two modifications, M1 and M2, result in 

coverage conflict, namely when the same set of test cases are selected by both 

modifications, or T1 ∩ T2 ≠ ∅.  That is when two modifications result in shared test 

cases.  Furthermore, let us focus on only T1 ∩ T2, or the shared test cases, and the 
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situation which leads to non empty intersections. The dangerous edge lists, DE1 and DE2, 

are composed of all revealing paths.  The set of selected test cases, T1 and T2., are selected 

using those two dangerous edge lists, DE1 and DE2, and the coverage information, which 

is a lookup table with test cases and their corresponding paths through the control-flow 

graph.  Each path in the dangerous edge lists is compared to the listed paths for each of 

the test cases, and if a test case covers the entire dangerous edge path the test case is 

selected.  For any test case to be selected, it must cover an entire revealing path in the 

dangerous edge list.  For any test case to be selected in two separate modifications, the 

test case must cover an entire revealing path in both dangerous edge lists.  This implies 

that one revealing path of one dangerous edge list must lie in the path of the one of the 

other revealing paths in the other dangerous edge list, which is the very definition of 

subgraph.  QED. 

 5.2.2 Test Consistency Another type of issue which must be carefully considered 

is that of test consistency.  Test consistency involves ensuring that each test case gets a 

consistent view of the system under test.  For instance, one begins testing A, which calls 

B, but before finishing the test cases, B notifies A that it was modified.  Some of the test 

cases ran on the old B and some ran on the new B.  There is no way to identify which test 

cases ran on which version of B.  This issue is important in terms of ensuring the accurate 

reporting of test results.  If test inconsistency is never allowed to happen, then all test 

results should be guaranteed to be accurate.  Another form of ensuring testing consistency 

is ensuring that once a system reaches a stable-state the test cases which were last run 

were all consistent.  This work refers to this stable-state consistency as eventual test 
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consistency. Either way, test inconsistency can only occur in those cases in which 

coverage conflict occurs, however, the two issues can be handled separately. 

 5.2.3 Communication Issues Communications issues arise from faulty or slow 

communications channels and usually involve delayed messages, dropped messages, or 

messages being sent to the wrong location.  This issue has an interesting impact on the 

described approach in terms of the control-flow graphs.  Suppose that we have two 

modifications, M1 and M2, and the two modifications occur in that order.  Suppose that 

the notification for the first modification was delayed and the second notification arrives 

first.  The control-flow graph for the second modification actually contains the 

information for the first modification (the first modification modifies the system and the 

second modification modifies the system which was just modified).  This implies that 

when the second modification arrives before the first, the system will perform the entire 

regression test selection process for both modifications, selecting the test cases which 

need to be run for both modifications.  The notification of the first modification can 

safely be dropped. 

 

5.3 Solutions in the Form of Agents 

The agents are responsible for handling all of these issues as necessary.  The 

agents will handle the issues outlined in the previous section using a set of algorithms to 

ensure correct operation.  The definition of correct operation depends on what the tester 

is specifically interested in solving.  All of the testers in all cases are interested in solving 

issues related to communication, but have different goals in their relation to the coverage 

and test consistency issues discussed in the previous section. 
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Suppose that the testers are not interested in complete fault locatability or a 

running test consistency.  This implies that the tester is only interested in ensuring that 

eventually, once all modifications arrive, the system is tested completely the last time 

each of the test cases were run they were consistent.  This provides the utmost in terms of 

concurrency while still ensuring that the tests are eventually consistent.   

However, suppose that the tester is interested in full test consistency.  This 

implies that some mechanism is in place that ensures that every test case is consistent as 

it completes. Finally, ensuring fault locatability also ensures test consistency and is 

performed by ensuring that there are never any coverage issues.  This implies that 

concurrency is allowed only in cases in which there are no coverage issues.  The two of 

these will be left for future work, and only the algorithm which ensures eventual test 

consistency will be discussed in detail. 

 

5.4 Eventual Test Consistency Agent 

In this section, the agents which are responsible for maintaining eventual test 

consistency will be discussed.  First, the data structures, objects, and methods available to 

the agents will be discussed.  Then the algorithm will be described in terms of how it 

operates under internal and external modifications.  Finally, a proof that the agent 

performs as expected will follow the discussion.   

 5.4.1 Data Structures and Methods Every agent, each of which corresponds to a 

service, has and maintains the following data structures: 

• Up-to-date terminal control-flow graph from the point of view of the site, C. 

o This data structure is initialized as described in section 4.2 
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• Subscriber list, NotifyList. 

o This is a list of the addresses of agents which monitor those services 

which call this service directly while performing their duties. 

o The agents build this list by sending their address when they request the 

terminal control-flow graph of the services they call.   

o An empty list implies that no other service calls this service 

• Identification of the current local site, myID. 

o the URI of the agent 

• Logical clock object, LC, which has three operations: 

o getLC() – gets the current value of the logical clock 

o incrementLC() – increments the current value of the logical clock 

o setLC(timestamp) – sets the current value of the logical clock to 

timestamp. 

• A lists of tasks, RunningTasks 

o A list of concurrently running tasks which have a one-to-one 

correspondence with Tester objects which will be discussed in detail. 

o RunningTasks = {task1, task2, …, taskk}, where 

 taski = (Ei, opIDi, tsi) for i = 1, 2, …, k.   

• Ei is the dangerous edge set;   

• opIDi is the operation which was modified 

o Each service may have more than one operation and 

each operation is identified by its name 

• tsi is the timestamp of the modification 
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o Has two operations: 

 addTask(taski) – adds a task to be completed 

 removeTask(taski) – removes a running task 

• A set of timestamps, watermarks 

o the last timestamp seen for each operation that this operation calls directly 

Each of the tasks in RunningTasks corresponds to a Tester object, which are 

directly responsible for the execution of a given set of test cases.  Each Tester object 

executes a set of test cases and maintains two separate lists, to_test and done, which hold 

the test cases which still need execution and the test cases which have already been 

executed respectively.  The Tester.Test operation takes as parameters a set of test cases.  

As it finishes the execution of each test case, the Tester moves the test case from the 

to_test list to the done list.  These two lists will be used to handle conflict when it occurs.  

The operation of this method is shown in figure 5.1. 

