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“Einstein argued that there must be simplified explanations of nature, because God
is not capricious or arbitrary. No such faith comforts the software engineer. Much

of the complexity that he must master is arbitrary complexity, forced without
rhyme or reason by the many human institutions and systems to which his

interfaces must conform. These differ from interface to interface, and from time to
time, not because of necessity but only because they were designed by different

people, rather than by God.”

— Frederick O. Brooks, Jr.
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Chapter1
Introduction

In this chapter the concepts central to this dissertation as well as the study motiva-
tion and objectives are discussed. In addition, the research approach and associated
research methods are outlined.

1.1 Central Concepts

At the first NATO Software Engineering Conference in 1968 in Garmisch, Germany,
it was established that a more structured approach to software development was
required to battle the “software crisis” – software of poor quality resulting from late
and canceled projects in which large software systems were built:

“The general admission of the existence of the software failure in this group of
responsible people is the most refreshing experience I have had in a number of years,
because the admission of shortcomings is the primary condition for improvement.”
— E.W. Dijkstra (Naur and Randell, 1968)

Software development was thenceforth regarded as a profession (“software engineer-
ing”). While not completely new, this neologism reflected a desire to approach the
design and implementation of software as systematically and rigorous as civil engineers
go about constructing a bridge or a skyscraper.

The concepts central to this dissertation are all aimed at contributing to this strive to-
wards more structured development of software systems: Software architecture (clearly
an analogy derived from the civil engineering discipline) strives to the structured de-
sign of software systems — much like its namesake counterpart. The Rational Unified
Process (RUP) is a collection of best practices in an integrated process framework.
The closely related Unified Modeling Language (UML) aims to standardize software
modeling to better align stakeholder requirements. In line with UML, Model-Driven



2 Introduction

Development (MDD) introduces the notion of abstraction from implementation details
by means of modeling with high-level development languages.

Global Software Development (GSD), software development taking place at ge-
ographically separated locations, is driven by considerations such as development
speed, software quality and a sheer lack of educated software engineers (notably the
case for the Netherlands). GSD is very common. Salger (2009) even refers to GSD as

“the new standard mode of software development.” In the following sections GSD, software
architecture, RUP, UML and MDD will be elaborated on in more detail.

1.1.1 Global Software Development

Global software development (GSD)1 can be defined as:

“Software work undertaken at geographically separated locations across national
boundaries in a coordinated fashion involving real time (synchronous) and asyn-
chronous interaction” (Sahay et al., 2003)

Many motivations exist for geographically distributing software development activities.
A popular and commonly mentioned argument is development cost reduction (cf.
Šmite et al., 2010): Developer wages in emerging economies are much lower than
they are in Western Europe and the United States (the main sources of GSD work).
Other motivations, often mentioned in combination with or even secondary to cost
reductions, include (mostly derived from Conchúir et al., 2009):

• Improved software design modularization
Various distributed software development teams can work on different compo-
nents of a single software system. This enhances component cohesion and (by
definition) decreases coupling (Ebert and De Neve, 2001, Grinter et al., 1999) —
both seen as desirable traits from the perspective of software quality (Eder et al.,
1994).

• Leveraging time zone shifts
By adopting the so-called “follow-the-sun” development model, more hours
can be worked on a working day. In theory, this enables schedule compres-
sion (Carmel and Agarwal, 2001, Herbsleb and Grinter, 1999b, Herbsleb et al.,
2000).

1GSD is synonymous to distributed software development and global software engineering (GSE) —
both often encountered in scientific literature. Outside scientific literature, sourcing and (the more specific
term) outsourcing are often incorrectly used to denote GSD. Where outsourcing may refer to any work
done by external entities, GSD particularly pertains to the outsourcing of software development work.
Another commonly encountered hyponym of outsourcing is offshoring. Offshoring specifically defines the
distance to the outsourcing destination to be significant (overseas). The neologisms farshoring and (antonym)
nearshoring both aim to clarify the relative degree of this distance.
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• Access to larger skilled labor pool
Many organizations are confronted with limited software engineer availability
and are forced to look beyond their regional or national borders. GSD provides
the opportunity to utilize the vast amounts of software engineering graduates in
countries such as India and Brazil (Carmel and Agarwal, 2001, Herbsleb et al.,
2000).

• Closer proximity to market and client
GSD can be employed to gain proximity to a market or client which may be
beneficial for several reasons: A software firm may seek to create a more “intimate
relationship” with a client (Porter, 1985). The objective might be to be better able
to localize software for local markets (Grinter et al., 1999, Herbsleb et al., 2000).
Another reason might be that an organization maneuvers into a (local) position
for merger or acquisition.

• Innovation and shared best practice
Software engineers from diverse backgrounds could share their approaches and
bring diverse and novel solutions to problems.

Not all these potential benefits materialize: Due to significant overhead in commu-
nication, travel cost, additional resources required for governance and e.g. turnover
at the offshore site (Carmel and Tjia, 2005), potential cost reductions are often not
realized (Conchúir et al., 2009). Instead of increasing software development speed,
time zone differences introduce a set of problems due to limited windows for collab-
oration (Carmel and Agarwal, 2001, Holmström et al., 2006, Conchúir et al., 2009).
And according to Conchúir et al. (2009), “[e]mployees who feel threatened by low-wage
colleagues are unlikely to share more than necessary to get the job done,” thereby mitigating
any potential benefits related to shared best practice. Nevertheless, GSD is increasingly
the rule rather than the exception.

While Sahay et al. explicitly include the crossing of national boundaries in their
definition, some of the problems associated with GSD arise when software engineering
project team members are separated as little as 30 meters (Allen, 1977). The “global”
scale of GSD is regarded as adding additional complexity as it is found to introduce
three different notions of distance (Carmel and Agarwal, 2001, Ågerfalk et al., 2005,
Holmström et al., 2006):

• Geographical distance
refers to the physical distance between the development locations. As this dis-
tance increases, the opportunity for co-located teamwork reduces and also be-
comes progressively harder to organize.

• Temporal distance
refers to time zone differences between development sites. Team working hour
overlap (in terms of potential for synchronous collaboration) decreases as this
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distance increases. Note that geographical and temporal distance are only related
if the geographical distance has a longitudinal component.

• Socio-cultural distance
refers to differences in beliefs, norms, values and customs. As this distance
increases it becomes increasingly difficult to communicate effectively due to
misunderstandings resulting from misinterpretations of language and behavior.
Distances between different national and organizational cultures can be measured
by plotting them on a set of dimensions including individualism (the degree to
which a culture is individualistic or more group-oriented) and “power distance”
(the degree to which a culture is hierarchical or more egalitarian) (Hofstede, 1984,
Trompenaars and Prud’homme van Reine, 2004).

Solutions for the problems associated with distance so far include (Herbsleb and
Grinter, 1999a, Carmel and Agarwal, 2001, Herbsleb et al., 2005):

• Strategic selection of the offshore location
To overcome one or more distances the offshore location can be selected based
on limited geographical distance (e.g. Amsterdam — Warsaw), limited temporal
distance (e.g. Amsterdam — Capetown) or limited socio-cultural distance (e.g.
Amsterdam — Tel Aviv). In some instances, all three distances can be overcome
to some extent (e.g. Seattle — Vancouver).

• Limit the need for intense collaboration
To limit the impact of the three distances, one can divide the system development
work in such a way that different development sites are not required to collaborate
much.

• Assign a liaison
To reduce the socio-cultural divide between development teams, a liaison can be
appointed who regularly physically visits the locations.

• Plan so that synchronous communication takes place frequently
Asynchronous communication methods such as e-mail and fora introduce delays
and offer limited opportunity to ensure messages have been properly under-
stood. Increasing temporal distance makes for a more challenging process to
plan meetings by means of telephone or a video-link. Not all synchronous com-
munication means are equally useful. Socio-cultural distance hampers direct
communicated to a lesser extent when richer communication media such as video
are used (Isaacs and Tang, 1994).

1.1.2 Software Architecture

Much in line with the ambition to mimic the professional approach of the engineering
disciplines, the subdiscipline of software architecture specifically focuses on the design
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Figure 1.1: The 4 + 1-view model

of the main structure of a software system using tried and tested principles. While the
term software architecture has been around as long as the term software engineering,
only in the past two decades or so has it received much attention as an academic
field of study. The many definitions that have been proposed since the early stages of
this “software architecture renaissance” (Kogut and Clements, 1994) have in common
the notion of components and their interconnections derived from Perry and Wolf
(1992). For example, a commonly accepted definition of software architecture is given
in ISO/IEC/IEEE standard 42010 (ISO/IEC/IEEE, 2011) (a standard that has recently
superseded IEEE 1471 (IEEE, 2000)): Software architecture is

“[t]he fundamental organization of a system embodied in its components, their
relationships to each other, and to the environment, and the principles guiding its
design and evolution.”(ISO/IEC/IEEE, 2011)

Because it concerns design at the software component level (as opposed to the de-
sign of those components themselves), software architecture is a pivotal vehicle to
address and guarantee non-functional requirements such as security, maintainability,
extendability and portability. Since the interest in software architecture research has
increased, several important concepts were introduced. First, the influential 4 + 1-view
model (Figure 1.1, Kruchten, 1995) expounded that, for representational clarity and
the purpose of completeness, a software architecture is to be described according to
predefined views. These views are defined so that they each accommodate the different
issues that stakeholders have. The feedback that these stakeholders are then able to
give is thought to benefit the fitness and other general design aspects of the software
architecture.
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Figure 1.2: Example of a UML class diagram

Second, software architecture representation is thought to benefit from the inclusion
of a clear rationale for its design (e.g. Bratthall et al., 2000). As a result, software
architecture is seen as a collection of “design decisions”. If the rationale for these
design decisions changes (because of requirement changes or changes in the system’s
environment), so might the eventual software architecture design.

Third, software architecture is no longer only thought of as a representation of
the prescription of the organization of the system components to be (an artifact). Soft-
ware architecture also comprises activities related to the process of designing and
communicating that architecture as well as ensuring eventual compliance (a process).

1.1.3 The Unified Modeling Language

The Unified Modeling Language (UML) is a graphical modeling language geared
towards modeling object-oriented software systems (Rumbaugh et al., 1990). The
first version (1.0) of the UML was the result of combining the object modeling tech-
nique (OMT, Rumbaugh et al., 1990), object-oriented software engineering (OOSE,
Jacobson et al., 1992) and the modeling language Booch (Booch, 1995a). In 1997, it was
proposed as a standard to the Object Media Group (OMG) which it became several
years later (ISO/IEC, 2005). The most recent version of the UML (Object Management
Group, 2011) was released in August 2011 and consists of 14 diagram types which are
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divided into structural and behavioral diagrams. The most commonly used diagram
types are (Dobing and Parsons, 2006):

• The class diagram
A structure diagram that outlines the relations between the classes (entities) in a
system. An example of a class diagram is depicted in Figure 1.2.

• The use case diagram
A structure diagram that depicts an overview of a system in terms of the relation
between various required usages of a system.

• The sequence diagram
A behavior diagram in which a sequence of messages between instantiations of
objects are modeled.

UML is widely used throughout industry and has abundant tool support. In addition,
UML is prescribed to be used in RUP (see Section 1.1.4). In practice, UML is used
for a variety of purposes. Ordered from informal to formal in the sense of diagram
completeness and adherence to the UML standard, these are:

• As a sketch
Developers can use the notational elements of UML to quickly draw part of a
system for comprehension and communication purposes. For sketches, UML
elements such as classes and actors might be used in combination with informal
or domain-specific constructs (Cherubini et al., 2007).

• For communication of system design
By modeling parts of a system one can explain e.g. how a system component
is supposed to function. Depending on how much of a system is modeled, this
approach can be a form of model-centric development.

• As a blueprint
In this case, most system analysis and design has been done and the resulting set
of UML diagrams then is to be used for implementation. This type of develop-
ment approach is referred to as model-centric development. UML is likely to be
used as a blueprint in the context of GSD where design and coding activities take
place at different geographical locations.

• As a programming language
UML diagrams can be used to generate code. The UML diagrams must strictly
adhere to a predefined syntax. This type of development approach is referred to
as Model-Driven Development (MDD, see Section 1.1.5).
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1.1.4 The Rational Unified Process

The Rational Unified Process (RUP) is an adaptable, architecture-centric, risk-driven
process framework that is commonly used in software engineering practice. It provides
a disciplined and iterative approach to the assignment of tasks and responsibilities in
software development projects. RUP is offered as a set of tools of which the most impor-
tant is a hyperlinked knowledge base with sample artifacts and detailed descriptions
for many types of activities of the software engineering process.

RUP is the product of a development process at Rational Software in the 1980s and
the 1990s, based on Boehm’s spiral model (Boehm, 1986, 1988) and a development pro-
cess at the Swedish company Objectory AB, based on the Objectory Process developed
by Jacobson (Jacobson, 1987, Jacobson et al., 1992). The merged process — initially
called the Rational Objectory Process — was described in detail by Kruchten (2003b).
Currently, the framework is owned by IBM2 and is offered as a part of the IBM Rational
Method Composer3 that allows customization of the process.

In RUP, software engineering processes are organized into phases and iterations. A
project consists of four phases which correspond with the first four main stages of the
waterfall model: requirements definition, system and software design, implementation
and unit testing, and integration and system testing (Ghezzi et al., 2002):

• During the inception phase the business case and the financial forecast are created
as well as a use-case model, a risk assessment and project description.

• The elaboration phase is used to perform problem domain analysis and to shape
the architecture.

• During the construction phase the development and integration of components
are the central activities.

• Finally, the transition phase the software system that is developed will be imple-
mented at the client’s organization.

In RUP, the effort that is spent on activities is categorized into nine “disciplines”. These
disciplines are depicted in the iconic “RUP Hump” diagram (Figure 1.3):

1. The business modeling discipline is concerned with activities that bridge business
and software engineering in order to understand business needs and to translate
them to software solutions.

2. The requirements discipline is concerned with elicitation and organization of
functionality and non-functional demands and aims to create a description for
what the system should do.

2https://www-01.ibm.com/software/awdtools/rup/
3https://www-01.ibm.com/software/awdtools/rmc/

https://www-01.ibm.com/software/awdtools/rup/
https://www-01.ibm.com/software/awdtools/rmc/
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Figure 1.3: A recent version of the RUP “hump” diagram

3. The analysis and design discipline is concerned with the mapping of requirements
to a formal design. The resulting design model acts as a input to the implemen-
tation. A modeling language such as UML can be used to design classes and
structure them into packages with well-defined interfaces.

4. By means of activities that are part of the implementation discipline, the actual
implementation of the components is made, either by reuse or by creation of new
components.

5. The test discipline serves to verify the completeness and correctness of the im-
plementation of the requirements. This discipline is also responsible for the
elicitation of defects and their respective fixes.

6. The deployment discipline is concerned with product releases and end-user deliv-
ery of these releases.

7. Activities that fall in the configuration and change management discipline deal with
change requests regarding project artifacts and models and version control of
these changes.

8. The project management discipline focuses on progress monitoring of iterations
through collection and analysis of metrics, planning iterations and management
of risk.
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9. The environment discipline aims at activities that facilitate the configuration of a
project and project support in general by means of tools and supporting processes.

1.1.5 Model-Driven Development

Model-Driven Development (MDD, Selic, 2003) is a development paradigm in which
models (instead of code) are the central development artifacts. By working with
abstractions (models), the complexities of lower-level implementations are handled by
a separate component (often a model-interpreter or code-generator). The fundamental
idea behind MDD is not new but rather the natural continuation of the trend of raising
the level of abstraction at which software is developed (Atkinson and Kühne, 2003).
The core concepts behind MDD are:

Table 1.1: MDD provides a common language that augments the individual representations
each software engineering stakeholder uses

commonly
used new
representation representation

stakeholder method method

Client natural language
Domain-
Specific
Modeling
Language

Business Analyst BPMN

Requirements Engineer use cases

Designer UML

Software Architect ADL

Programmer source code

1. Model-centrism
In MDD models, rather than code, are to be treated as first-class entities. This
entails that software is designed and implemented using (often domain-specific)
models as a primary vehicle.

2. Code generation
To enable model-centrality over code, (significant) portions of code of the software
implementation are generated from models.

3. Model reuse
The use of models that are domain-specific implies that models can be reused for
other software systems within the same domain.



Problem Statement 11

An important (hypothesized) benefit of MDD is that the use of models as a central
language increases the involvement of stakeholders as they all understand the models.
This presumably is particularly so when the applied modeling language is tailored
to describe a certain domain. Such a modeling language is called a Domain-Specific
Language (DSL, Van Deursen et al., 2000). In practice, such a modeling language is
often a subset of UML that is extended with domain-specific stereotypes. Such a DSL
essentially replaces the “native language” of team members of different disciplines
(Table 1.1). Each stakeholder is expected to understand and to express himself using
the DSL. A programmer and the client — whose “native languages” are very different
in code-centric development — both use the same constructs and can therefore directly
communicate with one another.

1.2 Problem Statement

GSD projects are associated with increases in risk and complexity which aggravate their
difficulty and failure rate (Sharma and Seshagiri, 2006). A common approach to GSD is
a type of “transfer by development stage” (Mockus and Weiss, 2001) where require-
ments gathering and architecture design activities take place at a different geographical
location than the implementation-related activities. To ensure compliance to software
requirements, the software implementation must adhere to the software design. Much
software design is thought to be disseminated informally. The possibilities for informal
interaction between team members in GSD settings, however, is limited. In addition,
offshore developers are often not able to directly contact a member of the design team
due to geographical distance. Synchronous communication is often difficult due to
time zone differences. Even if an architect can be contacted, communication can be
hampered by socio-cultural differences such as language barriers.

Nevertheless, developer understanding of software design and its rationale is not
only believed to benefit software quality (Soloway et al., 1988, Tilley and Huang,
2003, Hayes, 2003, Kotlarsky et al., 2008) but is imperative to ensure that a software
implementation satisfies its requirements.

In summation: While software design is more challenging to communicate in a GSD
context we are unsure how software design is developed, represented, communicated
and coordinated in the context of GSD. In addition, we are unsure what the effects are
on GSD of increasingly popular MDD approaches. In these approaches, design plays
an even more central role.

1.3 Research Objectives

The objective of this dissertation is to investigate the role of software architecture
design in global software development so to improve the success rate of GSD projects
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in terms of delivery on-time and within budget. The main research question is:

How can software architecture design be effectively represented, disseminated
and coordinated in the context of model-centric and model-driven global software
development ?

This question is addressed in the context of custom software development as explicitly
opposed to product software development. An important characteristic of custom
software development is that the majority of its software architecture is project-specific
and that team members mainly collaborate in the context of a single project.

To address the main research question, software architecture design is explored
both as a process and as an artifact in the context of global, model-centric software
development. In addition, as a case of (very) model-centric development, the effects of
application of model-driven software development tools and techniques in the context
of GSD are studied. We regard MDD as a special case of model-centric software
development in which models are more centric — to the extent that they surpass source
code as the primary development artifact. To this end, three sub-questions have been
defined:

RQ1 How is software architecture represented, disseminated and coordinated in the
context of global software development? (software architecture as a process)

RQ2 How can we design software architecture documentation so that it is understood
well by developers in the context of global software development? (software
architecture as an artifact)

RQ3 How does the application of model-driven development tools and techniques
affect the problems associated with global software development? (model-driven
development)

1.4 Research Methodology

Empiricism (from Ancient Greek — ὲμπειρία) is a philosophical doctrine that holds that
knowledge is derived from experience (Locke, Berkeley, Hume; see e.g. Russell, 1945).
Contrastingly, the doctrine of rationalism (Descartes, Leibniz, Spinoza; see e.g. Russell,
1945) maintains that knowledge is gained independently of experience. The empirical
research paradigm aims to corroborate the presence of a causal relation between a cause
and its hypothesized effect. Analysis of empirical observations relies on inductive
reasoning — the practice of inferring principles or rules from observed facts.

In this section and the next, a distinction is made between empirical research
methodologies, which offer a comprehensive and structured approach to address
research objectives, and data collection techniques, which are used in the context of a
particular research method. The empirical research methodologies in this thesis include
case studies, grounded theory and a controlled experiment.
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1.4.1 Case Studies

According to Runeson et al. (2012), a case study is ‘‘an empirical enquiry that draws on
multiple sources of evidence to investigate one instance (or a small number o instances) of a
contemporary software engineering phenomenon within its real-life context, especially when
the boundary between phenomenon and context cannot be clearly specified”. The majority of
studies reported on in this dissertation, apply the case study approach. Yin defines
three types of case studies of which the explanatory case study (understanding the
relation between a phenomenon and its causes) and exploratory case study (analyzing
patterns in collected data) are used in this dissertation. The case study method is used
in chapters 2, 3, 4 and 7. In designing, analyzing and reporting the findings of these
case studies, the guidelines as prescribed by Stake (1995), Yin (2002) and Runeson and
Höst (2009) were applied.

1.4.2 Controlled Experiments

An experiment is a formal, rigorous and controlled investigation in which the relation
between an effect and a cause is addressed (Wohlin et al., 2000). In a controlled
experiment the effect of a treatment on an experimental group is tested and compared
to a control group for which the treatment was absent. If the experiment design is in
line with the study objective and executed in line with methodological guidelines (such
as described in Wohlin et al., 2000), obtained results are regarded as strong evidence. A
disadvantage of using experiments is that because of the required exclusion of other
variables (alternative explanations) the experimental setup has little semblance of
industrial reality. This potentially limits the generalizability of results. A controlled
experiment was used in Chapter 6.

1.4.3 Grounded Theory

Grounded theory is an analysis method that is geared towards theory development.
Grounded theory (Strauss and Corbin, 1990) is rooted in the data that has been collected
while observing a phenomenon by means of induction. An example of the associated
method of data collection and analysis for a software project is schematically outlined
in Figure 1.4. Grounded theory can be used to analyze data collected as part of a case
study. The principles of grounded theory were followed in chapters 5 and 8.

1.5 Data Collection Techniques

The empirical paradigm requires observation of the subject – preferably in its natural
habitat. Therefore, industrial software development projects were used as a source for
most studies reported on in this dissertation. Obtaining valid industrial data requires
the application of a set of procedures that include (but is by no means limited to)



14 Introduction

development
project

team members

observations

observations

observations

statements

intv. 1 transcr. 1

intv. 2 transcr. 2

intv. 3 transcr. 3

intv. 4 transcr. 4

intv. n transcr. n

factor 1
factor 2
factor 3
factor 4
factor 5
factor 6
factor 7
factor n

interview
team members

transcribe
audio recordings

codify statements identify factors

validation

Figure 1.4: The grounded theory data collection and analysis method – applied to a software
project

diligent inter- and intra-organization networking to obtain access to team members
and to gain permission to collect data, developing intelligent searching heuristics to
mine software repositories, adopting to the myriad of digital platforms that exists and
careful examination and obtaining means for triangulation (Basili and Weiss, 1984).
While this work can be rather labor-intensive, analysis of valid software engineering
data from industrial practice is necessary to support hypotheses and theories in the
academic field. Conversely, conclusions based on analysis of careful observations lead
to insights that are also valuable to industry. The data collection techniques employed
in this dissertation include interviews, document analysis and software repository
mining.

1.5.1 Software Repository Mining

Software repository mining is a technique that involves obtaining information from
software repositories such as software configuration and change management systems
(SCCMSs), defect tracking systems or time registration systems. All sorts of data are
stored in repositories and all can be mined. Data typically mined includes source
lines of code, software models, defect data, requirements, change requests, particu-
lar documents such as the software architecture description and system and project
characteristics such as functional size estimation, cost structure, project planning and
information pertaining to team member time registration.

Depending on the system and the nature of the information needed, various dif-
ferent approaches might be required to mine a software repository. More structured
data requirements such as the build-up of the code of a particular component over all
revisions requires a different strategy. The commonly used SCCMS Subversion (SVN)
provides multiple interfaces and therefore lends itself well to access via a scripting
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language such as Perl4 or GNU Bash5. However, depending on particular (often client-
specific) technology requirements, a software development organization might use
various different SCCMSs from which a researcher might need similar data. IBM’s
ClearCase6 also permits the use of Perl but requires different handling from SVN. For
Microsoft .Net7 projects, the designated SCCMS often is Team Foundation Server8,
which only permits very limited requests. Each repository mining situation therefore
requires a specific approach dependent on the data needed and the type of system
being mined. Specific data collection methods have been elaborated on in each separate
chapter.

1.5.2 Document Analysis

In the context of this dissertation, document analysis pertains to the structured dissec-
tion of software engineering documentation including process descriptions, software
architecture design documentation, project management reports and post-mortem
project reviews. For comparative analysis, abstractions of concepts are created on the
basis of which documents can be compared. In the case of project management reports
and post-mortem project reviews, documents are essentially treated as a software
repository from which data is gathered.

1.5.3 Interviews

The interview is a qualitative data collection technique that, “seeks to cover both a factual
and a meaning level” (Kvale, 1996). Interviews are used when data needs to be collected
about phenomena that cannot be obtained using quantitative measures. The type of
interview used for data collection in the context of this dissertation is the “qualitative
interview” which is “a sort of guided conversation” (McNamara, 1999). The interviews
are standardized in the sense that similar questions are asked of each interviewee
(depending on that person’s role) and open-ended in the sense that there is ample room
for interviewees to elaborate. This type of interview is also referred to as semi-structured
or focused.

1.5.4 Data Sources

For this dissertation, data (artifacts, other project-specific data and narratives and
opinions from employees) were obtained from nine large, international software devel-
opment organizations.

4http://www.perl.org/
5https://www.gnu.org/software/bash/
6https://www-01.ibm.com/software/awdtools/clearcase/
7https://www.microsoft.com/net
8http://msdn.microsoft.com/en-us/vstudio/ff637362.aspx

http://www.perl.org/
https://www.gnu.org/software/bash/
https://www-01.ibm.com/software/awdtools/clearcase/
https://www.microsoft.com/net
http://msdn.microsoft.com/en-us/vstudio/ff637362.aspx


16 Introduction

Projects A and B (studied in chapter 3) were executed by the same organization
(which is one of the three organizations from Chapter 2). Projects C and D (studied
in Chapter 3) and cases A, B and C (studied in Chapter 4) are all GSD projects and
were all executed by the same two organizations. Furthermore, project C (Chapter 3) is
used for different analyses in Chapters 7 and 8. Data sources are elaborated on in more
detail, in each chapter.

1.6 Contributions and Outline

The contribution of this dissertation is threefold. First, this dissertation provides
sound empirical evidence about the necessity of careful and structured dissemination
and coordination of software architecture design in the context of global software
development.

Second, this dissertation provides recommendations regarding representation of
software architecture design in the context of global software development.

Third, this dissertation provides sound empirical evidence that suggests that ap-
plication of MDD tools and techniques significantly changes the traditional software
architecture process and that this might be beneficial in the context of global software
development. Additionally, recommendations for the application of MDD tools and
techniques are provided.

This dissertation is structured as follows:

Chapter 2 — Comparison of Industrial Process Descriptions for GSD: In this chap-
ter, the main objective is to explore how software development process descrip-
tions used by three software development organizations are tailored to accommo-
date for GSD (RQ1). Parts of this chapter were published earlier (Heijstek et al.,
2010).

Chapter 3 — Architecture and Design Process Evaluation Through Effort Visual-
ization: In this chapter, the main objective is to assess visually how resource
allocation for global software development differs from co-located software de-
velopment (RQ1). Parts of this chapter were published earlier (Heijstek and
Chaudron, 2007, 2008a,b).

Chapter 4 — A Multiple Case Study of Coordination of Software Architecture De-
sign in GSD: In this chapter, the main objective is to chart how software architec-
ture is coordinated and disseminated in three large cases of industrial, custom,
global software development (RQ1).

Chapter 5 — A Theory of Coordination of Software Architecture Design in GSD:
In this chapter, the main objective is to relate and reflect on the factors that shape
how software architecture is disseminated and coordinated in large, industrial,
custom, global software development projects (RQ1).
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Figure 1.5: Organization of the four chapters that address RQ1

Chapter 6 — Experimental Analysis of Representation of Software Architecture
Design: In this chapter a controlled experiment is discussed that addresses how
software developers comprehend software architecture representations (RQ2).
Parts of this chapter were published earlier (Heijstek et al., 2011).

Chapter 7 — Contrasting Model-Driven Development with Code-Centric Develop-
ment: The aim of this chapter is to explore how the characteristics of a large scale,
industrial model-driven development project in the context of global software
development compare to non-MDD projects (RQ3). Parts of this chapter were
published earlier (Heijstek and Chaudron, 2009).

Chapter 8 — Analysis of the Consequences of Model-Driven Development for GSD:
In this chapter, the main objective is to assess how the application of MDD tools
and techniques impact the problems associated with Global Software Develop-
ment (RQ3). Parts of this chapter were published earlier (Heijstek and Chaudron,
2010)

Chapter 9 contains a summary of the findings, the conclusions, an outline of future
work and a reflection on the research process. The relation between in the four chapters
that address RQ1 is visualized in Figure 1.5.

1.7 Publications

This is a chronological list of publications that were (co-)authored during this doctoral
research:

1. Werner Heijstek and Michel R. V. Chaudron (2007) Effort distribution in model-
based development. In Proceedings of the 2nd Workshop on Model Size Metrics
(MSM 2007) pages 26–38, Nashville, Tennessee, USA
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2. Werner Heijstek and Michel R. V. Chaudron (2008) Exploring Effort Distribution
in RUP Projects. In Proceedings of the 2nd International Symposium on Software
Engineering and Measurement (ESEM 2008) page 359, Kaiserslautern, Germany

3. Werner Heijstek and Michel R. V. Chaudron (2008) Evaluating RUP Software
Development Processes Through Visualization of Effort Distribution. In Pro-
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Chapter2
A Comparison of Industrial Process
Descriptions for Global Custom
Software Development

In this chapter, we analyze how organizations address global software development-
specific issues on the process level. To this end, we conduct a comparative analysis
of industrial process descriptions for global software development.

This chapter is based on the following publication:

Werner Heijstek, Michel R. V. Chaudron, Libing Qiu and Christian C. Schouten
(2010) A Comparison of Industrial Process Descriptions for Global Custom
Software Development. In Proceedings of the 5th International Conference on Global
Software Engineering (ICGSE 2010) pages 277–284, Princeton, New Jersey, USA

2.1 Introduction

Some of the pitfalls associated with GSD, such as the lack of a structured process,
unclear tasks, roles and responsibilities, knowledge sharing concerns and general
communication issues can be alleviated by using a process description which explicitly
addresses these issues (Prikladnicki et al., 2006). A process description is an instance of
the description of a software process model. Such a model represents:

“a networked sequence of activities, objects, transformations, and events that
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embody strategies for accomplishing software evolution. Such models can be
used to develop more precise and formalized descriptions of software life cycle
activities” (Marciniak, 2002)

Software Life Cycle Processes are defined in more detail in an international stan-
dard (ISO/IEC, 2008). It is generally agreed upon that working according to a well-
defined development process is key to software engineering in general (Parnas and
Clements, 1985, Royce, 1970). Nevertheless, it is unclear whether organizations tailor
their process descriptions for GSD and of what they are comprised.

We report the findings of a comparative study of the GSD process descriptions
used for custom software development of three industrial organizations. Section 2.2
describes the objectives of the study, Section 2.3 describes related work and Section 2.4
outlines the method of the study. Section 2.5 reports on the results which are then
discussed in Section 2.6. Finally, Sections 2.7 and 2.8 present the conclusions and
elaborate on future work.

2.2 Objectives

In this chapter, we address RQ1 (Section 1.3). This exploratory research question aims
(in part) to uncover how software architecture is coordinated in the context of global
software development. However, little is known about prescribed processes for GSD
in industrial practice in general. Therefore, in order to address the coordination of the
software architecture process, we must first examine the GSD process as a whole. To
this end, we turn to process descriptions of such processes: What are they comprised of?
How are they made? How are they used in practice? Are software process descriptions
tailored for GSD-specific issues? What aspects of GSD are focused on? The motivation
behind this study is to explore how software development process descriptions are tailored
to accommodate for GSD. This study analyzes the content of, motivation for and use
of three process descriptions currently used in GSD projects within three different
organizations. The contribution to scientific GSD literature of this study is three-fold
and is divided up into three sub-questions which we will shortly motivate here.

1. The first sub-question relates to the extent to which process descriptions are
tailored for GSD in different organizations: How do different process descriptions for
GSD compare? This question deals with the content of the process descriptions:
What is described in each of the process descriptions for GSD? What common
and distinct elements can be identified?

2. The second sub-question relates to the rationale behind the build-up of the
process descriptions, why is a specific GSD process description made and what
is the rationale for including or omitting certain elements? The second sub-
question is: What is the organizational rationale behind the design of a GSD-specific
process description?
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3. Lastly, we investigate: How are these process descriptions meant to be used in actual
development projects?

2.3 Related Work

The lack of process structure is a commonly reported source of GSD process frustra-
tion (Salger, 2009). This includes lacking a definition of work units, such as design
documentation (Hussey and Hall, 2007), lacking prescriptions on methods of bundling
work units (Cusumano, 2008) and lacking prescriptions on procedures for knowledge
management (Hussey and Hall, 2007). No previous studies have focused specifically
on industrial GSD process descriptions.

The role of process descriptions in GSD has been discussed but not empirically
validated in industrial practice. In their report on application of GSD in the large, Battin
et al. (2001) discuss various issues, one of which is “differing development process”.
This issue poses the challenge of coordinating between various development sites that
follow different processes. The authors prescribe three solutions for this problem. First,
Battin et al. argue not to impose a common process to let each team produce results
immediately. Second, they propose to come up with a set of common work products
and vocabulary and to make a mapping between the common work products and the
specific deliverables of the individual development center. Third, to split a system
up in tested subsystems that can be developed independently by each development
center. This division by modularity or chunking of work items is one of the strategies
that can be taken to global software development (Mockus and Weiss, 2001). However,
this strategy can only be applied if both the organization and the software system
architecture allow modularization. If not, increased process commonality is imperative.

Coordination in GSD becomes an issue because of process non-uniformities. An
example of process non-uniformities is variation in definitions which may cause mis-
matched expectations. Also, a mismatch in common milestones at one location may
affect other development sites, but is often not communicated early enough. In addi-
tion, different time zones may lead to more frequent work handovers (Mockus and
Herbsleb, 2001).

Commonly regarded as the largest sources of risk in GSD are a lack of clarity and
resulting project delay due to strenuous communication across development sites. The
decreased amount of opportunity for informal team communication in GSD aggravates
the inherent communicative difficulties posed by the distinctly different experience,
training, professional backgrounds, cultures and native languages of various team
members. This problem is further aggravated by the often rapid changes in team
composition on each development site (Herbsleb et al., 2000).

In their systematic review of 170 GSD studies, Jiménez et al. (2009) list ten success
factors. At least seven of these, such as ‘establishment of an effective communication
mechanism’ and ‘application of maturity models’ are related to process descriptions.
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In addition, all seven best practices listed in a recent survey of empirical GSD studies
literature (Šmite et al., 2010) are facilitated by a process description.

Process descriptions include processes and activities related to knowledge manage-
ment. In the context of GSD, knowledge management issues become exponentially
pertinent as knowledge is spread over development sites and coordination of this
knowledge can prove to be difficult (Desouza and Evaristo, 2004). And although the
more central role of tools such as the use of distributed software configuration and
change management systems (SCCMS) (Carmel, 1999, Grinter, 1997) formalize, and
thereby unify work methods, the use of these tools needs to be enforced by a common
process.

2.4 Method

In this section the research environment and the study approach are discussed.

2.4.1 Research Environment

We obtained access to process descriptions of three different software development
organizations that work with an offshore subsidiary to develop software. The organiza-
tions will be referred to as JKL, ABC and XYZ. The first two organizations are large and
established information technology service providers that operate on a world-wide
scale while the latter is a comparatively small, Dutch Information Technology (IT) ser-
vice supplier. Table 2.1 outlines relevant data including organization age, size, process
scope and organizational maturity (defined as the attained level on the Capability
Maturity Model (CMMI, Chrissis et al., 2003). Table 2.1 also mentions whether an
organization offshores only to subsidiaries that are part of its own organization (“intra-
organizational” offshoring) or whether it also makes use of the services of external
organizations (“inter-organizational” offshoring).

Table 2.1: Organizations Under Study

Org. Age Employ. Offshore Process CMMI Dev. Offshore
(yrs.) Location Used in level Process Model

JKL 50 50, 000 India Netherlands 3 RUP inter-organiz.

ABC 50 100, 000 India world-wide 2 RUP intra-organiz.

XYZ 7 70 S. Africa Netherlands1
2 RUP intra-organiz.

1 Organization is only active in the Netherlands
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2.4.2 Approach

The main unit of analysis was the GSD process description document. We studied the
target audience, the methods described, the way the process was outlined, the level
of detail used and we distilled commonalities and distinctions in the descriptions. As
part of the analysis, the workflow and activities of the process descriptions have been
remodeled using a uniform third-party modeling language. We used the Business
Process Model and Notation language (BPMN, Object Management Group, 2009).
Using a common, visual-oriented, modeling language such as BPMN eases comparison
of verbal descriptions and notational snippets. An example of one of these translations
can be seen in Figure 2.1. After this initial analysis, we interviewed the designers of
the process descriptions. The main purpose of these semi-structured interviews was to
clarify the findings of the analysis, to understand the process and organization of the
“process development” and to gauge the extent to which the descriptions are used in
practice. To this end, the interviews were divided into six common sections:

1. Document purpose
Why was the document made?

2. Communication of the process
How is the process communicated to its audience?

3. Process Construction & Maintenance
How is the process made? How is it maintained?

4. Process management
Who is responsible for the process?

5. Process in practice
How is the process description intended to be used?

6. Document versioning
What is the version history of the document we analyzed? Are future versions
planned?

In addition, we reserved a section of the interview to discuss the specific process
description of a particular organization.

