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Abstract

As of late, the number and the diversity of autonomous vehicles used in various tasks have been
increasing. A Platform was created in the Artificial Intelligence and Computer Science Laboratory
to allow for the simulation of varying kinds of cooperative missions with a group of heterogeneous
vehicles. Examples of such missions are detecting a fire, locating a pollution source or finding
and following a vehicle. The Platform contains a Disturbances Manager, which allows for the
simulation of environmental disturbances that may require vehicular intervention. Different kinds
of disturbances and their characteristics must be taken into account, including spatial aspects like
their size, location, multiplicity, and temporal ones, namely mobility and growth.

Currently, the aforementioned disturbances are simulated using Flight Simulator X (FSX),
which serves as the core engine for The Platform. The Disturbances Manager was created to
simulate disturbances that could not be simulated in FSX. However, it would be better to have
dedicated simulators for certain types of environmental disturbances, as the Disturbances Manager
cannot simulate some of them with the required higher realism and simulation fidelity.

The most adequate co-simulation architecture to successfully integrate external simulators for
environmental disturbances, via the Disturbances Manager, was determined. An architecture to
possibilitate this while also standardising the communication between components of The Plat-
form was put into place using RabbitMQ.

The best suited external simulator for The Platform was searched. Fire simulators were given
priority for FSX compatibility with their input data yet earthquake, tsunami and atmospheric dis-
persion simulators were also researched. ForeFire was chosen to simulate surface wildfire spread.

The co-simulation architecture was implemented using the previous choices. Data needed for
the fire simulation was extracted from the one used by FSX. Some preprocessing was required,
like converting land classification systems and interpolating wind values. A Python middleware
facilitated the inclusion of the external simulator in The Platform’s architecture and the commu-
nication between this simulator and the Disturbances Manager. A buffer mechanism for time
synchronisation was implemented in the Disturbances Manager.

A test suite was created to evaluate and validate the implemented solution. The implemented
solution was tested and validated in different wind and location scenarios using various metrics,
like simulation speed and time drift.

The solution was found to be good enough to support 4x real-time simulation speeds in the
initial stages of slow fire spread, 2x speeds thereafter and 1x for fast fire spread. Improvements can
be made in the solution by addressing data compatibility issues that cause the simulation speed to
deteriorate as the simulation time increases.

Keywords: co-simulation architectures, environmental disturbances
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Resumo

Ultimamente, o número e a diversidade de veículos autónomos utilizados em várias tarefas têm
vindo a aumentar. Foi criada uma Plataforma no Laboratório de Inteligência Artificial e Ciência de
Computadores para permitir a simulação de vários tipos de missões cooperativas com um grupo de
veículos heterogéneos. Exemplos de tais missões são detetar um incêndio, localizar uma fonte de
poluição ou encontrar e seguir um veículo. A Plataforma contém um Gestor de Distúrbios, o que
permite a simulação de distúrbios ambientais que podem requerer intervenção veicular. Diferentes
tipos de distúrbios e as suas características devem ser tidos em conta, incluindo aspectos espaciais
como o seu tamanho, localização, multiplicidade, e temporais, nomeadamente a mobilidade e o
crescimento.

Actualmente, os distúrbios mencionados acima são simulados utilizando o Flight Simulator X
(FSX), que serve como motor principal para A Plataforma. O Gestor de Distúrbios foi criado para
simular distúrbios que não podiam ser simulados no FSX. No entanto, seria melhor ter simuladores
dedicados para certos tipos de distúrbios ambientais, uma vez que o Gestor de Distúrbios não
consegue simular alguns deles com o realismo e a fidelidade de simulação exigidos.

Foi determinada a arquitetura de co-simulação mais adequada para integrar com sucesso sim-
uladores externos para distúrbios ambientais, através do Gestor de Distúrbios. Foi criada uma
arquitetura que possibilitasse isto ao mesmo tempo que uniformizava a comunicação entre os
componentes da Plataforma, utilizando o RabbitMQ.

Foi pesquisado o simulador externo mais adequado para A Plataforma. Foi dada prioridade aos
simuladores de incêndio tendo em vista a compatibilidade do FSX com os seus dados de entrada,
mas também foram pesquisados simuladores de sismos, tsunamis e dispersão atmosférica. O
ForeFire foi escolhido para simular a propagação de incêndios florestais à superfície.

A arquitetura de co-simulação foi implementada utilizando as escolhas anteriores. Os dados
necessários para a simulação do incêndio foram extraídos dos dados utilizados pelo FSX. Foi
necessário algum pré-processamento, como a conversão de sistemas de classificação de terrenos
e a interpolação de valores de vento. Um middleware em Python possibilitou a inclusão do sim-
ulador externo na arquitetura da Plataforma e a comunicação entre este simulador e o Gestor de
Distúrbios, onde foi implementado um mecanismo de buffer para a sincronização temporal.