 
Figure 5.1: Tester.Test operation 

Tester.Test(TC) {
 
 to_test = TC; 
 
 done = empty; 
 
 for each test case, tc, in TC { 
 
  test tc; 
 
  move tc from to_test to done; 
 
 } 
 
 send report to test manager; 
 
 RunningTasks.removeTask(this.TaskID) 
} 

Finally, there are a number of methods available to each of the agents.  The first 

of these methods is used to select test cases using the dangerous edge list, and its 

73 
 

73



signature is: TestCase[] selectTestCases(EdgeSet es);  This is performed as described in 

the background in section 2.5. 

Another method available to the agents is used to determine if two dangerous 

edge lists conflict, and its signature is: boolean coverageConflict(EdgeSet a, EdgeSet b).  

This method will be discussed in detail as it is central to some of the algorithms.   This 

function takes as arguments two edge sets containing two separate dangerous edge lists 

and returns whether or not the two dangerous edge lists conflict.  This method uses 

Theorem 5.1, which states that two modifications are in coverage conflict if one of the 

revealing paths on one dangerous edge list is a subgraph of a revealing path in the other 

dangerous edge list.  This problem of determining if one path is a subgraph of another 

path has a standard solution from graph theory, and will not be discussed in further detail. 

The final method available to the agent is the mergeDangerousEdgeLists method, 

which merges the two given dangerous edge lists and returns a merged dangerous edge 

lists.  In this agent, coverage conflict is handled by merging the two conflicting 

modifications.  However, when the two modifications are merged, later incoming 

modifications must be able to determine whether or not they conflict with either of the 

two currently conflicting modifications.  Since dangerous edge lists are used to determine 

whether two modifications conflict, the dangerous edge lists must be merged.  In order to 

merge the two dangerous edge lists, all non-conflicting revealing paths and the shorter of 

the two conflicting revealing paths form the result.  The reason the shorter of the two 

conflicting revealing paths is chosen is that the shorter revealing path will conflict with 

an incoming modification which conflicts with either of the two merged conflicting 

modifications.  This method is performed by traversing the two dangerous edge lists and 
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adding all edges to the result which the algorithm crosses until either each of the current 

nodes is a leaf or one is a leaf and the other is not.  The result is a merged dangerous edge 

list, which ensures that if an incoming modification were to conflict with either of the two 

conflicting modifications, it would conflict with the merged dangerous edge list. 

Now that the data structures and methods available to the algorithms are in place, 

a functional description of the architecture will be discussed. 

5.4.2 Agent Operation This agent is responsible for ensuring that all 

modifications will eventually be tested.  This algorithm will not be capable of 

determining where the fault occurred (fault locatability), but will ensure that once the 

system reaches a steady-state the tests will be consistent (eventual consistency). Also, 

during the operation no redundant test cases will be executed.   

In addition to the data structures and methods previously discussed, the agent has 

only two important operations: receive(MSG), which is for remote modifications, and 

localModification(), which is for local modifications.   

 
Figure 5.2: Agent localModification() operation 

localModification() {
 
   update the global CFG of the local site into Cnew;  
 
   LC.incrementLC();  
 
   lc = LC.getLC(); 
 
   create a message, MSG=(myID, Cnew, lc) 
 
   send MSG to each of the subscribers in NotifyList;  
} 

The localModification() operation, shown in figure 5.2 creates the new control-

flow graph of the local site, increments the logical clock, and sends the newly created 

control-flow graph to all of its subscribers so that they can start their regression test 
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selection.  An assumption here is that before developers can commit their own 

modifications into the system they have must have already thoroughly tested their own 

system. This is because unit-testing must always precede integration and system testing. 

The other operation, receive(MSG), is specifically designed to handle the 

concurrency issues, regression test selection, and the management of the Tester objects.  

It takes a message, MSG, which describes a modification which occurred in one of the 

services that the agent calls directly as a parameter.  This message, MSG, contains the 

terminal control-flow graph of the agent informing this agent of the modification, an 

identifier identifying the agent informing this agent of the modification, and a timestamp. 

The operation begins by determining whether or not the arriving message is the 

most recent one received from that sender.  If it is not the most recent message, it is 

discarded.  If it is the most recent message, the watermark which holds the most recent 

message for each sender is updated.  The logical clock for this agent is then updated.  The 

agent then uses the information made available to it from the initialization phase  

(specifically how the original control-flow graph was created) to insert the modified 

terminal control-flow graph of the subordinate site (or calling site) into the terminal 

control-flow of the agent’s site to create a new terminal graph for this site, C’.  After 

generating C’, the agent sends this control-flow graph to every subscriber in its subscriber 

lists, NotifyList, along with its timestamp and identifier.  The agent then compares the 

two control-flow graphs, C and C’, by traversing them simultaneously to compute the 

dangerous edge list.  The agent then selects the test cases based on the resulting 

dangerous edge list (using the method selectTestCases).  The agent then creates a new 
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Tester for this modification and adds the newly selected test cases to it.  The 

receive(MSG) operation is shown in figure 5.3. 

 

 
Figure 5.3: Agent receive(MSG) operation 

receive(MSG) { 
 
 if (MSG.TS < watermark.get(MSG.ID)) { 
 
  LC.setLC(max(LC.getLC()+1, ts) + 1);   
   
  watermark.put(MSG.ID,MSG.TS);   
 
  build C’ by embedding MSG.CFG into C;  
 
  build MSG’ using (C’, myID, LC.getLC()) 
 
  send MSG’ to every subscriber in NotifyList 
 
  compute the dangerous edge set, E0, by comparing C and C’; 
 
  TC = selectTestCases(E0) 
 
  Create a new tester, Tester’, to test TC; 
  
  Tester’.to_test = TC; 
 
  foreach task = (Ed, opIDd, tsd) ∈ RunningTasks { 
 
   if (coverageConflict(Ed, E0)) { 
 
    pause Testerd;  
     
    Tester’.to_test = Testerd.to_test ∪ Tester’.to_test; 
 
    Testernew.done = Testernew.done ∪ 
     (Testerd.done – Tester’.to_test); 
     
    E0 = joinDangerousEdgeLists(E0, Ed) 
 
    Kill Testerd; 
 
  } }    
 
    start Testernew; 
 
    add task’=( E0, opID, ts) to RunningTasks; 
 
  LC.incrementLC(); 
 
} } 
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Then the agent determines whether the newly generated dangerous edge list 

conflicts with any of the dangerous edge lists currently running.  This is determined by 

using the coverageConflict method described earlier.  If the method returns false for all 

running modifications, the algorithm simply starts the Tester created earlier, adds the task 

to RunningTasks, and increments the logical clock.   