2.5 Results

All processes are based on, or at least rely on, terminology from RUP. The RUP has
enjoyed a widespread popularity and is often used in industrial practice. As a result,
terminology used in the RUP is commonly understood and used.
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Figure 2.1: BPMN diagram for GSD process description of case “XYZ”



Results 27

Of the three process descriptions, two were written as chiefly verbal-oriented docu-
ments and one as a (detailed) set of slides. XYZ chose the slide format to be able to use
the presentation as part of the on-boarding course for new project members or project
leaders. XYZ shares the same documentation regarding their process description with
all stakeholders, including all team members and clients. In contrast, ABC reserves
their process description for higher project management and JKL, while also aiming to
only write for higher project management, keeps their process description confidential.
Only XYZ uses detailed UML notation to decrease the chances of ambiguity due to
the wider audience of their process description. In the case of ABC, additional docu-
mentation was used to supplement the “non-onshore” software development process
description. The other two organizations tailored their common process descriptions
to specifically address GSD-specific issues. All three process specifications are in use at
the Dutch subsidiary of each organization.

At the time of writing, JKL’s process description was in the later stages of being
completely reviewed and renewed. We analyzed a release candidate of version 1.0
which was at that time in use at several projects in the organization. ABC wrote their
GSD process description in 2008 and did not intend on updating the GSD aspect of
the process description but in 2009 embarked upon a multi-year, organization-wide
campaign to further formalize development practices. XYZ’s process description was
made over the course of several years and reviews or updates were not planned in the
foreseeable future.

2.5.1 Process Sections

We identified 13 different, coherent groups of information in the process descriptions.
These groups were identified by defining and naming a group based on a set of
coherent topics, looking for the same set of coherent topics in the second and third
process descriptions and redefining and renaming (often a subset of the initial set of
coherent topics) until a set was consistent for as many process descriptions a possible.
A summary of these groups can be found in Table 2.2. Only three topics were common
to all process descriptions, specifically (1) a description of workflow, (2) an overview
of deliverables and (3) a classification of involved roles. In addition, two out of three
process descriptions contained sections on (4) activities, (5) organizational objectives,
(6) tools and (7) quality control. The other six identified topics were unique to the
process description of ABC, namely (8) a description of change request processes, (9)
risk analysis and management, (10) communication protocol, (11) resource planning,
(12) customer value and (13) knowledge management (Qiu, 2009).

Only two out of three process descriptions describe a detailed process workflow and
objectives. ABC approaches their GSD process description as an additive set of rules
and practices to any process description and therefore, lacks a step-by-step workflow
description. As both JKL and ABC are larger, multi-national organizations, there is a
stronger focus on organizational objectives. XYZ is more flexible and defines objectives
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per project. Remarkable observations include that while all three organizations find
the CM process a key element of their process description, only ABC prescribes a CM
process in their process description. JKL did not yet formalize their CM process and
XYZ uses a CM tool set which enforces a specific process. Furthermore, JKL does not
mention tooling because the organization does not make use of standardized tooling
and XYZ describes itself as too small to need to formalize knowledge management
procedures. Also, only ABC prescribes a resource planning method. Resource planning
for GSD is different from common resource planning because additional effort has
to be calculated for communication, travel, increased quality of documentation and
knowledge management (Zopf, 2009). GSD is known to add extra risk factors such
as missing knowledge or know how and misunderstanding because of language
deficiencies, different cultural backgrounds or employee turnover (Zopf, 2009). Only
ABC describes risk analysis in their process description.

2.5.2 General Process

The ABC process description mainly highlights the headlines of the process. Most of
the description deals with project management issues and deliverable specifications.
In the introduction of its process description, ABC defines a project manager which is
“usually” located off-site and an overall project manager which is “usually” located
on-site. Most of the sections containing project management activities include a ref-
erence as to which role is responsible for those activities, leading to an estimation of
the distribution of activities on-site versus off-site. For the activities of the software
development process, a table has been drafted of clear goals and guidelines regarding
the distribution of activities on-site versus off-site. ABC’s process description is clear
on which activities are performed by which actors on which shore.

The process description submitted by organization XYZ, is less formal in structure,
but not less formal in description. The software development process has been clearly
defined and specified into activities. Roles and tasks are separated. And while project
management activities have also been defined and specified into separate activities,
they have not been integrated with the software development activities. This loose
connection between project management and software development is illustrative of
the informal structure of the process description. Another possible explanation for this
lack of integration could be that XYZ is less experienced in GSD and generally less
mature than the other two organizations. This process description makes no difference
between which activities are performed onshore and, which are performed offshore as
XYZ uses the same process description at both locations.

2.5.3 Additional Documentation

In addition to the documentation we analyzed, for at least one organization, XYZ, we
found that the CM process was enforced by a tool. This tool obliges team members to
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follow certain steps while registering change requests. Moreover, all three organizations
make use of an additional set of discipline-specific instructions which are placed on an
internal wiki or other type of intranet site. For example, detailed methods for system
design and modeling are described. Another example is a set of best practices for
setting up a workshop to facilitate requirement elicitation. In all three organizations,
these pages are regularly updated by experts.

Table 2.2: Comparison of GSD process descriptions

CASE JKL CASE XYZ CASE ABC

O
ve

ra
ll size 44 pages 54 slides 44 pages

content
types

text; UML & workflow di-
agrams; tables

text; UML diagrams; other
diagrams

text; other diagrams, ta-
bles

language English English English
audience project management team members, client engagement management

W
or

kfl
ow steps yes yes no

lev. of
detail

high level of detail (UML) high level of detail (UML) low level of detail

described roles; responsibilities; de-
liverables; requirements

responsibilities per role;
deliverables per phase

responsibilities per role;
deliverables and require-
ments per step

A
ct

iv
it

ie
s descr.

meth.
step-by-step absent a list of important points

described activity flows; acceptance
criteria; activities per
project type

nothing activity lists for situations;
acceptance criteria; on-
and off-site activities

O
bj

ec
ti

ve
s objectives for steps; gen-

eral objective of process
description

absent (‘these differ per
project’)

objectives for steps; objec-
tives for steps

D
el

iv
er

ab
le

s descr.
meth.

described with activities
description

described as comments in
UML diagrams

described in activities de-
scription

described responsible staff; list ac-
ceptance criteria; refer-
ences links in activities de-
scription; product hand-
over process; update deliv-
erables process

responsible staff as actors
in UML diagrams; list ac-
ceptance criteria & show
sample deliverables

responsible staff; list
acceptance criteria; tem-
plates links in table; set
deadline for hand-over

R
ol

e
C

la
ss

ifi
c. descr.

meth.
responsibilities per role roles as actors in UML dia-

gram
responsibilities per role

described describe responsibilities in
activities description; as-
sign deliverables in table;
assign tasks in table

responsibilities in UML di-
agrams; related deliver-
ables in UML diagrams

list responsibilities ; re-
lated deliverables; tasks in
activities description

(continued on next page. . . )
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Table 2.2: Comparison of GSD process descriptions (continued)

CASE JKL CASE XYZ CASE ABC

C
hg

.R
eq

.P
ro

ce
ss descr.

meth.
absent (‘not yet formal-
ized)

absent (‘process captured
in a tool’)

change process outlined

described nothing nothing description of change
related activities; descrip-
tion of change related
staffs; description of
change related tools

R
is

k
A

ss
es

sm
.

descr.
meth.

requirement none list important risk man-
agement activities

described ‘require update risk log’ nothing list requirements of doing
RA&M; assign tools for
certain RA&M activities

C
om

m
un

ic
.P

ro
to

co
l descr.

meth.
none (‘promote informal
communication’)

none (‘organization is too
small’)

description of communica-
tion related activities

described nothing nothing responsible roles for com-
munication activities; re-
quirement for communica-
tion plan; requirement for
communication document

To
ol

s descr.
meth.

none (‘does not use stan-
dard tooling’)

short tool descriptions tools are linked to tasks

described nothing list of possible tools recommended tools; Tasks

Q
ua

li
ty

C
on

tr
ol descr.

meth.
quality control per activity none (‘differs per project’) separate quality control

section (‘but just for refer-
ence’)

described list acceptance criteria;
tasks of responsible roles

nothing list acceptance criteria
in activities description;
tasks of responsible roles

R
es

ou
rc

e
Pl

an
n. descr.

meth.
none (‘no standard
method’)

none (‘differs per project’) key activities of resourcing
planning

described nothing nothing list requirements of re-
source planning; assign
tasks to responsible peo-
ple

C
us

to
m

er
V

al
ue descr.

meth.
none (‘but we focus on cus-
tomer intimacy’)

enhancing customer text
(‘shared view of enhanc-
ing the customer value’)

described nothing nothing organizational attitude to-
wards customer value; ac-
tivities for enhancing cus-
tomer value

(continued on next page. . . )
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Table 2.2: Comparison of GSD process descriptions (continued)

CASE JKL CASE XYZ CASE ABC

K
no

w
le

dg
e

M
gm

t. descr.
meth.

none (‘separate org.-wide
process specification’)

none (‘organization size is
too small’)

important activities of
knowledge management

described nothing nothing organization’s attitude
of knowledge sharing;
list activities of know-
ledge management

2.6 Discussion

In the following subsections, we discuss our findings regarding process design com-
parison, process rationale, intended process use and process maintenance.

2.6.1 Process Design Comparison

We found very different approaches of process description design for the three cases.
The most visible are the description methods. ABC mainly uses lists and tables,
JKL uses text supported by various types of diagrams including UML and free-form
diagrams, and XYZ uses UML diagrams almost exclusively. Also, the level of detail of
the process descriptions varies strongly. JKL provides a detailed process description in
which process steps are clearly outlined. XYZ provides less detail and ABC provides
almost no detail regarding process steps and focuses chiefly on the possible pitfalls of
GSD. While these are three different organizations, these process descriptions are to be
used for similar types of custom software development projects by software developers
of similar education level and expertise. We did not find any particular reason for
the choices for using models over text or vice-versa. While answering questions such
as, “Why did you use a UML activity chart to model this process?”, process designers
generally presumed that their chosen method was the only logical method to convey a
specific process step or best practice. We observe that, at least in the organizations we
studied, the choice for inclusion of specific elements and the methods to describe these
elements is at least in part dependent on the expertise and professional background of
the process engineers.

2.6.2 Process Rationale

We observed various reasons for designing a GSD process. Various interviewees within
the same organization gave different answers to the question, “Why was a process
description made for GSD?”. Among the reasons were a desire for “repeatability of
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approach” (prescriptive) to be able to better predict the development process, to use
as course material for on-boarding of new project team members (descriptive) and
organizational maturity, to e.g. obtain a certain CMMI level.

Project Management Activity Integration

A distinctive feature was the extent to which the steps of the development process are
integrated with project management activities. ABC separated both, providing for a
strict separation of tasks and responsibilities. JKL, on the other hand, chose to fully
integrate these processes. In the case of JKL, a separation of tasks and responsibilities
was achieved by clearly describing the actors within the process description and by
providing swim lane diagrams of the sub-processes. The information released by con-
necting the software development process and the surrounding project management
activities can be seen as additional information regarding the process. A more mature
organization, e.g. in terms of obtained level of CMMI certification, links various types
of activities to one another. The actual process maturity and the intended audience of a
GSD process specification dictate the extent to which development process and project
management activities are linked. Project management and especially program man-
agement is less interested in development activities as it is in management activities
but does need to understand how both integrate. XYZ’s level of integration of devel-
opment and management processes can be placed in the middle between companies
ABC and JKL. XYZ clearly defined a process view of the project management activities
and provided starting points to connect these elements, but a full integration is not
achieved.

Tailoring Processes for GSD

With regard to the overall goal of this study to understand how software development
processes descriptions are altered to tailor for GSD, we note that the extent to which
the process descriptions have been particularly tailored for GSD differs. The larger
organizations seem to take different strategies at GSD. JKL focuses on formal processes,
whereas ABC intends to shift more responsibility to the individual project manager.
This is remarkable as in their respective interviews, process management noted that
JKL’s organizational strategy is to focus on customer intimacy, whereas ABC aspires to
attain operational excellence. And while GSD is a central and an increasingly important
activity for both organizations, their organizational strategies are not (yet) apparent
from their GSD process descriptions.

2.6.3 Intended Process Use

The intended use of the prescribed process does not necessarily correspond with the
provided level of detail. For example, ABC provides a vast list of best practices but
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only intends these to be used as a reference, whereas JKL expects projects to follow the
process as prescribed in the documentation. We have summarized the organization’s
approaches to process description use in Table 2.3.

Table 2.3: Approach to Process Description Use

Process Level GSD Process Intended
of Detail Focus Use Audience

JKL high limited obligatory project leader

XYZ medium limited obligatory all team members

ABC low limited facultative project leader

If we define a process description plainly as a description of a process, ABC provides a
minimal amount of description. However, it provides the most elaborate description of
GSD practices, only to merely recommend its use to project leaders. JKL provides a very
detailed account of process steps, a more limited focus on GSD specific procedures but
obliges project managers to use the description. XYZ provides a description of process
steps, the level of detail of which can be placed between that of the process descriptions
of JKL and ABC and focuses only sparsely on possible GSD issues while requiring all
project members to know the documented process. As shown in Table 2.1, the process
scope of ABC is world-wide. ABC’s set of rules and best practices, while elaborate, is
set up so it can be used with very tailored software development processes. By letting
a project manager free to set up a customer development process but providing him
with a detailed set of guidelines, ABC combines flexibility and the benefits of applying
best practices. This is, however, as mentioned, not in line with ABC’s organizational
objective of achieving “operational excellence”. ABC is in the process of defining a
more rigorous process description in which its current GSD process description will be
merged.

Both larger organizations, JKL and ABC, have set up departments, which are respon-
sible for (re-)engineering, publishing and distribution of process descriptions. These
departments periodically review the existing processes, not only for custom software
development (generally Java and Microsoft .Net development) but also for software
development for business intelligence systems and Enterprise Resource Planning (ERP)
systems such as SAP.

2.6.4 Process Maintenance

Both larger organizations contain business consulting and process engineering depart-
ment, which are actively involved in (re-)designing processes and process descriptions.
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The Dutch subsidiary of JKL uses a system where feedback is continuously asked
of project management. Feedback on processes is also incorporated in the standard
post-mortem analysis of a software development project. ABC uses a more top-down
oriented approach, where an international team of specialists reviews and re-engineers
process descriptions.

2.7 Validity

The lack of related work investigating GSD process descriptions in industrial practice
warrants an exploratory study. As no industrial, GSD-specific process descriptions are
currently available in literature, the three process descriptions we obtained can only
be compared to each other. In addition, two organizations in our analysis predomi-
nantly engage in intra-organizational GSD while one organization (JKL) also engages
in inter-organizational GSD. This might influence the way their respective process
description has been designed. As one might expect is required for inter-organizational
collaboration, a more detailed process description is required. However, this was not
mentioned as a reason for the provided level of detail. In addition, we found that
some parts of the processes are captured outside the process description documents
we analyzed. (e.g. the CM process of one organization is captured in a CM tool set).
These external elements were not available for this study.

2.8 Conclusions and Future Work

The conclusions are structured as answers to the three sub-research questions:

1. How do different process descriptions for GSD compare?
All studied processes are based on, or at least rely on terminology from RUP.
The level of detail of the process descriptions varies strongly. Also, the extent to
which the process descriptions have been particularly tailored for GSD differs
strongly. Particularly the larger organizations seem to take strategies at GSD that
are different from one another.

2. What is the organizational rationale behind the design of a GSD-specific process descrip-
tion?
The rationale behind the GSD process description format, structure and content
are said to be derived from organizational objectives. Our analysis did not con-
firm this. GSD process descriptions are made by a multi-disciplinary group of
consultants, and it is not yet clear how the processes are used in practice. Design
of the process descriptions seems to be partly dependent on the expertise and
professional background of the process designers. Other important influences
on the design and intended use of the process descriptions are the size of an
organization and organizational maturity.
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3. How are these process descriptions meant to be used in actual development projects?
The intended audience is sometimes explicitly project management and other
times explicitly the entire project team. The use of the process description is
facultative in one organization while it is obligatory in others. We found that the
intended use of the prescribed process does not necessarily correspond with the
provided level of detail.

In order to increase our understanding of GSD process descriptions, the use of the
studied process descriptions in actual GSD projects must be studied. Are the specific
alterations that organizations make to cope with GSD-specific issues followed by
projects in practice? How does this influence project success? Furthermore, the process
of engineering a GSD process is not yet clear and the specific impact of GSD process
descriptions on the development process is also to be investigated.





Chapter3
Global Architecture and Design
Process Evaluation Through Effort
Visualization

The objective of this chapter is to evaluate how resources (person-hours) are allo-
cated in global software development projects and co-located projects. To this end,
patterns in process resource allocation in general and in architecture and design
processes in particular, are analyzed by means of effort distribution visualization.
We collected data from four large-scale industrial software development projects.
Data is obtained from various sources within these projects.

This chapter is based on the following publications:

• Werner Heijstek and Michel R. V. Chaudron (2007) Effort distribution in
model-based development. In Proceedings of the 2nd Workshop on Model Size
Metrics (MSM 2007) pages 26–38, Nashville, Tennessee, USA

• Werner Heijstek and Michel R. V. Chaudron (2008) Evaluating RUP Software
Development Processes Through Visualization of Effort Distribution. In
Proceedings of the 34th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA 2008) pages 266–273, Parma, Italy

• Werner Heijstek and Michel R. V. Chaudron (2008) Exploring Effort Distri-
bution in RUP Projects. In Proceedings of the 2nd International Symposium on
Software Engineering and Measurement (ESEM 2008) page 359, Kaiserslautern,
Germany
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3.1 Introduction and Objectives

Software architecture and design are both processes and artifacts. As processes, soft-
ware architecture and design influence one another. If perceived from a chronological
stance, a first version of a software architecture is often designed before a more detailed
design specification is made. However, such a design specification might lead to
insights that in turn influence a newer instance of the software architecture.

While these process interactions are unique for each software project, one may
expect to find patterns in process interactions in software projects. These patterns may
be expected to be similar for custom software development projects.

The developers of the RUP (Kruchten, 2003b) defined a set of processes and created
visualizations of the effort distribution between these processes in a diagram that
would later be referred to as the “RUP Hump Chart” (Figure 1.3). In this chapter, we
will use a similar visualization to investigate how resource allocation for distributed
software development differs from co-located software development. Specifically, we
will address RQ1 (Section 1.3). This exploratory research question aims (in part) to
uncover how software architecture is coordinated in the context of global software
development. We will therefore specifically analyze the role of the “analysis and design”
discipline in these visualizations.

Research regarding distribution of effort in software processes is commonly found
in literature on software estimation and planning: (Milicic and Wohlin, 2004, Iwata
et al., 2006, Baldassarre et al., 2006, Menzies et al., 2006). However, a large portion
of the research in that area deals with estimating the total amount of effort needed
for a project for specific conditions or development methods such as reuse of code
(Lopez-Martin et al., 2006) or use-case based requirement specifications (Braz and
Vergilio, 2006). What an effective distribution of effort over disciplines is, remains
unaddressed in literature. Important reasons are a lack of data on software process
in general and problems with regards to comparability of data in particular. This
study focuses on effort distribution over the lifespan of industrial, custom software
development processes. It does so for three reasons:

First, effort distribution is studied to improve our understanding of project dy-
namics from a resource perspective. Visualization of software engineering process
effort distribution aides in analyzing process dynamics such as the effects of a chosen
iteration strategy. Furthermore, such visualizations provide insights into the interac-
tion between the resources spent on disciplines such as implementation and testing
or requirements and analysis and design. These insights could, for example, lead to
improved project planning practices in terms of a better resource allocation — which
implies cost reduction.

Second, analysis of effort distribution is necessary in order to develop a method
for project management to gain insight in resource allocation. The effort perspective
provides an objective overview of what is happening (or has happened) in a software
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development project. Team members might work on several projects at the same time.
By focusing on the hours spent on specific tasks in a particular project, the dynamics
of the tasks that are executed can be better understood in isolation than by using
observation. In addition, observations from visualization of effort data during a project
elicit trends and provide a view of the progress of a project.

Third, effort distribution visualizations are presented to follow up on earlier work
on effort visualization. A figure that is commonly referred to in the context of project
planning is the “hump” figure used in the documentation for the RUP that depicts
the effort that would be spent during a project on each of the nine disciplines RUP
prescribes. Port et al. (2005) attempted to validate the RUP hump diagram earlier
by means of student experiments. They conclude that the visualization of their data
was similar to the RUP hump image. Contrastingly, this study presents data that was
obtained from industrial practice to empirically validate the hump image. The work
of Port et al. has been followed up before (Heijstek and Chaudron, 2007) albeit on an
aggregate level. This study examines individual projects.

Another study in which RUP humps are redrawn based on a project data has been
executed by Hindle et al. (2010). In their study, a variety of existing artifacts is used
to draw RUP Humps of two major open source projects. Hindle et al. concluded
that for both projects, the humps “allowed [them] to find interesting requirements- and
analysis- related behaviors”. In particular, they found that they could uncover important
events — such as major component re-designs — that would not have shown up in
common project metric overviews. The visualizations made by Hindle et al. focused
on product software (e.g. they used 14 and 9-year timescales) whereas in this work, we
focus on greenfield1 project-based software development. Timescales in this domain
are measured in months.

The structure of this chapter is as follows: The following section (3.2) will elaborate
on related work regarding RUP “humps”. Section 3.3 explains the research method and
Section 3.4 outlines the results. Section 3.5 explains the threats to validity, Section 3.6
contains a discussion of the findings. Finally, Section 3.7 contains our conclusions and
future work.

3.2 Related Work

In this section “RUP humps” and related studies are discussed.

3.2.1 RUP Humps

The term RUP “hump” refers to a graph of effort spent over time during a particular
discipline. The RUP hump chart consists of a collection of humps for all RUP dis-

1also referred to as bespoke software development: the development of software “from scratch” as
opposed to e.g. product software development, based on prior releases
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ciplines. This diagram was created in 1993 during a workshop on architecture and
process (Kruchten, 2003a) and was inspired upon work by Booch (1995b) and Boehm
(1986, 1988). It has been part of the Rational Objectory Process after reviews by Dyrhage
and Bylund and moved on to play a more important role in the RUP in 1998 when it
served as the opening page for the digital version of the process (Kruchten, 2003a). Its
final form was published by Kruchten in 1998 (Kruchten, 2003b). An older version
was later used by Jacobson et al. (1999) and an altered version was used by Royce
(1998). A recent version of the RUP chart is depicted in Figure 1.3. Over the years
this diagram has become increasingly connected with RUP in such a manner that it is
sometimes perceived as a logo for the process. IBM refers to the RUP Humps as the
“widely recognized RUP Lifecycle Diagram” (O’Neill, 2007). The chart has been spread
widely over the Internet. A known misconception about the hump chart is, that it is
based on empirical assessment of actual projects rather than on the educated guess of
Kruchten.

“. . . I always insisted that these humps were just illustrative, as well as the number
and duration of iterations shown on the horizontal axis, but many people wanted
to read much more meaning in that diagram than I intended. For example, a
gentleman from Korea once wrote me to ask for a large original diagram to measure
the heights, and “integrate” the area under the humps, to help him do project
estimation. . . ” (Kruchten, 2003a)

3.2.2 Other Related Work

Port et al. (2005) tried to empirically validate the RUP hump chart. They assessed
the effort spent in a group of 26 student projects which served as an introduction
to software engineering. The projects had a lead time of 24 weeks. The students
participating were all graduate-level students at the University of Southern California’s
Center for Software Engineering. All projects were structured around the CS577 Model-
Based Architecting and Software Engineering (MBASE) guidelines (Boehm et al., 1999).
In their research, Port et al. create a mapping from the CS577 effort reporting categories
to the RUP disciplines and they note that, although CS577 projects are representative of
RUP projects, they “do not strictly follow all the RUP guidelines.” Their finding was that

“CS577 projects generally follow the suggested RUP activity level distributions with remarkably
few departures.” An important difference between the experiments conducted by Port
et al. and the study in this chapter is that their effort was already reported in terms of
RUP disciplines. An effort mapping was therefore not necessary.

Hindle et al. (2010) report on a study in which they employ visualizations that
are consistent with the RUP hump chart. Their objective is software process recovery.
Hindle et al. used data from mailing-list archives, version control systems and bug-
tracker systems to draw what they refer to as Recovered Unified Process Views (RUPVs).
In their study, they present two cases. First, they draw RUP Humps of the development
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process of the open source operating system “FreeBSD”2 over a period of 16 years.
Second, they reconstruct the development process of SQLite3 over a period of 10
years. Lacking precise effort data, they use techniques such as word-bags and topic
analysis to reconstruct discipline activity. Hindle et al. concluded that the humps
“allowed [them] to find interesting requirements- and analysis- related behaviors and that
they “were able to find important events that would not have shown up in a commits per
month signal.” Hindle et al. note that their humps are not only useful for project
managers, who can use the visualizations in their dashboards, but also for (new)
developers, unfamiliar with the project culture or consultants or investors want to gain
an overview of a project’s processes. For this study, we specifically use large industrial
software development projects as opposed to open source projects concerned with
product software development.

3.3 Methods

In this section, the methods used for our study, are outlined. Detailed hour registration
data was collected from the software development department of a large IT service
provider (organization ABC from Chapter 2). This data was visualized, consistent with
the RUP hump chart and these visualizations were analyzed. Finally, senior project
members were confronted with the process visualizations. The following paragraphs
describe the research environment, the data collection process, visualization process
and the validation of the data.

3.3.1 Project Context

Data is collected from four industrial projects developed by a single software orga-
nization. Within this organization, specific departments offer services to software
projects. These services include estimation and measurement, “assembly line” support
(e.g. development environment configuration), process coaching, tool support and
infrastructure support. The estimation and measurement department is responsible
for quantitative analysis of projects before, during and after execution. The assembly
line department offers “continuous integration” services with regard to software de-
velopment. Process coaches are responsible for providing help and training to project
department members to help them to work more efficiently, more effectively and ac-
cording to RUP specifications. The process coach uses the output of the estimation and
measurement department, the assembly line and interviews with project members to
assess the status of the project and to seek for areas of improvement. The tool support
department is responsible for the tools that are used for supporting the services. Tools
for version control, change and defect tracking and modeling of requirements and

2http://www.freebsd.org/
3http://www.sqlite.org

http://www.freebsd.org/
http://www.sqlite.org
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design are supported by this part of the facility. The infrastructure department is
responsible for offering the technical capabilities to make use of all services. Besides
supporting computer hardware and being responsible for project hardware and back-
ups, the infrastructure department configures and maintains virtual environments
for project members to work in. The business modeling discipline is not used within
the software development organization as this part of projects is done by a different
organization.

3.3.2 Data Collection

Data was primarily gathered by means of extracting data from the applications CA
Clarity4 (an hour registration system), Open Workbench5 (a front-end to Clarity), IBM
ClearQuest6 (a defect tracking system) and the log files of source lines of code (SLOC)
counters. These data were triangulated by examining various other sources of electronic
data: As a first check, project documentation stored in the software configuration and
change management system (SCCMS, IBM ClearCase7) systems such as management
summaries and memos were consulted. Incomplete or inconsistent data was later
compared to the measurement reports created by the Estimation and Measurement
department of which backups are kept on the development department’s own servers.
These servers contain information on both current and past projects in which the
development department’s services were used. If ambiguities regarding project data
still exist after consulting the prescribed administration systems, the informal project
documentation and the measurement assessments, the project’s process coach and
project manager were consulted.

3.3.3 Visualizing Effort Data

Visual representations were made by automated interpretation of effort information
that was entered by project members into Clarity. We created a custom view for the
effort data so that the columns task type, task description, effort in person-hours,
starting-date and ending-date and task effort for each week of the project were listed
in that particular order. The ordering of the items was hierarchical so that a project
consists of phases, phases consist of iterations, iterations consist of disciplines and
disciplines consist of tasks. The data structure of the log files is depicted in a class
diagram in Figure 3.1. These log files were analyzed by means of a set of GNU Bash8

and Python9 scripts that counted the amount of time and effort that were spent on the

4http://www.ca.com/us/project-portfolio-management.aspx
5http://sourceforge.net/projects/openworkbench/
6https://www-01.ibm.com/software/awdtools/clearquest/
7https://www-01.ibm.com/software/awdtools/clearcase/
8https://www.gnu.org/s/bash/
9http://python.org/

http://www.ca.com/us/project-portfolio-management.aspx
http://sourceforge.net/projects/openworkbench/
https://www-01.ibm.com/software/awdtools/clearquest/
https://www-01.ibm.com/software/awdtools/clearcase/
https://www.gnu.org/s/bash/
http://python.org/
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Figure 3.1: Class diagram depicting the structure of the examined effort log files

task-level. Then, both time and effort data were normalized and data points in the
form of

x = ( task effort
discipline effort

) and y = ( task time
project time

) (3.1)

The data points for each discipline were then visualized by means of R (R Development
Core Team, 2011) package ggplot2 (Wickham, 2009).

3.3.4 Validation

After the projects were finalized, the process visualizations were validated with senior
project members such as the project leader and the configuration manager. Also, the
estimation and measurement department members were asked to elaborate on the
humps. Questions asked during these unstructured interviews include:

• To what extent can you recognize the development strategy in the image?

• What other factors influence the visualization?

• Can you explain the reason for the amount and length of the phases and itera-
tions?

• Would you find it useful to see these images during a project?
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• Why is there a certain anomaly or unusual effort peak depicted in a certain phase
or iteration?

3.4 Results

For this study, four projects were analyzed. All projects were executed by the same
IT organization but for different clients, in different domains, under different circum-
stances and with different team members. The projects took place over a period of 7
years. RUP was adhered to as strictly as possible as this is stimulated by the IT organi-
zation in general and by the process coaches, discussed earlier, in particular. Also, the
project leader as well as the other team members already had experience with using
RUP. The IT organization emphasizes cooperation with the client and therefore primar-
ily defines success in terms of client satisfaction. In the standard post-mortem analysis
client interview process, on average, all projects scored over 4 on a scale of 1 to 5. Table
3.1 contains an overview of relevant project characteristics. The following subsections
will describe the effort distribution visualizations, elicit the striking phenomena that
can be observed from these images and try to explain these occurrences for each of
the projects. Lastly, the explanations for each phenomenon given by involved project
seniors will be described.

Table 3.1: Project Characteristics

project A project B project C project D

application type webshop administration administration search
domain education insurance financial government
dev. language .Net .Net Java .Net
func. points 866 912 2, 000 600

person-hours 8, 941 11, 492 53, 837 14, 536

peak staff (FTE)1
7 12 28 13

sched. pressure yes no no yes
cost structure time–material fixed price fixed price fixed price
offshore no no yes yes
1 Full-Time Equivalent

3.4.1 Project A

Project A consisted of building a web-enabled content management system and
business-to-business web shop. The client was from the educational domain. The
project employed 13 to 15 people with a peak of seven full–time equivalents during
the construction phase. 866 Function points were realized in 8,941 person–hours and
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resulted in 80,000 source lines of code. During the execution of the project, the re-
quirements changed and were expanded to a great extent. At the start of the project,
the project manager had 4.5 years of experience in managing IT projects. Project A
was executed under schedule pressure due to time limitations. Project A used some
agile practices such as daily stand–up meetings and writing code with the responsible
testers, the end users and the designers in the same room. The reason for applying these
practices was the volatility of the requirements. The effort distribution visualization
for project A is depicted in Figure 3.2. The horizontal axis was scaled to fit the entire

time (weeks)

ho
ur

s

0
50

100
150

0
50

100
150

0
50

100
150

0
50

100
150

0
50

100
150

0
50

100
150

0
50

100
150

0
50

100
150

10 20 30 40 50

R
equirem

.
E

ng.
A

nalysis
&

D
esign

Im
plem

ent.
Test

D
eploym

.
C

onfig.&
C

h.M
gm

t.
P

roject
M

gm
t

E
nvironm

.

Figure 3.2: Effort distribution visualization for project A

project span. The black vertical lines on the vertical axis represent the phase delimiters
and the gray, dotted lines represent the iteration delimiters.
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In Figure 3.2, many iterations can be identified of which the varying length and the
long third (construction) phase, are the most striking features. In the interviews, the
amount of iterations showed to be correct whereas the length of the iteration was not
always correct. The amount of iterations was said to be relatively high because of the
volatility of the requirements. The different iteration lengths are the result of the fact
that the effort logging database was used for hour registration and that this registration
served directly as the basis for invoices for the client. Because there were so many
iterations and because there was a certain amount of schedule pressure during the
construction phases, setting the exact dates for each iteration was not a top priority.
The phases were confirmed to be correct.

In interviews with project leaders, it emerged that explanations for the resource
allocation as represented by the RUP humps were sometimes not directly related to
software-related events. For example: in all disciplines, sudden drops of effort can
be seen. The drop in all disciplines around 30 weeks can be attributed to a national
holiday. Other drops were associated with team training or illness of team members.

The fact that, for example, the analysis and design and implementation disciplines
are still in a peak around 40 weeks, makes the apparent ending of the project around
that time seem abrupt. The project leader confirmed that, during development, the sys-
tem was tested in the production environment as a result of problems with simulating
the production environment. The effort spent in the last 10 weeks of the project is not
logged as a result of the schedule pressure.

When compared to the original RUP hump chart in Figure 1.3, the visualization of
effort distribution of project A shows distinct differences with regard to how analysis
and design effort is spent. In the original RUP hump the analysis and design effort
peaks early and peaks several times later, albeit somewhat lower, as the design is
reworked in hypothetical, consecutive iterations. In Figure 3.2 we see that more effort
is spent on analysis and design around week 35 (the beginning of the transition phase)
than in the initial stages of the project. Besides changes in requirements that have
fundamental impact on the design of the application, this could indicate that the first
construction iterations were based on a poor design which was reworked later. The
latter was the case: Rework in the design was caused by architectural decisions which
were not confirmed. This rework is a pattern that can be clearly deduced from the
visualization. The peak of implementation effort that can be seen around week 40 is a
direct effect of this architecture redesign.

An important remark during the interview with the project leader of project A was
that the effort for the requirements, analysis and design and implementation disciplines
could essentially be combined in one hump to more accurately represent the spending
of person-hours. A team member with the role of programmer who participated in a
requirement specification workshop, recorded his or her working hours as effort spent
on implementation. This finding implies that the RUP defined roles and disciplines
were not always strictly used as separate entities from an effort registration perspective.
The reason for this was the cost structure for project A which required every hour to
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be recorded according to price. In this cost structure it is more important to know the
amount of hours that a certain team member worked because different team members
have different rates associated with them.

3.4.2 Project B

During the execution of project B a car insurance application was built. The final
application had to interface with various, already existing databases. At the peak
of the project, during the construction phase, 12 FTE were working in the project
simultaneously. During the transition phase, this amount was reduced to 0.5 FTE.
Before project execution, 912 function points were counted. At the time of application
deployment, a total of 62,000 SLOCs were delivered. The project produced more lines
of code than predicted due to client–induced limitations on the architecture, a complex
application front-end which could not be expressed in function points and a range of
client change requests during the project which caused the functionality of the system
to expand. Project B was a fixed price project. Figure 3.3 displays a visualization of
how effort was distributed over the RUP disciplines for project B. As was the case for
project A, all disciplines but the business analysis discipline were used.

The overall project trend was recognizable for the project leader who was in-
terviewed about the visualization results. The project started as a traditional RUP
project but at an early stage, the client thought the tempo of the project was too high.
Consequently, staff was reduced. The effects of this decision is clearly visible in the vi-
sualization at around week 15 as requirement, analysis and design and implementation
effort dips.

A striking feature of Figure 3.3 is the low amount of effort that is spent in the
second half of the project. The effort spent in this last — transition — phase is spent
by one person who works on the project 50 percent FTE. The long transition period
was attributed to client change requests (RFCs), infrastructure problems at the client
deployment site and dependence on other projects which were executed by different
organizations at other locations. In the transition phase, most effort is attributed to
the implementation stage. This, however, is not correct as the 0.5 FTE assigned to
the project was responsible for multiple disciplines. Although time was spent on
requirements, analysis and design, implementation, testing and deployment, this
person choose to attribute all effort spent to the implementation discipline, due to time
constraints. This portrays the central role that the implementation discipline plays and
how this discipline is used as a default for effort logging under time pressure.

Figure 3.3 displays a large amount of phases and iterations. Not all phases depict
real phases. Instead, some phases were used for registering hours for impact analysis
and changes. The iterations were all recognized by the project leader. For example,
during the construction phase, six iterations were executed in which six sets of use-
cases were implemented.
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Figure 3.3: Effort distribution visualization for project B

3.4.3 Project C

The objective of project C was to develop a web-enabled registration system for various
types of financial products. The client was a large, international financial organization.
Project C employed model-driven development techniques and was partly executed
offshore. During the two years the project ran, it had various difficulties both due to
the complexity and novelty of the model-driven development tools and techniques
and due to problems associated with offshore development. The requirements for
this project were not particularly volatile. However, the software architecture was not
very stable and difficulties existed with communicating the architecture to the offshore
development location. The effort distribution visualization for project C is depicted in



Results 49

Figure 3.4. In this visualization, only six disciplines used by the project team are shown.
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Figure 3.4: Effort distribution visualization for project C

The business modeling, deployment and environment disciplines are not used. The
developed system was never deployed at the client site and the environment discipline
was not seen as necessary.

