16 research outputs found

    An Agile Roadmap for Live, Virtual and Constructive-Integrating Training Architecture (LVC-ITA): A Case Study Using a Component based Integrated Simulation Engine

    Get PDF
    Conducting seamless Live Virtual Constructive (LVC) simulation remains the most challenging issue of Modeling and Simulation (M&S). There is a lack of interoperability, limited reuse and loose integration between the Live, Virtual and/or Constructive assets across multiple Standard Simulation Architectures (SSAs). There have been various theoretical research endeavors about solving these problems but their solutions resulted in complex and inflexible integration, long user-usage time and high cost for LVC simulation. The goal of this research is to provide an Agile Roadmap for the Live Virtual Constructive-Integrating Training Architecture (LVC-ITA) that will address the above problems and introduce interoperable LVC simulation. Therefore, this research describes how the newest M&S technologies can be utilized for LVC simulation interoperability and integration. Then, we will examine the optimal procedure to develop an agile roadmap for the LVC-ITA. In addition, this research illustrated a case study using an Adaptive distributed parallel Simulation environment for Interoperable and reusable Model (AddSIM) that is a component based integrated simulation engine. The agile roadmap of the LVC-ITA that reflects the lessons learned from the case study will contribute to guide M&S communities to an efficient path to increase interaction of M&S simulation across systems

    Relational oriented systems engineering framework for flight training

    Get PDF
    The integration of systems of systems (SoS) associated with a flight training mission directly reflects the problem of developing a system engineering process for the design of live, virtual and constructive (LVC) experiments. Due to the complexity and disparity of the technology in a flight training SoS (FTSoS), modeling and analysis of architecture is becoming increasingly important. Relational Oriented Systems Engineering (ROSE) methodology is used to develop a framework for simulation and analysis of a navigational SoS for a typical aircraft. The framework can be used for both the prescription of navigation systems entering and exiting the SoS and for the analysis of pilot behavior as navigation quality of service (QoS) changes. ROSE offers a novel approach to developing a model-based systems engineering (MBSE) process for simulation and analysis of a complex SoS problem

    An Extended Interoperability Framework for Joint Composability

    Get PDF
    Interoperation of systems is defined by the aspects of integratability, interoperability, and composability. It is therefore needed, to address all levels of interoperation - from conceptual models via implemented systems to the supported infrastructure - accordingly in an interoperation framework. Several candidates are available and provide valuable part solution. This paper evaluates the Base Object Models (BOMs), Discrete Event Simulation Specifications (DEVS), Unified Language Model (UML) artifacts as used within the Test and Training Enabling Architecture (TENA), the Object-Process Methodology (OPM), and Conceptual Graphs (CG) regarding their contribution. Using the Levels of Conceptual Interoperability Model (LCIM), an extended interoperability framework based on the contributions of BOM, DEVS, UML/TENA, OPM, and CG will be proposed and gaps in support of joint composability are indentified

    A Stochastic Model of Plausibility in Live-Virtual-Constructive Environments

    Get PDF
    Distributed live-virtual-constructive simulation promises a number of benefits for the test and evaluation community, including reduced costs, access to simulations of limited availability assets, the ability to conduct large-scale multi-service test events, and recapitalization of existing simulation investments. However, geographically distributed systems are subject to fundamental state consistency limitations that make assessing the data quality of live-virtual-constructive experiments difficult. This research presents a data quality model based on the notion of plausible interaction outcomes. This model explicitly accounts for the lack of absolute state consistency in distributed real-time systems and offers system designers a means of estimating data quality and fitness for purpose. Experiments with World of Warcraft player trace data validate the plausibility model and exceedance probability estimates. Additional experiments with synthetic data illustrate the model\u27s use in ensuring fitness for purpose of live-virtual-constructive simulations and estimating the quality of data obtained from live-virtual-constructive experiments

    INCORPORATING RADIO FREQUENCY MESH NETWORKS TO LINK LIVE, VIRTUAL, CONSTRUCTIVE TRAINING

    Get PDF
    Given the importance of modeling and simulation (M&S) for creating realistic training environments and employing or developing tactical systems for warfighters, the Department of Defense is turning toward live, virtual, constructive (LVC) simulations as a means to prepare and equip our military for the next war. M&S offers a unique competency for modeling emergent enemy behaviors in constructive simulations on virtual battlefields across the globe. Transferring these dynamic tactical actions to live command and control (C2) systems used during training can create decision-making opportunities for distributed units to react to and act upon. The research conducted in this thesis assessed, developed, and implemented an appropriate LVC environment that can be used in training for tactical convoy operations in the Marine Corps. We developed a robust mesh network connected to a personal computer running a constructive simulation to create dynamic tracks on handheld, Android-based C2 systems. Using low-bandwidth radios to create the network, we were able to create a rich, tactically realistic training environment while minimally increasing the combat load of our Marines. The system we created has the same functionality of the blue force tracker (BFT). Because the BFT is no longer funded, we recommend the LVC solution we created for this thesis as a potential replacement with embedded training capabilities.Captain, United States Marine CorpsApproved for public release. distribution is unlimite

    Design of a Framework to Measure the Degree of Live Virtual Constructive (LVC) Simulation Interoperability