If any of the currently running Testers do conflict with the incoming modification, 

it is paused.  The algorithm deals with conflict by joining the incoming modification to 

the conflicting modification.  The algorithm reconciles the to_test and done lists for the 

new Tester using the information from the paused Tester.  The to_test list gets a union of 

the to_test list of the paused Tester along with the to_test list of the newly created Tester.  

This ensures that the tests which need to be rerun again from the new Tester get rerun 

along with any tests which were not in the new Tester but were in the paused Tester.  The 

algorithm then sets the done list of the new Tester to the done list of the paused Tester 

minus to_test of the new Tester.  This ensures that the tests which were finished by the 

paused Tester which need to be rerun are removed from the done list, but the test cases 

which do not need to be removed are not removed.  The last thing which must be 

performed in order to join the two modifications is to join the dangerous edge lists.  This 

allows for another modification to determine if it conflicts with either of the two joined 

conflicts.  This is done using the joinDangerousEdgeLists method described earlier.  

Finally, the paused Tester is then killed, and the newly created Tester is started. 

5.4.3 Correctness of the Agent Algorithms The specific goal of this section is to 

prove that the Agent functions correctly under normal operating conditions.  Normal 

operating conditions implies only that all messages sent between cooperating agents are 
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reliably delivered.  The goal of the Agent is to ensure that every modification the system 

undergoes is eventually tested and when the system reaches a stable-state it will be 

consistent.  The Agent does not ensure that every earlier test is consistent, or that every 

run of the Tester object is consistent.  However, it does ensure that after all the 

modifications are received, every part of the modified system will have been tested and 

those tests will be consistent.  Additionally, it attempts to reduce the number of redundant 

tests cases which need to be executed.   

The goals of the system will be discussed more formalized.  The algorithms must 

ensure that all modifications are eventually tested and this implies only that no 

modification is missed.  This particular goal is straightforward to prove since we assume 

reliable delivery of all notification messages.  Since no messages will ever be lost, the 

algorithms must only ensure that every modification is tested.  Since the algorithms in 

place are safe, the algorithms will ensure that every part of the system which was 

modified will be tested.  This is an important point, since now the algorithms must only 

ensure that the selected tests eventually get performed.  The algorithms must ensure that 

upon reaching a stable state, the tests will be consistent.  More specifically, the 

algorithms must ensure that if the system changes during testing the tests which covered 

the modification, and thus are inconsistent, are restarted.  As mentioned earlier, the only 

tests which are inconsistent are those that are shared by two conflicting modifications.  

The algorithms must then ensure that if two modifications conflict, none of the shared 

test cases is allowed to remain in the done_list and all of the shared test cases are on the 

to_test list. This ensures the consistency requirement eventually because the shared tests 

79 
 

79



always gets retested when a conflicting modification appears, and when there are no more 

modifications to report, the test cases which finish last are consistent. 

Assuming that the overall system starts in a correct state, there are a number of 

cases which will be considered and these cases will be numbered for clarity.  In case 1, 

the modification is local to the Agent.  This algorithm is presented in figure 5.2.  At any 

time, if a local modification occurs, the control-flow graph is regenerated as described in 

section 4.2.2.1 and sent to all interested parties in the notification list.  This ensures that 

every other agent interested in the locally modified agent will receive a notification that 

this agent has been modified.  This agent will always build the control-flow graph from 

the most recent view of the system and send it so that the control-flow graph it sends will 

be correct in terms of the most current view of this agent.  This particular algorithm of the 

agent functions correctly in respect to ensuring that the local modification is both 

propagated to all interested parties and the most current. 

The rest of the cases involve remote modifications and therefore the 

receive(MSG) algorithm of the Agent presented in figure 5.3.  Case 2 occurs when the 

incoming modification is the first modification this agent has received, which is a trivial 

case.  Upon receiving this message, it accepts the modification, adjusts the watermark, 

builds the new control-flow graph, sends it to all subscribers, computes the dangerous 

edge lists, selects test cases, and creates a tester.  Since there are no currently running 

tasks, the tester is simply started and added to the currently running tasks.  Assuming that 

a steady-state has been reached with this modification, the algorithm ensures that at least 

this modification will be tested.  If this is the only modification, it also ensures that when 
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the system is finished testing this modification the tests will have been consistent.  They 

are consistent since there can be no conflict because there is only one modification. 

Case 3 is non-trivial because it involves the Nth modification to arrive at the 

agent.  There are several parts to this case which will each be considered separately as 

sub-cases.  Case 3.1 involves an incoming modification which carries a lower timestamp 

that the one last received for that operation.  If this happens, the incoming message is 

discarded.  If the incoming message has a lower timestamp than the one which was last 

received the message was delayed and thus arrived after a message which was sent after 

it.  The message is discarded because the control-flow graph of the less recent 

modification message is part of the more recent control-flow graph.  This is true 

regardless of whether or not either of the two modifications conflict with any of the 

running testers.  The algorithm still ensures that every modification will eventually get 

tested because the modification will have existed in another modification notification 

which allows us to safely assume that the modification is tested upon receiving the other 

modification notification which still ensures that the modification will be tested.  The 

algorithm additionally ensures consistency with this approach because even if the 

modification caused a conflict, the conflict and the resolution would be correctly handled 

by the other notification and thus would be redundant to be done again.  All other sub-

cases of Case 3 will assume that the modification has a higher timestamp than the last 

received message. 