The most striking feature in the RUP humps for project C are the 33 iterations
that comprise the third (construction) phase. While RUP was used as a development
method, during the construction phase, a Kanban approach (Ohno, 1988, Poppendieck
and Poppendieck, 2003) was used. As a result, iterations were weekly. In the second
(elaboration) phase, the only other iteration line can be seen. The Kanban approach
also explains why requirements engineering effort is almost as high as it is in the first
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two phases, during most of the construction phase.
The effort distribution of project C, is further removed from the ‘reference humps’

than Projects A and B were. The reasons for this seem to be both the model-driven
nature of this project and the fact that an offshore development team (GSD) was
employed. Three reasons lead to this observation:

First, the code was generated from models. The effort logged as analysis and design
can therefore be regarded as implementation effort. The effort spent on implementation
should be split between effort spent on the code for the project and the code of the code
generator. The effort data was not detailed enough to allow to deduce this distinction
in the data.

Second, most effort analysis and design and implementation effort seems to be
spent during the last (transition) phase. Part of these phenomena can be explained by
the fact that the model-driven development paradigm was new for the development
team. However, project management and team members mostly explain these late
effort spikes as having to do with issues related to the difficulties of collaborating
the with offshore development team. The project ran over time and over budget to
a serious extent and had to ramp up development effort during the transition phase.
Consequently, technically, the transition phase was another construction phase. The
project management effort spikes in the last phase are explained to be a direct result
of solving communication problems with the offshore team. The complexities of the
meta-model used for code generation, were the reason that a only very few knowl-
edgeable experts in the (onshore) development team were available. As they were
all senior developers, they constituted costly resources that the contractor preferred
not to be consulted too extensively. This inhibited offshore developers from attain-
ing an understanding at a similar expert level. As a consequence, elaborate onshore
guidance was needed throughout the project. Onshore support became even more
vital when development was ramped up in the later phases of the project as more
questions arose. The relatively high test effort, overall, was explained to be a result
of examining consistency of implementation with the meta-model, or architecture
compliance checking.

3.4.4 Project D

The objective of project D was to build a document retrieval system that was to be used
by various governmental organizations. The employed development methodology
was RUP. The project employed transfer-by-development stage offshoring (Mockus
and Weiss, 2001) where different development stages are executed at different locations,
sequentially. As a result, the inception and elaboration phases were executed by a small
onshore team and implementation was executed by an offshore team of developers.
The effort distribution visualization for project D is depicted in Figure 3.5. Disciplines
missing from the effort registration of Project D were business analysis, environment
and configuration and change management. Environment and configuration and
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Figure 3.5: Effort distribution visualization for project D

change management effort were said to be merged with project management effort.
The maintenance discipline is not an official RUP discipline. It was used for this project
as the contractor was also set to maintain the system they were building. Therefore, it
was seen as important to implement the system ensuring maintainability. Activities to
that end were separately logged as if they were part of a maintenance discipline. Most
effort spent on this discipline is implementation and analysis and design effort.

A striking feature is that the iterations in the third phase have an unequal length.
This is the result of a feature-oriented iteration strategy. Not all features were of equal
size and as a result, iteration length differed. In this project, a substantial amount
of effort was required to ensure that the offshore development team complied with
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the architecture made onshore. This impact of the use of an offshore development
team is visible in various parts of the hump image. First, the analysis and design
discipline peaks in the fourth (transition) phase. It also runs until the end of the project.
These features are caused by the effort that was spent communicating and altering the
architecture design. Second, the test discipline hump is relatively large. The expla-
nation for this phenomenon is that a significant amount of time was spent checking
architecture design compliance. Third, even when accounting for the environment and
configuration and change management effort being merged with project management
effort, this discipline has an unusually large hump associated with it. Various changes
in the offshore team composition required project management effort to increase. On
the one hand, new team members needed to be made familiar with the project and the
system’s architecture. On the other hand, due to these team composition changes, the
project became delayed and had to be re-planned.

3.5 Threats to Validity

Correctness of hour registration data directly influences data visualization. For exam-
ple, the iteration mismatches and the sudden end of the effort distribution data that can
be seen in project A is an artifact of the hour registration rather than a process change.
These effects were uncovered by validating the visualizations with project leaders.
Remarks of project team members include that the distinction between requirements
and analysis and design disciplines is not always clear when logging effort data. We
manually reclassified task descriptions and moved tasks between these two disciplines
when necessary. In the case of project A, the testing discipline is also confused with
requirements and analysis and design at some occasions. We again reclassified tasks
based on their description when needed and validated this process with at least one
project team member. Project B registered extra phases for change management (CM)
and changes for administrative purposes. Also in project B, the implementation dis-
cipline was used to attribute effort to that in reality was spent on other disciplines.
This merge was the result of time constraints. This mismatch poses a possible treat to
validity. Because of these mismatches, the data in the hour registration system can not
always be used as they are and should be reclassified and validated before they can be
used for process analysis.

3.6 Discussion

The visualizations gave an insightful impression of spending of person-hours. Certain
patterns were clearly visible. An example of such a pattern is the pattern seen in project
A: The rework that had to be done on a poor design and had clear implications on
various disciplines later in the project. This is a clear and understandable example
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of under-spending resources during the design phase which force a project to spend
extra resources on the design in a later stage of the project. Contrastingly, if too
large an amount of effort would have been spent on the design, the project would
have been forced to spend less time on subsequent disciplines to prevent project
overrun. Therefore, finding a balance between the amount of resources to be spent
on disciplines prevents that the resource allocation is dictated by shortages. Another
pattern that could be observed was the impact of distributed teams in projects C and D.
Observed influences of employing offshore development teams on effort distribution
were increased analysis and design for communication of architecture and increased
test effort for increased testing of architecture compliance.

RUP’s distinction between engineering and supporting disciplines is not a good
predictor of which disciplines are thought to be most important to log. The disciplines
that are most often missing from an effort registration system are business modeling,
deployment and environment — of which the latter two are defined as engineering
disciplines. The business analysis discipline was missing from all four of the cases
under study because this particular task is not part of the expertise of this department.
When projects run late, project management effort increased because of the required
rescheduling of the work that remains to be done. Also, the client needs to be managed
more intensively. This change is either logged in detail or it leads to a situation in which
little to no effort is logged because of schedule pressure. Non-standard development
approaches have significant impact on the shapes of the humps. An example is the
model-driven development approach taken in project C. In this project, modeling
is synonymous with implementing. The definitions of the analysis and design and
implementation disciplines are therefore less clear.

According to the project leaders, all four effort distribution visualizations give
an accurate indication of how effort was actually spent globally. However, RUP’s
flexibility led to differences in how effort was recorded. From the feedback during
the interviews it became apparent that formal arrangements regarding expenditure,
such as cost–structure, influence effort registration. This problem should be accounted
for in future exploration and analysis of effort registration data. Using separate ap-
plications for logging effort data for analysis and for billing purposes can help to
increase data comparability. However, effort registration is often not a priority in
commercial software development. The objectives of scientific analysis of a software
engineering project and the objectives of the project itself are conflicting. The prime
objectives of a software project are to deliver relevant and functional software in a
timely manner. Contrastingly, the benefits of scientific research, such as in this case,
quantitative post–mortem project analysis, are not directly relevant to the client. Also,
such analysis does not guarantee results and if it does, those results may be difficult
to operationalize on the short term and so they constitute a long–term investment.
Logging effort distribution poses other problems such as the challenge of defining
what type of effort should be logged or the possibility that team members may see
detailed logging of their activities as intrusive and a threat to their privacy.
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3.7 Conclusions and Future Work

In this chapter, we followed up on a method for visualization of software development
process effort and adapted it to provide a view on how resources are allocated in
large-scale, custom software development projects. Both distributed and co-located
projects were used. Evidence was found for aberrant distribution of analysis and
design effort in projects in which offshore development teams are employed. These
aberrations are related to unclarities related to communication and coordination of
software architecture.

The visualizations of how effort was distributed over RUP disciplines were seen
as useful in the sense that they can play a role in verifying to what extent resources
should have been spent. As one project leader put it: “The [RUP hump] image should
not yield any surprises [at any given time during project execution].” The visualizations are
mainly dependent on a few factors such as the type of project in terms of cost or billing
structure and the definitions of RUP disciplines used. In the organization in which
cases A, B, C and D were executed, the visualizations are to be used as a standard
extension to the tools used for post mortem project analysis.

More data is needed in order to categorize software development processes. Col-
lecting data that was recorded in a uniform manner can help us determine patterns
of effort distribution and to relate these patterns to various project specific success
or failure related factors. Comparing average RUP humps for organizations can give
insights in typical decisions taken in terms of project management style or the implicit
organizational attitudes with regard to the software engineering process and to what
extent these have a structural impact on project results.

The RUP hump plots can be extended to include a cumulative effort plot per
discipline and plots of the cumulative number of source line of code, defects found
and functionality realized over time measured in, for example, function points or use
case points. The plots can then be used during project execution to analyze the project
status and they can also become a part of a standard project post-mortem.



Chapter4
A Multiple Case Study of
Dissemination and Coordination of
Software Architecture Design in
Global Software Development

In this chapter an analysis is presented of software architecture dissemination and coordination
practices in the context of large scale, global software development. To this end, a theoretical
framework for the software architecture dissemination and coordination process is outlined.
Using this framework, the software architecture dissemination and coordination processes of
three cases of global software development are analyzed.

4.1 Introduction

Software architecture is an important artifact by means of which non-functional soft-
ware qualities such as security, maintainability, extendability and portability can be
addressed and guaranteed. Software architecture is disseminated to software develop-
ers in different ways depending on project characteristics such as project size, software
complexity and the technological and organizational maturity of the client. Two main
strategies to architecture knowledge dissemination can be discerned:

• A personalisation strategy, where, “knowledge is closely tied to the person who
developed it and is shared mainly through direct person-to-person contacts” (Hansen
et al., 1999).
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• A codification strategy, “centers on the computer and where knowledge is carefully
codified and stored in databases, where it can be accessed and used easily by anyone in
the company” (Hansen et al., 1999).

Software architecture is generally disseminated through a mix of both these strategies.
This is referred to as a hybrid strategy to knowledge sharing (Desouza et al., 2006).
In traditional waterfall-approaches, this hybrid strategy will have a large element of
codification. In agile (Highsmith and Fowler, 2001) approaches, the personalisation
strategy is generally more dominant. In both cases, architecture documentation plays
a central role. Software architecture documentation facilitates stakeholder commu-
nication and is instrumental in ensuring that essential design principles are adhered
to by the code. Developer understanding of software architecture and its rationale
is believed to be beneficial for software quality. Most development methodologies
prescribe creation of a document that holds software architecture information. For
example, in RUP, a methodology widely applied in industry, architecture is central and
captured in a Software Architecture Document (SAD) for which a detailed template
is used. This template is structured around Kruchten’s 4+1 layer view on software
architecture (Kruchten, 1995). While we are aware that this document is very often
created in RUP projects, we are unsure what role such architecture documentation has
in the software development practice. For example, how much of developer knowledge
regarding a software architecture stems from this software architecture documentation
as opposed to knowledge obtained from other sources such as colleagues? The advent
GSD complicates informal personal communication in general and dissemination of
software design in particular. A common approach to GSD is a type of “transfer by
development stage” (Mockus and Weiss, 2001) where requirements gathering and
analysis and design activities take place at a different geographical location compared
to where the implementation work and unit testing activities are carried out. Compli-
cating matters further, offshore developers are often unable to directly contact members
of the architecture team due to geographical separation. Synchronous communication
is often difficult due to time zone differences. Even if an architect can be contacted,
communication can be hampered by socio-cultural differences and language barriers.
GSD effectively mitigates informal communication while this type of communication
is generally seen as an important element to disseminate architectural knowledge. This
chapter reports on three case studies conducted to elicit architecture dissemination
practices and the role of software architecture documentation in sizable GSD projects.

This chapter is structured as follows: The study objective is discussed in Section 4.2.
Subsequently, related work and the research methodology are addressed in Sections 4.3
and 4.4. Cases A, B and C are discussed in Sections 4.5, 4.6 and 4.7, respectively.
Conclusions and Future Work are outlined in Section 4.8.
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4.2 Objectives

Understanding the processes and practices used for dissemination of architecture
in GSD projects yields potential benefits in terms of more unequivocally conveying
design decisions fundamental to a software system. Better understanding of a system’s
intended architecture by developers is of manifold importance. It directly benefits
a project in terms of compliance to functional and non-functional requirements and
thereby avoids expensive rework. It also benefits the structural integrity of the software
in terms of aspects such a security, maintainability and portability.

This chapter addresses RQ1 (Section 1.3). In Chapter 2 we analyzed software
development process descriptions and in Chapter 3 we analyzed industrial instances
of software development processes. In this chapter, we use a more detailed, qualitative
approach to analyze industrial instances of software development processes. We aim to
understand the process of software architecture dissemination in the context of global
software development and therefore pose the following research question:

How is software architecture coordinated and disseminated in large, industrial,
custom, global software development projects?

As knowledge dissemination takes place via multiple methods we need to define
sub-questions:

1. How is software architecture design and dissemination organized?

2. How is software architecture documentation used?

3. What is the role of the architect(s) during the software development life cycle ?

4. How is architecture compliance organized?

To this end we conducted three case studies of large, industrial custom GSD projects for
which the architecture design was made in the Netherlands and the implementation
was made in India.

4.3 Related Work

In this section we specifically address related work on the role of documentation
in software develop processes, software architecture understanding and knowledge
transfer in GSD.

4.3.1 The Role of Documentation

Work by Huysman and Wulf (2005) outlines that people have a preference to utilize
personal networks over electronic networks to obtain knowledge in the context of
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sharing experience. However, as mentioned, software architecture documentation
plays a role in development methods of different natures. Studies reporting on the use
of software documentation during software development in general are few and report
mixed results. In studies analyzing developer preferences regarding documentation,
Forward and Lethbridge (2002) and Lethbridge et al. (2003) find a preference for simple
and powerful documentation and conclude that documentation is an important tool
for communication, even if it is not up-to-date.

Already in earlier case studies, such as a study by Walz et al. (1993), we find a
general reluctance for creating documentation. In general, documentation is seen
as distracting from the actual work of developing software. The popularity of agile
development approaches attests to this in part. Because the second of the four main
“commandments” mentioned in the agile manifesto (Highsmith and Fowler, 2001)
reads that, “working software [is valued over] over comprehensive documentation,” agile
development methodologies are generally seen as document-light. As a result, popular
agile derivatives such as Scrum (Schwaber and Beedle, 2001) prefer direct communica-
tion over documentation (Abrahamsson et al., 2003, Dybå and Dingsøyr, 2008, Clear,
2003, Rubin and Rubin, 2011) and therefore tend to be interpreted (and applied) as
documentation-averse (Stettina and Heijstek, 2011a). While in their manual for Scrum
software development, Pries and Quigley (2010) emphasize that, “the scrum approach
is not document-averse but, rather, seeks a leaner solution to formulating the requirements
for the product,” adopting an agile approach to software development often implies
that little to no documentation is developed. In fact, agile development is described
as an antonym for so called “document-driven” software development (Sillitti et al.,
2005). In one of the few contributions to understanding of documentation in agile
projects, Clear (2003) points at the behavior of students and observes documentation
being perceived to be something external. Instead of being produced in-line with the
system as natural part of the development process, documentation was often hurriedly
pieced together at the end of a project.

The small role that documentation plays in agile development is underlined by
Dybå and Dingsøyr (2008). In their thorough structured literature review on evidence
on agile software development practices, they find that documentation is addressed
in just one of the identified studies. So little documentation is apparently used in
agile projects that in an international study of agile teams, practitioners noted that
they found that documentation was important but that too little of it was available
in their projects (Stettina and Heijstek, 2011b). This ambivalent position towards
documentation might be well explained by Parnas’ observation that, “The solution
is neither to add more documentation nor to abandon documentation — it is to get better
documentation,” (Ågerfalk and Fitzgerald, 2006). In fact, as noted, even code-centric,
lightweight methodologies advise to create a form of architectural documentation
(Smith, 2001).
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4.3.2 Software Architecture Understanding

Software architecture can be complex and empirical studies show that developers
generally understand mostly “their own” specific components of the application (Curtis
et al., 1988). Reasons for a lack of understanding of the software architecture as a whole
can be time constraints, poor documentation or a high turnover of staff. These factors
can lead to absence of a culture of collective code ownership (Nordberg III, 2003),
which is desirable to attain because it yields benefits in terms of software quality and
team building. Also, documentation of the architecture is essential for maintenance
activities which typically involve different engineers from the ones who developed
the system (hence non-verbal transfer of design is needed). Software architecture,

“captures and preserves designer intentions about system structure, thereby providing a defense
against design decay as a system ages, and it is the key to achieving intellectual control over the
enormous complexity of a sophisticated system” (Hofmeister, 2000). Existing literature fails
to confirm that architecture documentation is used in the maintenance phase (de Souza
et al., 2005).

In addition, the effectiveness of using UML to disseminate software architecture
design is not yet clear. UML is a commonly used language for software design repre-
sentation. In their standard work on documenting software architectures, Clements
et al. (2002) provide strategies for applying UML for representing various architecture
constructs but also note that for e.g. the “component and connector construct”, “all of
the strategies exhibit some form of semantic incompleteness or mismatch.”

4.3.3 Knowledge Transfer in GSD

Dissemination of software architecture design is thought to benefit from frequent in-
formal communication, preferably with those who have intimate knowledge of that
architecture. Practitioners also feel the need for informal communication (Schnei-
der et al., 2008) and informal communication has been found to be very important
(Herbsleb and Grinter, 1999a, Damian et al., 2007, Nielson, 1998), particularly in orga-
nizations with fast-changing environments (Kraut and Streeter, 1995, Galbraith, 1977).
Even though various solutions for distant informal communication such as instant
messaging and video techniques (Fish et al., 1993) exist, Herbsleb et al. (2001) found
that informal communication is very different for local versus remote site commu-
nication and that people at remote sites are found to be difficult to contact. The use
of collaborative tool sets seems to mitigate some of the negative impacts introduced
by geographical, temporal and socio-cultural distances (Nguyen et al., 2008). How-
ever, these tools are not always implemented or used to their full extent. Codification
strategies (Hansen et al., 1999) for sharing software architecture information (Babar
et al., 2007) are therefore likely to be more commonly used in GSD settings. This
places demands on the clarity, completeness and consistency of software architecture
documentation.
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4.4 Research Method

In this section, the method for this study is described. This study is reported on in two
chapters. This chapter contains a multiple case study. In Chapter 5, we present a syn-
thesis of the factors involved in software architecture dissemination and coordination
in the context in GSD as derived from these cases as well as recommendations and
distilled best practices.

4.4.1 Data Collection

We applied data source triangulation (Stake, 1995) by collecting data by means of
several methods. We employed software repository mining to obtain project data
such as functional size estimation, cost structure, project planning and information
pertaining to team member time registration. The software repositories furthermore
gave us insight in the contents of the requirements, software architecture and design
documentation and supplementary specifications. These repositories often contained
useful information regarding team communication in the form of forums, discussions
on defects reports or change requests and saved e-mails. In addition, we conducted a
series of on-site, structured and semi-structured interviews with team members who
were or had been active in each one of the projects. For these interviews we spent
several weeks in India. We obtained a copy of the SAD which we reviewed. We then
interviewed the primary architect, located at the onshore location, asking for:

• the coordination of the software architecture process

• methods employed for dissemination of software design and architecture within
the team

• the role of the architect(s) in the development life cycle and the processes

• clarifications regarding the SAD

• reflection upon the above mentioned topics

In the next paragraph we explain the justification for the interview topics in more
detail.

4.4.2 Interview Design

We developed a theoretical framework that is based on the “correction system” de-
scribed by Shannon and Weaver (1949). This framework is depicted in Figure 4.1.
In this theoretical framework, we depict our perception of the relation between an
architect and a developer in the context of dissemination of software architecture. We
structure the framework around the formats or states in which software architecture
exist. These states are:
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Figure 4.1: Theoretical framework of software architecture design dissemination

1. envisioned architecture — a concept that takes the form of a mental model that
exists in a software architect’s mind

2. described architecture — an artifact that takes the form of an architectural repre-
sentation (such as found in an SAD)

3. understood architecture — a concept that takes the form of a mental model that
exists in a software developer’s mind

4. implemented architecture — an artifact that takes the form of software
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The interview questions were targeted to the relations between the concepts and the
artifacts. An overview of the question topics related to each link is depicted in Table 4.1.
In addition, we asked the architect (1) which parts of the architecture document
were important to understand for all developers and (2) to explain some of the most
fundamental design decisions with which every developer should be familiar. Project
managers were questioned regarding project characteristics, on topics on which they
were knowledgeable and we verified information obtained in interviews with other
team members. Interviews were taken in closed meeting rooms and recorded. All
interviews took place face-to-face and we traveled to India for several weeks to be
able to conduct extensive interviews locally. An overview of the team members we
interviewed can be found in Table 4.2. Interviewees were asked for their permission
for the audio recordings. The recordings were treated confidentially. The average
interview length was approximately 60 minutes.

4.4.3 Data Analysis

For analysis, we employed two different techniques: (1) We followed the principles
of grounded theory (Strauss and Corbin, 1990) and (2) an adapted form of shared
mental model measurement. The use of these methods is described in more detail in
the following sections.

4.4.4 Grounded Theory

Audio recordings were transcribed and labeled as follows: We summarized each point
that the subject would make into a single sentence. Often participants use multiple
sentences to convey a single point and sometimes multiple points are made in a single
sentence. These points would be separated into multiple sentences. Transcriptions
were done in such a way that each sentence in the transcription would contain a single
point in such a way that the sentence could be properly understood in isolation. This
one sentence would then be tagged by means of one or multiple tags. The use of these
tags is inspired on their use on Twitter1. For example:

“In my experience, described software architecture, the SAD, is little adhered to by
offshore development teams #sad_compliance
#sad_relevance . ”

Advantages of using this text-based method are the reliability and modifiability of the
data and the abundance of tools that can be used to analyze the data. We employed
GNU Emacs2, GNU Bash3 and a wide selection of “GNU utilities”, all stable and highly
customizable, open source and cross-platform tools. For example, a continuously

1http://twitter.com/
2http://www.gnu.org/software/emacs/
3http://www.gnu.org/software/bash/

http://twitter.com/
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/bash/
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Table 4.1: Interview Questions as Derived from Theoretical Framework (Figure 4.1)

link core question interview topics

α How does a software architect decide
on a software architecture ?

(out of scope)

β How does a software architect decide
what to describe in an SAD?

architecture design process, in-
tended audience, usefulness of
SAD, templates, use of text,
UML and box-and-line dia-
grams, perceptions of SAD
quality

γ How does a software architect dissemi-
nate architectural knowledge (to devel-
opers)?

dissemination process, per-
ceived understandability of
architecture and clarity of SAD,
factors in understandability

δ How does a software architect verify
architectural compliance?

compliance methods, compli-
ance in practice, factors in com-
pliance

ε How does a developer use an SAD? perceived role of SAD, con-
sultation frequency during the
project lifecycle, developer in-
put to SAD

ζ How does a developer request clarifica-
tions?

dissemination process, feed-
back coordination

η How does a developer arrive at an un-
derstanding of SA?

communication methods, per-
ceptions of SAD quality

θ To what extent does a developer im-
plementation adhere to the intended
software architecture?

compliance measurement meth-
ods

ι Which parts of the envisioned architec-
ture are noted in the SAD?

use of templates, architect pref-
erences

κ Which parts of the SAD are understood
by a developer?

prescribed developer know-
ledge, mental model measure-
ment

λ To what extent are developers able to
implement the intended software archi-
tecture?

(out of scope)
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updated overview of all labels currently used in all interviews, including a count of
how often they appear, can be obtained using the following simple Bash script:

1 while t rue ;
2 do c l e a r ;
3 c a t / i n t e r v i e w f i l e s /*
4 | awk ’ { f o r ( i = 1 ; i <=NF; i ++ ) i f ( $ i ~ /^#\w/ ) _ [ $ i ]++ } END{ f o r ( i in

_ ) p r i n t f "%s (%d ) \n " , i , _ [ i ] } ’
5 | s o r t −u
6 | pr −−columns 4 −w 200 − l 8 0 ;
7 s leep 2 ;
8 done

For traceability purposes, a separate text file for each transcription was used. No more
than two interviews were transcribed per day to avoid mistakes due to fatigue. After
transcribing all case-related interviews, double labels were removed. After correction
for typographic errors, 132 labels remained. Of these labels, 57 were only used once.
We then used grep4 to extract and group all sentences related to a single label like so:

1 grep −r "# l a b e l " / i n t e r v i e w f i l e s /case_a /*

This grouping provided us with a comprehensive view on each label. We could then
proceed to identify the main concepts related to the label. In grounded theory, this is
referred to as reduction. This resulted in the following seven different categories:

• case-specific problems and generalizability

• architecture development process

• architecture dissemination and clarification process

• software architecture document

• architecture compliance

• shared mental model deviations

• best practices

4.4.5 Shared Mental Model Analysis

Shared mental models (SMMs) provide teams “a common set of expectations that enable
accurate and timely predictions of approaching needs and issues” (Cannon-Bowers et al.,
2001). Holt (2002) describes software architecture as a mental model shared among

4http://www.gnu.org/software/grep/

http://www.gnu.org/software/grep/
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the people responsible for software. SMMs have been found to positively impact
work-team adaptability and performance (Cannon-Bowers et al., 2001, Mathieu et al.,
2000). There is little empirical evidence regarding how SMMs affect coordination in
more asynchronous and geographically distributed collaboration (Espinosa et al., 2001).
To address SMMs, in all interviews, we addressed the following set of topics:

• General project characteristics (e.g. How far along is the project?)

• The role of the architects (e.g. Who is responsible for architecture compliance?)

• Important design decisions in the system to be build (e.g. What are the most
important design decisions in the architecture?)

In the following sections, we present and discuss the case findings, structured along
these categories. The last step of grounded theory, integration of the concepts by means
of induction, will be discussed in Chapter 5.

4.4.6 Case Studies

Three case studies of global, custom software development projects were executed.
Each project was executed by the same global IT service provider. Each project had a
team in the Netherlands and a team in India. All clients were Dutch. A summary of
relevant project characteristics as well as the interviewed team members can be found
in Table 4.2. The onshore organization (the front office) is responsible for the project
and hires developers in the offshore organization (the back office). The back office is a
so-called “cost center” which means that it is paid for the amount of hours that they
work. The front office takes the risk for the project in that they take the loss when a
fixed-price project goes over budget. Conversely, they take the profit when a project is
a success. The following three sections contain the three case analyses.

4.5 Case A

The goal of the project that makes up case A is (1) the expansion of an existing system
for indexing and (2) for making information of various governmental organizations
searchable. The existing system held in the order of millions of documents and pro-
cesses millions of queries per month. The new system was to replace the old and
was to introduce some new functionality such as moving the responsibility for the
(technical) presentation of search results to the client and capabilities for separate
management of knowledge models and thesauri. The interfaces to the existing infor-
mation sources were to be maintained. The system is structured around Microsoft
SharePoint (Table 4.2). The system was to be delivered as Software as a Service (SaaS,
Papazoglou and Georgakopoulos, 2003). The application is to be maintained by the
same organization that is building the system. Functional maintenance, however, will
be the (organizational) responsibility of the client.
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Table 4.2: Case Characteristics

Case A Case B Case C

client domain government private private
functional size 34 use cases 70 use cases 800 function pts.
plan. duration 10months 3months 4months
process meth. RUP RUP Agile / Scrum
budget e 800,000 e 210,000 e 400,000
offshore dev’s 6 5 4

technology .Net + Microsoft
FAST Search

.Net + Microsoft
Office SharePoint
Server 2007

.Net

GSD type transfer by devel-
opment stage (low
level design &
implementation
in India)

transfer by devel-
opment stage (low
level design &
implementation
in India)

transfer by devel-
opment stage (low
level design &
implementation
in India)

project
objective

expansion of an
existing system
for indexing and
making search-
able information
from Dutch
government
organizations

centralization of a
human resources
portal for a large,
multinational in-
dustrial firm

rebuild of an exist-
ing Visual Basic 6
application

team members
interviewed
onshore

delivery mgr. delivery mgr. delivery mgr.
architect architect project mgr.
project mgr. arch. reviewer
arch. reviewer
test lead

team members
interviewed
offshore

project mgr. #1 project mgr. sr. developer
project mgr. #2 sr. developer developer
architect developer
developer #1
developer #2
developer #3
developer #4
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4.5.1 Case-Specific Problems and Generalizability

We first sketch an overview of the main problems that were encountered during the
development life cycle:

• For this project, a hard deadline and a fixed budget were agreed upon with the
client. Time pressure was high because the strict required date of delivery was
overly ambitious according to project leaders and other team members at both
the onshore and the offshore location.

• No proof of concept (POC) was built for the solution for this project due to time
and budgetary constraints. Various offshore team members referred to how
useful a POC would have been to better understand the solution and therewith
prevent certain delays.

• Requirements were changed late during the project. Specifically, an authentica-
tion system for all external interfaces was required.

• The system under development was to embed a proprietary, external search
component for which external training from a third party was required. The
training was difficult for team members as not all requirements regarding this
component were clear at the time of the training.

With regard to the external validity of any insights we obtain from this particular case,
we note that late requirements and the problems regarding a lack of a solid design
and POC that arise from schedule pressure, are not at all uncommon. On this matter,
offshore or back-office architect (BOA) noted that this project, “was a typical high-time
pressure project.” The front office architect (FOA) remarked that the problems that he
encountered during this project are very similar to the problems he encountered in
other GSD projects in which he either worked or heard about. The offshore project
leader insisted that the project adhered to internal quality regulations and that it scored
a three out of three on quality audit.

4.5.2 Architecture Development Process

Originally, the offshore team was to deliver the project’s software architect in order to
save costs. A FOA was intended to be associated with the project part-time to function
as a coach for the BOA. This BOA visited the onsite (or: client-) location and had
three weeks to develop an architecture. However, the onshore project leader and FOA
decided that the quality of the work of the BOA was insufficient and that the FOA was
to finish the architecture. The offshore team presented a different view on why the
BOA was not able to create an architecture during his time in the Netherlands: “The
time I spent in [onshore] was not enough because of the use of an external component that was
completely new for us. In addition, the learning time that was planned during the bid phase was
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Figure 4.2: Communication of the software architecture design from the onshore to the offshore
location

not enough.” (BOA). The Dutch side of the project explained this as the incapability of
the architect to create an architecture. The BOA and the offshore project leader explain
that, “the lack of knowledge of [a specific search engine] was also a problem as we had to design
an architecture with a black box in the middle.” It is difficult to make out which team’s
narrative is right. In any case, with the shift of architecture responsibility, some of the
tasks that were originally intended for the offshore team therewith moved to from
India to the Netherlands. However, no extra budget was allocated to the FOA for these
tasks.

4.5.3 Architecture Dissemination and Clarification Process

The process used to communicate the architecture from the FOA to the development
team at the offshore location is outlined in the activity diagram in Figure 4.2.
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Initial Architecture Communication Process

The architecture design was initially communicated from the FOA to the BOA and the
development team by means of this SAD and two knowledge transfer sessions. The
first of these sessions took place between the FOA and the BOA by means of a video
connection, right after the delivery of the SAD. The BOA then held a knowledge transfer
session with the development team, in knowledge transfer session, the BOA gave a
high-level overview of the system. Subsequently, the development team obtained the
SAD and then a second session took place with the BOA to discuss details and answers
of developers and to explain how to proceed. The offshore project leader noted that
the FOA was never involved in these sessions, he only talked to developers later, by
means of video-communication sessions based on reviews of their code. A senior
developer noted that, his previous projects were similar in terms of dissemination
of architecture. A developer describes that, “the architecture was discussed in a session,
then we read through the documentation and came back for questions.” About this second
meeting, another developer remarked that, “in the SAD not all diagrams were written
down using UML, that provided us with some difficulties but because we had [a] meeting with
the FOA, he could explain to us what he meant [in those diagrams].” A developer noted that,

“for most knowledge we needed, the knowledge transfer sessions we had were [. . . ] enough.”

Feedback Process

The BOA works as a proxy between the FOA and the offshore developers. This situation
was said to reduce the time that would otherwise be claimed of the FOA. However,
the limited knowledge of the architecture of the BOA rendered him a message proxy.
One developer would explain that, “[our] team lead is too busy to properly communicate
software architecture decisions — he has no time for coaching.” As a result, developers
lack a deep understanding of the system’s design. According to the offshore project
leader, regular video meeting sessions directly between client and offshore team, took
place. These sessions were not meant for the development team as the client was not
seen as technically mature enough to talk directly to developers. A developer noted
that, “in my previous projects, we would have direct contact with our clients in the US —
that is much better.” Codified knowledge does seem to play a major role in this project.
One developer noted that, “for a problem, I will first use the documentation and then talk
to either the BOA or the FOA.” The FOA’s perception of the team interaction on the
offshore location is that, “the technical team lead in India is less communicative with his team
of developers than I am with him.” The FOA suspected that information got lost in the
communication to developers through the BOA. As an explanation, the FOA suggested
a lack of time for explanation or reviewing or a general lack of expertise on the part of
the BOA. However, regarding the meetings that took place between the FOA and the
BOA, the FOA claimed that “[he] never said that he did not understand something.”
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Requirements Maturity

A senior developer noted that, “often, we worked more than 12 hours,” and explained that,
“that had to do with unclarity regarding the functionality that the client requested.” As noted
in Section 4.5.1, this project experienced problems with late changing requirements.
The client was not the only source of late requirement changes as another example of
late requirement changes resulted from poor requirement analysis. The BOA explained
that:

“In the bid phase, one requirement pertaining to the reading of an input string
was formatted as a simple one-line statement which later turned out to be a small
project in itself — namely the construction of a parser.”

The requirement problems can partly be attributed to the level of technical maturity
within the client organization. A developer described the client as, “totally functional,
not technical.”

4.5.4 The Software Architecture Document

All team members agree that the SAD is, “very important,” because, according to a
developer, “it is the base of the software and when it is in place, it is useful to a developer [. . . ]
with it, better software is made.”

The supplier organization provides an SAD template that contains extensive guide-
lines based on the RUP SAD template. Regarding this guideline, the FOA noted that,
“the SAD [of this project] was based on [this] template.” The FOA was critical of this tem-
plate, though. He noted that he finds it allows too much freedom. While some sections
of the SAD template had been filled out by the BOA, almost the entire SAD had been
written by the FOA. The BOA explained that, “there was little involvement from the client
with the architecture.” According to the FOA, the software architecture template that
is prescribed by his organization does not prescribe how to disseminate a software
architecture design

In the next sections, we will discuss the purpose and the intended audience, the use
and content of the SAD, perceptions on its quality and additional software architecture
documentation used in this case.

Purpose and Intended Audience of the SAD

Regarding the purpose of the SAD, the FOA noted that, “in essence,” the client does
not read the SAD. He added that the SAD audience is inherently a technical one and
should have a basic level of technical knowledge to understand the SAD. Surprisingly,
we found a rather extensive use of the Dutch language in certain UML models in the
SAD. All use cases and the conceptual architecture models were written in Dutch.
When confronted with this observation, the FOA explained that the use of Dutch was
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easier for client communication. The FOA noted that, “translations are done in India” and
pointed out that, there exists a list with translations in the SAD. When interviewing
the offshore development team, we did find this language issue to be a hindrance to
the developers. A developer noted:

“another problem that we have is a language problem, for example in the SAD,
parts were in Dutch, we use Google Translate to translate that text to English and
if Google is wrong, that would be a problem.”

The development team did not seem to be aware of why Dutch was used in the SAD.
One developer noted that, “[the SAD] was in Dutch because the FOA was Dutch.” Answers
regarding the choice of languages in the SAD were polite but hinted at frustration.
A developer said, “although the FOA speaks both English and Dutch, he used Dutch to
create certain SAD diagrams[. Still,] it is not his job to translate Dutch to English.” The
question who is responsible for translations remained unanswered. Another developer
explained that, “I would have preferred to have the documentation in English.” A senior
developer noted that “we cannot use Google Translate or a professional translator because of
the technical nature of the project — we, however, [were forced to] use Google Translate.” The
FOA said that, even if he was not pressured for time, he would still prefer to use Dutch
for the parts of the SAD “so not to confuse the client with different terminology.” The FOA
noted that he is sure the BOA understood the SAD.

Use of the SAD

Developers said that they refer more often to the functional requirements described
in use case documentation, than to the SAD. The available documentation is said
to be a first point of reference for the developers who explicitly note they consult
documentation before they ask the BOA or FOA. There seems to be a difference in
the perception of when the SAD is used. For this particular project, the FOA noted
that he did not expect the SAD to play a big role during the construction phase of
the project. Yet architecturally significant components such as a locking mechanism,
were added during the very late construction phases of the project. And the FOA
explained earlier that, “the SAD helped the developers to understand the [architecture layers],
the different ideas in the presentation layer and the web services.” As a result, the offshore
developers noted that the SAD played a major role during the construction phase of
this project. For every new construction iteration, the requirements are gathered for
another external connection of the system. The SAD is then needed to understand the
flow of information to and from this new connection. Some developers explicitly noted:

“I even use the SAD later in the development stages.” Developers thus expected much more
from the SAD than the FOA aimed to communicate with it. This is a mismatch in the
perceived role of the SAD.
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SAD Contents

Problems regarding the SAD that were mentioned include a remark by the offshore
project leader who noted that he found lacking a clear description of “the interaction
with the external parties.” After analyzing the SAD, we observed that only a part of this
model was visible. This implied that without having access to the digital source of the
image, not all diagram elements in the component model could be seen. According to
the FOA, this had to do with the manner in which the image was exported from the
modeling tool, IBM Rational Enterprise Architect. As a solution, the FOA advised that
the model source file could be opened with this tool. However, the development team
lacked the licenses to use the modeling tool.