    Get PDF
    Accomplishment of the Live, Virtual and Constructive simulation interoperability has been a major goal and a challenge in the Modeling and Simulation (M&S) community. There have been efforts to interoperate individual Live, Virtual and Constructive simulations within a common synthetic environment through suitable technologies such as interface specifications, protocols, and standard middleware architectures. However, achieving interoperability of LVC simulation is a technologically complex since it is affected by multiple factors, and the characteristics are not yet satisfactorily defined and studied. A proper method is absent to measure the potential interoperability degree of LVC simulation. Therefore, there should be an appropriate systematic approach to measure the potential LVC simulation interoperability which includes technical, conceptual and organizational domains. This research aims to design a preliminary systematic approach to measure the potential interoperability degree of an individual Live, Virtual and Constructive simulation and a relevant organization which plans to use the simulation system for simulation interoperability. Specifically, a framework that contains components such as a) LVC simulation interoperability domains, b) interoperability domain factors, c) interoperability maturity levels, d) interoperability determination method is proposed. To accomplish the goal, a set of factors that determine the interoperability degree in LVC simulation environment are identified, and the factors are used to build the key elements of the framework. The proposed methodology for the framework design is based on systematic literature reviews and a survey involving a number of relevant domain experts. A case study is demonstrated to prove the validity and effectiveness of the developed framework. The case study illustrates how the interoperability levels of a simulation system and a relevant organization are effectively measured. This research potentially contributes by providing an understanding of the factors that determine the interoperability degree of LVC simulation, improvement of the LVC simulation interoperability measurement process, and consequently, accomplishment of more effective LVC simulation interoperability

    Limitations Of Micro And Macro Solutions To The Simulation Interoperability Challenge: An Ease Case Study

    Get PDF
    This thesis explored the history of military simulations and linked it to the current challenges of interoperability. The research illustrated the challenge of interoperability in integrating different networks, databases, standards, and interfaces and how it results in U.S. Army organizations constantly spending time and money to create and implement irreproducible Live, Virtual, and Constructive (LVC) integrating architectures to accomplish comparable tasks. Although the U.S. Army has made advancements in interoperability, it has struggled with this challenge since the early 1990s. These improvements have been inadequate due to evolving and growing needs of the user coupled with the technical complexities of interoperating legacy systems with emergent systems arising from advances in technology. To better understand the impact of the continued evolution of simulations, this paper mapped Maslow\u27s Hierarchy of Needs with Tolk\u27s Levels of Conceptual Interoperability Model (LCIM). This mapping illustrated a common relationship in both the Hierarchy of Needs and the LCIM model depicting that each level increases with complexity and the proceeding lower level must first be achieved prior to reaching the next. Understanding the continuum of complexity of interoperability, as requirements or needs, helped to determine why the previous funding and technical efforts have been inadequate in mitigating the interoperability challenges within U.S. Army simulations. As the U.S. Army\u27s simulation programs continue to evolve while the military and contractor personnel turnover rate remains near constant, a method of capturing and passing on the tacit knowledge from one personnel staffing life cycle to the next must be developed in order to economically and quickly reproduce complex simulation events. This thesis explored a potential solution to this challenge, the Executable Architecture Systems Engineering (EASE) research project managed by the U.S. Army’s Simulation and Training Technology Center in the Army Research Laboratory within the Research, Development and Engineering Command. However, there are two main drawbacks to EASE; it iv is still in the prototype stage and has not been fully tested and evaluated as a simulation tool within the community of practice. In order to determine if EASE has the potential to reduce the micro as well as macro interoperability, an EASE experiment was conducted as part of this thesis. The following three alternative hypothesis were developed, tested, and accepted as a result of the research for this thesis: Ha1 = Expert stakeholders believe the EASE prototype does have potential as a U.S. Army technical solution to help mitigate the M&S interoperability challenge. Ha2 = Expert stakeholders believe the EASE prototype does have potential as a U.S. Army managerial solution to help mitigate the M&S interoperability challenge. Ha3 = Expert stakeholders believe the EASE prototype does have potential as a U.S. Army knowledge management solution to help mitigate the M&S interoperability challenge. To conduct this experiment, eleven participants representing ten different organizations across the three M&S Domains were selected to test EASE using a modified Technology Acceptance Model (TAM) approach developed by Davis. Indexes were created from the participants’ responses to include both the quality of participants and research questions. The Cronbach Alpha Test for reliability was used to test the reliability of the adapted TAM. The Wilcoxon Signed Ranked test provided the statistical analysis that formed the basis of the research; that determined the EASE project has the potential to help mitigate the interoperability challenges in the U.S. Army\u27s M&S domains

    On the Role of Simulation and Simulation Standards in Industry 4.0

    Get PDF
    This article introduces the concepts and ideas behind Industry 4.0 and discusses the role of simulation and simulation standards for implementing it. We argue that the success of Industry 4.0 highly depends on the success of interconnected cyber-physical systems (CPS) which can only be implemented with up-front simulation. This up-front simulation and development of CPS is often associated with the term of building the “digital twin” for the respective CPS. Digital twins are typically defined as digital representations which represent the real system and its current state in a digital model. For investigating their dynamic behavior, digital twins must have properties typically associated with simulation models. In this article, we discuss requirements and potential solutions for the successful implementation of digital twins as well as the implications that this has on simulation standards. As an example, digital twins as representations of a CPS will have the need to communicate with other digital twins; hence a modular approach for building federations of digital twins is needed. Beyond that, also a need for standardized communication between the digital twin and the real CPS arises. The article will therefore discuss currently available interoperability standards, like the High Level Architecture (HLA) on the simulation side, and Open Platform Communications (OPC) Unified Architecture (OPC UA) on the control hardware side and how well they match the requirements that Industry 4.0 with its CPSs and digital twins imposes. The article also includes our opinion on the need for the future evolvement of existing standards
    corecore