Case 3.2 entails an incoming modification which does not conflict with currently 

running tasks.  Upon receiving the modification, the algorithm builds a new control-flow 

graph, sends it to all the subscribers, computes the dangerous edge list, and then begins 
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comparing it to all the currently running tasks. In order to correctly handle these 

situations, the operation must be able to determine if the incoming modification conflicts 

with one of the running conflict.  As discussed earlier, this is correctly determined by the 

method coverageConflict.  In this case, the coverageConflict method determines that they 

do not conflict and since it does not conflict with any of the currently running tasks, the 

algorithm performs the same steps as the steps incurred when there were no other 

modifications in the system.  Again, assuming that this modification leads to a steady-

state, the algorithm ensures that all modifications are tested and those tests are consistent.  

All modifications will be tested since no tester is stopped and all tests will be consistent 

since there was no coverage conflict. 

The last and most interesting case, Case 3.3, involves an incoming message which 

does conflict with a currently running task. Upon receiving the modification, the 

algorithm builds a new control-flow graph, sends it to all the subscribers, computes the 

dangerous edge list, and then begins comparing it to all the currently running tasks.  As 

described earlier, the coverageConflict method is used to determine if the incoming 

modification conflicts with any of the currently running tasks.  Since the method 

correctly determines that there is conflict if it exits, it determines that the incoming 

modification does conflict with a currently running task.  As mentioned earlier, when two 

modifications are in conflict, the agent will deal with the conflict by merging the two 

conflicting modifications.  The merging that takes place merges both their dangerous 

edge lists and their test cases.  So after conflict is determined, the Tester object the 

incoming modification conflicted with is paused and the newly created Tester must be 

merged with the conflicting Tester.   
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In the algorithm, the test cases are merged first.  The first part of this merging 

process involves the to_test list.  The newly created Tester already contains the test cases 

the incoming modification selected and the non-conflicting test cases from the conflicting 

Tester are added to the list.  This is performed by taking a union of the to_test list of the 

incoming modification and the to_test list of the conflicting modification.  This is 

performed because any test which was not finished and on the to_test of both the 

incoming modification and conflicting modification will be on the to_test list of the 

merged result.  This procedure ensures two things: 1) any finished shared tests will be 

added to the to_test list of the result ensuring that these inconsistent tests will be retested 

and 2) that any finished non-shared tests will not be added to the to_test list of the result 

ensuring that no finished test case which was consistent will be missed. 

The second part of this merging process is the handling of the done list.  The 

newly created Tester must be set to be the union of the done list of the incoming Tester 

(may not be empty, especially if this modification conflicted with another earlier) and the 

done list of the conflicting tester minus the to_test list of the newly created Tester. This is 

performed to ensure that any non-conflicting test case which was finished in either 

remains on the done list and that any conflicting test case does not.  This procedure also 

ensures two results: 1) any finished non-shared tests results remain on the done list 

ensuring that the result of all such consistent results are not lost and 2) any finished 

shared test results do not remain on the done list ensuring that no consistent test will be 

reported. 

The two procedures which handle the merging of the test cases and their results 

ensures that no consistent result is lost and all results non-consistent will be lost and that 

83 
 

83



any consistent test cases will not be run again and that any tests which were made 

inconsistent by the incoming modification will be run again.  The merging of test cases 

described earlier ensures the future consistency of the test cases the two conflicting 

modifications share as well as the consistency of the test cases they do not share.  

However, suppose there is another running task which conflicts with the incoming 

modification.  In this type of scenario, the dangerous edge list which is used to determine 

conflict must also be merged so that other currently tasks and incidentally future 

incoming modifications can determine if they conflict with either of the two conflicting 

modifications. As described in section 5.4.1, the mergeDangerousEdgeLists method 

correctly performs this function.  In doing so, it ensures that the rest of the currently 

running tasks can be checked for coverage conflict using the method coverageConflict.  It 

additionally, ensures that later incoming modifications will be correctly handled.   

Since the algorithm correctly determines whether or not an incoming modification 

conflicts with a currently running modification, the two cases 3.2 and 3.3 are the only two 

possibilities, and in both of those the algorithm correctly functions.  Additionally, 

supposing that the incoming modification conflicts with more than one currently running 

task, this is handled correctly by the merging of the two modifications.  The incoming 

modification is merged with the first conflicting task and then the merged modification is 

then merged with the second.  Since the merging does correctly ensure that the merged 

modification does conflict with the second conflicting task, the second merging is 

guaranteed to take place.  Additionally, since the merging process correctly ensures that 

no shared test is left finished and no non-shared test is lost, it correctly ensures the future 

consistency of the tests across all merged modifications.  Again, assuming that this 

84 
 

84



modification leads to a steady-state, the algorithm ensures that all modifications are 

tested and those tests are consistent.  All modifications will be tested since even though 

the tester is stopped and killed, the finished consistent tests are guaranteed to be on the 

newly created merged Tester and thus never lost.  All tests will also be consistent since 

the newly created merged Tester ensures that the shared tests will be run again ensuring 

their final consistency. QED 
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Chapter 6: Empirical Study of Proposed RTS Technique 

 

As mentioned in section 2.3 of the background, regression test selection is only 

beneficial when the cost of running all tests is greater than the costs of running the tests 

selected by the regression test selection process and the regression test selection process.  

This chapter will present an empirical study of the outlined approach for applying a safe 

regression test selection technique to Web services.   

 

6.1 Introduction 

Unlike traditional applications, there are no standard frameworks available which 

can be used as benchmarks to test regression test selection techniques on Web services 

which would present a set of challenges to any empirical study performed on Web 

services.  The frameworks for which the empirical study will rely on were developed for 

the sole purpose of the empirical study.  The validity of the study will be assured by the 

manner in which the frameworks are tested and the manner in which the results are 

presented.  However, the validity of the approach to apply empirical study to these 

systems is seriously and negatively impacted by the lack of previous studies along this 

vein for Web services.  There will be a number of systems presented along with 

descriptions of why these systems were selected for use in this study. 

The empirical method and study is based on the study presented by Rothermel 

and Harrold, in which they performed an empirical analysis of the performance of their 

regression test selection technique for monolithic applications.  This empirical study will 

follow their approach very closely.  In their study, they used a variety of standard 
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systems, augmented with the requisite information (control-flow graphs, test cases, and 

coverage information), modified the system, and then ran their regression test selection 

mechanism.  Specifically they compared the cost of performing the regression test 

selection algorithm added to the cost of executing the selected test cases with the cost of 

executing all test cases.  Their measure of cost was what the authors termed “wall clock 

time”, which meant that they simply timed the results using a start time subtracted from a 

finish time.  Since no standard systems are available in a Web services world, a variety of 

systems which are representative of real-world Web services were developed for this 

purpose. 