Most diagrams in the SAD were non-UML (“box-and-line” types of) diagrams. No
legend was used for most of these diagrams. The offshore project leader noted that
he preferred the use of UML in SADs because he found it to be “a universal language.”
Also, most developers explained that they preferred the use of UML in the SAD. One
developer directly linked the limited use of UML in the SAD to project problems: “In
the SAD not all diagrams [were modeled using UML], that provided us with some difficulties
but because we had two to three meetings with the FOA, he could explain to us what he meant
with that.” Regarding the freedom the FOA took to develop the SAD we also found
that certain protocols are described in more details than others. The FOA said that he
choose himself which protocols prescribed in the SAD warranted further explanation.
Regarding the choice for mentioning and explaining design patterns in the SAD, the
FOA noted that he assumed that they were understood and that, “some were particularly
addressed.” An external architecture reviewer, however, noted that he found that the
employed design decisions were not properly, if at all, described in the SAD: “The
design patterns in [this] SAD are not described in enough detail and seem to have been added
just to show that some thought went into design patterns rather than to be used as a guide for
developers.”

Perceptions of SAD Quality

Whether an SAD is good enough for a developer to use is influenced by what a
developer is accustomed to. One developer noted that, “compared to my other projects
the documentation for [this project] was very good, everything was very well described in detail
and that is needed when you need to build a low level design based on it.” Other developers
noted that, “this SAD is one of the better ones I have seen,” and, “the SAD in [this project]
is better than the SADs I had to use in previous projects.” In contrast, a senior developer
noted that, “I have seen better SADs than the one we use in [this project].”

One developer found that the incompleteness of the SAD led to a greater involve-
ment of developers in the design of the architecture:

“Previous projects in which I was involved usually did not involve so many external
components and were less complex, The SAD used in [this project] therefore is much
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better than the SAD in [my] previous projects because we were much involved in
its creation and therefore we know how the architecture has evolved to its current
form to understand the architecture much better.”

The desire for increased inclusiveness in software architecture design is a recurring
theme in all three cases and will be discussed in more detail in the discussion section.

Additional Architecture Documentation

During the third construction iteration another design document, the Supplementary
Specification (SS) was created to capture the late requirements and their impact upon
the architecture. According to its definition, the SS artifact “captures system requirements
that are not readily captured in behavioral requirements artifacts such as use-case specifica-
tions” (Kruchten, 2003b). The SS is normally prescribed to be used as input for the
architectural analysis activity that leads to the SAD, in the inception phase. However,
in this case, the SS is used as an update of the SAD. The SS contained information
about logging, authentication, authorization and performance. The sources for the SS
were the existing SAD and the Service Level Agreement (SLA) made for the project
(which was to be delivered as a service). The FOA summarizes the rationale of the SS as
follows: “One of the goals of the SS is to prove to the client that we did certain things [because]
in essence, they do not read the SAD.” A senior developer noted that, “the supplementary
specifications are created for the maintainers.”

4.5.5 Architecture Compliance

The non-functional requirements that an architecture addresses can only be guaranteed
if an architecture is implemented according to plan. In this project, however, the
FOA complained that, “the developers think it is good enough when their work resembles
the architecture,” and explained that, “as an architect for an offshore team, you have far
less control over this.” A senior developer noted that, “code should fully adhere to the
architecture,” and that even, “when you find that some wrong decisions were made earlier
and the architecture should then be readjusted,” still, “the architecture document should be
leading.” When, during the interview, confronted with a choice between working code
and architectural compliance, often developers would initially state that adherence
to architecture is more important than working code. When pushed, developers
would often admit that in practice, this plays out differently. Says one developer:
“this is somewhat diplomatic as when you find the architecture is not correct, you change the
architecture and then align the code with this new architecture.” An architecture reviewer
noted that an important reason for creating an SAD is to “cover your ass.” In this
sense, an SAD serves as an overview of non-functional requirements that where
addressed that a project team can show to the client. In this case, not the code, but the
documentation serves as a proof of work.
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Architecture Understanding

Regarding developer knowledge of the SAD, the BOA explained that, “knowledge was
divided up per [external system] that was added — at least two people were knowledgeable per
[system].” This confirms findings by Curtis et al. (1988) who found that developers
mainly understand “their” component. For example, when one developer was asked
about certain parts of the architecture, he replied, “I work with “the pushing scenario” so
my knowledge is mostly confined to that functionality.”

Code Reviews

The FOA is seen by the offshore developers first and foremost as the person who
knows how the system should work. To ensure that the system meets set requirements,
developers must obtain information from the FOA. The FOA, in turn, needs to check
the extent to which that information is understood. This check is done by means of
code reviews (Figure 4.1, line δ). Code reviews are explained to be the only means of
checking whether design decisions have been adhered to. Code reviews are prescribed
by the development process to be first done by fellow developers, second by a senior
developer (peer reviews), third by the BOA and fourth by the FOA. In this project the
FOA did not have enough time to review all code. In total, he reviewed approximately
half of all code. Due to resource constraints and tight schedules, the development team
did not have enough time to perform code reviews. For example, no code reviews took
place during the first construction iteration. Not all developers agreed that the code
review process was adhered to strictly. Some developers referred to the “incidental
internal code reviews” that would take place at the peer review level. A developer was
dissatisfied with the code review procedures and noted:

“I would say that in this project the development team had less understanding of
the architecture and of what to do than we had in my previous projects as there, a
code review would be automatically done at check-in time, so we would immediately
get feedback line-by-line, at that detail and those were mistakes you would not
make again.”

Here, a connection between code review procedures and understanding of software
architecture is made. Developers also imply that stricter code reviews would infer
that their work or at least the quality thereof is important. Developers did not have a
feeling that all their work was checked in detail. A developer noted, “the FOA does not
do code reviews on any scheduled time, when he had time he reviewed code and provides review
comments more regarding architecture compliance than naming conventions.”

4.5.6 Shared Mental Model Deviations

We found the following differences in perceptions between team members in this
project. First, we found differences regarding the software architecture process:
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• Developers feel that they only interact with the FOA regarding software archi-
tecture matters. The FOA does not share this view: “[more than half of my time
I spend on] implementation related problems that are not concerned with the software
architecture.”

• Some developers saw the BOA as the main source of information concerning
software architecture while others saw the FOA in that role.

• There were great differences in how the development process was perceived. For
example, some developers claimed that significant time losses occurred due to
waiting for the onshore location while others claimed that, “we never had to wait
for something in particular from the front office.” This can be explained by the fact
that not all developers were involved in discussions with the front office.

Second, we found differences regarding the artifacts created in the development pro-
cess:

• Offshore developers found that they completely adhered to the design principles
while the onshore team members did not share this view at all. (Developer:
“The code as it exists now is completely compliant to the SAD.” Another developer:
“currently the implementation is fully architecturally compliant.”)

• Some developers noted that the SAD was complete, some said it was not complete
at all. This could be explained by the respective components that these devel-
opers “owned.” One developer’s component might have been more completely
described in the SAD than another developer’s component.

Third, we found differences regarding the project as a whole:

• Some developers remarked that the project was going to be delivered on time
and that the system was almost done. The project was delivered 6 months too
late and at the onshore location, the team members were much better aware that
this would happen.

• The project is deemed to be a success by some offshore team members and “very
problematic” by others. Location did not play an important role in the divergent
opinions regarding this topic. The onshore team members consistently mention
poor architectural compliance as an important reason for the project failure.

The FOA explained that every developer should at least have an understanding of the
design patterns and the SAD chapter in which the “implementation view” (Kruchten,
1995) was outlined. This chapter contains information on design packages, the compo-
nent model, process flows and architecture, naming and modeling guidelines. In each
interview, we asked two questions pertaining to this content:

• What are the most significant design decisions in the architecture?
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• What are the most important parts of the SAD?

Very different answers to this question were given:

• FOA: “The most important design decisions in [this project] are the application of
pushing and the use of chain of responsibilities [. . . ] another important decision is the use
of a manager so that the system is so flexible so that we can easily add a new connection.”

• Developer: “The most important design decisions are the functional and non-functional
requirements of the client and those decisions pertaining to the external systems that we
are using and also the infrastructure.”

• Developer: “ The web service part was the most important part of the architecture.”

• Developer: “Another important aspect of the architecture was that the flow of the system
has to be able to be changed as easy as possible.”

• Developer: “Other important aspects of the design are logging and exception handling
because we have seven external connections.”

• Developer: “The use of web services was another fundamental architectural design
decision that allows us to not tightly couple the connections to the system to allow easy
extendability”

These answers always corresponded to the element of the system with which the
developer was concerned. The FOA concluded that he, “would give developer knowledge
of the architecture a 6 (just enough) but there is a clear difference between the quality of
individual developers.”

4.6 Case B

The objective of this project was to integrate various Human Resources (HR) systems
into a single system. To this end, 70 use cases were implemented, 50 of which were
electronic forms that were custom built in Microsoft InfoPath. The team members in
this project were all different people from the team members for cases A and C. One
exception is the offshore project leader who was briefly involved in the inception phase
of case A. The client was a large, multinational industrial firm. Key characteristics of
this case are summarized in Table 4.2.

4.6.1 Case-Specific Problems and Generalizability

Again, we first sketch an overview of the main problems that were encountered during
the development life cycle of this case.
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• This project dealt with changing requirements from the client. For example,
many of the InfoPath forms that needed to be developed were already designed
when the use cases changed a lot. Most of the form development then had to be
redone. In addition, the system’s architecture was impacted by these changing
requirements.

• Significant delay was introduced due to difficulties related to deployment of
the developed software. Various issues were explained to be the cause for these
problems by different team members. The FOA noted that, “the offshore team
claimed that it worked in their environment,” but that, “they had little regard for the
fact that we had to implement it in another environment.” A developer claimed that
the cause for the problems was poor collaboration with the front office. He
explained that, “we cannot do deployment on our own as it takes place outside of
our vision — we cannot visualize or imagine why things don’t work in the production
environment — what has been missed, why it is failing.” The end result was that the
development team was not able to package their software in such a way that it
could be delivered to the client. The front office therefore packaged and deployed
the software.

• The development was severely hampered by three experienced developers leav-
ing for other companies. The offshore project leader explained that SharePoint
experience was a skill for which employers were willing to pay salaries that were
20 to 30 percent higher. Often changing employers (partly due to being offered
such raises) is not uncommon in the competitive and fast-growing software
development sector in India. According to the architect, when they knew they
would leave, these developers were not very motivated anymore. As a result,
they did not properly hand over their work. In addition, not enough information
was codified. A senior developer explained: “When the previous senior left for
another company he gave the project a week notice, I came in two days before he left
and on those two days he was very busy arranging his departure from the company so
not much knowledge transfer happened in that time.” The FOA: “this cost us a lot of
expensive onshore resources.”

As with Case A, regarding the external validity of any insights we obtain from this case,
we note that changing requirements and the problems associated with changing team
composition in the offshore development team due to people switching companies, are
common. The FOA noted that, “the problems that we had in [this project] were typical.”

4.6.2 Architecture Development Process

As for the previous case, the intention for this project was to have the architecture
created by the offshore team. The architecture responsibility was offered to the back
office. Before the project commenced, however, the offshore organization made clear
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that they wanted the front office to develop the architecture. The reason seems to have
been a lack of experienced architects available at the time. About the availability of
developers that are able to create a proper software architecture in the back office, the
architect was very clear: “[Some people in our organization will have you believe that] if you
just create a use case model, a set of non-functional requirements, some instructions about what
it has to do, storyboards and some screenshots, [the back office] should figure out by themselves
how to create sub-systems and decide how to build it — but we have found in past projects that
that capacity is not available, also not with the seniors — who are good technical specialists but
setting up an architecture is just not what they do.” In contrast, the offshore project leader
made clear that, given availability, “there is no reason why an Indian architect cannot talk
to a Dutch client from India.”

There was little time available to create an architecture. The architect explained
that, “often clients have an idea of the solution that they want to have implemented and ask us
to implement that solution — we then get little time to check such an architecture — this rarely
leads to something good and often we need to rework the architecture during the implementation
phase.” The offshore project leader expounded on her contradicting view by explaining
that, “I don’t feel that the quality of the architecture suffers under grave budget constraints —
perhaps the SAD suffers but I have seen good architecture frameworks made under pressure.”
Not so for this architecture, though, as she continued to explain that, “the architecture
[that was] made [was] not very mature.” The initial lack of maturity of the architecture was
confirmed by developers as they complained that they had to rework a large batch of
InfoPath forms as the use cases and architecture were fundamentally changed during
development. This problem could partly be attributed to the requirement changes
described earlier.

In conclusion we observe that the architecture was not ready when it was commu-
nicated to the back office. Another mistake that was made here, was that all 50 use
cases were developed immediately while limited knowledge was available regarding
the target technology, InfoPath. The offshore project leader: “In the first few weeks of a
project, we [normally] go very slow deliberately — we don’t aim for the sky — In [case A, for
example, they] started ramping up very slowly — first [they] let developers create a small set of
use cases so that [they] could assess the quality of the architecture but also the quality of the
people.” Lastly, the offshore development team was not satisfied with the architecture
design. A prominent critique of that design was that it was not robust enough for the
client requirements. A senior developer explained that, “SharePoint has a limitation on
the amount of entries in a list — that should be no more than 10,000 — in a single month, the
client overrun this by 5,000 — this should have been known by the architect.”

4.6.3 Architecture Dissemination and Clarification Process

The process of communicating the architecture from the architect to the development
team in the back office is very similar to the activity diagram that described the same
process for case A (Figure 4.2). One difference is that no back office architect was
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involved, but that the most senior developer took a similar role. The other difference is
that the SAD was not extended by anyone in the back office. The knowledge transfer
sessions took place by video conference and were only attended by the most senior
developer — referred to as the “technical lead.” The senior developer did not like
the use of conferencing tools: “communication on the architectural level should take place
face to face because it is so fundamental.” The offshore project leader also complained
about the architecture dissemination process and added that she did not know why
the architect did not travel to India as she prefers that. The front office explained that
the architect did not travel to India due to budgetary constraints. The offshore project
lead responded by noting that that would have been an investment that would surely
have paid off.

Developer Hierarchy

Similar to case A, the front office complained about the use of a single point of contact
to the back office team. The architect complained that they, like in case A, had no say
in the composition of the offshore team and that as a result, “the developers were [. . . ]
not very visible to us from the front office — we got a point of contact offshore, but not a list
of developers.” He continued to explain that, “in bigger projects, Indian teams make use
of a senior developer as a proxy and this does not work very well as the senior developer will
understand you but [not] the junior developers.” One of the problems that resulted from
this was that the front office had no influence in work distribution strategies. They
noted that work was poorly distributed. The architect: “A substantial part of [this project]
consists of electronic forms which can thus be set up in a similar way - however, these forms
were distributed by the senior in India and three different developers worked on these forms
[and they were so dissimilar that] we could see by the implementation of the form, who made
it.”

The use of a senior developers and a technical lead as proxies for the rest of the
development team was also found in case A. A senior developer from this project
explained that “junior developers should not be given or even know the architecture because it
is too much pressure and they will get confused — they are still learning and architecture is
too much of a challenge for them — juniors should just implement whatever they are told too
in the manner that is told to them.” He continued to explain that, “As a senior developer
you are a sort of translator between the architect and the junior developer.” He added that
this hierarchical nature of work distribution is commonly found in software projects.
The offshore project leader defended in a different way the use of a technical lead
and senior developer as a proxy. She noted that, “[while] it might be partly rooted in
[our] culture; as long as a development team is bigger than three or four people, I don’t see
any other way than to ask questions from junior to senior developer to technical lead to front
office in order to reduce the workload and to avoid double questions.” There might be more
than one way to avoid double questions. Also, a question that is asked multiple times
might serve as a bellwether for possible unclarities or complexities in the architecture
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design. Only when the more senior developers all left the project did the architect
communicate to the developers directly. One developer noted that he liked this direct
communication. The hierarchical nature of the team composition was still maintained,
though, as even in this new situation, the most senior of the junior developers would
note that “the developers communicated directly the onshore architect but they would have
less communication with him than I would have, because they would usually ask me a question
first.”

Architecture Understanding

The clarification process, the steps that were taken when junior developers had ques-
tions, was similar to the description in Figure 4.2. A developer explained that, “the SAD
was provided to us and gone through with the technical lead — we then knew what was needed
and did not use the SAD.” The front office noted that because the development team
was not at all visible to them, they were not sure that they understood the architecture
design.

We find that the offshore development team did not find understanding of the
architecture and architectural compliance as important as the front office found it to
be. The architect explained that, “because of a lack of understanding in the Indian team,
[I] was e-mailing whole chunks of self-written and self-found source code to outline what [we]
meant — that is too much detail in my opinion.” He explained that this happened in all
of the three offshored project in which he was involved as an architect. In contrast, a
developer clearly outlined that he did not use the SAD as “it was not so important for
my own component.” This disregard for the relation that a “developer’s functionality”
has with the rest of the system, is a recurring theme in this case as well as the previous
case. The architect referred to this problem as well: “The mentality I always see with
juniors in India is “I am here to execute a job, tell me what to build and I’ll build it” — the
idea that they also have to study the overarching structure is very rarely adopted.” As a result,
the back office team admitted that only during the later stages in the project did they
understand the software architecture.

The Notion of One Team

The notion of forming a single team, despite the geographical, temporal and socio-
cultural distances is regarded as a best practice in literature (Lee et al., 2006) and in the
case organization. The idea behind this notion is that communication technology is
used to organize a team to simulate that it is co-located. In practice, however, it is not
easy to accomplish “one team” as it mainly constitutes a feeling among team members
— which is not straightforward to foster. For example, the architect explained that, “we
are supposed to be ’one team’ but when problems arise such as a missed deadline, or who did not
deliver what or are the specifications correct or hasn’t something been tested well, and before
you know it is one team versus the other.” He adds that, “this feeling remains dominant in
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the rest of the project.” As noted in the previous section, the development team was not
at all visible to the front office, which made creating a single team a challenge from
the outset. A senior developer put across that, “when the architecture is not developed
offshore, it is not so clear what the architecture rationale is — you are just asked to implement,
this model, this model and this model — if we knew how these models came to be, we can
also contribute our ideas.” This is in concordance with remarks made by various back
office team members in case A. Developers seem to find it important to be included in
the architecture design process. They feel more like full partners than in a situation
in which they are just told what to do. This contrasts with the front office view that
the backoffice team simply needs to be told what to do to be able to function as team
members. This follows for example, from this quote from the architect: “The SAD does
not contain many motivations for the design decisions that it describes [. . . ] we most often do
include these decisions but not so much for India, as they do not care much but more for the
client.”

4.6.4 Software Architecture Document

In this project, as in Case A, limited time was available to create the SAD upfront.
According to the architect, the SAD was not written with offshore development in
mind. A GSD SAD, he notes, should have more explicit diagrams for clarity. However,
Case B’s SAD is “too immature” to allow for such distinctions. In hindsight, the level of
detail of the SAD was too low. Initially, the front-office team offered to model up to the
class-level and to make sequence diagrams. The architect said that the offshore senior
developer “laughed and said that was really not necessary.” Now, the architect notes, it
turned out that we had better done that. At the end of the project, the SAD no longer
reflected the implemented architecture — this phenomenon is referred to in literature
as “architectural drift” (Rosik et al., 2010). The architect noted that he, at the time of
the interview, still intended to (rudimentary) update the SAD.

Role of the SAD

The architect found that in GSD, it is important to make things very explicit. The SAD
is an important means towards this end. The offshore project manager likened the
SAD to be a “semi-contractual document” in relation to the client. Still, the architect is
unsure about the role of the SAD in practice. He stresses that he thinks it is “very
important” for a developer to understand the overarching structure of the architecture
and the place of his own part of the system in that whole. He nevertheless adds that
he observes that junior developers do not read the SAD. Apart from the hierarchical
nature of the organization, he feels that an SAD might be too voluminous and complex
for most developers in the offshore team. As a result, he notices, developers (at most)
read the parts that are relevant to their component. From experiences in earlier projects,
he notes that he found that visual materials, such as a clickable demo, work well. He
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adds that documents are just not read when they are too thick. He admits that the SAD
might be more important in GSD but that it is a very limited vehicle for dissemination
of design. The role of the SAD is less that of the primary conveyor of design decisions
and more one of a reference document. From that perspective, the architect notes that,
“a super-well written SAD will also really help a lot [towards successful GSD projects, but]
mostly as a reference.”

SAD Quality

The offshore project leader found the SAD to be incomplete and of low quality. She
explains that the SAD is incomplete even though she feels that, “not all aspects of the
SAD as it is derived from the RUP, are needed to be filled out to be able to communicate it
from onshore to offshore.” She finds the quality of SAD depends both on an architect’s
experience with architecture and his experience with collaboration with offshore teams.
She adds that Dutch SADs suffer from language issues: “The English in the SADs written
by Dutch architects is often weird.” Also, offshore team members complained about the
quality of the SAD: “The SAD is not as good as SADs we used in other projects,” and, “it
was not up to the mark.”

4.6.5 Architecture Compliance

According to the architect, the implemented architecture only resembled the prescribed
architecture. He found that understanding of the prescribed software architecture was
low among developers. He particularly found that developers did not test their own
work, did not keep to coding standards and did little to ensure that their components
work with other components. In line with these observations, one developer explicitly
noted that he found architecture unimportant: “The system was not complex enough to
warrant a big role for architecture.” As a result, architecture compliance was low. A senior
developer remarked that the implementation was “fully compliant to the architecture.”
Another developer said that the system was approximately 80 percent compliant to the
prescribed architecture. The architect maintains that it was much lower.

Architecture Understanding

The architect finds that developers focus more on appearances than on “the inner
workings.” He adds that the idea that the overarching structure must be understood,
is rarely adopted. He illustrated his point as follows:

“The offshore team is positioned far away on an island, and we send them a package
of paper — the SAD. That creates an attitude: “What we have build may be
interpreted as what you specified in that SAD, so we are done.” [In my opinion,
this does not stem from cultural differences at all.] The exact same attitude would
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exist if you would send a Dutch team to an island to collaborate with another
onshore Dutch team.”

He added that according to him, the hierarchical nature of offshore development
organizational culture did harm architectural compliance. Developers are, in his view,
not encouraged to look beyond their own component. The architect: “If I’d have to rate
the knowledge that the offshore developers [in this project] had of the architecture I’d give them
6 out of 10.”

Code Review

Within the offshore team, the senior developers reviewed, as one explained, “most of the
code that the juniors write.” He explained that they specifically check whether, “the layers
that we want are used correctly.” Not enough time was available for full code reviews.
Exceptions were made for very complex functions. In addition, a sample of the written
code was reviewed by the onshore team. When mistakes were found, developers were
told to repair similar problems for the entire code.

4.6.6 Shared Mental Model Deviations

When asked to describe the fundamental design decisions of the system architecture,
the architect mentioned:

• The design of multi-language support

• Communication with external databases

• The interface with other external systems

• The translation of the client department workflow to the system

One developer noted that the most fundamental design decision were “long list poli-
cies.” This was a design decisions specifically related to “his” components. A senior
developer stated that, “there are many important design decisions such as handling of the
list, integrating InfoPath and integrating the company facebook.” Again, these components
were that developer’s “own components.” I already discussed the discrepancies in
the perceptions on the extent to which the implemented architecture complied to the
prescribed architecture. The offshore team thought compliance was high to perfect
while the onshore team thought the system was not compliant at all.

4.7 Case C

The objective of this project was to rebuild an existing Visual Basic 6 application in
.Net. The size of the application was estimated to be approximately 800 function points.
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Important characteristics of this case are summarized in Table 4.2. Compared to the
cases A and B, this case had the smallest development team — only four offshore
developers were involved. Where both cases A and B followed the RUP development
process, case C used a distinctively agile approach. Another distinct aspect of this
project is that a Model-Driven Development (MDD) approach was used to generate
significant parts of the code.

4.7.1 Case-Specific Problems and Generalizability

The use of an existing MDD framework, implies that instead of one, multiple systems
are being developed (Heijstek and Chaudron, 2010). The existing code generator needs
the be developed in parallel to the system that is required by the client. One developer
explained it by noting that, “when we find a mistake while working with the framework, we
fix it for the project, but also for the framework. This introduced extra effort.” In particular,
at the start of the project, many things were changed to the framework, this led to
many defects in the developed system and required extra effort to repair in both the
generator and the meta-model of the system that was being built. In addition, not
all developers were experienced with the MDD paradigm. As a result, at least one
developer made changes to generated code. This code got overwritten after another
generation cycle. He noted that he “learned this the hard way.” This project had no
problems with late requirements because, they say, of the weekly interaction with
the client. Late requirements were expected and anticipated by using an agile design
process (described in Section 4.7.2). This was possible in part because the complexity
of this project was lower than that of cases A and B. GSD that employs MDD tools and
techniques and that used agile development methods, is not very common. Growing
bodies of literature exist on the application of agile methods in GSD projects (e.g. Taylor
et al., 2006) and the integration of MDD in agile development approaches (Zhang and
Patel, 2011). Studies on the application of MDD in a GSD (e.g. Heijstek and Chaudron,
2010, 2009) setting are rarer. Studies of the combination of all three paradigms are (to
the best of our knowledge) unavailable in literature. The results obtained from analysis
of this case are therefore hard to generalize and mainly serve to provide contrast to
the more “traditional” cases A and B. This is a valuable addition to the analysis also
because all three project were executed by the same organization.

4.7.2 Architecture Development

This project lacks a team member that was explicitly assigned the role of software
architect. The project leader explains that there are relatively few complicated patterns
in the system. In addition, the size of the project stems more from the quantity of
the screens than from the complexity of the screens. The project had a start-up phase
of three to four weeks in which scope was agreed upon with client and a high-level
functionality document was made by using smart use case points. This document
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contains functional and non-function requirements. During these weeks, the non-
functional requirements where reviewed to see whether it was possible to use the MDD
approach they used earlier without having to change it fundamentally. They found
this was the case.

Model-Driven Development Approach

The project makes use of a home-grown MDD platform that had been used on several
earlier projects. This platform is based on Model-Driven Architecture (MDA) and
therefore uses UML models as input. The class and use case models must adhere to
strict modeling guidelines. By making use of stereotypes that are related to classes and
use cases, patterns are used to generate code. The UML diagrams are translated to the
XML Metadata Interchange format (XMI, Object Management Group, 2007) which is
in turn used as input for the code generator.

In previous projects that used this MDD approach, approximately eight hours
were needed to implement a single function point. Although little data is available in
literature, this is at least a factor 1.5 to 2 faster than comparable traditional projects
(which do not employ code generation techniques)5. The project leader, who also led
these previous projects, explained that for this project, they were even faster as most
people in both the on- and offshore teams were involved in the previous projects.

Applying MDD tools and techniques is limited to applications that can be described
using the defined domain language. A trade-off needs to be made between flexibility
and code generation coverage. The less “custom” functionality (that is, functionality
that cannot be described using the domain language) is required, the higher the
proportion of code that can be generated. A developer explains this by noting that,
“In an earlier project, lots of business rules were needed, many security constraints and lots of
complications – [our framework] would not have been useful for such a project.”

Design Development Process

Implementation, design and testing is done in short iterations that last one week. In
each iteration, a predetermined set of functionality is designed. In the next week,
this functionality is implemented. The week thereafter, this functionality is tested.

5In the dataset accompanying ISBSG Benchmark Release 9 (International Software Benchmarking Stan-
dards Group, 2006), the average amount of (adjusted) function points per (normalized) person-hour for
all 1001 “new development” projects was 15.3 h/fp. Jones (2000) reports the average productivity of 1065
projects (of which 505 are new and the rest are enhancement projects) in the US was 14.3 (h/fp). The smaller
the data sets are, the higher the productivity seems to be become: Premraj et al. (2005) report that the
productivity of 401 projects completed between 1997 and 2003 in Finland to be 4.3 h/fp. Tsunoda et al. (2009)
report the average productivity of 211 enterprise application development projects in Japan to be 6.7 h/fp.
However, the company average (for the organization from which all three cases in this chapter are derived),
calculated from a dataset of 51 software development projects, is 20.5 h/fp. In an (unpublished) dataset in
our possession containing 40 software development projects executed at another large Dutch organization,
the average productivity is 27.7 h/fp.
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Figure 4.3: Case 3 iteration strategy

During every iteration (except the first two and the last two) one set of functionality is
designed, another is implemented and yet another is tested. This strategy is depicted
in Figure 4.3. This way, 17 iterations have taken place.

4.7.3 Architecture Dissemination and Clarification Process

Because of the use of MDD, the architecture used for this project is mostly defined
by the design choices on the MDD framework level. The architecture is proven and
mature as it was used for previous projects. The project leader therefore referred to the
project as, “not such a high-risk project.” Even though it is agile and that is because of
the fact that the MDD approach is used, it has a proven architecture. In fact, this stable
architecture is prerequisite to enable code generation.

Various interviewees involved in cases A and B were familiar with the MDD
approach that was used by this project. The offshore project leader involved in case B
explained that mature and reusable architectures such as the one used in case C, are
easier for offshore development as it is clear how these need to be implemented.

Design Communication Process

Since a significant part of the architecture is already implemented in the framework that
enables code generation, most design communication was related to lower-level design.
The senior developer of the offshore team was involved in the weekly requirements
gathering workshop by means of video conferencing. A design for implementation of
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these requirements would be first made onshore and then disseminated to the offshore
team. The project leader explained that from his experience with offshore GSD projects,
he noticed that, “too much is being ‘sent’ from the onshore team to the offshore team and it is
checked too little whether the offshore team has understood everything correctly.” As a result,
in this project a method was used that the team called “continuous verification.” The
essence of the method is that short bursts of design information are sent offshore —
mostly by means of video conferencing. The offshore team is then asked to summarize
the design information sent and to report back to the onshore team. This way, a
verification can take place whether the design information was sent and received as
intended. A by-effect is that the onshore team members need to carefully phrase their
design information and that the offshore team members need to listen well and ask
more questions. For all the benefits that frequent communication offers in this case, at
least one developer experienced similar waiting problems found in cases A and B. That
developer explained that not all developers are usually part of all communication calls
with the front-office. As a result, until there is time to address one of that developer’s
problems, he has to make assumptions and, “wait and when my assumption turns out to
be wrong, I have to rework my solution.” Still, the developer preferred the communication
methods used in this project, over the methods he used in the previous projects in
which he was involved.

Agile and Model-Driven Communication

The offshore project leader explained why he feels agile practices aid in communicating
design:

“I contend that agile is a better way of approaching GSD projects as daily commu-
nication between the shores means that you can’t play “hide and seek any more” —
in addition, because of the short iteration cycles, you are being forced to know every
single moment what is happening — when you need to give a demo to the client
every week, you will make sure that it works. Nobody likes to look like a fool.”

The project leader has experience in non-agile GSD projects and explains that, “the
main disadvantage of these big RUP GSD projects is that you give offshore developers a chance
to disappear underwater without knowing what they do and without feedback loops - effectively
creating more than one team.” There is, however, a limit to the size of the projects you
can tackle with such intensive communication required. The project leader noted that
for this 800 function point particular project, they were “stretching it”.

The offshore developers were very positive about the use of MDD in particular.
One remarked that, “we were only two to three months into the project and most of the
important parts of the application were ready.” The same developer found it much easier
to communicate using a model as opposed to talking about code with colleagues and
the client. This MDD-related benefit is found in other studies as well (e.g. Heijstek and
Chaudron, 2010). The frequent interaction with the client was also regarded as useful.
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A developer explained that the increased client interaction led to a reduced total defect
count. As a result, the development team could focus on new functionality.

Team Composition

The project leader explained that he found many GSD projects, especially those staffed
with many skilled and experienced technicians, are unsuccessful. He explains that,
“most people in onshore development teams are selected based on their technical skills while
these matter to a lesser extent in GSD projects than communication skills, being able to
delegate, having trust in other team members.” He explains that he staffs his onshore team
with young people who are relatively inexperienced and who are willing to learn. In
addition, dedicated meetings are planned in which both onshore and offshore team
members are required to review the development process.

4.7.4 Software Architecture Document

As most of the architecture was defined in the MDD framework, no SAD was used.
The project leader planned to have an SAD made after system delivery, for the client.
Instead of using a custom SAD, developers have to understand the architecture of
the MDD platform. Most team members had experience with the framework. One
developer explained that he learned how the MDD framework works during a three
week “on-boarding training” that was organized by colleagues that were already
knowledgeable regarding the framework. He noted that he was not a very good
modeler at the start of the project but that he learned quickly on the job. He said that
the use of MDD made the development process more formal and that, “there are many
things we have to do in a specific way.” He found that this made things simpler.

4.7.5 Architecture Compliance

As the project had no designated software architect, the project leader asked an external
MDD expert to do a review of the code at several points during the implementation of
the system. Compliance of handwritten additions to the code was found to be good.

4.7.6 Shared Mental Model Deviations

No explicit shared mental model deviation could be found during the interview. Some
disagreement existed as to the percentage of code that was generated versus the
percentage of hand-written code. One developer reckoned it to be 30 to 50 percent of
the code where another claimed it to be 60 to 70 percent of the code.
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4.8 Conclusions and Future Work

The software architecture design and coordination processes are important factors
that determine GSD project success. We found that two of the cases were seen as
unsuccessful projects. In case A, the onshore and offshore team have very different
perspectives on how successful their project was. In both cases A and B, onshore
team members consistently mention poor architectural compliance as an important
reason for project slowdown. Case C’s team application of code generation techniques
automated much of the architecture compliance. Much fewer project problems were
reported and the project was seen as successful by both onshore and offshore team
members.

The rest of the conclusion is structured around the sub-research questions posed in
Section 4.2.

4.8.1 How is Software Architecture Design and Dissemination Organized?

The main finding is that specifically the dissemination of software architecture does not seem
to be formalized while this might benefit the development process. The SAD seems to be
typically created onshore. A cost-related incentive exist to have software architecture
created offshore. This failed in cases A and B. The main reason given was the novelty
of software architecture as a discipline and the resulting lack of experienced architects
at the offshore location. After the architecture is codified it is sent offshore to a senior
software developer. This senior software developer then acts as a proxy for work
distribution for more junior developers. If architecture-related questions arise, junior
developers are expected to ask their senior peers. Developers continue working based
on assumptions while they wait for an answer. This leads to re-work and project
delay. In addition, this proxy work method obfuscates the intentions of the onshore
team. Vice-versa, it “hides” the offshore development team for the onshore team.
Direct interaction between all team members is seen as beneficial for architecture
understanding. It is, however, hard to organize in larger teams. In case C we find
evidence that in an MDD context, when architecture plays a smaller role (because
it is (1) proven, (2) not complex and (3) mostly already implemented to enable code
generation), less problems arise associated with architecture dissemination.

4.8.2 How Is Software Architecture Documentation Used?

The main findings are that (1) the SAD is intended to be used extensively but developers
use the SAD sparingly if at all and that (2) while a template is used for development of the
SAD, architects enjoy (and use) a large degree of freedom in choosing software architecture
representation. The SAD has multiple audiences, chiefly the developers and the client.
A first version of the SAD is typically for the developers. An updated version of the
SAD is created so that it covers all client requirements. Perceptions on what or who is
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the main source for architecture information, differ widely. The onshore team find the
SAD the main source of information while developers use the SAD to a limited extent.
Some developers rated the SAD quality in cases A and B to be low. When used, the
SAD does not seem to be specifically tailored for GSD.

4.8.3 What is the Role of the Architect in the Development Life Cycle ?

This question is harder to answer. The main finding seems to be that the role of the
architect in GSD is not clearly defined. This role is therefore open to interpretation. From
the previous question, it follows that according to the offshore team members, the
architect is the main source of information regarding the architecture. In addition,
the architect is also seen as a hurdle in terms of accepting developed source code.
Architect travel was noted to be a best practice by most interviewees. However, in
none of the cases, onshore team members traveled to the offshore location to coach the
development team regarding the SAD.

4.8.4 How is Architecture Compliance Organized?

The main finding is that while developers say that they find architecture very important, they
seem to be mostly knowledgeable about “their own” component. Code reviews are used to
check architectural compliance. Developers and architects often disagree on whether
code is compliant. The prescribed code review process is that (1) developers review
each others code first, (2) that code goes to the offshore technical lead and then (3) to
the onshore architect who should mainly look at architecture compliance. The onshore
architect normally only does elaborate code reviews when there is a feeling that there is
a problem. We find that architects do not find it part of their responsibilities to “micro
manage” implementations to attain compliance. Interestingly, developers all note that
they would like to be more involved in the design process at both the architectural and
lower design level. Onshore team members experiment with offshore team member
inclusiveness but are generally negative about this.



Chapter5
A Theory of Dissemination and
Coordination of Software
Architecture Design in Global
Software Development

In this chapter an analysis is presented of software architecture coordination and
dissemination practices in the context of large scale, global software development.
To this end, the case findings discussed in Chapter 4 are contrasted by means
of a synthesis of the results of interviews with a group of experts. In addition,
recommendations for software architecture documentation and dissemination are
outlined.

5.1 Introduction and Objectives

In the previous chapter, we analyzed three specific industrial cases for dissemination
of software architecture design in the context of offshore software development. In this
chapter we outline and discuss the best practices distilled from these cases. In addition,
this chapter presents a synthesis of the factors that underlie the phenomena that were
observed in the previous chapter. In other words: we set out to explain why these best
practices seem to work. The resulting grounded theory provides an answer to research
question RQ1 (Section 1.3).

We aim to improve the process of software architecture dissemination in the context
of global software development and therefore pose the following research question:
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How do the factors that shape how software architecture is disseminated and
coordinated in large, industrial, custom, global software development projects
relate?

To this end we use the results of the three case studies of large, industrial custom GSD
projects presented in Chapter 4. In this chapter, we compare these case findings to
a synthesis of a series of interviews with industrial experts in the fields of software
architecture and GSD from various organizations. These were not the same people as
those interviewed for the case studies presented in Chapter 4.

The outline of this chapter is as follows. Section 5.2 describes data collection and
sections 5.3 and 5.4 outline the main factors and their main implications. Finally,
sections 5.5 and 5.6 discuss best practices and conclusions and future work.

5.2 Data Collection

In addition to the case-related interviews that were reported on in Chapter 4, a group
of 19 software architecture experts were interviewed at various organizations involved
in offshore software development (GSD). These semi-structured interviews were all
conducted on-site and face-to-face (in India). All participants were drawn from three
major, international IT organizations. They were either senior developers, software
architects or project managers. An overview of their function titles and experience is
presented in Table 5.1. This particular group of respondents was not associated with the
cases described in Chapter 4. The topics discussed during the interviews were similar
to those discussed in the case-specific interviews. However, instead of concentrating
on a particular case, the interviewees were specifically encouraged to reflect on their
entire body of practical software development experience. The transcriptions of these
interviews were used to reflect on the themes that were uncovered in the case analyses
in Chapter 4. During the interview and the interview analysis, the concepts relating to
case-specific phenomena (such as shared mental model measurements) were omitted
as the focus of this chapter is relating concepts to factors beyond the case-level. We
obtained our respondent population by means of introductions through Chain-Referral
Sampling (CRS — also known as “snowball sampling”) (Heckathorn, 1997, 2002). CRS
is normally used to obtain access to hard-to-find subjects in hidden populations (such as
in studies regarding substance dependence as in e.g. Wang et al., 2005). While software
professionals are not necessarily imperceivable in hidden populations, CRS helps to
deal with some of the problems common to research in industrial software engineering
practice. As software professionals, especially architects, tend to be expensive resources,
their time for non-productive hours is limited. This problem is compounded by the
fact that cost reductions are often part of the motivation to employ global software
development practices and people are expected to deliver at short notice. The resulting
work pressure at the offshore development location can therefore be relatively high.
Being introduced by a potential interviewee’s peer increases the chances of getting a
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Table 5.1: Overview of expert interview respondent characteristics

total
function experience years
type function title (years) in role

developers senior developer 7

senior developer 6 4

senior developer 6 1

architects solution architect 7 5

enterprise architect 8 8

enterprise architect 8 5

senior technical architect 16 9

solution architect 7

technical architect 13 3

senior technical architect 11 8

senior technical architect 9

lead architect 10 3

project project manager 8 4

managers project manager 11 2

project manager 9 4

project manager 12 8

project manager 11 1

project manager 9 4

project manager 12 8

average experience 11

meeting accepted. In addition, in relationship-oriented cultures, it is easier to obtain
interviews by means of a personal introduction. An excerpt of the relation between the
respondents involved in this study is depicted in Figure 5.1.

5.3 Theory Building

In this section, we discuss the factors that play a role in the process of software
architecture design, coordination and dissemination. Based on the concepts that were
identified from the labels and their respective narrative as discussed in the three cases,
we arrived at the grounded theory depicted in Figure 5.2. Three main drivers were
discerned that (eventually) negatively influence project success in terms of schedule
and budget overrun:
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Figure 5.1: Excerpt of (anonymized) chain-referral sampling graph of interview respondents

1. The strong implementation focus of software development project management
prematurely forces projects into the construction phase.

2. A knowledge gap exists between the onshore and offshore location regarding
software architecture and its role during the software development life cycle.

3. Cost reduction forces a move of responsibilities towards the offshore software
development location. This compounds the “knowledge gap” problems as less
resources are available for knowledge improvement (training) and more work
is required of less experienced team members. In addition, the added value of
activities related to implementation is more tangible than that of design-related
activities. As a result, the “’implementation focus” problem is aggravated.

In the following sections, each of these main drivers will be discussed.

5.3.1 Cost Reduction

Cost reduction is the most important driver for offshoring software development
work (e.g. Šmite et al., 2010, Carmel and Agarwal, 2001, Ebert and De Neve, 2001).
However, it remains to be seen whether cost reduction benefits materialize. Ample
evidence suggests that GSD increases development cost (e.g. Conchúir et al., 2006,
Herbsleb et al., 2001, Ebert et al., 2001, Espinosa and Carmel, 2003). Nevertheless,
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we find that the development organization from which cases A, B and C were de-
rived, strives towards minimizing onshore project involvement. As software architects
generally are experienced software developers, they tend to be expensive resources.
Offshoring software architecture activities is therefore thought to potentially yield
sizable cost reductions. The result of this insight is that more architecture work is
required of the offshore location.

5.3.2 Knowledge Gap

In earlier projects, before the year 2005, only coding and unit testing work was entrusted
to offshore development teams. The onshore location was responsible for requirements
engineering, high and low-level design, integration testing and deployment. A recent
development is that organizations require projects to offshore more of these “onshore
activities” because of perceived potential development cost reductions. Gradually, unit
testing, low-level component design and regression testing were added to the portfolio
of activities that is commonly offshored.

Consequently, software architecture is a young discipline at this organization’s
offshore location in particular and at offshore development locations in general. There
are therefore relatively few experienced architects available at offshore locations. To
be able to meet demand, less experienced software developers are promoted to the
role of software architect. An onshore architect typically has over ten years of software
development experience. Offshore developers with just two years of experience have
been promoted to the software architect role. As a result, offshore architects are aware
of architecture design standards to a lesser extent.

5.3.3 Implementation Focus

Software development projects are limited by resources. Allocation of these limited re-
sources over the various software development life cycle phases and activities is a well
studied topic. Simulations are used to study the dynamics of resource allocation (e.g.
Kellner et al., 1999) and theoretical models have been proposed to optimize resource
allocation (e.g. Yiftachel et al., 2011).

Data from industry shows that resources are preferably spent on implementation re-
lated activities. Significantly more effort is spent in the construction phase of industrial
projects than prescribed in theoretical models (Heijstek and Chaudron, 2007, Yang et al.,
2008). Literature does not elaborate on the reasons for this phenomenon. We found a
similar tendency towards coding-related activities at the expense of design activities
in cases A, B and C. For example, the management tendency to push to move to the
implementation phases as soon as possible (and limiting time spent on architecture
design and dissemination) is referred to by various team members from cases A and B,
as WHISCY or “WHy IS no-one Coding Yet?”.
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Cost reductions often limit an architect’s association with a project to the architec-
ture design (elaboration) phase. The focus on implementation shortens that design
phase and thereby shortens even more the time an architect is involved with a software
project. As a result, architects spend not only less time designing an architecture but
also less time on disseminating that architecture design. The direct implications are
that less architecture is defined and less architecture is codified. In addition, architects
get less opportunity to travel to the offshore location.

5.4 Implications

We found the main problems caused by the drivers discussed in Section 5.3 to be:

• an unclear and incomplete software architecture document (knowledge transfer
problem),

• that software architects are available less time per project (both a knowledge
transfer and a control problem),

• that less direct interaction with the software architect is possible (both a knowledge
transfer and a control problem),

• that more architectural freedom exists for developers and (control problem),

• that less code is reviewed (control problem).

These problems lead to incorrect and incomplete knowledge of the software archi-
tecture. Consequently, developers make assumptions and are mostly knowledgeable
about their “own” components. Therefore, software architecture compliance violations
are more likely to take place. This, finally, leads to software rework which in turn
causes project delays in terms of schedule and budget overrun.

5.5 Recommendations and Best Practices

This section outlines a set of recommendations for coordination and dissemination
of software architecture design in the context of GSD. The recommendations are
structured as follows: First, the general recommendation are derived from the three
main drivers that were discussed in Section 5.3. Second, a set of best practices is
discussed that is distilled from the three cases analyzed in Chapter 4.

5.5.1 General Recommendations

First, architecture should be recognized to be a first-class development concept. All participants
agree that architecture adherence is important. However, often developer knowledge of
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architecture is incorrect and incomplete and limited resources are allocated to checking
architecture compliance during development. The added value of activities related
to implementation is more tangible than that of design-related activities. This is an
illusion. To adhere to non-functional requirements, extensive rework is often needed
towards the end of a project. Therefore, making architecture a central concept (as is at
the core of RUP) this type of rework can be largely prevented.

Second, offshore software developers need to be trained to increase their understanding
of software architecture. The offshore shortage of software architects leads to limited
understanding of the importance of software architecture.

Third, a process needs to be in place for both initial dissemination of architecture design
as well as the feedback process that follows it. In the next section, we will describe some
best practices regarding dissemination of architecture design as well as architecture
implementation-related feedback. Such best practices should be institutionalized in a
process so that common pitfalls may be avoided.

Fourth, increased allocation of resources in (1) architecture design and representation
and (2) guidance during the implementation phases from the onshore architect, is likely to
lower budget overrun. Conversely, we found, limiting onshore design time and architect
availability results in budget overruns. Determining how many additional resources
should be spent on software architecture design, representation and dissemination is
not straightforward. As a guideline, in traditional (non-agile) development projects,
between 70 and 80 percent of the architecture should be designed and represented
when implementation commences. All architecturally significant use cases must be
addressed in that initial architecture design.

5.5.2 Best Practices

Best practices are categorized in architecture design development, architecture design
dissemination, the SAD, the architecture feedback process and architecture compliance.

Architecture Design Development

One strategy to ensure that the offshore team is more knowledgeable regarding soft-
ware architecture design is to write the SAD together with the offshore technical team
lead. For both cases A and B, in hindsight, the architects found that the SAD was not
mature enough to be transferred to the offshore team. For a typical custom software
development project, the majority of the architecture should therefore be stable before
the construction phase. To this end, the “biggest mistakes” have to be removed in the
elaboration phase. At the very least a POC of the architecture should be made during
the inception phase. Investing some extra time into maturing the architecture and
creating a more detailed SAD pays off during the construction phase in terms of fewer
comments required during code reviews. This also amounts to fewer defects and less
required rework.
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Figure 5.3: Contents of an SAD and associated stakeholder interest

Various parts of the same SAD address different audiences (Figure 5.3). A more tech-
nical stakeholder is generally interested in the bottom levels of the pyramid whereas
a client would be more interested in the top layers. Apart from merely mentioning
the information related to each layer, the key to a high quality SAD is the traceability
between the layers.

Architecture Design Dissemination

The majority of respondents from all three cases agreed that every onshore architect
should visit the offshore team at least once, to transfer in person the SAD and the
explain its contents to the offshore development team. One developer explained that
it is important for the architect to explain in person the SAD to a development team
so that all developers, “understand the dept or importance of specific requirements — this
is something you cannot do from a document alone and it prevents that the solution moves
slightly in a different way.” A slightly cheaper solution is to have at least one senior
developer of the offshore team to travel to the onshore location during the initial
software architecture development phase.

Successful dissemination of architecture requires that multiple communication
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channels are used to disseminate a single message. In addition to the SAD, the use of
personal video conferencing sessions, telephone, e-mail and synchronous messaging
should be used to repeat that same message. The frequency of use of these tools should
be high. The objective for an architect is to give a lot of guidance after the SAD has
been introduced so that all principles are properly understood.

Case C (Chapter 4) used a method which they called “continuous verification.” The
essence of the method is that short bursts of design information are sent offshore —
mostly by means of video conferencing. The offshore team is then asked to summarize
the design information sent and to report back to the onshore team. This way, a
verification can take place if the design information was sent and received as intended.
A by-effect is that the onshore team members need to carefully phrase their design
information and that the offshore team members need to listen well and ask critical
questions about what is unclear to them.

The iteration approach used in Case C requires a lot of interaction between team
members in general and the onshore and offshore locations in particular. However,
this strategy requires a client that is able and willing to have (very) frequent meetings
throughout the project.

The SAD

As elaborated on earlier, SADs needs to both be clearer and more detailed than they
were, found in e.g. cases A and B, because less contact between the development team
and the architect takes place in a GSD context. However, an SAD that is too thick is
less likely to be read in its entirety. The use of a common template for architecture
representation is seen a beneficial. It requires architects to codify information they
might otherwise have omitted. The use of UML is not seen by architects as essential
for clear architecture representation. Architects argue that one, “should use what gives
most clarity.” However, that architects seem to take intended audience(s) into limited
account and that offshore developers do seem to share a preference for UML. It might
therefore be beneficial to take the use of UML for architecture representation into
consideration. At least a legend should be used to avoid unclarity about the meaning
of specific elements used in box-and-line diagrams.

Architecture information should be codified before and during the construction
phase. For project-based software development, organizations, budget quickly “dis-
appears” after a system is delivered. In addition, significant architectural drift (Rosik
et al., 2010) takes place during the construction phase. Moreover, as employee turnover
is relatively high (particularly in Indian development organizations), team members
and their knowledge regularly disappear from a project. Therefore documentation in
general and the SAD in particular should be kept up-to-date during the project.
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Architecture Feedback Process

Almost all developers in cases A an B complained about delays due to the unavail-
ability of software architecture information. Somebody with intimate knowledge of
the software architecture should therefore always be available albeit not necessarily
physically. This is difficult to explain to project leaders, given that cost reductions are a
strong driver for GSD and that software architects are expensive resources due to their
seniority. In addition to the trip that an architect should make to explain the SAD, the
architect is recommended by some respondents to again travel to the offshore location
during the first code reviews session. About this trip, the offshore project leader from
Case A explained that, “this provides a motivation for the developers — it tells them that
somebody cares for them, sits besides them and helps them resolve issues.” To create a feeling
of working in a single team, a method was used in Case C to make video conferencing
sessions more like actual conversations — such as the ones at a “local coffee machine.”
Team members made it a habit to not get directly to business at the start of such a
session: “Each video conference we spend about ten minutes talking about private things.” In
addition he notes that it is important to enrich the conversation with information that
is contextual such as “funny clothing that someone was wearing or [perhaps] spend some time
talking about a mistake you made.” The goal of these habits is to build up a relationship
like you would with local team members.

Architecture Compliance

Less complex architectures are less difficult to disseminate and are more easily adhered
to. For architectures implemented in a GSD setting it is therefore even more pertinent
to limit component coupling and increase component cohesion. For very complex
architectures, the cost reductions that GSD potentially offers are likely to be offset by the
time it costs to represent and disseminate architecture design and attain architectural
compliance.

5.6 Conclusions and Future Work

Knowledge codification has the potential to mitigate some of the problems that are
the result of the distances that GSD introduces. The opportunity to develop quality
documentation, however, is limited. Cost reductions, a focus on implementation-
related activities and a general lack of knowledge about software architecture lead
to poor architecture design, coordination and dissemination. The lack of knowledge
regarding software architecture is a genuine problem in the sense that it is a hurdle
to be overcome if GSD projects are to make architecture a central concern. However,
cost reductions at the expense of architecture design, coordination and dissemination
as well as the tendency to give priority to implementation-related activities, provide
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a stark contrast with the claim made by all respondents that software architecture is
such an important aspect of software development.



Chapter6
Experimental Analysis of Textual
and Graphical Representations for
Software Architecture Design

In this chapter the results of a study on the use of software architecture documenta-
tion is described. First, the effectiveness of text-dominant versus diagram-dominant
architecture descriptions are explored by means of an experiment. Second, devel-
oper characteristics that benefit architecture representation understanding are
investigated.

This chapter is based on the following publication:

Werner Heijstek, Thomas Kühne and Michel R.V. Chaudron Experimental
Analysis of Textual and Graphical Representations for Software Architecture
Design. In Proceedings of the 5th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM 2011) pages 167–176, Banff, Alberta,
Canada

6.1 Introduction

Software architecture documentation facilitates stakeholder communication and is
instrumental in ensuring that essential design principles are adhered to by the source
code. Software architecture documentation “captures and preserves designer intentions
about system structure, thereby providing a defense against design decay as a system ages, and
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it is the key to achieving intellectual control over the enormous complexity of a sophisticated
system” (Hofmeister, 2000). However, software architecture and design knowledge
management is challenging in the context of GSD (Ali et al., 2010). In such a sce-
nario, complete and unambiguous architecture design documentation constitutes an
indispensable complement to informal communication (Curtis et al., 1988, Lee et al.,
2006).

However also in co-located development, using an iterative development process,
reliable and effective documentation is highly desirable. While co-located teams better
support spontaneous and informal communication, there is a danger that code is not
implemented according to the principles as laid out in documentation artifacts. If the
design documentation is not treated as the ultimate reference and does not succeed
in allowing answers to common questions to be derived, there is a danger that the
resulting system will be based on inconsistent interpretations and assumptions: “The
best architecture is worthless if the code doesn’t follow it” (Clements and Shaw, 2009). In their
landmark study on the state of the practice in software architecture research, Shaw and
Clements (2006) formulate some promising areas in which significant opportunities
exist for new contributions in software architecture research. Among others, they
discuss the need to find the right language to represent architectures and finding
ways to assure conformance between architecture and code. Documentation of the
architecture is also essential for maintenance activities which typically involve different
engineers from the ones who originally developed the system.

In this chapter we report on an experiment we conducted on media type effec-
tiveness for documenting software architecture designs. The outline of this chapter
is as follows. Section 7.3 contains an overview of related work. The study objective
is outlined in Section 6.3. In Section 6.4, the experimental design is explained and
Section 6.5 contains an overview and discussion of the results. The threats to validity
are discussed in Section 6.6. Finally, recommendations are given in Section 6.7 and
Section 6.8 describes our conclusions and future work.

6.2 Related Work

The related work for this study spans different sub-fields of software engineering.
In the following paragraphs we will discuss related work on software architecture
representation in practice, quality of documentation, the use of UML for architectural
representations, the use of design documentation, multimedia learning and related
experimental analysis of software design representations.

6.2.1 Software Architecture Representation in Practice

In their survey of 11 industrial systems Soni et al. (1995) found that a combination
of informal and semi-formal techniques was used to describe software architectures.
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They found that informal diagrams, tables and natural language text with naming
conventions are used to describe many of the software structures not described in
functional decomposition diagrams. They note that, “even when a formal notation
is used, it is often supplemented with informal and incomplete diagrams, in order
to enhance the understanding of the formal model.” Soni et al. did not find this
surprising as rigorous architecture description techniques were not yet available at the
time. However, it is common that the software architecture description of systems is
informal and based on “boxes and lines” types of notation (Abowd et al., 1995, Soni
et al., 1995). A recent study of 57 industrial software architecture documents (Heijstek
and Chaudron, 2011) confirms that software architecture is still described using a
variety of media without an apparent systematic approach to media usage. The
limitations of this style of representation led to the taxonomic separation between
software design and software architecture (Eden and Kazman, 2003). It also led to
the development of several methods and frameworks for defining and representing
architectures (e.g. Bachmann et al., 2000, IEEE, 2000, Bachmann et al., 2000, Clements
et al., 2002, Jansen and Bosch, 2005, Taylor et al., 2009). It is, however, unknown
which of these styles are more effective to allow developers to correctly understand
the intended architecture. As a result, little is known about how to produce more
effective documentation. Bengtsson and Bosch (1999) describe an industrial case in
which they were involved in designing the architecture. They note that they, “found
it hard to capture the essence of the architecture.” They also note that only because of the
co-located nature of the project, they were able to “overcome the problems with the written
documentation.”

Agile methods (Highsmith and Fowler, 2001) recommend to make “lean” doc-
umentation, suggesting that documentation should only include information that
is used. But even such code-centric, light-weight methodologies employ a form of
architectural documentation (Smith, 2001). Agile methods have been introduced in
more rigorous methodologies such as RUP (Hirsch, 2002, Pollice, 2001), partly in an
attempt to incorporate increased formality regarding documentation. Developers do
seem to prefer less documentation. This is supported by the findings of Forward and
Lethbridge (2002) and Lethbridge et al. (2003) who studied the use and usefulness of
documentation. The authors find a preference for simple and powerful documentation
and conclude that documentation is an important tool for communication, even if it is
not up to date. A recent survey by Stettina and Heijstek (2011b) of 79 agile software
development professionals in 8 teams in 13 different countries, found that the majority
of agile developers find documentation important or even very important, but also
that too little documentation is available in their projects.

6.2.2 Use of UML for Architectural Representations

Many current architecture description methods recommend the use of UML diagrams
for representing a software architecture. Hofmeister et al. (1999) present results of
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their action research study into using UML for representation of a system’s architec-
ture. They found that UML worked well for describing important aspects typically
described in software architecture documentation (such as the static structure of the
architecture) and not so well for constructs (such as protocols and a general sequence
of activities). A more recent study of the suitability of using UML to model software
architectures (Medvidovic et al., 2002) reports that, “UML lacks direct support for mod-
eling and exploiting architectural styles, explicit software connectors, and local and global
architectural constraints.”

There is certainly no standard way of creating architectural diagrams with the
UML. UML allows its users a large degree of freedom (Nugroho and Chaudron,
2008). Systems are generally modeled incompletely and varying levels of detail are
applied (Lange, 2006). UML standards are often applied loosely (Lange et al., 2003). All
these aspects have been found to negatively contribute to the quality of software (Nu-
groho and Chaudron, 2009).

Results from an experiment by Tilley and Huang (2003) suggest that the UML’s
efficacy in support of program understanding is limited by factors such as ill-defined
syntax and semantics, spatial layout, and domain knowledge. This chapter contributes
to the understanding whether UML diagrams fulfill the expectation to represent precise
and effective architecture documentation.

6.2.3 Use of Design Documentation

An observational study by Dekel and Herbsleb (2007) found that software teams im-
provised representations, incurring orientation difficulties and leading to an increased
reliance on memory. Documented designs were therefore not useful without additional
contextual information. We have to assume that this might be true to some extent
for documented design decisions in practice. Design decisions are often the result of
one-on-one meetings (LaToza et al., 2006). A study involving interviews and a survey
by Cherubini et al. (2007) found that many modeled design decisions are lost. Studies
that find that developers avoid using design documents when possible (Herbsleb and
Moitra, 2001, LaToza et al., 2006, Kraut and Streeter, 1995, Müller and Tichy, 2001)
may be construed as an indication that we know little about how to produce the best
possible software architecture design documentation. In their study of how software
developers use diagrams in software documentation Hungerford et al. (2004) found
that search patterns that rapidly switched between two different diagrammatic repre-
sentations are most effective. They note that, “these findings support the cognitive theory
thesis that how an individual processes information impacts processing success.” Empirical
studies show that developers mostly understand only “their” specific components of
the application (Curtis et al., 1988). Holt (2002) even advocates a “law of maximal
ignorance” which he summarizes as follows: “Don’t learn more [about an architecture]
than you need to get the job done.” Due to time pressure, Holt notes, developers barely
have enough time to get acquainted with a system. Scanniello et al. (2010) experi-
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mentally evaluated the use of design documentation that outlines design patterns
on maintenance activities performed on source code. They found that the effort and
efficiency significantly improved when design pattern were properly documented
and provided to the subjects. In their mixed-method study of software engineers in
practice, Lethbridge et al. (2003) found that software documentation is frequently out
of date, too voluminous, poorly written and unfathomable and that documentation
processes (“much mandated documentation”) can be inefficient and ineffective. They
find that, “[a] considerable fraction of documentation is untrustworthy” but also that

“[A]rchitecture and other abstract documentation information is often valid or at least provides
historical guidance that can be useful for maintainers.” More than 40 percent of respondents
note that they find that software architecture documentation is rarely, if at all, updated
after changes have been made to a software system. Most respondents agreed with the
statement: “Documentation is always outdated relative to the current state of a soft-
ware system.” Lethbridge et al. conclude that we need to better understand the various
roles of software documentation and more closely match our prescribed processes to fit
those roles. We specifically focus on the role of architecture documentation to support
implementation work. Observational studies show that developers use documentation
as little as 3 percent of their time (Lethbridge et al., 2003). More recently, Stettina and
Heijstek (2011b) studied the use of documentation in Agile teams and found that the
majority of developers found documentation important to very important and that
they also found that too little documentation was available. In addition, they found it
difficult to locate this (internal) documentation.

6.2.4 Experimental Analysis of Software Design Representations

Various experiments have been conducted to investigate the efficacy of software design
representations. These experiments concentrated on measurement of the strength of a
particular representation type to convey certain design properties under certain circum-
stances. For example, Lange and Chaudron (2006) used an experiment to investigate
how developers deal with inconsistencies in UML diagrams. They found that defects
often remain undetected and cause misinterpretations. Gemino and Wand (2003) ad-
vocate the use of evaluating modeling techniques based on models of learning based
on Mayer’s cognitive theory of multimedia learning (Mayer, 2009). In a later study,
Gemino and Wand (2005) compared two different visualizations of Entity-Relation
Diagram (ERD) types (Chen, 1976). They found that, “clarity within [a] model may
be more important than the apparent complexity of [that] model when a model is used for
developing domain understanding.” In this study, we compare textual and diagrammatic
models as this combination is found to be most commonly used in industrial prac-
tice. Another relevant related experiment is the comparison of comprehensibility of
UML class diagrams versus ERD in the context of comprehension, maintenance and
verification by De Lucia et al. (2010). They found that using UML class diagrams,
subjects scored higher on comprehension. In this experiment, we use UML diagrams.
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Knodel et al. (2008) conducted an experiment to study the role of graphical elements in
architecture representations. They found that specific visualizations, such as neighbor
highlighting, and an information overlay panel had a significant impact on devel-
oper comprehension. In our experiment, we did not use an interactive architecture
visualization tool and could therefore not incorporate their findings to increase the
efficacy of our experimental material. Formal notations (such as the Object Constraint
Language (OCL, Warmer and Kleppe, 1998)) can also be used to make software archi-
tecture documentation more unequivocal. In fact, Briand et al. (2005) found evidence
that if developers are well trained OCL might be a more effective annotation for UML
models than text. OCL is sparsely used in industrial practice.

6.3 Objectives

In this chapter, we address RQ2 (Section 1.3). This question aims to find representation
methods for software architecture design that are understood by developers in the
context of GSD. Tilley (2009) concludes an overview of “findings and lessons learned
related to documenting software systems with views from numerous projects spanning
15 years of research and practice” by noting: “The question of when graphical documenta-
tion is more effective than other forms of documentation (e.g. textual), and for which types of
users, remains open.” We describe our main objective according to the goal definition
template provided in the GQM paradigm (Basili et al., 1994):

We ANALYZE the effectiveness of diagrams and text for representing soft-
ware architecture designs FOR THE PURPOSE OF improving the quality of
architecture documentation FROM THE PERSPECTIVE OF communication
between software architects and developers IN THE CONTEXT OF project-
based custom software development.

We therefore pose the following research questions:

1. Are diagrams using a visual notation better suited to communicate software architecture
design than textual representations?

2. How do software developers comprehend software architecture representations?

3. How do developers deal with missing and conflicting information in software architecture
representations?

4. To what extent do developers make assumptions or fill in gaps in software architecture
representations?

Diagrams are widely used during designing and it appears plausible that their visual
representation is an effective medium to communicate software design. Diagrams con-
tain the essential information in an easy to overview, easy to process, two-dimensional
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arrangement. Albers (2004) asserts that diagrams should allow developers to find
answers quickly because diagrams contain less noise. In particular architectural prin-
ciples pertaining to the topology of an architecture should be obvious in a diagram
whereas they will have to be inferred from text. Moreover, diagrams should tran-
scendent socio-cultural and language idioms because they are largely independent
from natural language. For all the aforementioned reasons it can be expected that
developers may have a preference for diagrammatic as opposed to textual documents.
Yet, to the best of our knowledge no empirical study has ever attempted to confirm or
refute these assumptions. In this study, we focus on natural language text because it is
most commonly used in industrial practice. The experiment was designed to test the
following hypotheses:

H11 Diagrams are better than text at conveying software design to software developers.

H21 Diagrams are better than text at conveying topology-related design information to soft-
ware developers.

6.4 Experimental Design

Potential methods for testing our hypotheses include user surveys and controlled
experiments. We dismissed the first because it generally only applies when more is
known with regard to the variables that need to be controlled. Moreover, there is an
element of uncertainty as to whether users correctly evaluate which media type is
more effective (e.g. due to subjectivity). An “in the field” study, observing software
architects while they are performing actual work might yield reliable data. However, it
is difficult to get access to companies for such an in-depth analysis.

Hence, we designed an experiment in which we measure media effectiveness by
varying the media dominance during a series of design document presentations. We
define media effectiveness as the extent to which a medium can convey the modeled
design information it contains in such a way that a developer understands it correctly.
Therefore, we measured media effectiveness on the basis of how well participants were
able to extract the intended design information from two documents that described
one architecture design. One document contained text and the other diagrams. The
variables under study are summarized in Table 6.1.

During the experiment, we used three methods to collect data:

1. We used two questionnaires to obtain participant-specific information.

2. We filmed participants during a set of tasks to understand when and from which
medium they obtained answers to our questions.
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3. We requested the participants to think out loud while answering questions about
the system.

Filming the participants had several benefits. First, we obtained a wealth of infor-
mation regarding participant behavior during the experiment. We could, for instance,
determine which media type was consulted first, last, with what frequency and how
often participants switched between media types. The recordings are likely to prove
useful in the future for extracting new data from the data set according to different
research questions or the measurement of other, newly identified variables.

We documented our experiment design with an experiment protocol in which the
experiment environment, process and measurement methods are outlined in detail.
This documentation enabled consistency for running the experiment at different loca-
tions and will likewise facilitate future replication. For the diagrammatic representation
of architectures we chose to use UML, which is the de facto standard for representing
software designs.

6.4.1 Experiment Planning

The study was executed between February and August 2010. After an initial literature
study, a general study design was created. We then initiated the human ethics approval
process and started with the design of materials, questions and the experiment protocol.
We ran several test sessions and subsequently refined the protocol, material and
questions. The first 15 instances of the experiment were conducted in Wellington.
While coding the first videos, we organized the second run in Leiden. Lastly, we
focused mainly on the professional developers in the Dutch organizations. After 47
participant sessions (approx. 1.5 hour per session, including preparation), two weeks
were spent on video coding and data entry (approximately three hours per participant).

6.4.2 Data Collection Process

We applied quota sampling (Wohlin et al., 2000) to obtain at least one professional
developer for every three students who participated in the experiment. For both groups
we applied convenience sampling. In Wellington, students participated voluntarily and
went into a draw for a prize of NZ$50. In Leiden students participated both voluntarily
and through a mandatory part of a course. Subjects from industrial organizations in
Wellington participated voluntarily. All students but not all professionals had used
UML during their studies. All participants had previous experience with UML. The
study (which we referred to as “design study” towards the students) was mentioned
during various software engineering lectures in Wellington. In Leiden, M.Sc. students
who were enrolled in a research methodology course were required to participate.
Student performance on the experiment did not influence their grade. In Leiden,
absence from the experiment would be reflected in the course grade, though. Each
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(a) Participant Station

camera

(b) Recording Environment

Figure 6.1: Experiment environment

participant was surveyed in the same way: the participant was welcomed and seated
behind a table on which two blank pieces of paper were taped at 35 cm apart (see
Figure 6.1(a)). A camera was placed so that it was able to accurately record movements
of the participant’s head. However, the environment was set up in a way so that
the camera non-intrusively appeared as part of general audio and video equipment.
This was done in order to prevent participants from getting overly nervous or self-
conscious. The experimenter sat behind the participant so that the participant could
concentrate on the task. This set-up also discouraged the participant from interacting
with the experimenter. The set-up of the experimental environment was described
in detail in the experiment protocol to minimize potential differences between the
various locations at which the experiment took place. Generally, various participants
were planned after one another. After a participant entered the room, he or she1

was asked to sign a consent form and to fill out a preliminary questionnaire. This
questionnaire consisted of 10 questions covering academic and industrial software
modeling experience, a self-assessment of modeling skills, recent software architecture
experience and demographics such as age, gender, (highest attained) level of education
and native language. When designing the questionnaires, we followed standard
guidelines (such as those described in Oppenheim, 1966). Next, it was explained that
the objective of the study was to understand the use of software architecture design
documentation and that a series of questions regarding such documentation would
be asked. The participant was told that he could use the presented information in
any way he deemed fit and that the experimenter did not know the correct answer
to the question. In addition, the participant was requested to verbalize his thought
process while using the architecture documentation. The first architecture design

1Most participants were male, we will continue referring to participants as males.
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document presented was meant to serve as an example question only. The main
purpose of this example question was to put the participant at ease and to acquaint
him with the experiment protocol. The procedure of the experiment was carried out as
follows: Architectural design documents would be placed on the participant’s desk.
Each architectural design was split up into two documents, one page contained a
textual description and a another page contained a diagram. Both papers contained
information about the same architecture. After placing the documents at their precisely
defined positions, the context of the design would be briefly introduced. For instance,
“This architecture describes the architecture for a booking system for flights.” This
introduction was made because in real software development scenarios, developers
are aware of the domain or the high-level objectives of a system. Participants were
then verbally asked questions about the design — such as “Can component X directly
authenticate users?.” Participants could then ask for a question to be repeated but
no other requests such as clarifications would be accepted. After a participant had
answered, the answer was repeated by the experimenter for verification purposes and
the next question was asked.

Participants were given no feedback as to the correctness of their answer. The
experiment was double-blind as neither participant nor experimenter was aware of
the correct answer or in which of the documents the answer had to be found. As a
result, the participant would not change his behavior according to his record of correct
or incorrect answers during the experiment. Four architectures were used and three
questions were asked per architecture — not counting the introductory example.

6.4.3 Material and Question design

Each set of architecture documentation consisted of a pair of sheets of which one
contained text and one contained a diagram. After the last question, the participant
was handed a second questionnaire, asking him to rate the extent to which he perceived
the two media types used as being effective and the degree to which he understood
all notational elements. All five text-diagram pairs (four pairs and one example pair)
were inspired by industrial software architecture diagrams (SADs) documents in our
possession. The documents were altered in such way as to:

• enable a uniform notation across cases,

• enable separation from larger design documents and

• enable translation to English where needed.

We focused on the ability of participants to extract design information from both
grammatically and syntactically correct diagrams and texts. We corrected ambiguous
constructs in original documentation and attempted to attain an overall coherent visual
style plus lucid textual descriptions. All diagrams represented structural views of the
system. We used UML 2 component and deployment diagrams. An example of one of
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the (verbose) diagrams is depicted in Figure 6.2(a). The text consisted of a description
of the architectural component in natural language text. An example can be found
in Figure 6.2(b). This text was assembled to be in concordance with industrial SADs.
The non-verbose version of the text contained fewer details regarding the model and
was about half as long as the verbose version. Questions and design documents were
carefully tuned to each other in order to allow a multitude of subsequent analyses.
Examples of questions are: “Is system x the only component that may modify attribute y?”
and “Through what node does system x connect to system y?.” The questions can be found
in Table 6.4.

We define a set T that holds all design information described in the text sheet and
a set D that holds all design information described in the diagram sheet. All design
information is then described by T ∪D. We designed the questions so that the answer to
some questions can be found in the intersection T ∩D, some answers can only be found
in the complement T ∖D and some answers can only be found in the complementD∖T .
Finally, some questions are not to be found in either set (∼ (T ∪D)). The distribution of
the answers for our questions is described in Table 6.4.

When designing questions, we limited ourselves to questions which could be
answered with information available either in text or via diagrams. We designed the
architecture representations and the questions so not to rely on detailed knowledge of
UML semantics. The experiment design process involved determining and listing the
most important design information conveyed in the design, creating a set of questions
relating to this information and validating the questions by means of trials. Overly
complicated or ambiguous questions were disregarded or rephrased. We created a total
of nine architecture pairs before selecting the final four, which were selected based on
ease of understanding. Half the question set consisted of open questions. Answering
open questions is comparatively more difficult because a) more information has to be
gathered and b) it is not as clear as to whether further consultation of another medium
is required once a partial answer has been formulated. Open questions provide more
insight into how easily a participant is satisfied with partial information.

With a view to our hypothesis H21, five questions were designed to address design
information of a topological nature. Per architecture, we only asked three questions.
We left more difficult questions for last as they required increased use of the media and
might create a learning effect for subsequent easier questions.

Each architecture was described using one page of text and one page with diagrams.
We created two versions of each architecture description. One version contained
a verbose diagram and non-verbose (content reduced) text and the second version
contained verbose text and a non-verbose (content reduced) diagram. We refer to
the former as a diagram-dominant representation and the latter as a text-dominant
representation. We created non-verbose versions of diagrams and text by removing
elements or sentences from the complete ones. Each participant was presented two
diagram-dominant representations and two text-dominant representations making
sure that the two verbose diagrams were not placed on the same side of the desk each
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(a) verbose diagram

The system described in this diagram provides support for 
creating new mortgages and alteration of existing mortgages.

The design aims to separate the complexities of the business 
logic from the Financial Application Frontend by bundling all 
mortgage-related services on a central Mid Office System. This 
system provides services for the setup of all `mortgage actions'.

The Front Office Component hosts a Financial Application 
Frontend which contains a Mortgage-specific Application 
Component. Due to concerns regarding decreased Back Office 
availability, mortgage action requests may have a maximum size 
of 300 kilobytes.

The Mortgage Webservice provides an additional method to 
update mortgage attributes. This service only connects to an 
interface provided by the Mortgage Attribute Update 
specialization.

(b) non-verbose text

Figure 6.2: Example design
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Table 6.2: Media Dominance

architecture α β γ δ

medium t d t d t d t d

experiment version A V n V n n V n V
B n V n V V n V n

t = text / d = diagram
V = Verbose / n = non-verbose

time. Ergo, out of every four participants, every first participant received the ordering
pair α (non-verbose diagram on his left side), pair β (non-verbose diagram, right), pair
γ (verbose diagram, left), pair δ (verbose diagram, right). The questions were the same
for diagram- and text-dominant representations of the architecture. The distribution of
media dominance is summarized in Table 6.2.