In the work by Rothermel and Harrold, since they were augmenting code which 

had not been developed by them with test cases they were not provided with, they 

followed a rule which states that every path in the system must have at least 30 test cases 

to exercise it.  This provides an even distribution of test cases throughout the system, 

which although it is not representative of a real system due to the inherent priority of 

different paths, it is a requirement since the tester will not always know which paths 

through the system would be more important than others and an even distribution ensures 

equal consideration for each path.  This particular rule is strictly enforced in this work. 

Lastly, they used a random group of people to alter the code in random ways and 

then used the modified versions of the code to perform regression test selection.  They 

performed this experiment a number of times recording the costs.  They then compared 

those costs to the cost of executing all test cases.  This analysis will proceed very 

similarly: The underlying control-flow graphs will be altered at random, and the resulting 

control-flow graphs will be used in the regression test selection process.   
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The regression test selection system presented by this work will be evaluated in 

the following way:  The cost of performing all tests throughout the system will be 

compared with the cost of performing regression test selection everywhere necessary 

along with the cost of performing only the selected tests throughout the system.  This cost 

comparison is indicative of comparing the test-all approach to the selective test approach, 

which was performed by Harrold and Rothermel.  Since the regression test selection and 

regression testing processes are performed in a distributed and concurrent fashion, the 

results of such an study will present an idea of the cost savings in terms of overall work 

performed. 

This cost comparison will be evaluated by first augmenting each of the five 

systems with test cases, coverage information, and control-flow graphs, which is 

performed as described in section 4.2.  Once this is done, the experiments were 

performed.  Each experiment was performed in three basic steps.  First, the test harness 

randomly selected a node, which could be in any one of the participating services, and 

modified it.  Second, regression test selection is performed for each of the affected 

services and the time taken to do so is recorded.  Third, the mechanism ran the selected 

test cases from the second step and recorded the time required for the entire set to run. 

Even though Web services are by nature distributed entities which can be thought 

of as running on many separate machines as easily as on the same machine, all tests were 

run on the same machine as the service, and all services were on the same machine.  This 

was done for two reasons: 1) the agents themselves are expected to be as near as possible 

to reduce costs and 2) including transmission costs would only add to the cost of running 

the test cases which would only deepen the comparison not change it, since as the cost of 
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running tests increase the likelihood of regression test selection winning the comparison 

increases.  Lastly, the cost of performing the algorithm is added to the cost of running the 

selected test cases and recorded.  This final recorded cost is to be compared to the cost of 

running all test cases for each of the services, which was recorded at the onset, and thus 

was only run once.  

Five systems will be discussed in the five sections following this one.  Each of the 

five systems will be introduced, including descriptions of the architecture of the system, 

the test augmentation, and why each system was chosen for use in this study.  The results 

of the empirical study will be presented and discussed in the final section. 

 

6.2 Purchase Order System 

In this section, the approach will be applied to a group of Web services in a 

simplified purchase order system.  This system was developed to shed light on the 

approach, considering this system is used to describe many parts of the work thus far.  

Additionally, it will show that even small simple systems can benefit from regression test 

selection.  Purchase order systems are used in a variety of case studies presented in a 

number of books [49, 50, 51] as well as a number of technical articles about Web services 

[52, 53].  The authors of these works use them in their work because they are indicative 

of the way the real-world Web services interact, and are also fairly intuitive to describe 

and understand.  A simplified purchase order system was selected for use in the study for 

these very reasons. 

The simplified purchase order system, which is shown in figure 6.1, consists of 

four Web services, which are: 1) a hardware service which accepts orders of hardware 
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related products only, 2) a software service which accepts orders of software related 

products only, 3) a service which only accepts office supply orders which are not 

software or hardware, and 4) an ordering service which accepts an order and forwards the 

order to the correct service depending on the order.  This particular framework relies very 

heavily on the content-based routing pattern [54], which changes the route of a message 

based on the content of the message.  In this case, the ordering service routes the orders 

to the suppliers which will supply the order based on the order itself.  This system is 

dramatically simplified in terms of capabilities and complexity, and in terms of being 

only two layers deep thus ignoring vendors and subcontractors.  On the other hand, its 

simplicity makes it possible to visualize the different parts of the regression test selection 

framework.   

 

:application 

:ordering  

:software 
i

:hardware 
i

:office supply 
i

2. order(item)
3. response

4. response 1. order(item) 

Figure 6.1: A modified UML diagram of the purchase order system 

The control-flow graphs will be described next, including the control-flow graphs 

of each of the participating services.  In order to reduce the size of the control-flow 

graphs, the granularities of the control-flow graphs shown for this system are at the block 

level.  The control-flow graph for the hardware service which accepts hardware purchase 

orders and fulfills them is presented in figure 6.2 (a).  Note that the control-flow graph 
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presented shows a brick node which represents the entry point of the service and a 

checkerboard node which denotes the exit point of the service.  The graph only has 4 

nodes altogether and a total of three unique paths.  The three unique paths require a total 

of 90 test cases to ensure that each path is covered by at least 30 test cases.   

           
                                        (a)                      (b) 

2 3 4 

1 

5 

6 7 

2 3 4 

1 

Figure 6.2: Control-flow graph of hardware (a) and office supply services (b) 

The control-flow graph of the office supply purchase order service which accepts 

purchase orders which are neither hardware nor software orders and fulfills them is 

presented in figure 6.2 (b). This graph has a total of 7 nodes, not counting the brick entry 

and checkerboard exit nodes and has a total of 6 possible paths through the system, which 

requires a total of 180 test cases by the 30 test cases rule.   

The next, and final simple service, is the software purchase order service and it 

accepts software-based purchase orders and fulfills them.   The control-flow graph in 
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figure 6.3 is the control-flow graph for the software purchase order service, and it has a 

total of 18 nodes with 11 total paths through the service which require a total of 330 test 

cases to ensure that each path is covered by at least 30 nodes. 