6.4.4 Ordering Process

We eliminated a potential bias caused by a possible tendency of participants to start
reading the information on a particular side (e.g. the left hand side for Western partici-
pants) by changing the position of the diagram for every pair presented. In order to
prevent participant preferences for a media type, based on the verbosity of the medium,
medium-verbosity was also balanced. Furthermore, the ordering of the architecture
pairs used was changed for every participant so that results for any particular architec-
ture pair (particularly the first and last pairs particularly pairs α and δ) would not be
influenced by effects due to the participant learning, getting tired or getting bored.

6.4.5 Data Coding

We obtained information regarding the amount of time subjects looked at media by
manual coding of the video recording. We counted switches between media, which
media the participants looks at first and last. An excerpt of the manner in which the
videos were coded is depicted in Table 6.3.

To ensure consistency of extraction of data from the video recordings, we used a
set of guidelines for coding. For example, the first timing measurement started at the
moment the question was spoken and timing stops when the participant mentions the
core element of his answer. To ensure data-entry consistency, we used scripts to transfer
timing information from spreadsheets to the database. We then performed consistency
checks on the final data employed by means of a set of semi-formal consistency checks
such as

∀switches [mod(switches) = 0⇒mediumstart =mediumend]
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Table 6.3: Example of video coding log for a single question

question diagram video relative looked looked
number or text timing timing at diagr. at text

(or answer) (mark1) (seconds) (seconds) (seconds)

γ2 d 594.9

t 610.5 15.6 15.6

d 615.2 4.7 4.7

answer 619.1 3.9 3.9

answer given: “no”

1 from beginning of video file
Derived metrics:

• total time looked at diagram: 19.5 seconds
(80.58% of total time)

• total time looked at text: 4.7 seconds
(19.42% of total time)

• switches between media: 2

• started at: diagram

• ended at: diagram

which were executed by means of a set of SQL queries. In addition, we recalculated all
derived values (e.g. percentages) in the database.

6.5 Results and Discussion

In this section, we discuss the results of the experiment. A total of 47 subjects par-
ticipated of which 35 were male and 12 female. The average age was 27, ranging
between 21 and 41. The participants came from two universities and four different
organizations:

• 12 BSc. and BSc-hons. students, 1 MSc. student and 1 Ph.D. student at the School
of Engineering and Computer Science (ECS) at Victoria University Wellington;

• 1 BSc. student, 20 MSc. students and 1 Ph.D. candidate at the Leiden Institute of
Advanced Computer Science (LIACS) at Leiden University;

• 12 developers from the field of custom software development at various different
organizations in New Zealand and the Netherlands, including Capgemini the
Netherlands, Infoprofs and ASR Insurances.
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Because of non-normal distributions, we use the non-parametric Mann-Whitney U
test for comparison between groups and Kendall’s τ for bi-variate correlation analysis.
As expected, professionals are significantly older and reported significantly more
academic (U = 105, z = −2.9, p < 0.01) and industrial experience (U = 107, z = −2.6,
p < 0.01) than the students.

In the following sections we will evaluate the data obtained with respect to our
hypotheses.

6.5.1 Media Effectiveness

We evaluated media effectiveness in terms of how well participants were able to
extract information from the documents i.e. in terms of the amount of correct answers
given. The distribution of the correctness of the answers to the 13 questions we posed
is leptokurtic and left-skewed. A Shapiro-Wilk (S-W) normality test confirms that
the distribution of correct answers (slightly) deviates from normality (p = 0.04). We
therefore resort to non-parametric tests for statistical analysis.

24 Participants worked with version A of the experiment materials and 23 parti-
cipants worked with version B. Media dominance was distributed equally over both
versions of the experiment (see Table 6.2) to be able to examine the effect of media
dominance. We used a Mann-Whitney U test to check if there were no significant
differences between the measurements obtained for both versions of the experiment
for all variables under study.

We tested for any potential advantage of diagram-dominant versus text-dominant
document pairs. Descriptive statistics for the amount of given answers that were correct
for text-dominant versus diagram-dominant architecture descriptions are depicted in
Table 6.5. Histograms for the number of correct answers given for each treatment are
depicted in Figures 6.3(a) and 6.3(b).

A visualization of the differences of the distribution of answers is depicted in
Figure 6.4. Surprisingly, we found that neither diagram- nor text-dominance had a
significant effect on correct answers given nor on the time spent on answering questions.
We therefore reject H11. Diagrams were not more effective, despite a substantial number
of participants whose first language was not English (77 percent of participants). We
will further discuss the role of language in Subsection 6.5.7.

We could not observe significant amounts of initial media preference or average
media preference either. These findings do not change if we look at a subset of the
questions: For the four questions to which the answer could be found only in either
medium, no medium type proved to be more effective in terms of causing more correct
answers. The findings did not change either when we looked at professionals and
students separately. This contradicted the first hypothesis: diagrams were not preferred
over text.

The treatment showed no clear pattern. We therefore looked for patterns in the data.
Analysis of the respondent behavior led to the identification of two groups: One group
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Table 6.5: Descriptive statistics for the amount of given
answers that were correct for text-dominant
versus diagram-dominant architecture de-
scriptions

Treatment Answers Correct
(out of 12)

median mean std. dev.
x̃ x̄ σ

text–dominant1 8 7.70 1.54

diagram–dominant2 7 7.35 1.52

1
version A of (α +β) + version B of (γ + δ)

2
version B of (α +β) + version A of (γ + δ)

(for dominance distribution, also see Table 6.2)
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Figure 6.3: Histograms for the amount of correct answers per treatment



Results and Discussion 121

0 2 4 6 8 10 12

0.00

0.05

0.10

0.15

0.20

0.25

0.30

answers correct

D
en

si
ty

diagram−dominant treatment
text−dominant treatment

number of

Figure 6.4: Density plot for amount of correct answers per treatment

(62 percent of the participants) predominantly used diagrams to answer questions, the
other (the remaining 38 percent of the participants) used text more intensively. The
group that uses diagrams more often, thinks that diagrams are more effective, answers
faster and switches media more often and more frequently only resorted to diagrams
to answer a question. The other group used text more often, was more experienced and
scored better. Note that while the latter group suggests that participants who preferred
text scored better, this does not imply a general advantage in effectiveness for text:
participants who used the text-dominant architecture descriptions did not score better,
as we mentioned earlier.

Using the post-experimental questionnaire, participants were asked to rate the
effectiveness of both media on a 7-point Likert scale. Participants who prefer diagrams
are significantly more likely to perceive the effectiveness of diagrams to be higher than
participants who attribute a comparable score to their perception of the effectiveness
of text. As mentioned, the diagram-preferring group of participants, who was faster
(τ = −0.265, p ≤ 0.05) and rated their media type of preference as the most effective
(τ = −0.265, p ≤ 0.05), did not score better in terms of correct answers, i.e. where not,
in fact, more effective. In fact, we found that those participants who predominantly
use text, score significantly better (τ = 0.281, p ≤ 0.05). So, participants who prefer
text make a realistic judgment about the effectiveness of text. Participants who prefer
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diagrams, on the other hand, significantly overrate the effectiveness of diagrams. As
a result, the group that preferred diagrams not only scored lower, but thought they
had used the more effective media type. Diagrams seem to offer a specific group of
developers a false sense of confidence. This group was more willing to provide an
answer based on inferencing from the diagram than to carefully examine the text. In
addition, we found that those with more experience more often resort to text to answer
a question (τ = 0.273, p ≤ 0.05).

In the following section we investigate whether questions relating to topological
architecture properties are better catered for by either media type (H21).

6.5.2 Media Effectiveness for Topological Properties

In this section we explore whether diagrams are more effective at conveying topo-
logical design information to software developers. We define topological properties
as the design information that is related to the static and structural dependencies
between subsystems. Given that these topological properties lend themselves well
to visualization, we expect that diagrams are the favored source for answering such
questions. However, we could not observe that participants used diagrams more often
to answer questions addressing properties of a topological nature (see Table 6.4). We
therefore reject H21. Contrastingly, we found that in comparison to non-topological
questions, participants significantly more often used the diagram when they provided
their answer (U = 6.5, z = −1.797, p ≤ 0.05).

Media dominance had no influence on participant behavior for most of the five
topology-related questions, with the exception of two questions: We found significant
differences in the amount of correct answers given for questions α3 (U = 191.5, z =
−2.64, p < 0.01) and δ2 (U = 230, z = −2.03, p < 0.05) (of the type “How does X search in
Y” and “Through what node does X connect to the Y?” respectively). The answer to either
question could be found in the diagram and the text in both document versions.

6.5.3 Media Preference

Media preference denotes the characteristic of an inherent preference of a person to
prefer to work with either textual or graphical representations. Analyzing the data
from this perspective, we found that participants prefer the diagram as their first
source of information: in 10 out of 13 questions, participants first started examining
the diagram. This count includes participants who only briefly gaze over the diagram
before examining the text. Media dominance does not significantly influence this
behavior. A possible explanation is that diagrams are used to get an initial global
overview of a system. This is in line with the “Visual Information-Seeking Mantra” that
Shneiderman (1996) describes. In his work, Shneiderman outlines the steps followed
in visual information retrieval. He summarizes his principle in a mantra: “Overview
first, zoom and filter, then details-on-demand.”
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When aggregating the usage pattern of media for all questions, 98 percent of
all participants used both media types to arrive at answers. Only one participant
relied exclusively on diagrams for answering all questions. When analyzing answers
to individual questions, 27 percent of the 611 answers given (47 participants × 13
questions), were based on the use of only one medium. In contrast, five participants
(10 percent) always used both media to answer a question. The latter group might
be classified as a “thorough” group, not only because of their comprehensive media
usage but because this group scored higher (τ = −0.312, p ≤ 0.01). The latter fact is not
a result of the group consisting mainly of experts. Participants of this group were not
more experienced nor was it composed mainly of professional developers. Also, these
participants had slower response times (τ = −0.464, p ≤ 0.001) further corroborating the
notion of “thoroughness.” Note that “non-thorough” participants had no particular
reason to work quickly as no time limit was imposed.

Interestingly, we found that “thorough” participants were more likely to start and
end with looking at a diagram. In contrast, another group that scored better than
average, predominantly used text. This latter group was composed of experienced
participants. So, “thoroughness” does not correlate with media preference but “ex-
perience” does. A potential explanation for that latter observation is that industrial
practice could have made experienced developers diagram-averse in the sense that
they prefer understanding all text accompanying a diagram. Perhaps the low quality
of diagrams they had do deal with in the past created low expectations as to the utility
of diagrams in general. By using an eye tracker, Yusuf et al. (2007) also found that more
experienced developers read diagrams differently.

6.5.4 Guesses and Suppositions

For four questions, the answer could be found in either the text or in the diagram,
depending on the version of the experiment a participant obtained. For each of these
four questions (α2,β1,γ1 and δ1), we looked at the amount of participants that used
only the medium that did not provide enough information to answer the question.
These participants did not switch to the medium from which the answer could be
derived. Note that nothing inhibited these participants from spending as much time as
they needed to answer the questions. These participants therefore seemed to prefer
guessing over continued consideration of the presented material. For all participants,
10 out of a 188 (4 questions × 47 participants) or 5.3 percent of all questions, were given
based on a single medium from which the answer could not be derived. Only in one
of these 10 cases did a participant guess the correct answer. This was for question
β 1 which was the only closed question of this type. This participant therefore had
a “fifty-fifty” chance of guessing the right answer. These 10 answers were given by
9 different participants. So, 19 percent of participants demonstrably and needlessly
guessed the answer to at least one question. Two of these participants were experienced
software developers who are active in industry. Note that “switching between media”
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in the context of this experiment refers to the act of slightly moving one’s head from left
to right or vice versa. As architecture representations are often vast and dispersed over
various sources, in practice (much) more effort is likely to be needed to understand a
given aspect of a software architecture.

To be able to find a measure of the extent to which developers are satisfied with
incorrect information, we inserted two “false friends” into the experiment design.
These “false friends” constitute information that resembles a correct answer but would
be easy to distinguish as incorrect information, if given sufficient attention would
be given to detail. In the experiment design, the answers to three questions could
not be derived from either medium (for both versions of the experiment). In two of
these cases, we inserted these “false friends.” For question β 3 (“Can message type x be
ignored by system y?”), one of the classes contained the method “+ignoreMessage().”
That particular class had no relation to external systems. For question γ 3 (“Is there a
limitation on functionality x when requested from system y?”), the text contained the phrase
“requests may have a maximum size of 300 kilobytes.” Request volume and constraints
on individual requests are unrelated, most participants correctly observed. For these
questions, we took into consideration why a participant gave a specific answer (by
means of the think aloud protocol) to be able to tell whether a “false friend” was the
cause for the specific answer given. In univariate analysis, we found that those with
more industrial experience, are less likely to fall for a false friend (τ = −0.333, p ≤ 0.01).
These participants are less quickly satisfied with information that only resembles a
correct answer. We found that the participants who demonstrably and needlessly
guessed the answer to at least one question, were not more likely to fall for a false
friend (Mann-Whitney p = 0.88).

6.5.5 A Case Against Overlap

While it is commonly accepted that images are far better remembered than text (e.g.
McDaniel and Pressley, 1987), there are various restrictions to their use. For example,
the third of the “ten commandments of picture facilitation”, of Levin et al. (1987) (which
were more recently validated by Carney and Levin (2002)) reads:

“Pictures shalt not be used in the presence of “heavenly” bodies of prose. If the
text is highly memorable to begin with, there is no need to add pictures.”

For software design representations, this would imply that a diagram should only be
used when a textual description is insufficient. Moreover, if a textual description is
very clear (“heavenly”), diagrams should be avoided to prevent confusion. We reported
that we found that neither text nor diagram-dominant descriptions are more efficient
in communicating software architecture design. However, for five questions, we repre-
sented similar information in both media (T ∩D - also see Table 6.4). Indeed, we found
in industrial reality often an overlap of the information presented in diagrammatic
and textual models (Heijstek and Chaudron, 2011). Given Levin’s commandment, due
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to confusion, participants could have scored lower for questions to which the answer
could be derived from both media (the example question and questions α1, α3, β2, γ2
and δ2), compared to the other questions. The score per question varies too much to be
able to compare whether this was the case. When we consider whether participants
who predominantly used the text or the diagram, we found that this is not related to
whether they answered these questions correctly.

6.5.6 Conflicting Information

In industrial reality, developers are confronted with design documentation that is
mostly incomplete and often inconsistent. Both incompleteness and inconsistency in
UML diagrams have been addressed by empirical research. For example, Lange and
Chaudron (2006) studied the effect of defects in UML models on developer compre-
hension. In their controlled experiments with a group of 159 students and industrial
practitioners, they found that defects in UML models often remain undetected and
cause misinterpretations. In addition, they found no implicit consensus about the inter-
pretation of undetected defects and conclude that defects in UML models are potential
risks that can cause misinterpretation and miscommunication. Another interesting
finding of this study is that the presence of domain knowledge strongly decreased
the detection rate for a defect type. Domain knowledge might therefore lead people
to more quickly fill in omissions based on assumed domain knowledge. Nugroho
(2009) found that a higher level of detail in a UML model significantly improves cor-
rectness and efficiency of subjects in comprehending UML models. He also found that
models with a lower level of detail were more often misunderstood or misinterpreted.
Balzer (1991) reported that harsh consistency constraints on design in practice are often
removed in favor of flexibility. The architecture used to support the first question,
the example question, contained conflicting information between the diagrammatic
and textual representations. By analyzing the answer and participant behavior, we
could determine which medium type was more dominant for participants. Out of all
participants, 85 percent examined both media. The other 15 percent used only the
diagram (all of these participants on average preferred diagrams for all subsequent
questions). Out of those who used both media for the first question, we found that
only 35 percent preferred the answer that could be deduced from the text. We should
note that the example architecture was text-dominant for all participants. Many parti-
cipants noted that they found the inconsistency and deliberately choose the diagram.
When confronted with conflicting information, developers seem to decide that the
information presented in a diagram is more authoritative than the textual information.

6.5.7 Participant Characteristics as Performance Predictors

Gemino and Wand (2003) recommend examining three antecedents of knowledge
construction in empirical evaluation of model representations, based on Oei et al.
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(1992): (a) content, (b) presentation and (c) model viewer characteristics. Now that we
have established that no media type was more effective in communicating architecture
information, we set out to investigate: To what extent can developer (or: model viewer)
characteristics explain the variance in the amount of correct answers given? In this
section we investigate which participant characteristics can be used as predictors
of performance. We employed a multiple regression analysis using the backward
elimination method (Hocking, 1976). We considered the following variables:

1. Experience (Explained in Section 6.5.7)

2. Media Preference (Coded as diagram = 0, text = 1; Explained in Table 6.1)

3. Media Exclusion (i.e. how often a participant only used one medium)

4. Diagram Working History (i.e. how long it has been since the participant last
worked with software design models)

5. Media Inclusion (i.e. average switches between media) (Also explained in Ta-
ble 6.1)

6. Self-Rated Modeling Skill (Explained in Table 6.1)

7. Average Time per Question (Explained in Table 6.1)

8. Linguistic Distance (Explained in Section 6.5.7)

The first and last participant characteristics are explained next in more detail.

Linguistic Distance

For linguistic distance we adopted a measure reported by Chiswick and Miller (2004)
based on a study by Hart-Gonzalez and Lindemann (1993). Chiswick and Miller pose
the question: How difficult is it for individuals who know language A to learn languages B1
through Bi, where there are i other languages? They go on to state that “if it is more difficult
to learn language B1, than it is to learn language B2, it can be said that language B1 is more

“distant” from A than language B2.” A list of the languages encountered in the experiment
and their associated linguistic distances to English can be found in Table 6.6.

We found that univariately, this measure significantly correlates with the amount
of correct answers given (τ = −0.289, P ≤ 0.05). This implies that the further a partici-
pant’s native language is removed from English, the fewer correct answers are given.
Language distance, therefore, is important and should be minimized. This implies
that diagrams were unable to bridge language barriers. In addition we found that
participants whose language has a certain minimum distance away from English were
significantly more likely to switch between media.
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Table 6.6: Language Grouping & Distance

language1 n score2 family distance3

English 13 - Indo-European 0

Romanian 1 3.00 Indo-European 0.33

Dutch 20 2.75 Indo-European 0.36

German 1 2.25 Indo-European 0.44

Spanish 1 2.25 Indo-European 0.44

Farsi 1 2.00 Indo-European 0.50

Bulgarian 1 2.00 Indo-European 0.50

Tagalog 1 2.00 Austroeasian 0.50

Bengali 1 1.75 Indo-European 0.57

Mandarin 4 1.50 Sino-Tibetan 0.67

Arabic 1 1.50 Afroasiatic 0.67

Chaouia 1 - Afroasiatic -
Nyanja 1 - Niger-Congo -

1
self-reported by participant (“Native Language”)

2
reported in (Hart-Gonzalez and Lindemann, 1993)

3
inverse of score (

1

score
) (Chiswick and Miller, 2004)

Participant Experience

In this paragraph, we explain the metrics we used to quantify participant experience.
We used the proposed ordinal classes of participant experience by Höst et al. (2005):

• E1: undergraduate student with less than 3 months recent industrial experience

• E2: graduate student with less than 3 months recent industrial experience

• E3: academic with less than 3 months recent industrial experience

• E4: any person with recent industrial experience, between 3 months and 2 years

This metric is a compound, composed of the values we collected for academic and
industrial experience (see Table 6.1). A comparison of the distribution of these three
variables is depicted in Figure 6.5. In this figure, one can observe that the metric
proposed by Höst et al. (the middle line) is a proper compound of academic and
industrial experience for our participant.

The values for experience we obtained are not normally distributed (leptokurtic,
right skewed, S-W p ≤ 0.001). We use Kendall’s τ (Noether, 1981) for bivariate statistical
analysis. We found that the Höst et al. index of experience individually correlates
with the amount of correct answers a participant gave (τ = 0.31, p = 0.1). Experience,
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Figure 6.5: Density plot for academic experience, industrial experience and Höst experience
class of participants

however, does not relate to the speed with which a participant was able to answer or
the amount of times he switched between media.

Multivariate Analysis Results

The results of our multivariate analysis are summarized in Table 6.7. The multivariate
analysis results in a model that features four significant variables, namely media prefer-
ence, linguistic distance, experience and self-rated modeling skill. The model is highly
significant (p ≤ 0.001) and explains 50 percent of the variability of correct answers
given. We were able to rule out multicolliniarity among the resulting predictors; the
variance inflation factors (VIF) are not substantially higher than 1 (Bowerman and
Richard, 1990). No individual subject seemed to influence the model as e.g. no case
has a standardized residual larger than 2. We found that the coefficient for language
distance is negative, implying that the further a participant’s language is from English,
the fewer correct answers the participant will give. Remember that media preference is
coded as diagram = 0, text = 1. Therefore, this confirms the earlier result that a textual
media preference was beneficial for correctly answering the questions. As expected,
experience was also beneficial for providing correct answers.
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The fact that self-reported assessment of modeling skill turned out to be a predictor
is consistent with similar findings that show that self-reported ability correlates with
e.g. actual mechanical and spatial ability (Hegarty and Just, 1993). In order to be
able to see which predictor was the strongest, we standardized coefficients (which
are measured in standard deviation units). We found that language distance had
the greatest contribution to the model that predicts the performance of participants.
Those participants whose native language was further away from English had greater
difficulty understanding the software architecture designs.

6.6 Threats to validity

In the following, we discuss a number of factors that may have influenced the results
obtained from the experiment in a way that prevents them from being indicative for
other contexts as well. We categorized our potential threats to validity based on Wohlin
et al. (2000).

6.6.1 Internal Validity

We addressed problems relating to maturation i.e. increasing familiarity with a problem,
in several ways: We interacted with participants by means of a strict interaction protocol
so to be able to react to questions or remarks in a uniform way. We thus prevented
participants to use the experimenter as an additional source of information. We also
changed the order in which participants received the architectural descriptions (which
also prevented effects due to fatigue).

We minimized the threat of “diffusion of treatment” by asking participants not to
discuss the experiment with their colleagues or fellow students. No materials could be
taken by participants from the experiment environment.

Threats related to instrumentation were addressed by using a protocol for the use
of the camera. On the different locations where we conducted the experiment, we
“camouflaged” the camera by placing it inconspicuously among other equipment in its
surroundings (as in Figure 6.1(b)). Whenever the camera needed to be handled, it was
done while no participant was in the room.

A related potential threat is that participants behave differently because they are
aware of the experiment situation. Either stress or the “Hawthorne effect” could in-
troduce a negative or positive bias respectively. In order to address such factors, we
introduced an example question to allow participants to get used to the environment.
We believe that participants found the questions challenging enough to fully concen-
trate on the design documentation, i.e. practically became oblivious to the experiment
situation. This is supported by our analysis of the video material. The experiment
protocol prescribed interaction while documentation was switched in order to keep
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participants occupied. We equivocated the use of a camera and by only mentioning the
session would be “recorded” without providing further detail how this would be done.

Another possible threat is that various studies of the process of solving problems
reported that verbalization of this process improves problem-solving performance (e.g.
Johnson and Shih-Ping, 1999, Flaherty, 1975). Therefore, this might have influenced
the extent to which participants were able to provide a correct answer. In addition, the
intensity and contents of the verbalization varied strongly among participants. Not
all participants will have benefited from the performance increases that verbalization
yields. Measures taken to diminish the described threats to validity are (1) not facing
the participant, (2) not answering participant questions, (3) making use of an interaction
protocol to limit the amount of possible responses that can be given to a participant.
The interaction protocol contains a process for stimulating thinking out loud.

The phrasing of the questions might have been suggestive in terms of which
medium is likely to provide the answer. This might have introduced a bias for media
preference and effectiveness, which may or may not become directly apparent. Our
findings do not suggest any such bias at all but due to the complexity of the subject we
cannot rule it out for every question.

Finally, one might argue that the separation of diagrams and text into two pieces of
paper might have invited participants to always use both. We had to create a sufficient
amount of physical separation between the sheets in order to be able to distinguish their
use in the video material. However, it is not clear as to whether less physical separation
would have made a difference and certainly some participants almost exclusively used
diagrams, demonstrating the potential to ignore one of the documents if that was felt
to be appropriate.

6.6.2 External Validity

The extent to which graduate, undergraduate and doctoral students are representative
of professional software developers and the threat of interaction of selection and
treatment respectively, have been addressed in various other studies (e.g. Arisholm
and Sjøberg, 2004, Briand et al., 2005, Höst et al., 2000). The students who participated
in this experiment were all exposed to software modeling in general and the notation
used for the diagrams (UML) in particular during various courses at the bachelor or
master level. In addition, more than a quarter of participants were actual professional
software developers (more than one for every three students). We maintain that for
understanding the software architecture designs we used, expert knowledge of the
UML is not a prerequisite for extracting information from the diagrams needed for
answering our questions.

In other words, we do not know whether these participants would not have done
equally well, if they had used the diagrams more often. If experience with low-quality
diagrams really played a role in our experiment then this particular finding would
imply “media adversity of good participants” rather than on “media effectiveness for
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text-centric developers.” Note, however, that overall we detected no better effectiveness
for text, so the potential bias did not affect our overall results.

The findings were based on fragments of architectural descriptions that were closely
based on samples of such descriptions taken from industrial SADs. Hence, these are
considered to be representative for the class of project that use a mix of text and
diagrams.

The threat of apprehension was mitigated by assuring anonymity and by explaining
the recordings could only be accessed by the involved researchers (whose names
were mentioned) and would be destroyed after data collection. Also, no time limit
was imposed upon participants. We avoided hypothesis guessing by keeping the
participants uninformed about the study objective.

6.6.3 Conclusion Validity

Reliability of measures was ensured by means of testing the used cameras and deter-
mining proper positioning to be able to clearly obtain head and eye gaze movement.
This information was documented in the experiment protocol. A coding protocol was
established for coding the videos and a second researcher re-coded videos to randomly
assess accurateness. Database entry was semi-automated and subject to rigorous con-
sistency checks. Threats regarding random irrelevancies were addressed by choosing
quiet locations to conduct experiments. The experiment materials and environment
were tested before real sessions commenced. The validity of the applied statistical tests
(e.g. the assumptions and correct application), subject selection and the data collection
process were discussed in previous sections.

6.7 Recommendations

This section contains an overview of the recommendation that follow from the findings
of this study.

• The use of both text and diagrams is needed. The use of only one medium
is not recommended, not even when the nature of the design decision to be
communicated is topological. Also for topological information, for which dia-
grams intuitively seems to be the preferred communication medium, a textual
description of the topology should be added.

• Another important reason for not defaulting to the use of only diagrams are
that diagrams do not seem to bridge linguistic distance. In addition, they also
potentially induce a false sense of confidence in developers in the sense that they
make assumptions.

• When using diagrams, make clear how these should be read. In an earlier study,
Holsanova et al. (2009) found that an “integrated format with spatial contiguity
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between text and illustrations facilitates integration.” Employing this method
would imply annotating a diagram with a description of how to read it, either in
natural text or using a more formal notation such as OCL.

• Consider your audience when engaged in GSD: Make sure that documentation
is unambiguous.

• Do not use ambiguous constructs. Use similar terminology in both diagrams and
text.

• Developers who are better at modeling, read diagrams better. UML training
or training regarding conceptual modeling might be beneficial for developer
understanding of architecture representation.

6.8 Conclusions and Future Work

Architectural design documentation is essential for communicating an architect’s
intentions. In current practice such documentation consists of a mix of diagrams and
textual descriptions but their creation is not informed by solid knowledge about how
the documentation is perceived by developers. We therefore conducted a controlled
experiment in order to evaluate the merits of different mixes of diagrammatic and
textual descriptions in which we tried to approximate industrial reality. One of the
results is that neither diagrams nor textual descriptions proved to be significantly more
efficient in terms of communicating software architecture design decisions. Another
unexpected result is that diagrams are not more suited to convey design decisions of
a topological nature. Remarkably, participants who predominantly used text, scored
significantly better; not just overall but with respect to topology-related questions as
well. Also, diagrams were not able to alleviate the difficulties participants with a native
language other than English had in extracting information from the documentation.
In combination, these findings question the role of diagrams in software architecture
documentation.

However, while diagrams were not superior regarding media effectiveness they still
seem to perform a special role. Participants were more likely to use diagrams as their
first source. They were more likely to look at the diagram at the very moment when
they provided answers to questions of a topological nature. Interestingly, thorough
developers tend to start and end with diagrams. More research is required to fully
understand how text and diagrams could complement each other, in particular with
respect to topological system properties.

Our analysis discovered two emerging group characterizations. One group pre-
dominantly utilized diagrams, was faster and overrated the effectiveness of diagrams;
the other group was more experienced and preferred text. Further analysis needs to be
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performed in order to understand these groups, so to be able to specifically cater for
them in the creation of software architecture documentation.

Finally, by conducting a multivariate regression analysis we identified developer
characteristics that can be used as developer performance predictors: linguistic dis-
tance, media preference, experience and self-rated modeling skill. The participants who
performed best had a native language close to English, used more text than diagrams,
were more experienced and rated their modeling skill to be relatively high.

Summarizing, while our experiment and subsequent analyses produced some very
interesting concrete findings, we feel that their ultimate value lies in the impetus they
provide to perform further research to better understand the effectiveness and roles of
media types in software architecture descriptions.



Chapter7
Contrasting Model-Driven
Development with Code-Centric
Development

MDD is seen as the natural continuation of the trend of raising the level of
abstraction at which software is developed. Consequently, in the past decade, there
has been increasing interest in MDD in both industry and academia. In addition,
MDD is emergent in GSD projects. Nevertheless its impact on the development
process in large-scale, industrial practice is not yet clear and empirical validations of
adoption of MDD tools and techniques are scarce. This chapter therefore addresses
how the characteristics of a large scale, industrial model-driven development project
in the context of global software development compare to non-MDD projects. We
specifically focus on the quantification of process metrics.

This chapter is based on the following publication:

Werner Heijstek and Michel R. V. Chaudron (2009) Empirical Investiga-
tions of Model Size, Complexity and Effort in Large Scale, Distributed
Model-Driven Development Processes — A Case Study. In Proceedings of the
35th Euromicro Conference on Software Engineering and Advanced Applications (SEAA
2009) pages 113–120, Patras, Greece
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7.1 Introduction

In the past decade, there has been increasing interest in MDD (Selic, 2003) in industry
and academia. MDD is also emergent in GSD projects (Jiménez et al., 2009). The
quality and productivity benefits claimed for the use of MDD triggered many studies
to advance MDD practices. Nonetheless, few empirical studies are available that study
the impact of applying MDD on industrial software development As a result, the
general impact on software development of using MDD is unclear.

The structure of this chapter is as follows: Sections 7.2 and 7.3 elaborate on the
study objective and related work. Section 7.4 explains the case study design. Section 7.5
discusses the results and the conclusions and future work are presented in Section 7.6.

7.2 Objectives

In this chapter, we address RQ3 (Section 1.3). This question aims to explain how
increasing model-centrality impacts the problems associated with GSD. To this end,
the differences between code-centric and model-driven software development are
analyzed.

In this chapter in particular, we aim to add to the limited experience reports in which
the specificities of MDD cases in general and cases of MDD adopted in GSD context
in particular, are reported. As established, it is important to investigate industrial
cases of MDD to add to the scarce literature. Such investigation is also beneficial for
benchmarking purposes and to evaluate the impact of the process and techniques used
in general. To these ends, we pose the following research question:

How do the characteristics of a large scale, industrial model-driven development
project in the context of global software development compare to non-MDD
projects?

This question is divided into sub-questions regarding key characteristics regarding the
software development process in general and models in particular:

1. What types of diagrams are used?

2. How is effort distributed over the “classic” development phases?

3. How big and how complex are these models?

4. How does model size grow over time?

5. Do model size and complexity impact defect count?
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7.3 Related Work

The main hypothesized benefits to be gained from adoption of MDD are

1. increase in productivity,

2. improved code-quality,

3. improved re-usability and

4. improved maintainability.

The main two principles that enable these benefits are (1) provision of better abstraction
techniques and (2) facilitation of automation (Mohagheghi and Dehlen, 2008, Staron,
2006, Kleppe et al., 2003). The software architect fulfills a central role in ensuring that
these potential benefits are actually obtained. The software architect is instrumental
in enabling correct model transformations such as code generation. His objective of
complying to non-functional requirements implies a careful consideration of available
modeling case tools and a leading role in the design and application of a Domain
Specific Language (DSL) (Van Deursen et al., 2000).

We focus on productivity. In this section, an overview is presented of related work.
First, we elaborate on the state of empirical research in MDD tools and technique
application. Second, the impact on productivity is discussed.

7.3.1 State of Empirical Research

Empirical evidence regarding the benefits of application of MDD tools and techniques is
sparse. Literature regarding MDD in large-scale, industrial projects often describes pro-
cesses in which legacy systems are reverse engineered to MDA (e.g. Anda and Hansen,
2006, Reus et al., 2006, Fleurey et al., 2007). Reports are mostly qualitative (Staron, 2006,
Raistrick, 2004, Baker et al., 2005).

An extensive review of literature regarding MDD (published between 2000 and
2007) was executed by Mohagheghi and Dehlen (2008), the results of which have been
summarized by Hutchinson et al. (2011):

• Most studies of the 25 selected papers were experience reports from single
projects;

• MDD was applied in a wide variety of organizations; methods of code generation
varied;

• MDD techniques are very dependent on tooling;

• productivity impact varied widely and more empirical studies that evaluate MDD
are needed.
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Concluding their work, Mohagheghi and Dehlen explicitly recommend that “future
work for evaluation of MDE should focus on performing more empirical studies, improving
data collection and analyzing MDE practices.”

7.3.2 Impact on Productivity

Most empirical studies regarding MDD address questions regarding efficiency (White
et al., 2005). Still, only few studies offer enough data to quantify and baseline pro-
ductivity (and quality) in industrial MDD projects (Shirtz et al., 2007, Weigert et al.,
2007). Anecdotal evidence in literature claims that adoption of MDD has hampered
productivity as much as 27 percent (MODELWARE D5.3-1, 2006) and improved pro-
ductivity as much as 800 percent (Baker et al., 2005). A case study by MacDonald
et al. (2005) of modification of a legacy system using MDD found that development
lead time increased due to “workarounds required to integrate with legacy systems.”
This directly impacts the work of a software architect. Furthermore, they found as
many defects as the authors would have expected with “traditional development.”
Moreover, these defects were more difficult to find and repair in the models because
of difficulties in tracing errors from the compiler directly back to the model without
using the generated code as a reference. Suffice to say that technical support of this
type of development process is demanding. The study did not use a fully functional
executable model. Also, it was hard to maintain platform independence due to work
methods and a lack of generic libraries.

In their recent multi-method study of the state of the practice of MDD, Hutchinson
et al. (2011) specifically addressed the perceived impact of MDD activities on produc-
tivity and maintainability. They found that the largest impact was not code generation
or meta-model reuse but “the use of models for understanding a problem at an abstract level.”
The second greatest impact was thought to be “use of models for team communication.”

7.4 Case Study Design

In this section we describe the case study design.

7.4.1 Context

We examine a project in which a system was defined, designed and built for supporting
the mid-office processes of the mortgage business. The client was a large financial
institution that operates globally and the contractor is the Dutch subsidiary of an
international IT service provider. The department responsible for development of
the system has extensive experience with building tens of software systems for the
financial sector as well as experience with global software development.
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A function point analysis that was based on the requirements was executed in
the early stages of the project. It reported a total of 1,973 function points to be built.
During the execution of the project, various change requests have been made. A total
of 32 team members worked on the project of which only a few did not work on this
particular project full-time. This corresponds to 28 full-time equivalents (FTE). Only
four team members had experience with a previous project in which MDD techniques
were applied. Total project duration was 24 months. RUP was used as development
process. The RUP is an adaptable process framework that is architecture-centric and
risk-driven and can be used for iterative software development (Kruchten, 2003b).
The project was carried out distributedly. A team of six developers and six testers
worked in India. Modeling was done in the Netherlands by a team of four designers,
development was done at both locations and testing was done in India. The Dutch
project leader was the main point of contact to the client in the Netherlands.

7.4.2 Specificities of the MDD Approach

In the development process, a DSL with strict modeling guidelines is used. These
guidelines address the dynamic aspects of the system and are based on UML 2. The
guidelines are developed without code generation in mind. The rationale behind using
UML for this reference model was that UML is more widely known than other suitable
candidates such as the Business Process Modeling Notation (BPMN). Model consistency
is enforced in two ways. First, the developers are restricted by the constraints imposed
by the UML meta-model. Second, a model validator is used. This validator checks
syntax and conformance to the UML meta-model. When code is generated, the models
are validated first. However, complete validity of the models is not so much the goal as
a working result. Source code is generated by using a code generator. This generator is
realized through a combination of open source libraries. During the project, developers
work at extending and enhancing the code generator. A general overview of system
components is depicted in Figure 7.1. The system consists of two parts. Part one is
a complex web-based system for user interaction, this system contains a web service
client. Part two is a web service that enables existing systems to request information.
The system domain model is formally modeled in UML and completely generated into
a Java implementation. The model syntax consists of

• classes and properties,

• property types and their names and documentation,

• associations between classes and

• required fields and constraints on classes.

Inside these entities, no other behavior is modeled. The classes contain no operations.
Screens that are deemed suitable to be modeled such as “input screens” and “selection
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Figure 7.1: Overview of case system components

screens”, are described in UML and completely generated to source code. For more
complex, custom screens, the syntax of the DSL does not suffice. These screen are fully
or partly hand-coded. The web service client is completely generated from the UML
model. Some parts of the business logic layer can be fully generated from the UML
model. Other parts are fully hand-coded.