 
Figure 6.3: Control-flow graph of software service 
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The composite service accepts purchase orders and forwards them to the correct 

service depending on the order.  The control-flow graph for this service was composed as 

described earlier and is shown in figure 6.4.  Note that the parts of the graph which 

correspond to the individual terminal services are labeled (hpos, opos, and spos) and note 

how the numbering changed.  The purchase order system first decides whether or not to 

call the hardware purchase order service, then the software purchase order service, and 

then the other purchase order system.  This graph has a total of 30 nodes, not counting the 
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brick entry and checkerboard exit nodes and has a total of 20 possible paths through the 

system, which requires a total of 600 test cases. 

 
Figure 6.4: Control-flow graph of composite purchase order service 
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6.3 Loan Application System 

In this section, the approach will be applied to a group of Web services in far 

more complex system than the previous system.  This system is a bank loan system which 

accepts and processes loan applications.  Loan applications are frequently used as case 

studies in a variety of books [55, 56, 57] and technical articles [58, 59] concerning Web 

services.  The systems are used to showcase a variety of topics related to Web services 

for two basic reasons: 1) they are indicative of the way real-world Web services interact 

and 2) they tend to be fairly complex but fairly approachable since nearly everyone 

applies for a loan sometime.   
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A UML class diagram of the loan application system is shown in figure 6.5.  Note 

that only the interfaces are shown to improve clarity.  

 
Figure 6.5: UML class diagram of loan application system 

This particular loan processing system is part of a bank which has multiple lines 

of credit and accepts applications for each of them through a centralized loan acceptor.  

The end-users may also call the services responsible for business and personal loans 

separately, as well as the services which handle the individual lines of credit, such as 

property, secured, and unsecured loans.  This system also relies on the content-based 

routing pattern [54], and in this case, the type of loan being applied for will decide which 

service to send each request to.  This system will show that even moderately large 

systems can benefit from regression test selection. 

The bank loan application system consists of nine Web services, which are: 1) a 

loan acceptor service which accepts all loan requests for the bank, 2) a loan acceptor 

service which accepts all business loan requests for the bank (which originate from 
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businesses, 3) a loan acceptor service which accepts all consumer loan requests for the 

bank (which originate from customers of the bank), 4) a business property loan acceptor 

service which accepts and processes business property loan requests, 5) a business 

secured loan acceptor service which accepts and processes business secured loan 

requests, 6) a business unsecured loan acceptor service which accepts and processes 

unsecured loan requests, 7) a loan acceptor service which accepts and processes 

consumer property loan requests, 8) a loan acceptor service which accepts and processes 

consumer secured loan requests, and 9) a loan acceptor which accepts and processes 

consumer unsecured loan requests.  This system is very indicative of the way modern 

business processes interoperate considering that each of the loan types would be handled 

very differently both in terms of processing as well as in requirements.   

 
Figure 6.6: Call graph of loan application system 

S1 

S2 

S4 S6 S9 S7 
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Figure 6.6 shows the call graph of the loan application system.  The labels of the 

call graph correspond to the services which use the numbering in the description prefixed 

with a S.  The granularity of the control-flow graphs for this system is all block level, 

meaning that there will be one node for each block.  Table 6.1 lists the paths, nodes, and 

test cases for each of the services along with a total for all of the services in the Loan 

Application System.   
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Service Nodes Paths Test Cases

S1 177 111 3390 

S2 103 71 2130 

S3 72 41 1230 

S4 31 22 660 

S5 36 25 750 

S6 28 19 570 

S7 19 12 360 

S8 26 15 450 

S9 25 13 390 
Total   9930 

Table 6.1: Loan application system totals 
 

6.4 Loan Brokerage System 

In this section, the approach will be applied to a group of Web services which 

form a loan brokerage system.  This system is a significant expansion of the previous 

section, the bank loan application system.  The bank loan application system accepted 

applications for a single bank with multiple lines of credit, which implies that the 

acceptor application determined which line of credit processor to send the application to.  

The loan brokerage system accepts a loan application and sends the application to a 

number of competing banks and returns the best offer in terms of what the customer is 

looking for, such as the rate.  Even though there is a central loan application processor, 

there are several member banks which the application may send the application to.  

Additionally, unlike the previous loan system, this system uses a centralized credit score 

service which retrieves the credit score of the applicants.  Loan brokerage systems, very 

much like loan application systems are used in a variety of books and technical articles 

for the same reasons.  However, this system relies heavily on the gateway pattern [54], 
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which is really a combination of two smaller patterns (scatter and gather).  The scatter 

pattern defines a mechanism by which one entity sends a message to many other entities.  

The gather pattern defines a mechanism by which one entity collects a set of related 

messages from many entities.  Putting the two together, one system sends a request to 

many entities and collects the responses from those entities and based on some criteria 

selects only one of the responses.  Lastly, this particular system was developed to show 

the effect that different granularities has on the approach if any. 

The UML class diagram of this system is shown in figure 6.7.  Again, only the 

interfaces for each of the services are shown for clarity. 

 
Figure 6.7: UML class diagram of loan brokerage system 

The loan  brokerage system is comprised of five Web services, which are: 1) a 

loan acceptor service which accepts loan requests, sends them to the three competing 
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banks, and returns the best offer depending on customer needs, 2) a loan acceptor service 

which accepts and processes loan requests for the first bank, 3) a loan acceptor service 

which accepts and processes loan requests for the second bank, 4) a loan acceptor service 

which accepts and processes loan requests for the third bank, and 5) a credit score service 

which retrieves credit scores for loan applicants.  This system is very indicative of the 

way modern business processes interoperate considering that each of the banks would 

have their own logic for determining their rates based on credit score. 

 
Figure 6.8: Call graph of loan brokerage system 

S1 

S2 S4 S3 

S5 

Figure 6.8 shows the call graph of the loan brokerage system.  The labels of the 

call graph correspond to the services which use the numbering in the description prefixed 

with a S.  The terminal control-flow graphs will be described next, but the diagrams of 

the control-flow graphs will not be part of the discussion.  Since the control-flow graphs 

of the majority of the services are too large to show directly, they will appear in one of 

the appendices.  In this system, the granularities of the control-flow graphs are not all 

identical.  This is by design to show that the approach can handle, as well as how it 

handles, mixed granularities.   

The following table, Table 6.2, lists the paths, nodes, test cases, and granularity 

for each of the services along with a total for all of the services.   
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Service Nodes Paths Test Cases Granularity

S1 188 567 17010 Block 

S2 132 198 5940 Statement 

S3 49 225 6750 Block 

S4 1 1 30 Operation 

S5 13 9 270 Block 

Total   30000  
Table 6.2:Loan brokerage system totals 

 

6.5 Supply Chain Management System 

In this section, the approach will be applied to a group of Web services which 

form a supply chain management system.  Managing a supply chain implies that each 

location maintains a given amount of the item which is necessary to process the next step 

in the system.   Many retailers and manufacturers even use real-time systems to handle 

this very functionality.  This system was developed to ensure consistency in the 

application of the approach by providing a group of alternatives to the set of systems seen 

thus far.   In this particular system the number of simple services greatly outnumbers the 

composite services.  In fact, the ration between them is two-to-one in favor of simple 

services.  It will show that in scenarios which a few composite systems use a large 

number of simple services can benefit from regression test selection. 

Lastly, the supply chain management system is also used in a variety of case 

studies related to Web services, including two IBM Redbooks [60, 61] as well as the 

system designed to showcase the WS-I (Web Services Interoperability) standard [62, 63].  

Supply chain management is a very real need for business today and is a fairly hot topic 

in the business world.  Since one of the key tenets of Web services is their ability to 
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model real world business services, they are well-designed to handle a business’s supply 

chain management needs.  The supply chain management system was also selected 

because of the popularity of supply chain management systems, their inherent 

complexity, and their inherent composability. 

The UML class diagram corresponding to this system is shown in figure 6.9 with 

only the interfaces shown for clarity. 

 
Figure 6.9: UML class diagram of supply chain management system 

This system consists of sixteen services, each of which is said to manufacture 

some items each represented by letters of the alphabet, and the goal of each manufacturer 

is to update their inventory on demand to ensure that their plant operates smoothly 

without interruption.  This system is indicative of the way modern business processes 

interoperate considering that all supply chains regardless of their length require 

management at each location.  They require management at each location simply because 

of the dependence on one another.  For instance, suppose B and C are manufactured from 
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raw materials, but A is manufactured using B and C as ingredients.  The goal is to ensure 

that the production speed of B and C do not affect the production speed of A, which is 

done by enforcing rules regarding the levels of inventory of B and C at A.  This is 

necessary at all levels of production regardless of what is being produced. 

 
Figure 6.10: Call graph of supply chain management system 
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Figure 6.10 shows the call graph of the supply chain management system.  The 

labeling of the call graph will be discussed along with the statistics of each individual 

service. The control-flow graphs for each service will be described, but the diagrams of 

the control-flow graphs will not be part of the discussion because the control-flow graphs 

of the majority of the services are too large to show directly.  In this system, the 

granularities of the control-flow graphs are all at the block level.  The following table 

lists the paths, nodes, test cases, and granularity for each of the services along with a total 

for all of the services.   
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Service Nodes Paths Test Cases Manufactures 
S1 151 97 2910 X 
S2 23 14 420 A 
S3 12 7 210 B 
S4 11 7 210 C 
S5 17 11 330 D 
S6 109 72 2160 E 
S7 33 22 660 F 
S8 57 39 1170 G 
S9 13 9 270 H 
S10 13 12 360 I 
S11 11 6 180 J 
S12 39 29 870 K 
S13 9 5 150 L 
S14 13 15 450 M 
S15 15 8 240 N 

Totals   10590  
Table 6.3: Supply chain management system totals 

 

6.6 Supply Chain Management System (revisited) 

In this section, the approach will be applied to a group of Web services which 

form another supply chain management system.  The difference between this system and 

the previous system is that the first system had a few composite services being composed 

of a large number of simple services, and this system has a large number of composite 

services being composed of a few simple services.  In fact, the ratio between them is 

three-to-one in favor of simple services.   

Very much like the previous supply chain management system, this system was 

selected for its inherent complexity, inherent composition, and the popularity of supply 

chain management systems in the business world.  Additionally, this system was 

developed to provide contrast to the previous system to determine if the approach is 
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impacted by the ratio of simple services to composite services.  This experimental system 

shows that systems with such a ratio can benefit from the approach.   

The UML class diagram corresponding to this system is shown in figure 6.11 with 

only the interfaces shown for clarity. 

 
Figure 6.11: UML class diagram of second supply chain management system 

Figure 6.12 shows the call graph of the second supply chain management system.  

The labeling of the call graph will be discussed along with the statistics of each 

individual service.   

 

 
Figure 6.12: Call graph of second supply chain management system 
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The terminal control-flow graphs for each service will be described, but the 

diagrams of the control-flow graphs will not be part of the discussion because they are 

too large to show directly.  In this system, the granularities of the control-flow graphs are 

all at the block level.  The following table lists the paths, nodes, test cases, and 

granularity for each of the services along with a total for all of the services.   

Service Nodes Paths Test Cases Manufactures 
S1 38 23 690 A 
S2 15 8 240 B 
S3 13 9 270 C 
S4 130 78 2340 D 
S5 87 50 1500 E 
S6 84 51 1530 F 
S7 60 36 1080 G 
S8 62 36 1080 H 

Totals   8730  
Table 6.4: Supply chain management system totals 

 

6.7 Results of Empirical Study 

In this section, the results of the empirical study will be presented and discussed.  

Each of the experiments was run one hundred times, meaning that a random node was 

selected, then modified, the process performed, and finally the cost was recorded one 

hundred times.  The purchase order system, the loan application system, and the loan 

brokerage system will be briefly discussed first, and then the two supply chain 

management systems will be briefly discussed, and this section will then conclude. 