Initially the target implementation language was a high level, business-oriented
programming language that would have been relatively easy to maintain. Due to
limitations imposed by using this language, later in the project it was decided that
Java 2 Enterprise Edition was to be generated from the models. Both The Spring
Framework1 and Hibernate (Bauer and King, 2004) are used for target development
and the tools used are Eclipse2, JBoss3 and MagicDraw4. The final application is to
operate on the IBM WebSphere5 platform and will use a DB26 database. Approximately
90 percent of the code is generated, the remaining 10 percent is written “by hand”.

1http://www.springsource.org/
2http://www.eclipse.org/
3http://www.jboss.org/
4https://www.magicdraw.com/
5http://www-01.ibm.com/software/websphere/
6http://www-01.ibm.com/software/data/db2/

http://www.springsource.org/
http://www.eclipse.org/
http://www.jboss.org/
https://www.magicdraw.com/
http://www-01.ibm.com/software/websphere/
http://www-01.ibm.com/software/data/db2/
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7.4.3 Data collection

We collected quantitative data regarding process and models from various sources.
The models were collected from a Subversion repository. Effort and defect data was
collected from SourceForge Enterprise Edition. For this study, we use the notion of
“diagram groups.” Each screen in the application that was created consisted of a set
of diagrams. After collecting all diagrams from Subversion, metrics were extracted
using SDMetrics (Wüst, 2009). This process was automated using a set of Bash and
Perl scripts. Metric data is available on a per diagram basis whereas effort and defect
data was only available on a per-diagram group basis. Therefore, the resulting metric
files were aggregated per diagram group so that effort and defect data per model could
be combined. In this project each diagram group was contained in a separate file.

7.5 Results

UML diagrams were created using MagicDraw 14.57. The DSL specification required
diagrams to be grouped together. A total of 119 diagram groups contain a total of
386 diagrams. A bar chart of the UML diagram types (Figure 7.2) shows that activity
diagrams are most abundantly used, followed by class and use case diagrams. The
reason for the plenitude of activity diagrams is that the development of the models is
user interface centric. This means that the process flow of the process that the system
will support is captured in the activity diagrams as a set of screens. The process flow
of modeling is chosen so that during maintenance changes in the business process can
easily be translated into changes to the models. In total, 104 diagram groups contain
one or more activity diagrams, 32 diagrams groups together contain 150 class diagrams
and all use case diagrams are spread over just two diagram groups. The average model
consists of one or two activity diagrams and zero or one class diagrams. Because
activity and class diagrams are the most important (and most prevalent) diagram types,
we will focus on these during the remainder of the study. In the next sections, we will
address model size, model complexity, development effort from various perspectives,
defects and changes and defect discovery over time.

7.5.1 Model Size

Model size metrics have been proposed in many studies (e.g. Marchesi, 1998, Genero
et al., 2002, Kim and Boldyreff, 2002). Empirical findings regarding model size metrics
have been reported fairly scarcely. Most often, class diagram size metrics are reported
(e.g. Marchesi, 1998, Lange and Chaudron, 2005, Lange, 2006, Egyed, 2007, Costagliola
et al., 2005, Nugroho and Lange, 2007). To establish the size of a model, we summed
all the size elements of all diagrams that were used in a model. Definitions of both

7http://www.magicdraw.com/

http://www.magicdraw.com/
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Figure 7.2: Frequency of UML diagram type use

activity and class diagram size metrics are presented in Table 7.1. Code size, measured
in source lines of code, is an often-used metric to track progress in non-MDD projects.
The organization that builds this software, usually estimates and tracks the lines of
code as a means of tracking progress. In this case, model size metrics were used. A
visualization of size metrics over time is depicted in Figure 7.3(a). As MDD was not
formerly employed, the actual progress could not yet be benchmarked to other projects
within the same organization for these specific model metrics. The average curve of the
growth of metrics over time is plotted in Figure 7.3(b). As is the case with cumulative
SLOC visualizations, a fairly gradual sigmoid curve can be discerned. However, the
majority of model elements (approximately 72 percent) seems to have been created
around development week 20, at approximately a third of the development process.
In the same figure, a cumulative plot of revisions over time (as obtained from the
repository log) is plotted over the same time period. From this plot, it can be deduced
that the amount of revisions per week does not taper off after week 20. In fact, a slight
increase can be observed. This implies that most model elements were already in place
early in the development process and that model elements are mostly altered. This is
consistent with the idea that MDD enables early prototyping and that the majority of
development time can then be used for fine-tuning the implementation.

7.5.2 Model Complexity

Model complexity is defined by the sum of the complexity of the activity diagrams
and the coupling of the class diagrams as they appear together in a single diagram
group. Some complexity diagram metrics for class diagrams, such as number of methods,
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Table 7.1: Model Size Metrics

ACTIVITY DIAGRAMS1

Actions The number of actions of the activity. Includes actions in all activity
groups (partitions, interruptible regions, expansion regions, struc-
tured activities including conditional, loop, and sequence nodes),
and their subgroups and sub-subgroups.

ObjectNodes The number of object nodes of the activity. Counts data store, central
buffer, and activity parameter nodes in all activity groups and their
subgroups.

Pins The number of pins on nodes of the activity. Counts all input, output,
and value pins on all nodes and groups of the activity.

ControlNodes The number of control nodes of the activity. Control nodes are
initial, activity final, flow final, join, fork, decision, and merge nodes.
The metric also counts control nodes in all activity groups and their
subgroups.

Partitions The number of activity partitions in the activity.

Groups The number of activity groups or regions of the activity. Counts in-
terruptible and expansion regions, structured activities, conditional,
loop, and sequence nodes, at all levels of nesting.

CLASS DIAGRAMS1

Classes The number of classes on the diagram.

NumAttr The number of attributes in the class. Also known as the Number of
Variables per class (Lorenz and Kidd, 1994).

1 source: SDMetrics 2.2 User Manual (Wüst, 2011)

were not applicable to the class diagrams designed by this project due to modeling
conventions (no methods were used). Instead, we used coupling measures to denote
class diagram complexity. Descriptions of both activity and class diagram complexity
and coupling metrics are presented in Table 7.2. Diagram group complexity is defined
as the average complexity per diagram type:

complexitymodel =
complexityactivity diagram

∑diagramsactivty

+
couplingclass diagram

∑diagramsclass

(7.1)
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Table 7.2: Model Complexity Metrics

ACTIVITY DIAGRAMS (COMPLEXITY)1

ControlFlows The number of control flows of the activity.
ObjectFlows The number of object flows of the activity.
Guards The number of guards defined on object and control flows of the

activity.

CLASS DIAGRAMS (COUPLING)1

Dep_Out The number of elements on which this class depends.
Dep_In The number of elements that depend on this class.
NumAssEl_ssc The number of associated elements in the same namespace as

the class.
NumAssEl_sb The number of associated elements in the same scope branch as

the class.
NumAssEl_nsb The number of associated elements not in the same scope branch

as the class.
EC_Attr The number of times the class is externally used as attribute type.

This is a version of OAEC+AAEC (Briand et al., 1999).
IC_Attr The number of attributes in the class having another class or

interface as their type. This is a version of OAIC+AAIC (Briand
et al., 1999) and also known as Data Abstraction Coupling) (Li
and Henry, 1993).

EC_Par The number of times the class is externally used as parameter
type. This is a version of OMEC+AMEC (Briand et al., 1999).

1 source: SDMetrics 2.2 User Manual (Wüst, 2011)

As expected, there exists a positive correlation between diagram group size and average
diagram size (Table 7.5.3). This implies that diagram groups that contain more diagrams
also contain bigger diagrams. In addition, as diagram group size increases, the average
complexity per diagram also increases. This means that certain diagram groups receive
more attention than others and might imply that some diagram groups are more
important than other models. Not surprisingly, the greater the average diagram size
in a diagram group is, the greater the complexity of the diagrams becomes. This
underlines our finding that larger diagram groups contain more complex diagrams.

7.5.3 Development Effort

In this section we elaborate on the effort data recorded for the case. The following
sections contain an analysis of model development effort, development phase effort
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and model change effort.

Model Effort

The elaboration phase was executed in three large iterations. The construction phase is
executed in many iterations that last one week each. The amount of effort spent per
project phase is depicted in Figure 7.4(a). In the construction phase, about 40 percent
of effort is spent on development of the models. The remaining effort is spent on
the generator and coding. Of the 10,000 hours spent in the construction phase, 500
hours were spent on changes. The amount of effort spent on the models, and the
effort types we could distinguish from the data are shown in Figure 7.4(b). As can
be seen, a substantial amount of time is spent on adding functionality to the code
generator. This effort is disregarded for the analysis of the effort spent on each diagram
group. Interesting is that about 9 percent of the time is spent on issue resolution, and
2 percent is spent on changes. This is a relatively low amount of effort. Of all effort,
59 percent could be traced back to a specific diagram. The amount of effort spent on
development or modeling does not correlate with model size. Only the effort spent on
testing correlates with the amount of defects found. Analyzing the relation between
model complexity and effort, we found that, the longer a diagram group is worked on,
the more complex the activity diagrams are. Contrastingly, development time does not
seem to be related to class diagram complexity.

Phase Effort

We compared the effort spent per phase and the length of the phase to the averages
of 17 RUP projects that were executed by the same organization (Figure 7.5). Some
observations can be made regarding this visualization. First, the inception phase of
MDD is quite similar to the other projects. This is most likely because the inception
phase of an MDD project is not necessarily different from any other type of project.
Second, during the elaboration phase, significantly more effort is spent. This is likely
to be caused by a team size increase. Because MDD requires much modeling, more
developers are needed at an earlier stage in the project. The team size increase that
traditionally takes place at the start of the construction in this MDD project took place
in the elaboration phase. Third, the elaboration phase lasted significantly longer. In the
interviews, we found three explanations for this phenomenon:

1. the initial design of many of the models is seen as a design activity rather than
an implementation activity

2. the switch from the higher level target language to Java, which caused a delay

3. general learning effects of introducing MDD on a large scale
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Figure 7.3: Model metrics and revision count over time
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(a) Hours per development phase

(b) Effort related to model types

Figure 7.4: Project effort distribution on phase and model level
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Table 7.3: Bi-Variate Correlation Matrix for Common Process Metrics in MDD Context

SPEARMAN’S RANK CORRELATION COEFFICIENT (ρ)

defect
count

defect
priority

model
size

diagram
size

model
com-
plexity

class di-
agram
size

activity
dia-
gram
size

defect
closing
time

activity
dia-
gram
com-
plexity

number
of dia-
grams

class
cou-
pling

defect count ρ 1 0.176 0.258 0.188 0.103 0.189 0.227 0.294(*) 0.348(**) 0.226 0.093

p . 0.191 0.052 0.166 0.452 0.518 0.095 0.026 0.009 0.090 0.753

N 57 57 57 56 56 14 55 57 55 57 14

defect priority ρ 0.176 1 0.118 −0.019 0.012 −0.336 −0.020 0.289(*) −0.032 0.169 −0.440

p 0.191 . 0.382 0.891 0.928 0.240 0.885 0.029 0.817 0.209 0.115

N 57 57 57 56 56 14 55 57 55 57 14

model size ρ 0.258 0.118 1 0.364(**) 0.398(**) 0.428(*) 0.918(**) −0.075 0.850(**) 0.738(**) 0.613(**)
p 0.052 0.382 . 0 0 0.023 0 0.577 0 0 0.001

N 57 57 119 103 103 28 103 57 103 119 28

diagram size ρ 0.188 −0.019 0.364(**) 1 0.947(**) −0.175 0.518(**) −0.021 0.599(**) −0.451(**) 0.181
p 0.166 0.891 0 . 0 0.374 0 0.876 0 0 0.356

N 56 56 103 103 103 28 102 56 102 103 28

model complexity ρ 0.103 0.012 0.398(**) 0.947(**) 1 −0.190 0.553(**) −0.064 0.545(**) −0.456(**) 0.142
p 0.452 0.928 0 0 . 0.334 0 0.639 0 0 0.470

N 56 56 103 103 103 28 102 56 102 103 28

class diagram size ρ 0.189 −0.336 0.428(*) −0.175 −0.190 1 0.082 0.164 0.158 0.670(**) 0.641(**)
p 0.518 0.240 0.023 0.374 0.334 . 0.680 0.575 0.421 0 0

N 14 14 28 28 28 28 28 14 28 28 28

* Correlation is significant at α = 0.05 / ** Correlation is significant at α = 0.01

(continued on next page. . . )
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SPEARMAN’S RANK CORRELATION COEFFICIENT (ρ) (continued)

defect
count

defect
priority

model
size

diagram
size

model
com-
plexity

class di-
agram
size

activity
dia-
gram
size

defect
closing
time

activity
dia-
gram
com-
plexity

number
of dia-
grams

class
cou-
pling

activity diagram size ρ 0.227 −0.020 0.918(**) 0.518(**) 0.553(**) 0.082 1 −0.117 0.940(**) 0.391(**) 0.332

p 0.095 0.885 0 0 0 0.680 . 0.395 0 0 0.085

N 55 55 103 102 102 28 103 55 103 103 28

defect closing time ρ 0.294(*) 0.289(*) −0.075 −0.021 −0.064 0.164 −0.117 1 −0.009 0.010 −0.065

p 0.026 0.029 0.577 0.876 0.639 0.575 0.395 . 0.945 0.939 0.826

N 57 57 57 56 56 14 55 57 55 57 14

act. diag. complex. ρ 0.348(**) −0.032 0.850(**) 0.599(**) 0.545(**) 0.158 0.940(**) −0.009 1 0.347(**) 0.273

p 0.009 0.817 0 0 0 0.421 0 0.945 . 0 0.159

N 55 55 103 102 102 28 103 55 103 103 28

number of diag.s ρ 0.226 0.169 0.738(**) -
0.451(**)

-
0.456(**)

0.670(**) 0.391(**) 0.010 0.347(**) 1 0.405(*)

p 0.090 0.209 0 0 0 0 0 0.939 0 . 0.032

N 57 57 119 103 103 28 103 57 103 119 28

class coupling ρ 0.093 −0.440 0.613(**) 0.181 0.142 0.641(**) 0.332 −0.065 0.273 0.405(*) 1

p 0.753 0.115 0.001 0.356 0.470 0 0.085 0.826 0.159 0.032 .
N 14 14 28 28 28 28 28 14 28 28 28

* Correlation is significant at α = 0.05 / ** Correlation is significant at α = 0.01
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Table 7.4: Bi-Variate Correlation Matrix for Defect Priority and Changes

SPEARMAN’S RANK CORRELATION COEFFICIENT (ρ)

devel.
time

changes number
of dia-
grams

model
size

diagram
size

model
com-
plex-
ity

defect
clos-
ing
time

defect
count

defect
prior-
ity

activity
dia-
gram
size

activity
dia-
gram
com-
plex-
ity

class
dia-
gram
size

class
cou-
pling

devel. ρ 1 0.769(**) 0.378(**) 0.473(**) 0.215(*) 0.142 0.189 0.653(**) 0.162 0.366(**) 0.440(**) 0.101 0.308

time p . 0 0 0 0.034 0.164 0.158 0 0.229 0 0 0.648 0.152

N 107 107 107 107 98 98 57 57 57 97 97 23 23

changes ρ 0.769(**) 1 0.614(**) 0.634(**) 0.078 0.013 0.138 0.493(**) 0.132 0.451(**) 0.489(**) 0.121 0.544(**)
p 0 . 0 0 0.445 0.899 0.306 0 0.328 0 0 0.581 0.007

N 107 107 107 107 98 98 57 57 57 97 97 23 23

* Correlation is significant at α = 0.05 / ** Correlation is significant at α = 0.01
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(a) Revision length (days) (b) Changes per model

Figure 7.6: Software configuration and change management system usage

Change Effort

The amount of changes per diagram were measured by the amount of version updates
found in Subversion that were directly related to that diagram. On average, a model
had 12.6 versions associated with it. A total of 1,308 change commits to the Subversion
repository were associated with a model out of a grand total of 9,035 commits (14.5
percent). The reason for the substantial difference between model-related and non-
model-related commits is that the repository contains all documentation regarding the
project including status reports and other kinds of management specific files. The files
are altered, and subsequently checked-in, frequently. Also, the amount of development
time per model was measured as the difference between the dates of the first and
the last model related change, measured in days. A summary of the measurements
for revision length is depicted in Figure 7.6(a). The average amount of calendar days
during which a model was revised was 111. The total amount of days during which all
models were altered is 230 days.

7.5.4 Defects and Changes

Defects were stored in a centralized defect tracking system. All team members were
able to add defects to the database. Per defect, a unique id, title and description were
recorded as well as a priority. Furthermore, defect submission time, closing time and
the last modified time were recorded. Lastly, defect status (Assigned, Closed, . . . )
and defect type were recorded. Six different defect types were used, namely: defects
related to deployment, development, generation, modeling, requirements and testing.
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A total of 631 defects was registered. Of these defects, 81 percent was directly related
to a model. A total of 80 models (or 68.4 percent) had one or more defects associated
with them. In this subset, on average, 6.4 defects were found per model. These are
pre-release defects. At defect submission time, a defect priority is assigned to the defect
report on a scale of 1 (high priority) to 5 (low priority). The mean priority of the defects
related to a model is 1.9 whereas the mean priority for a defect that is not directly
related to a model is 2.35. This indicates that it is generally seen as more important to
solve defects related to a model than to resolve defects that are not related to a model –
underlining model centrality. The defects that are not related to a model mainly have
to do with the code generator.

We find that the defect count per model positively correlates with defect closing
time (Table 7.4). This implies that models with a relatively larger amount of defects,
have a higher average defect repair time. This is an intuitive finding as an increase in
the number of defects in a single model or diagram can increase the complexity of the
repair process and thereby delay a fix.

The finding that models with a relatively larger amount of defects, have a higher
average defect repair time is in line with maintenance for source code. A counter-
intuitive finding is that while both development time and the amount of changes
correlate positively with model size but that model size did not correlate with defect
count. This leads us to conclude that larger models are changed more often and
worked on longer but do not necessarily contain more defects. However, models
that are changed often do contain more defects. The reason for this relation could be
that fixing a defect induces extra changes. However, the reverse could also be true,
namely that models changed more often contain more defects as a result of an increased
amount of changes.

The earlier finding that certain diagram groups receive more attention than others
and might imply that some diagram groups are more important than other models
is not confirmed by the average defect priority of the diagram because it does not
correlate with model size. Bigger models do not contain defects that, on average, are
seen as more pressing to resolve. Also, model size does not correlate with defect closing
time. We expected a negative correlation between these two variables because larger
models are more complex and this could adversely impact the time needed to repair a
defect.

Furthermore, bigger models do not contain more defects. While appearing counter-
intuitive, this is in line with the Theory of Relative Defect Proneness (Koru et al., 2009)
(recently confirmed for closed-source software; Koru et al., 2010).

7.5.5 Defect Discovery

We plotted the cumulative defects found over normalized time for the case (labeled
“Project Alpha”) and 10 projects that were executed by the same IT organization (Fig-
ure 7.7) to enable visual comparison. The lines were smoothed using a Bezier algorithm
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for readability purposes. In the image, we see a clear difference between the case
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Figure 7.7: Cumulative defect discovery over time (case is labeled “Project Alpha”)

(Project Alpha in the graph) and the other projects. For example, when 40 percent of
the project time has passed only around 10 percent of the defects are reported whereas,
on average for conventional projects, 35 percent of defects were found. We found three
reasons for this relative slow defect discovery rate. First, ineffectivity in finding defects
due to a learning curve that interviewees associate with introducing MDD. Second,
because MDD was applied, much effort was spent in creating the models and the
generator at first, only later, when the hand coded part of the system was developed,
were real defects reported. Initial defects mostly involved the code generator. Third,
the standard quality assurance process was not yet tailored for MDD. Finding defects
in later stages in a project is commonly regarded as undesirable.

However, the amount of defects found per function point is equal to or less than8

0.32. The amount of function points has increased since the initial function point
analysis that was executed before the project started development, due to change
requests. The average of defects found per function point for 22 similar sized, non-
MDD development projects that were executed at the same organization is 0.52. This
implies that for projects on average approximately 396 less defects are reported for
MDD. This is a drastic decrease in the amount of defects found. A possible explanation

8We use the initial functional point count for this calculation. The amount of function points that is
implemented is expected to be higher than the initial functional point count.
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is the (much) larger proportion of the development effort that is spent on model
improvement compared to model build-up.

7.6 Conclusions and Future Work

The main objective for this study was to report on the specific characteristics of a large
scale, industrial MDD project and to asses what the impact was of using MDD tools
and techniques compared to non-MDD development.

Adopting MDD tools and techniques fundamentally impacts the software devel-
opment process in general and the analysis and design phases in particular. Because
almost all code was directly generated from diagrams, models were first-class citizens
(France and Rumpe, 2007, Balasubramanian et al., 2006) in the software development
process followed in this case.

Three striking differences in the development process were found. First, 59 percent
of all effort was spent on developing the model. That is significantly more than the
time spent on code development in classical software development. Second, most
model elements were already implemented at one third of the development process.
The remaining development time was spent on altering the models. Third, 40 percent
fewer defects were found when compared to projects of similar size.

Diagrams and code are fundamentally different and therefore not easily compared
as we found absent, for example, a positive relation between model size and complexity
on the one hand and defects on the other — relations that have often been observed in
source code. Also, larger diagrams were changed more often and worked on longer
but did not necessarily contain more defects.





Chapter8
Analysis of the Consequences of
Model-Driven Development for
Global Software Development

The promotion of models over code to first-class entities is a central theme of
Model-Driven Development (MDD). In theory, this has a profound impact on the
architectural process and the work of the software architect. MDD is emergent
in GSD projects and the main challenges in GSD include difficulties to share
knowledge, to align tasks and to obtain and maintain a shared mental model.
In theory, MDD has the potential to mitigate some of these difficulties. In this
chapter we aim to understand (1) how the application of MDD tools and techniques
affects the architectural process and (2) how this relates to the problems commonly
associated with GSD.

This chapter is based on the following publication:

Werner Heijstek and Michel R. V. Chaudron (2010) The Impact of Model-
Driven Development on the Software Architecture Process. In Proceedings of the
36th Euromicro Conference on Software Engineering and Advanced Applications (SEAA
2010) pages 333–341, Lille, France
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8.1 Introduction

Recent studies focus on decision making in the process of software architecting (e.g.
Kruchten et al., 2005). As a result, the practice of software architecting and the po-
sition of the software architect in the software development process are under in-
vestigation (Clements et al., 2007, Farenhorst et al., 2009). Also in Global Software
Development (GSD) projects, where software architecture is often transferred from
one development location to the other, the role of the software architect is not clearly
defined. In distributed settings, software architects have to interact with software
developers through (often great) geographical, temporal and socio-cultural distances.
So far, it has been unclear how these challenges are coped with in industrial practice.

At the same time, MDD tools and techniques claim improved team communication,
better (or even automatic) architecture compliance and resulting productivity gains.
Application of these tools demands a shift in boundaries between traditional roles in
the software development process as the code is no longer the central artifact – the
model is. This would have a profound impact on the architectural process and the
work of the software architect who has to work with a different set of tools, a different
vocabulary, a different type of development team. The architect also has an increased
responsibility to maintain consistency throughout the development process.

MDD is emergent in GSD projects (Jiménez et al., 2009). The main challenges in
GSD include sharing knowledge, to align tasks and to obtain and maintain a shared
mental model (Cannon-Bowers et al., 2001, Espinosa et al., 2001). In theory, MDD has
the potential to mitigate some of these difficulties. Using models as the central artifact
enables teams to use software architecture and design to direct team composition,
development process and even communication structures. In this chapter, we aim
to understand (1) how the use of MDD tools and techniques affects the architectural
process and (2) how these impact the problems commonly associated with GSD.

The outline of this chapter is as follows: Section 8.2 contains an overview of the
study objective and the data collection and analysis methods. Section 8.3 outlines
related work. Sections 8.4 and 8.5 discuss the results and the specific impact of MDD
on GSD. Finally, Section 8.6 contains conclusions and future work.

8.2 Objectives and Data collection and Analysis Methods

In this chapter, we address RQ3 (Section 1.3). One of the main implications that Šmite
et al. list in their recent structured literature review of empirical evidence in GSD is
that there exists a “gap regarding in-depth empirical investigations addressing particular
aspects of software engineering.” They continue to note that “thus, future research ought to
evaluate different practices, methods and techniques rather than mainly focus on managerial
problem-oriented lessons learned.” We have motivated that existing studies hint at the
positive influence that MDD could have on the GSD process. Therefore, it is not only
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necessary to understand what the impact is of using MDD tools and techniques in the
context of GSD in general. Specifically, we will address the impact in the context of the
problems associated with GSD. The research question addressed in this chapter can
therefore be formulated as follows:

How does the application of model-driven development tools and techniques impact
the problems associated with Global Software Development?

The subject of our analysis is the case outlined in Chapter 7. To analyze our data, we
apply the grounded theory approach. We used semi-structured interviews to survey
a subset of the project team members. We interviewed both the project manager and
lead architect before, during and after the project. The lead architect was interviewed
extensively six times over the course of two years. In the first interviews, the structure
of the project and the approach were discussed. The high amount of interviews was
needed because the contracting organization was not used to manage MDD projects
and therefore had limited insight in the approach and progress of the project. We
also extensively interviewed other team members including designers, developers,
lead developers, project leaders, a test manager, a system analyst and an estimation &
measurement officer involved in sizing and tracking the project.

During the interviews we asked questions regarding the impact of the application
of MDD on the activities of the participant and on the process of software development
in general. All questions were directed at (1) identifying every possible architectural
process-related differences with a non-MDD project and (2) finding all possible con-
founding factors. An audio-recording was made of all interviews. The next step
involved transcribing and coding the audio recordings. All separate statements made
by the subject were collected in a list. We then marked each statement that related
to MDD. After this initial coding process, we grouped the statements and identified
(formulated) a common impact factor that best described all statements in one group.
We then removed and merged duplicate and overlapping impact factors and we es-
tablished whether the impact was either (1) caused by the application of MDD, (2) the
cause of MDD and other, non-MDD, factors or (3) most likely not the cause of MDD.
We then confronted the interview participants with these distilled lists to validate our
interpretations. We repeated the coding process and updated factor descriptions in the
same way.

8.3 Related Work

This section addresses related work regarding the generic impact of MDD on the
software architecture process and the (potential) benefits of application of MDD in the
context of GSD.
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8.3.1 General Impact on the Software Architecture Process

A commonly adopted framework for MDD is Model-Driven Architecture (MDA,
Kleppe et al., 2003, Object Management Group, 2003b,a). MDA is a specific MDD
approach that employs UML, MOF (Object Management Group, 2006) and XMI (Ob-
ject Management Group, 2007). A study by The Middleware Company (2003) of the
application of MDA specifically mentions “architectural advantages.” The study explains
that by application of MDA, an architect is forced to spend more time designing an
architecture due to the necessity to also model high-level domain entities. The Middle-
ware Company argues that increased upfront design effort reduces “the possibility of
introducing architectural flaws into your system later in the development life cycle.” The study
further reports on an experiment in which the same application is developed by two
teams of developers. One team applies MDA and one team does not. The MDA team
finished their development ahead of schedule and significantly faster. Advantages of
the application of MDD reported, include increased ease of communication of the de-
sign (including to the client) and consistency between design and code. Both are closely
related to the core activities of a software architect. According to a survey by Staron
(2006), the main aims for adopters of MDD were: improving quality by increasing
understanding, improving communication within development team and traceability
throughout software development artifacts (models). These three expected benefits
are directly related to the responsibilities of a software architect. Application of MDD
is therefore expected to alter the role of the software architect. Farenhorst et al. (2009)
list five categories of architecting activities. At least three categories are expected to be
impacted by adopting MDD. First, communication of architecture design is expected
to be easier because models are the dominant artifact throughout the project. Second,
quality assessment will likely be more important because of the more formal nature
of MDD. Lastly, a stronger focus is expected on documentation due to the use of a
Domain-Specific Language (DSL). A DSL is a modeling language that, by design, is
particularly fit to express concepts related to a specific field or e.g. a branch of business.

8.3.2 MDD in Global Software Development

On the surface, MDD appears to have the potential to mitigate some of the difficulties
that are associated with GSD. Using models as the central artifact would enable teams to
use software architecture and design to direct team composition, development process
and even communication structures. The main challenges in GSD include sharing
knowledge, to align tasks and to obtain and maintain a shared mental model (Cannon-
Bowers et al., 2001, Espinosa et al., 2001). The sources of these challenges are to be
found in the three types of distance that are introduced in GSD projects: geographical
distance, temporal distance and socio-cultural distance.

The model-centric nature of MDD and some of the requirements that lie at its
foundation could have a positive influence on the problems associated with GSD.
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Limited related work exists that explicitly addresses this conjecture. Nevertheless,
evidence of the potential positive influence of MDD on GSD can be found in various
studies. For example, that the higher level of abstraction inherent to MDD facilitates
more effective stakeholder communication is explicitly mentioned in the context of
GSD in many other studies. For example:

• “explicit, shareable models and descriptions [. . . ] facilitate collaboration between develop-
ers on an abstract level” (Pahl, 2005),

• “ great advantages of [our MDD language] in the context of global software development
[include] a common understanding of the software being developed” (Heistracher et al.,
2006),

• “advantages of a unified, model-driven approach to requirements elicitation include
significantly improved communication” (Berenbach and Gall, 2006).

In addition, the advantages of the use of common tools on GSD is often referred to. For
example:

• “[MDD] tool vendors develop more and more tools to be applied during architecture
development.” (Spanjers et al., 2006);

• “Enforcing common tools and processes makes collaboration much easier ” (Lings et al.,
2007);

Only limited more detailed evidence is available. For example, Lester and Wilkie
(2004) present an empirical evaluation of the selection of a commercial CASE tool that
supports UML in the context of a large GSD project. Lester and Wilkie specifically aim
to address the problem that “the lack of synchronization between design models and source
code, for a development team working in different time zones, can lead to strained relationships
between the geographically disparate sites.” MDD brought forth a host of tools that support
model-code correspondence in general and code generation in particular.

Another example of more detailed analysis of the role of MDD-related tools and
techniques is the work by Clerc et al. (2007). In this study, a case is reported in which
distributed team organization was formed strictly along the lines of an architectural
design — including dependency and subsystem-related constraints on communication.
The authors claim that this helped GSD-related problems they define as “difficulty to
build a team.”

Application of MDD requires the early and complete definition of an architectural
framework. This is in line with the requirement that an architecture must be sufficiently
mature to be able to distribute team composition, development process and commu-
nication structures (Mullick et al., 2006, Conway, 1968). In line with the previous
finding, Clerc et al. (2007) also found that “alignment via architecture” is beneficial. They
found that in the same case, “alignment of tasks and responsibilities [was] mainly done
via the architecture,” they go on to exemplify this by noting that, “[r]equirements [were]
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assigned to subsystems, which [had] dedicated resources assigned.” Apart from a similar
requirement regarding early architecture maturity, this model-centric method of project
management is much in line with the premise of MDD in which models are even more
central.

Another specific study of benefits of MDD techniques to GSD problems was exe-
cuted by Andaloussi and Braun (2006) who outline their experiences in developing a
model-driven test framework based on the the UML 2 testing profile (Schieferdecker
et al., 2003). In their effort, Andaloussi and Braun specifically sought to obtain com-
munication benefits for GSD teams: “The advantage is to represent the system and its
tests through one single notation.” In preliminary findings of a case study in which they
implemented their framework, they found that through using the test framework they

“[overcame] the language barriers in releasing the test specification from [a] textual description
filled with buzzwords and jargon.” In addition, they note that they made “nearshore more
independent from offshore, in avoiding initial training phases and requiring only standard
skills (UML, U2TP and TTCN-3).” Their use of a DSL made it easier to distribute the
architecture in small components, which in turn increased comprehensibility.

8.4 Results

In this section, the results of the analysis of the case (as outlined in Chapter 7) are
discussed. Structured around the three core concepts behind MDD (Section 1.1.5), we
will discuss the influences of application of MDD on the GSD that were found in the
project under study. We will particularly address the ramifications for the software
architecture process. An overview of the implications of adoption of MDD in GSD on
the software architecture process is presented in Figure 8.1.
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Figure 8.1: Factor integration graph (Ð→ denotes cause and effect)
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8.4.1 Model-Centrism

Source code is not easy to communicate even between those who understand the pro-
gramming language. In addition, source code represents one of many representations
of the system to be built. In traditional software development, each stakeholder has his
own preferred representational conventions to describe the system. In MDD, models,
rather than code, are treated as first-class entities. As models are abstractions of more
technical details, the potential proportion of team members that understand the models
is larger.

All team members noted that intra-team communication was much easier because
the models were used as a single point of reference was used. Models were numbered
and requirements engineers, the architect and even project management would refer to
that same model number to discuss an particular issue that was relevant to their role.
As a result, use of models as a common language eases communication and enables a
larger group of stakeholders to participate in implementation-related discussions. The
strongest evidence exist in literature for this particular effect of application of MDD.

A substantial amount of the architectural process is spend on communication of
design and architectural decisions. By introducing models as a common language
that is used throughout the development process, this time-consuming undertaking
becomes less laborious. The project team members that were interviewed acknowledge
that technical discussions related to aspects of the system were easier to conduct
than they were used to in non-MDD projects. Reasons consistently mentioned for
the discussion benefits were that the models could be used as a basis for discussion
and because more different team members of different disciplines were familiar with
the models. This translated to fewer traveling back and forth between the offshore
and onshore locations than normally would be the case in projects of similar size and
complexity.

In the following sections we discuss two other effects that model-centrality had
on the case. First, the transition to models as a common language is easier for some
disciplines than for others. Particularly, business analysis were reluctant to work with
software CASE tools. Second, as more stakeholders are directly involved with the
models (now the central development entities), “collective ownership” becomes an
important development concept.

Common Language as a Challenge

In the case, a group of requirement engineers were only willing to participate in
modeling their use-cases more formally on the condition that they would not be
concerned with what they referred to as “programming.” However, the models they
made were directly generated to code, code that would be directly used in the system
and which would become the vast majority of the final code of which the system would
be comprised. Another example are a group of business analysts who refused to work
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with a UML case tool as they regarded it “technical work”. They eventually left the
project.

The technical possibilities and potential advantages in terms of synergy offered by
consistent use of diagrams from early requirement workshops to the generation of a
working software system are evident. Much is lost and misunderstood in translation
of requirements to architecture to design to source code. And while MDD does not
completely remove the need for translation, the use of models as a central language
at least limits it. In practice, this implies that more team members need to be able
to communicate in a common language. Nevertheless, a clear distinction between
business related activities and IT-related activities is still often made in software
engineering practice. Requirements engineers do not write source code, developers
do not bother with domain models and a project manager might not be up to speed
with specific testing techniques employed. However, the central use of models requires
team members from all disciplines to work with the same language, concepts and tools.

Collective Model Ownership

The notion of “collective ownership” stems from the rules of Extreme Program-
ming ((XP), Beck, 1999). It encompasses the notion that team members are collectively
responsible for various aspects of the system under development, specifically system
design. The key benefit that this practice aspires to obtain is the elimination of bottle-
necks for changes to certain aspects of the system. In addition, people that are bottle
necks may leave a project at any time, taking with them valuable information regarding
an aspect of the system only they had deep understanding of. Developers tend to
prefer to be responsible for their part of the system. Because less code is written and
this code is more complex, developers must more often work with code that they did
not author themselves. It is not possible to couple a developer to a particular use case.
In fact, no developer should have objections to working at another use case or to have
somebody change code related to a use case they initially authored.

The architect explained that all designers need to be able to develop and expand
most models. While some of the more complex models were still assigned to one or
two designers, the majority of models were worked on by a variety of team members.
Various team members explained that they enjoyed working on various different
models. They were also convinced that model quality improved because of this
practice. Having more team members working at the same model increased the chance
of spotting defects. Developers explained that they were not used to work with each
others code and that they needed to get used to having other people work with “their”
models and code.

An additional benefit of collective code ownership is that it facilitates increased
contact between the programmer and the designer. However, the diagrams were
never branched so enable that designers could work in parallel. In this case, no tool
support existed for model version control. Although some tools are available (e.g. EMF
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Compare (Brun and Pierantonio, 2008) and DSMDiff (Lin et al., 2007)), these are not
easily integrated with existing MDD tools.

8.4.2 Code Generation

In this case, a source code generator was developed to generate code. Using this gener-
ator, a significant portions of source code (90 percent) of source code was generated.
We found this to have four direct consequences:

First, at least all the “easy” code is generated. All of the “hand-written” code,
therefore, is more difficult to write. This requires more skilled developers. Second,
standardization on mature software components as well as integrating generated code
and hand-written code, requires the use of a variety of frameworks. Increasing the
amount of frameworks involved in the software architecture requires an increasing
understanding of the complexity of the interaction between these frameworks. This
requires even more skilled programmers. Third, modeling can no longer be done
haphazardly (Lange et al., 2006). On the contrary, adherence to modeling guidelines
must be enforced if models are to serve as the basis for code generation. Fourth, if code
is generated then a code generator needs to be developed and maintained in parallel
with the original project. The generator is a separate project with its own stakeholders.

These four consequences lead to a variety of implications. The first and second con-
sequence directly require more skilled developers. The use of a variety of frameworks
and a code generator require more structured models, a more formal development
process, documentation and an increase in tooling. The use of these frameworks also
limits the flexibility regarding the type of functionality that can be generated. In addi-
tion, developer compliance to architectural rules is no longer optional. Furthermore,
the increase in development rules require software maintainers to be involved in the
implementation process at an earlier stage than would have been the case in a tradi-
tional development process. The fourth implication, the generator being a separate
project, greatly increases project complexity. These implications are discussed in the
following sections.