The results will be shown using histograms to help illuminate the results.  For 

each and every experiment, the results are a percentage of performing the approach 

(including selecting test cases and executing the selected test cases everywhere 
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necessary) to not performing the approach (executing all test cases).  The histogram will 

show the distribution of these experiments across the percentages. 
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Figure 6.13: Results of purchase order system 

   For example, the graph in Figure 6.13 shows the results of the empirical study 

for the purchase order system.  Along the y-axis is the number of experiments which fall 

into each of the categories listed along the x-axis.  Each of these categories is a range of 

percentages, which for each experiment is the percent cost of performing the approach 

versus not performing the approach. 
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Figure 6.14: Results of loan application system 
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Figure 6.15 Results of loan brokerage system 

The purchase order system and the loan brokerage system perform much worse 

than the loan application system.  The worst result the loan application experiment 

reported was around 30% which is exceptional since it implies that performing the 

approach will save 70% of the cost associated with retesting even in the worst case.  Even 

though the other two systems did not perform as well, each of them having worst results 

higher than 50%, the systems did show a high cost reduction potential since the worst 

case still saves 50% of the costs associated with retesting.   
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Figure 6.16: Results of supply chain management system 1 
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Figure 6.17: Results of supply chain management system 2 

The two supply chain management systems perform very well overall with very 

little difference in their performance.  The second system has a slightly faster growth rate 

and this is largely due to the slightly higher likelihood of the modification existing in a 

simple service causing the entire system to need testing.  This growth rate difference is 

evidenced by the large number of experiments which cost between 20% and 30% in the 

second experiment, but virtually none in the first.  However, both of the results indicate 

that their worst results are less than 40% which implies that the approach will save 

approximately 60% of the costs associated with retesting. 

System Worst Mean  Median  System Worst Mean  Median
POS 55% 12% 5%  POS 45% 88% 95% 
LAS 30% 3% 1%  LAS 70% 97% 99% 
LBS 60% 9% 4%  LBS 40% 81% 96% 

SCMS1 36% 6% 2%  SCMS1 64% 94% 98% 
SCMS2 35% 9% 4%  SCMS2 65% 81% 96% 

Table 6.5 Aggregate totals for all systems 

Table 6.5 lists the worst, mean, and median cost percentages for each of the five 

systems along with their associated savings.  The percentage of cost is listed on the left 

and the cost savings is listed on the right.  In the table, it is important to note that the not 

one of the median costs is higher than 5% and not one of the mean costs is higher than 
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12%.  Additionally, note that all systems show a positive savings, which implies that for 

each of the selected systems measurable cost savings was achieved.  The ultimate goal of 

this empirical study is not to prove that the approach is beneficial to all systems, but 

rather that the approach is beneficial to some systems, and the results do indicate this for 

the developed systems. 
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Chapter 7: Conclusion and Future Work 

 

Assuring the quality of Web services has become increasingly more important.  

Organizations which depend on Web services to fulfill their business process needs must 

verify that those needs are being met even as the business processes evolve especially for 

mission critical systems such as those which directly involve customers.  Developers 

seeking to ensure that these complex systems continue to operate with a high level of 

confidence must employ techniques such as regression testing.  As the system evolves 

and changes, more comprehensive services and the desire for higher levels of confidence 

require more test cases, which directly increase the cost of performing the regression 

testing process.  Therefore, regression test selection techniques will become increasingly 

important to any enterprise seeking to ensure that their services remain of the highest 

quality.  For mission critical systems, safe regression test selection techniques will also 

become more important because they reduce the costs without reducing the quality of the 

regression testing in terms of finding faults. 

As described earlier, there were no existing solutions for performing regression 

test selection which fit the criteria set forth in the introduction in section 1.2.  Therefore, 

a framework was developed to perform regression test selection and regression testing for 

the verification of Web services based on the proposed approach which is safe, 

distributed, automated, end-to-end, and handles the composability and interoperability 

aspects of Web services.  A unique accomplishment of this approach is that the 

participants retain control of the information being exchanged.  The approach recognizes 

that security and ownership protection are major concerns of the participating service 
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providers who wish to protect their intellectual property.  The shielding of the source 

code and allowing the provider to determine the granularity of the control-flow graph 

they share ensure the highest level of participation of service providers because the two 

methods provide security for the intellectual property of the service providers. 

Another major accomplishment is that the issues related to concurrent 

modifications were discovered and solved for the first time. The approach recognizes 

three different types of issues, namely coverage conflict, test inconsistency, and 

communication issues.  The approach provides a solution to these issues in the form of a 

set of algorithms for the agents to follow which as proven in section 5.4.3 ensures that the 

agents will ensure that any and all modifications will be tested consistently once the 

system reaches a stable-state. 

Lastly in order to show that the approach to perform regression test selection is 

both feasible and beneficial, an empirical study was performed.  In that empirical study, 

not one of the five systems for any of the random tests incurred a penalty for performing 

the regression test selection and then executing the selected tests as compared to not 

performing the selection and executing all tests.  This demonstrated that for each of the 

selected systems measurable cost savings was achieved and since the goal was to prove 

that the approach is beneficial to some systems, the presented regression test selection 

approach is both feasible and can reduce the cost of regression testing. 

The future avenues to extend this subject entail looking at the limitations of this 

work such as static composition and WSDL modifications.  The approach was limited to 

static compositions of Web services because of test case determinism.  Each and every 

test case must return a given output for a set of inputs every time it is run, which is the 
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notion of test case repeatability.  Additionally, in order to test a specific piece of code, a 

specific test case must cover that specific piece of code always.  If dynamic composition 

were to take place, there is no guarantee that the test case would cover the correct piece 

of code or return the correct result.  It may be possible to overcome this limitation by 

augmenting the framework with a UDDI controller. 

WSDL modifications were ignored in this particular work, but they cannot be 

ignored in an industry setting so the framework must be augmented with a WSDL 

modification detection and notification system.  If the WSDL does change, the notion 

that interface modifications being outside of the scope of regression testing still applies 

but the developers will be notified that a modification occurred and action is necessary. 

Other avenues for extending this work are developing other algorithms to ensure 

fault locatability and extending this work to data-flow based regression test selection.  

Developing algorithms to ensure fault locatability provides more information, such as 

which modification caused which faults, but reduces the amount of concurrency in the 

system.  This may be ideal in situations in which change-control databases must be kept 

updated with the system.  In fact, there may be a way to integrate the process of updating 

the change-control database into the framework so that it always happens automatically.  

Extending this work to data-flow based regression test selection is a natural extension of 

control-flow based regression test selection techniques.  One of the barriers to 

implementing a data-flow approach would be the amount of information about the 

implementation that such an approach requires.   
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