More Skilled Developers are Required

During the project, several junior developers were not able to cope with the complexity
of the code that had to be developed. These developers had to be replaced by more
capable or experienced developers.

Aspects of a system that lend themselves particularly well for code generation are
data related constructs such as CRUD1-functionality. Much of the more straightforward
code has therefore already been generated. In addition, to enable code generation
and to attain this level of abstraction, a substantial set of frameworks is used. Un-
derstanding how these framework interact can be a difficult process. As a result, not

1Create, Read, Update and Delete
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all developers that would normally work on implementation of a system of similar
complexity are able to cope with the more complex use cases or exceptions. In short,
highly skilled developers are needed to implement the more complex parts — which
form the majority of the “hand-work.”

An architect is responsible for communicating the more complex build-up of frame-
works that is chosen for MDD development and therefore has spend more time to train
new developers and to evaluate whether they are up to the task.

Strict Quality Assurance for Modeling

Developers explained they had less freedom to interpret designs and architectural
constraints due to the central role of the models and the strict guidelines that needed
to be adhered to in order to guarantee the system could be generated correctly.

Tools that enforce adherence to architectural rules are not commonly used in indus-
trial practice. For an architect it is therefore important to check architecture adherence
throughout the development process. In MDD, adherence to architectural rules takes
less effort because (1) modeling is done more formally, (2) architecture is more formally
defined and thus easier adhered to and (3) less steps of translation take place as models
are directly translated to code by a code generator. In addition, the code generator
used in this project was equipped with a model validator, the model equivalent of a
code parser. This validator checks syntactical adherence and provides some level of
quality check. In the case, model verification was done by the architect.

More Extensive and Structured Architectural Descriptions are Required

The set of architectural artifacts used in the project is larger and more detailed than
found in similar (non-MDD) projects of equal size. The sources of architectural know-
ledge available during the project are detailed in Table 8.1.

Next to the sources in Table 8.1, architectural knowledge exists which is not captured
in any artifact but the system itself. In interviews, project members refer to design
decisions which are visible in the models but which are not explicitly documented.
Project management did not allow for the time to explicitly document all design
decisions due to time constraints.

Since more detailed descriptions of use cases are required in early stages of the
project, documentation is reviewed more often. The central role of a document such as
the modeling guidelines implies that more team members use and comment on con-
tents. This requires more formal and complete descriptions which is better structured.
Architectural documentation in the project was updated more frequently and up until
later stages in the process in comparison to non-MDD projects.
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Table 8.1: Architectural Artifacts Available in the Case Project

artifact description contents

Software Archi-
tecture Document
(SAD)

The most important architec-
tural knowledge is described
in this document. The SAD is
used by all team members ex-
cept the testers. The author is
the software architect.

Description of actors and development tools; List of architec-
turally significant use cases and their realizations (use case
view); Overview of logical layers (logical view); Definition of
communication and process principles that are relevant for the
software architecture (process view); Description of the distribu-
tion of the system over various nodes and its interaction with a
selection of surrounding systems (deployment view); Architec-
ture of the source code — layering, frameworks and best prac-
tices (implementation view); Description of transformation of
the UML design model to various data aspects of the software
architecture (data view)

Supplementary
Specification (SS)

Requirements outside of the
requirements described in the
use cases.

Quality requirements of interfaces; Additional system require-
ments

Interface Docu-
mentation

Per interface documentation.
The author is the system ana-
lyst.

Request message specification; Reply message specification;
Web Services Description Language (WSDL) specifications; List
of related Use Cases

Modeling Guide-
lines

A tool-independent descrip-
tion of how to describe func-
tional requirements of an IT
system using UML. The au-
thor is the software architect.

Naming and ordering of model elements; Data modeling guide-
lines; User interaction modeling guidelines (flows, sub flows,
authorization, use of data, use of services, decisions, constraints,
composite operations); UML Profile Reference

Wiki The Wiki of SourceForge En-
terprise Edition 4.4 is used.
Authors include most project
members.

Tips and tricks to set-up your code environment correctly and
how to solve problems; An overview of the release cycles of
all parallel working teams is managed; An overview of how to
work with the release process

Separate Model
Documentation

A set of documents which
elaborate on some of the el-
ements from the meta-model
that are only used in specific
models. The authors are the
maintainers of the respective
models.

Style guide for the screens associated with this use case; Data
sources overview for use case

Design Decisions Elaboration of certain design
decisions. This document is
based on the modeling guide-
lines and was created before
the system was built. The au-
thor is the System analyst.

How deep packages are nested; How certain functionality is
split up

More Tooling Is Needed to Support the MDD Process

From their literature review of MDD, Mohagheghi and Dehlen (2008) conclude that
suitable tools are of fundamental importance for MDD to succeed. These tools must be
selected carefully for fitness to meet requirements and must fit into an organization’s
existing chain of tools. Factors in deciding on tooling for software development
include a trade-off between the standard tooling used by the development organization,
specific project requirements and the wishes of the client and possibly the maintenance
organization. Primarily responsible for this process is the software architect. The
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use of MDA requires more tooling than a non-MDD development process. As in
most development processes, an MDD project requires a configuration and change
management system, requirement-, defect-, time- and change tracking systems and
modeling-, development- and testing environments. However, a set of requirements
are added to the tool selection process for supporting the DSL or reference model and
extra environment for supporting the generator.

In addition to selecting candidate case tools and evaluation, team members must
be trained to work with new tools. Traditionally, an architect will prescribe the use of
only a subset of the functionality offered by the tooling, limit the use of the tool. Team
member’s use of the tooling must therefore be monitored. As described earlier, the
project must deal with team members resisting to use particular tooling and perhaps
needs to convince the client that a lesser known tool is indeed a proper solution. Finally,
one of the lessons learned from the case is that adopting the use of an existing code
generator for large-scale application of MDD is not feasible for large scale, specific
applications. As meta-model functionality changes, the generator and validator need
to be altered.

The extra tooling employed in an MDD process make that an architect spends
more time investigating, testing and explaining development tools. A rapid pace of
development and the fragmented offering of state of the art MDD case tools requires
an extensive evaluation process as a part of the inception of any MDD project.

Designers Have to Build More Unequivocal Models

The architect found that he continuously needed to support and correct the model
designers to learn to work with the DSL, the modeling tool and the validator. Designers
struggled to understand the implications of their design choices and found it difficult
to create models fit for code generation. The architect played a central role in the
continuous training that designers required. Being located onshore, providing this
training to the offshore development team was quite a challenge. Daily intensive
(video) training sessions were held.

In traditional software development, designers build a set of diagrams to convey
certain key aspects of a system. Requirements are translated to a technical solution
according to architectural rules. It is often up to developers how to precisely implement
an aspect described by a design. The UML offers a great degree of freedom. In practice,
this freedom leads to inconsistent, incomplete and otherwise ambivalent diagrams
(Lange et al., 2003). The work of a modeler in MDD is different in the sense that it is
not only to communicate functionality but also to directly implement that functionality
by modeling. This implies that traditional trade-offs regarding design effort and detail
and completeness of diagrams are no longer made. There are far fewer solutions that
are correct.
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Generator is a Parallel Software Development Project

The architect found that parallel development of a code generator quickly grew into a
separate project with its own architecture, stakeholders and e.g. defect management
system.

The applicability of code generation as a development method is limited to how
specific the system requirements are. An “off-the-shelf” set of model transformations is
rarely capable of generating exactly what a specific client wants. A specific methodol-
ogy bundled with a code generator only allows for very specific applications to be built,
in which case the client has little to say about the software architecture. Therefore, to
facilitate the specific requirements of a large corporate client for a sizable system, model
transformations must evolve with both models and the code. Consequently, in addition
to the development of the software system that is central in the project, a software
architect is responsible for development and maintenance of a code generator. As the
main system, the code generator has its own requirements, architecture, design and
code. In the project, a separate team of developers was responsible for development
and maintenance of the code generator. The main influence of this practice was found
to be that requirement changes have a larger impact on the development process. The
impact of changes has to be checked in great detail so the impact analysis of a change
requests is more detailed. However, according to the architect, a side effect of needing
to more carefully examine changes was that the impact of changes was very clear and
potential problems and defects are spotted much earlier. This prevented rework and
thereby saved time.

Late Changes Can Have a More Fundamental Impact

The use of code generation comes at the cost of greater standardization. If certain
functionality is not supported by a meta-model, it can only be generated by extending
the meta-model, the model transformations and possibly the DSL. This is potentially
more time-intensive than adding the functionality by hand. Late changes to the meta-
model may therefore require a disproportional amount of effort in modifying existing
models or generated code. To prevent major rework, any requirement that impacts
the meta-model must be clear upfront. The architect should make sure that before
commencing modeling, the meta-model is as mature as needed.

In this case, at a late stage in the project, a specific requirement regarding navigation
through the graphical user interface was discovered. In an earlier version of the
architecture it was prescribed that to navigate from one screen to another, that those
two screens had to be explicitly connected to each other in the model. Marking every
navigation step with an arrow implies that an increase in the amount of screens that can
reach each other exponentially increases the amount of arrows that needed to be drawn
in the models. Because it was not made clear that most of the screens would require the
possibility to navigate to one another, that particular aspect of the architecture would
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Figure 8.2: MDD versus non-MDD maintenance (adapted from Van Vliet, 2008)

probably have been redesigned at an early stage in the project. In a traditional project,
this problem would probably be solved at the code level. In the case of this project, the
screen navigation had to be altered at the model level and even required changes to the
architecture, reference model and model transformations. The considerable amount of
effort that had to be spent to rework all models after the late revision of fundamental
aspects of the meta-model, indicates that it is imperative to find all requirements that
significantly impact the meta-model before taking up modeling. Cabot and Yu (2008)
argue for extending of MDD methods with improved requirements techniques.

Maintainers Need to be Involved During Development

Maintenance of software constructed using MDD tools and techniques is different in
that not the code, but the models need to be altered 8.2. To ensure that models and
system stay in-sync, it is imperative that maintainers are trained to understand the
DSL, the models, the model transformations, the generation process employed and the
integration between the generated code and the hand-written code.

It is essential that post-release changes are applied consistent with the MDD process
used during development. Therefore, intimate knowledge of the meta-model buildup
and the code generator as well as the frameworks involved is required from the
maintenance staff. This knowledge is best obtained by close involvement of the
development process.

8.4.3 Model Reuse

Domain-specific models can be reused for new software systems within the same
domain. For this case, a meta-model was created before the project started. We found
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three consequences of the use of that meta-model:

First, the objective was to have that meta-model expanded and kept separate
from this project so that it could be used in future projects. This requires external
stakeholders that ensure that the meta-model stays generalizable. No resources were
allocated for such a role. Second, this existing meta-model, which was created by
domain experts, did not represent the client’s perception on that same domain. Third,
if a client initially only requires a subset of functionality that an existing meta-model
offers, it might seem tempting to expand a system’s scope to include “things the meta-
model already can do.” The second and third consequences are discussed in more
detail in the next sections.

Increased Likelihood of Scope Creep

In this case, project management regularly budgeted client requests for specific meta-
model functionality at zero hours of person effort. In this case, severe project time and
budget overruns could in great part be ascribed to this practice.

Scope creep occurs when system functionality expands beyond the initial project
objectives. Any software development project will meet changing requirements and
generally, project management evaluates whether a change is in scope before accepting
it as part of the original system or whether it should be treated as a additional func-
tionality. The use of MDD can make scope creep more likely for two reasons: First,
extending functionality can be easier than in non-MDD development. This specifically
pertain changes already supported by the meta-model. Second, an existing meta-model
may contain more functionality than specified in the requirements, making it even
easier to generate new functionality. This impacts the discussion between software
supplier and client whether added or changed functionality is part of the original sys-
tem requirements or if it should be treated as a change request. It might be easy from a
technical perspective to generate functionality that is beyond project scope. However,
the impact of added functionality extends beyond the technical implementation. Extra
functionality requires increased test and documentation effort. Working beyond project
scope furthermore requires a supplementary iteration of the analysis of the business
modeling as added functionality might impact existing business processes of systems
in the environment and could imply the inclusion of additional interfaces. In addition,
not all code in an MDD project is generated and a part of the newly generated code
might need to be amended by hand. This is costly, time consuming and it might well
add to the complexity of the system.

The organizational impact of introduced features beyond initial project scope could
also include additional training of future users or an extension of the pool of future
users which in turn might impact other requirements.
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An Existing Meta-Model Might Conflict with Client Reality

A benefit of MDD is that an existing meta-model can be used to quickly deploy appli-
cations within a certain domain. In the case of the project, a pre-existing meta-model of
a specific aspect of the Dutch mortgage domain was the main motivation of applying
MDD. This model was created in concordance with business analysts with extensive
experience in the Dutch mortgage domain. However, an existing domain model might
not correctly represent a domain in the way the client perceives it. Many assumptions
made by experts in this domain regarding business processes and product-composition
were not completely consistent with the business approach of the client. This either
stemmed from incorrect assumptions or from domain evolution. Redevelopment of
the meta-model lengthened development time and hampered potential productivity
improvements from the use of an existing meta-model. In deciding between a detailed
and a more generic meta-model describing a certain domain, the latter approach could
be more feasible. The biggest gains of MDD can therefore be expected in stable domains
(with limited domain evolution) or in domains in which much commonality exists.
This same problem can occur at the DSL-level. The strong link between the DSL and
the domain benefits development by domain experts, but backfires when that domain
evolves. Various studies propose methods for addressing domain model evolution
(Deng et al., 2006, Sprinkle and Karsai, 2004).

8.5 Impact of MDD on GSD

In this section, we discuss the advantages and the disadvantages that the identified
impacts of use of MDD have on GSD. In their recent structured literature review of
empirical studies in GSD, Šmite et al. (2010) give an overview of GSD challenges and
the best practices that are so far known. In Table 8.2, these are linked to the MDD
impacts that were discussed in the previous sections. The first two columns in this
table have been taken from Šmite et al.

Most of the best-practices associated with GSD are directly affected by process
changes that are found with use of MDD tools and techniques. As discussed earlier,
many studies hypothesized that the communication benefits that a DSL entails would
benefit the GSD process. The increased communication efficiency that was found in
the case enforces — or at least positively impacts — many of the best practices in
the overview of Šmite et al.. A DSL provided for a common language and therefore
mitigated some of the problems associated with what is commonly regarded as the
toughest of the three distances (Herbsleb et al., 2000): socio-cultural distance. However,
models also made for the richer communication that GSD needs. In addition, the close
interaction with the client through use of a DSL, enabled the incremental short-cycle
development that is beneficial for GSD.

However beneficial all these communication-related benefits are, the evidence that
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MDD mitigates some of the problems of GSD reaches further. The requirement of
shared model ownership implies that a centralized project repository — essential in
GSD — had to be employed. Furthermore, use of MDD required a more extensive
and more explicitly defined architecture. This enabled easier task distribution based
on architectural decoupling, which is one of the most concrete best practices for GSD
(Herbsleb et al., 2000). Also, an increased reliance on tools that accompanies the use of
MDD enabled a more reliable infrastructure through a more formal method of working.
Still, integrating these tools in the existing chain of tools was a challenge and so was
training people to use them. MDD was not found to have any direct impact on the
“synchronous interaction” best practice that Šmite et al. listed. While MDD does not
require this type of interaction it does not inhibit it either. A potential drawback of
MDD when used in GSD is the training. Programmers, designers but also management
needs to be educated so to understand the MDD paradigm. When assembling an
offshore team it proved be difficult to assess the extent to which candidates had the
required skills. Furthermore, the short iteration cycles mentioned in Table 8.2 are
needed to address the problem of process unclarity or the lack of awareness of either
the process followed or current process status (Espinosa et al., 2001, Levesque et al.,
2001, Carmel, 1999, Mockus and Herbsleb, 2001). Some organizations tailor their
process prescriptions to cater for GSD (Heijstek et al., 2010) but this does not solve the
awareness problem. MDD requires that a strict process is followed. This process was
defined early in the elaboration phase in concordance with the entire team. As the
model transformations would evolve with the diagrams, offshore team members were
aware of the status of their work, the work of the onshore team and the status of the
project as a whole.

8.6 Conclusions and Future Work

Using MDD tools and techniques fundamentally impacts the software development
process in general and the analysis and design phases in particular.

All team members in this case elaborated on how the use of models as a common
language eased communication between team members in general and between on-
and offshore teams in particular. In addition, models enabled a larger group of stake-
holders to participate in implementation-related discussions. This translated to fewer
traveling back and forth between the offshore and onshore locations than is normally
the case in projects of similar size and complexity.

We found that the use of a common language mitigated some of the problems
associated with what is commonly regarded as the toughest of the three distances
(Herbsleb et al., 2000): socio-cultural distance. In addition, MDD techniques in general
and shared model ownership in particular forces more frequent interaction between
more team members.

While MDD enforces most GSD best practices that are currently known in literature,
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some drawbacks exist. Staffing requirements include team members that are willing
to work with models and model CASE tools and highly skilled developers. However,
in GSD contexts, it is not always possible for an architect to influence development
team composition. In addition, the application of MDD requires more formal working
procedures in terms of e.g. more extensive and detailed design documentation and
models that strictly adhere to modeling guidelines. The architect played a central
role in the continuous training that team members required. Being located onshore,
providing this training to the offshore development team was quite challenge.
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Table 8.2: Relating GSD best practices (Šmite et al., 2010) to MDD-related practices

Practices Advantages Impacted
by MDD

GSD Impact

• F2F meetings

• temporal collo-
cation

• exchange visits

• Trust

• cohesiveness

• effective team-
work

4 • Intra team communication was said to be more efficient
with MDD because of DSL

• Less travel was required since communication was
clearer

• Centralized
project reposi-
tory

• common config-
uration manage-
ment tool sup-
port

• Awareness

• process trans-
parency

4 • Central repository was required for collective model own-
ership

• More tools were used

• Effective and
frequent syn-
chronous com-
munication

• Trust

• cohesiveness

4 • Communication was said to be more efficient with MDD
because of DSL

• Reliable infras-
tructure

• rich communica-
tion media

• Effective com-
munication

4 • Models made for richer communication as they were in-
cluded in meetings.

• More tools were needed. These allow stricter work pro-
cedures. The introduction of new tools also introduces
some uncertainty.

• The development process was more formal.

• Synchronous in-
teraction

• Effective team-
work

2

• Task distribu-
tion based on
architectural
decoupling
and low depen-
dencies across
remote locations

• Effective team-
work

4 • A greater proportion of the architecture was explicitly de-
fined

• Any architectural decoupling was more straightforward
to enforce as the implementation was closer to the archi-
tecture

• Requirements were clearer

• Incremental
short-cycle
development

• Early feedback,
capability evalu-
ation

4 • Code generation enables faster development

• Earlier feedback is obtained because of closer client inter-
action through the DSL
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Conclusions

This dissertation addresses how software architecture and design is to be repre-
sented, disseminated and coordinated in the context of global software development.
To this end, the role of software architecture (as a process as well as an artifact)
was empirically assessed in various industrial contexts. In addition, the special
case of model-driven software development was addressed. This chapter contains
a summary and integration of the findings that were presented in the previous
chapters as well as an outline of future work.

9.1 Summary of Findings

In this section, the empirical evidence collected throughout this dissertation is summa-
rized and used to address the research questions central to this dissertation (Section 1.3).

9.1.1 RQ1: How is Software Architecture Represented, Disseminated and
Coordinated in the Context of Global Software Development?

This dissertation set out outlining how organizations tailor software development
process descriptions for the challenges that GSD introduces, from a process perspec-
tive (Chapter 2). Investigating how software development process descriptions are
tailored to accommodate for GSD, we found that the process approach to GSD is
dependent on organization size, maturity, intended use of the description and the
expertise and experience of the process engineers.

Subsequently, we presented and demonstrated our method to visualize GSD pro-
cesses consistent with an iconic process visualization (Chapter 3). These visualizations
uncovered aberrant distribution of analysis and design effort which were the result of
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unclarities in the processes of communication and coordination of software architec-
ture.

We then explicitly analyzed the role of software architecture design in the context
in global software development by means of three case studies (Chapter 4). We found
that some problems relating to software architecture dissemination and coordination
processes led to poor architectural compliance. This, in turn, led to project overruns.
The dissemination of software architecture as well as the role of the software architect
are not formalized even though this might very well have benefited the development
process. An important benefit of the application of MDD tools and techniques is that
most of the software architecture is generated. As a result, architecture compliance
improves. While this mitigates the problems associated with disseminating software
architecture design, it introduces the problem of teaching developers to work with
a Domain-Specific Language (DSL), associated tooling and the MDD approach in
general.

Finally, we validated the findings from the case studies by means of a series of
interviews with experts (Chapter 5). We then integrated the factors that influence how
software architecture design is coordinated and disseminated and identified three main
drivers to explain these factors:

1. First, the strong implementation focus of software development project manage-
ment prematurely forces projects into the construction phase.

2. Second, a knowledge gap exists between the onshore and offshore location
regarding software architecture and its role during the software development life
cycle.

3. Third, cost reduction forces a move of responsibilities towards the offshore
software development location. This compounds the “knowledge gap” problems
as less resources are available for knowledge improvement (training) and more
work is required of less experienced team members. In addition, the added value
of activities related to implementation is more tangible than that of design-related
activities. As a result, the “’implementation focus” problem is aggravated.

9.1.2 RQ2: How can we design software architecture documentation so
that it is understood well by developers in the context of global soft-
ware development?

We designed and executed an experiment in which we evaluated how software de-
velopers comprehend software architecture representations from the perspective of
diagram-dominant versus text-dominant representations (Chapter 6). We found that
neither diagrams nor textual descriptions are significantly more efficient in terms of
communicating software architecture design. In addition, we found that diagrams
were not able to alleviate the difficulties participants with a native language other
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than English had in extracting information from the documentation. However, while
diagrams were not superior regarding media effectiveness they still seemed to perform
a special role. Participants were more likely to use diagrams as their first source. They
were more likely to look at the diagram at the very moment when they provided
answers to questions of a topological nature.

Finally, we identified developer characteristics that can be used as developer per-
formance predictors: linguistic distance, media preference, experience and self-rated
modeling skill. The participants who performed best had a native language close
to English, looked at text more than at diagrams, were more experienced and rated
their own modeling skills to be relatively high. We conclude that, contrary to current
industrial practice, architecture documentation should be specifically tailored for its
audience in terms of the developer’s experience and native language and the general
readability of the text.

9.1.3 RQ3: How does the application of model-driven development tools
and techniques relate to the problems associated with global software
development?

We analyzed how the characteristics of a large scale, industrial model-driven devel-
opment project in the context of global software development compare to non-MDD
projects (Chapter 7). In MDD, models instead of code are the central development
artifact. We found that the same logic applied to code cannot be applied to models:
First, the majority of development effort was spend on developing the models. That
is significantly more than the time spent on code development in classical software
development. Second, most model elements were already present at one third of
the development process. The remaining development time was spent on altering
the models. In addition, 40 percent less defects were found in the MDD case when
compared to projects of similar size. Models and code are fundamentally different
and therefore not easily compared as we found absent, for example, a positive relation
between model size and model complexity on the one hand and model defects on the
other - relations that have often been observed in source code. Also, larger diagrams
were changed more often and worked on longer but did not necessarily contain more
defects.

We then analyzed how the application of MDD tools and techniques specifically
impact the problems associated with Global Software Development (Chapter 8). We
found that the use of models as a common language mitigated some of the problems
associated with socio-cultural distance and also resulted in fewer traveling back and
forth between the offshore and onshore locations. In addition, MDD techniques in
general and shared model ownership in particular forces more frequent interaction
between more team members.

Finally, an important implication of the use of code generation is that the software
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Figure 9.1: Cause-effect diagram integrating the main findings of the study

architecture is generated. Software architecture compliance is therefore automated.
Nevertheless, the application of MDD required more formal artifacts in terms of e.g.
more extensive and detailed design documentation and models that strictly adhere to
modeling guidelines. The architect played a central role in the continuous additional
training that team members required.

9.2 Contributions

The main contributions of this study and their interrelations are visualized in Figure 9.1.
First, this dissertation establishes that the software architecture process is significantly
different in the context of GSD when compared to co-located development. Second, we
have demonstrated a clear link between architecture compliance and project success in
terms of limiting rework. Third, we have presented evidence that the cost reductions
inherent to GSD limit the resources available for software architecture design and representation.
Fourth, we have found how developer knowledge of software architecture design:

1. can be positively influenced by improving diagrams and text in software archi-
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tecture representation and training developers;

2. is limited by the socio-cultural, geographical and temporal distances in that GSD
introduces;

3. is hampered by cost reductions which limit the resources available for coordina-
tion of software architecture;

4. is less important in the context of MDD because the architecture is a stable
framework that is already implemented to enable code generation. Instead,
however, developers need to learn to work with a new development paradigm,
new tooling and a DSL.

Fifth, we found evidence for the principle that code generation increases the extent to
which a software implementation complies to its intended architecture as much of the
architecture is generated.

An important contribution that is not explicitly modeled in Figure 9.1 is that the
use of models as a central development artifact is fundamentally different from using
code. The logic or intuitions regarding effort and amount of defects that we have when
it comes to source code cannot be applied to models. However, the implications of
application of MDD tools and techniques are not yet clearly understood and therefore
warrant further study.

9.3 Recommendations to Industry

Following from the findings of this dissertation, we formulate five recommendations:

1. The problems associated with GSD should be specifically addressed in software develop-
ment process descriptions
Such an addition might be as informal as a (concrete) list of best practices. Prob-
lems that were encountered and solved in a specific project by means of technol-
ogy or a (set of) best practice(s) should find their way to the process description
so that other projects may benefit in the sense that similar mistakes are not re-
peated. Given that the majority of problems in GSD is thought to benefit from
intra-team member communication-related practices, the intended audience of
such an augmented process description should be all team members, rather than
project management.

2. The processes of dissemination and coordination of software architecture must be explic-
itly formalized

• Preferably, one or more experienced offshore developers should be involved
in the development of the architecture under guidance of an experienced
onshore architect.
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• The most fundamental aspects of the architecture design should be devel-
oped before starting offshore construction.

• If budget allows, the development of an architecture POC in which new,
complex or otherwise unknown functionality is addressed, is recommended.

• The most knowledgeable architect should travel to the offshore location at
least once, preferably when the construction phase commences.

• When disseminating software design, validate that the receiving party made
the correct interpretation.

• The availability of the principal (onshore) architect should only be limited
to the extent that the knowledge and experience of the principal offshore
developer (the “technical lead”) allows this. Any cost savings from limited
association of the “expensive” onshore architect are unlikely to offset the
costs incurred by rework as a result of architectural noncompliance.

• Offshore developers should be able to directly contact the software architect
— preferably in a group so that effective use can be made of the architect’s
time. These sessions should be planned regularly to avoid developers
having to batch their questions.

• Developers should be coached to understand that knowledge of the role of
“their” component in relation to other components matters to the extent that
it determines the quality of their work.

3. Increase allocation of resources in architecture design
Upfront investment in architecture design is likely to lower budget overrun due
to having rework a faulty architecture implementation.

4. Create unambiguous and concise software architecture documentation that is specifically
tailored to its intended audience
Pay particular attention to the use of both text and diagrams, even for topological
information and annotating each (non-UML) diagram with a description of how
to read it. Additionally, investments in UML training for developers benefits
developer understanding of architecture representation.

5. Consider application of MDD tools and techniques to reduce the negative impact of
communication-related GSD problems
The use of models as a common language eases communication between on-
and offshore teams and enables a larger group of stakeholders to participate in
implementation-related discussions.

9.4 Future Work

As with all good research, the value of our findings in great part lies in the impetus
they provide to perform further research. We describe relevant directions for future
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work in the next sections.

9.4.1 In-dept Evaluation of the Role of Documentation in GSD

We argued that software documentation plays a more central role in GSD than in co-
located software development. In industrial practice, however, documentation is often
regarded as a by-product and information is preferably shared directly and informally
between people — hence the popularity of documentation-light Agile approaches.
We take the point of view that not more or less documentation must be created, but
better documentation. Nevertheless, advanced methods of documentation generation,
an increase in the level of technical maturity of clients and the advent of team wikis
do question the role of documentation in the software development process. Future
work in this direction should aim to quantify the usefulness of documentation by, for
instance, mapping the match between information need and availability and evaluating
the extent to which parts of existing documentation is perceived as adding value. The
outcome of such a study would be more lean documentation templates, a knowledge
support system and/or best practices for knowledge codification practices. The action
research paradigm is likely to be a suitable research method to address this topic.

9.4.2 Quantifying the Relation Between Developer Architecture Design
Understanding and Software Quality

This dissertation provides evidence which supports recommending upfront invest-
ments in architecture development and representation to ensure developer architecture
design understanding. While we take the stance that understanding of software ar-
chitecture design is beneficial for architecture compliance, we are unsure about the
mechanism underlying the nature of this relation. For example, how much should a
developer know about an architecture to ensure his software is compliant? All of it?
That seems uneconomical. Is it perhaps enough to understand the relation between
“his” components and neighboring parts of the system? To summarize: How much
better would developers implement if they know more about architecture? Such a
topic could be addressed by means of a quasi-experiment in the sense that a researcher
could invest in educating a selected group of developers with regards to the software
architecture.

9.4.3 Facilitating industrial application of MDD

This dissertation contains evidence for the significant impact of shifting from code to
models as central development artifacts. We also know that industrial application of
MDD is slow and that limited evidence exists for MDD’s potential benefits. Various
reasons have been offered to why MDD seems used so little and so often to no avail.
Reasons include unrealistic expectations, the problematic offering of MDD tooling and
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a general lack of understanding of the concept of MDD. Future work should preferably
investigate industrial cases of MDD to collect factors that contribute to successful
industrial application.



Samenvatting

Software speelt een sleutelrol in ons leven. Software is niet alleen verantwoordelijk
voor het functioneren van zowel onze digitale als onze fysieke infrastructuur maar
is zelfs van groot belang in onze dagelijkse inter-persoonlijke communicatie: We
interacteren met organisaties en onze overheden met behulp van software en we
vertrouwen niet alleen op de software in onze wekker en digitale videorecorder maar
ook op de software in de MRI scanner in het ziekenhuis of in de treinbeveiliging.

Deze ontwikkeling leidt tot een vraag naar steeds grotere en complexere software-
systemen enerzijds en toenemende kwaliteitseisen anderzijds. Om niet-functionele
systeemeisen (als veiligheid, onderhoudbaarheid en duurzaamheid) te kunnen garan-
deren is het zaak om de interactie van systeemcomponenten op een hoger niveau van
abstractie te ontwerpen. Dit hogere niveau van abstractie wordt software-architectuur
genoemd — in lijn met de bouwkundige analogie waar “software engineering”, een
gangbare aanduiding voor softwareontwikkeling, aan refereert. Methoden, technieken
en processen die samenhangen met software-architectuur stellen softwareontwikke-
laars in staat om te gaan met toenemende systeemcomplexiteit en stengere kwaliteitsei-
sen. In het wetenschappelijke onderzoek heeft software-architectuur de afgelopen 15
jaar daarom veel aandacht gekregen.

De voordelen van het werken met abstracties en de directere link die daardoor
gelegd kan worden met het specifieke domein waarbinnen een bepaald software sys-
teem ontwikkeld wordt, maakt dat modellen een steeds centrale rol spelen binnen
softwareontwikkeling. Een veel toegepast concept waarbinnen modellen centraal staan
is modelgedreven softwareontwikkeling (MDD). In dit ontwikkelparadigma staan
modellen, vaak ontwikkeld in domeinspecifieke talen, centraal. Afhankelijk van de
ondersteunende software en specifieke methoden die worden toegepast kan executeer-
bare code worden gegenereerd uit abstracte modellen of worden deze modellen zelf
“uitgevoerd” als waren ze software. De praktische relatie tussen software-architectuur
van software-systemen die in meer of mindere mate van de grond af aan ontwikkeld
worden (ook wel custom of “greenfield” softwareontwikkeling) en modelgedreven
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ontwikkeling is onduidelijk.
Offshoring (ook wel outsourcing of gedistribueerde softwareontwikkeling) is weer

een andere, meer recente ontwikkeling die van grote invloed is op de manier waarop
software wordt ontwikkeld. Bij deze vorm van softwareontwikkeling wordt software
gebouwd op meerdere, geografisch gescheiden locaties tegelijk. Aanvankelijk werden
kostenbesparingen verwacht van de lagere lonen van softwareontwikkelaars in landen
als Canada en India. Later leek offshoring ook een oplossing voor het tekort aan
softwareontwikkelaars door de steeds grotere vraag naar software-systemen.

In een gedistribueerd softwareontwikkelproject vinden de verschillende ontwikkel-
fasen typisch plaats op verschillende, door significante geografische afstand gescheiden
locaties. Het verzamelen van systeemeisen en ontwikkelen van de architectuur vind
meestal plaats op een andere locatie dan waar het systeem daadwerkelijk wordt ge-
ïmplementeerd (geprogrammeerd). Van de implementatie van software architectuur
in een niet-gedistribueerde omgeving weten we dat de mate waarin de implemen-
tatie van een architectuur voldoet aan het ontwerp, in hoge mate afhankelijk is van
de manier waarop en de mate waarin de software-architect softwareontwikkelaars
ondersteunt bij hun werk. Hoewel de beoogde software-architectuur vrijwel altijd
wordt beschreven in een document (SAD), lijken softwareontwikkelaars verder veel
te leren over de beoogde architectuurimplementatie door informele communicatie
met andere teamleden die veel weten van de architectuur. Geografische, temporale en
socio-culturele afstanden maken formele (geplande) communicatie in gedistribueerde
softwareontwikkeling echter lastig. Informele communicatie is daarom nog lastiger te
organiseren. Het is onduidelijk of documentatie in deze situaties nu een grotere rol
speelt of dat software nu misschien minder goed aan architectuurspecificaties voldoet.

De centrale doelstelling in dit proefschrift is onderzoeken hoe software-architectuur op
een effectieve manier kan worden gerepresenteerd, overgedragen en gecoördineerd in de context
van gedistribueerde en model-centrische softwareontwikkeling. De onderzoeksvragen die
we hebben afgeleid uit deze doelstelling zijn alle geënt op empirische onderzoeksme-
thoden. In de context van softwareontwikkeling wil dit zeggen dat we zoveel mogelijk
gebruik maken van gegevens uit de bedrijfspraktijk. De belangrijkste bijdragen van dit
proefschrift zijn:

• de vaststelling dat de processen omtrent software-architectuur flink afwijken als
niet-gedistribueerde en gedistribueerde softwareontwikkeling worden vergele-
ken, vooral dat er in een relatief laat stadium nog veel werk wordt verricht aan
de architectuur van systemen,

• dat er een sterk, negatief verband lijkt te bestaan tussen de mate waarin de
implementatie van software-architectuur voldoet aan zijn ontwerp en de mate
waarin een softwareontwikkelproject op tijd wordt opgeleverd,

• dat de kostenbesparingen inherent aan de motivatie om gedistribueerd software
te ontwikkelen direct beperkingen lijken op te leveren voor de kwaliteit van de
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ontwikkelde architectuur en haar representatie,

• dat het begrip van softwareontwikkelaars van software-architectuur

– positief beïnvloed kan worden door diagrammen en tekst in software-
architectuur-documenten te verbeteren en door softwareontwikkelaars te
scholen in het gebruik van UML,

– gelimiteerd wordt door de socio-culturele, geografische en temporale afstan-
den die door gedistribueerde softwareontwikkeling worden geïntroduceerd,

– wordt verslechterd door kostenreducties, specifiek doordat er minder wordt
geïnvesteerd in coördinatie van het software-architectuur-proces,

– minder belangrijk is in modelgedreven softwareontwikkeling maar dat
ontwikkelaars desalniettemin moeten leren werken met een nieuw soft-
wareontwikkelparadigma, nieuwe software tools én de domeinspecifieke
taal,

• dat software-implementaties beter voldoen aan de voorgeschreven architectuur
als modelgedreven softwareontwikkeling wordt toegepast omdat de software-
architectuur vast wordt gelegd om generatie van broncode mogelijk te maken.

Een bijkomstige bevinding is dat het gebruik van modellen als centrale ontwikkelarte-
facten fundamenteel verschilt van het klassieke model waarin programmacode deze
rol vervult. De verschillen zelf en de implicaties van deze verschillende softwareont-
wikkelparadigma’s zijn echter nog onduidelijk en nodigen uitdrukkelijk uit tot nader
onderzoek.
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ADL Architecture Description Language

BOA Back Office Architect
BPMN Business Process Model and No-
tation

CASE Computer-Aided Software Engi-
neering
CM Change Management
CMMI Capability Maturity Model Inte-
gration
CRS Chain Referral Sampling

DSL Domain-Specific Language

ERD Entity-Relation Diagram
ERP Enterprise Resource Planning

FOA Front Office Architect
FTE Full-Time Equivalent

GNU GNU’s not Unix!
GQM Goal-Question-Metric
GSD Global Software Development

HR Human Resources

IT Information Technology

MDA Model-Driven Architecture
MDD Model-Driven Development
MDE Model-Driven Engineering
MOF Meta Object Framework

OCL Object Constraint Language

POC Proof Of Concept

RFC Request For Change
RUP Rational Unified Process

SAD Software Architecture Document
SCCMS Software Configuration and
Change Management System
SLA Service-Level Agreement
SLOC Source Lines of Code
SQL Structured Query Language
SS Supplementary Specification
SVN Subversion

UML Unified Modeling Language

XMI XML Metadata Interchange
XML Extensible Markup Language
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