Foi criado um conjunto de testes para avaliar e validar a solução implementada. A solução
implementada foi testada e validada em diferentes cenários de vento e localização, utilizando
várias métricas, como velocidade de simulação e desvio temporal.

A solução foi considerada boa o suficiente para suportar inicialmente velocidades de simulação
de 4x em propagações lentas e velocidades seguintes de 2x, e de 1x para propagações rápidas. Po-
dem ser feitas melhorias na solução, abordando questões de compatibilidade de dados que causam
a deterioração da velocidade de simulação à medida que o tempo de simulação aumenta.

Palavras-chave: arquiteturas de co-simulação, distúrbios ambientais
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Chapter 1

Introduction

An overview of the present report is presented in this chapter. Firstly, the context and the motiva-

tion behind this work. Secondly, the detailing of its goals. Thirdly, explaining the methodologies

and expected results stemming from its developments and lastly, an outline of the report’s struc-

ture.

1.1 Context and Motivation

As of late, there is a growing number and diversity of autonomous vehicles [MarketsandMar-

kets, 2019]. Consequently, a Platform was developed in the Faculty of Engineering, University

of Porto’s (FEUP) Artificial Intelligence and Computer Science Laboratory (LIACC), using Mi-

crosoft’s Flight Simulator X (FSX) as a starting point [Silva, 2011]. The main objective of the

platform is to simulate autonomous vehicles cooperating in group missions like transportation,

search and origin detection. However, as the frequency of environmental disturbances increases,

there is a need for better suited methods to properly study their interaction with these vehicles,

seeing that they might be able to detect certain disturbances and act accordingly [CRED, 2015].

Recent developments on this Platform include the addition of a disturbance simulation com-

ponent via the Disturbances Manager of The Platform, which allowed the simulated vehicles to

become aware of disturbances occurring near their location [Almeida, 2017]. These disturbances

are simulated within FSX when it is able to simulate a given disturbance, and they are managed

using the Disturbances Manager. However, because the FSX engine is originally intended to be

used as a game, some simulation details aren’t as interesting as one might expect, e.g. there’s a

visual effect for fires, but no propagation simulation. As a consequence of this, and because FSX

does not either support the simulation of a given kind of disturbance or the realism and fidelity lev-

els of the simulation are required to be higher for a certain kind of disturbance, the use of external

simulators is required.

1



2 Introduction

1.2 Goals

The main goal of this project is to answer the following research question: Is it possible to use an

external simulator for simulating specific environmental disturbances inside The Platform, given

a single co-simulation architecture or standard?

The present work aims to carefully choose an environmental disturbance simulator to be cou-

pled through the Disturbances Manager, using a co-simulation architecture. The objective is to

reliably and faithfully simulate environmental disturbances using a co-simulator properly suited

to simulate those, and then have the disturbances in the simulated environment of The Platform.

In order to achieve this, there are some requirements regarding time and space synchronisation,

to guarantee that the disturbances are simulated within the same conditions that exist within The

Platform.

1.3 Methodologies and Expected Results

The work begins with an exhaustive study of the literature on co-simulation and existing frame-

works. Being able to pinpoint the advantages and disadvantages of any given co-simulation frame-

work is essential to choose the most adequate one for the project. It is also important to understand

if these frameworks are mere guidelines or are actually enforcing in nature, and to take into ac-

count the consequences they will have upon the following development.

Afterwards, the external simulators must be chosen. Certain traits, like the impact on the

real-time performance of the platform, the available documentation, having an application pro-

gramming interface (API), being free and open-source, available functionality, etc., will need to

be taken into consideration and an evaluation must be done to find what are the best matches for

this project for any given type of disturbance.

Finally, the development of a test suite is required in order to properly analyse and observe

the performance impact that linking the external simulators had on the simulation occurring in

The Platform. It should also be verified that the simulated disturbances are of a higher realism

and fidelity than the ones that would be found in FSX, to understand that its inclusion was an

addition to the quality of the overall simulation and not a deterrent. There’s also the requirement

of guaranteeing that the same data is being used in the external simulator and The Platform, which

might require additional data synchronisation work. To achieve this, an analysis will be performed

on aspects such as time drift, data acceptance/compatibility, simulation speed and information

latency.

It is expected that the most adequate co-simulation framework and external simulators are

chosen. Then, using the chosen framework, the chosen simulators are integrated into The Platform.

The test suite should provide good insight into the performance and quality metrics of adding the

external simulators to the platform, and the assessment should indicate that the added simulators

do an overall better job at simulating the disturbances than The Platform itself ever could.
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1.4 Document Structure

The next sections of this report are structured as follows:

Chapter 2 aims to provide some contextualisation on the concepts of The Platform, its simula-

tion architecture, environmental disturbances and information on simulation architectures. Chap-

ter 3 contains the state of the art for environmental disturbances simulation and co-simulation

architectures. Chapter 4 describes the planned implementation steps, a brief risk analysis, the cho-

sen architecture for implementing a solution and the technological choices. Chapter 5 depicts the

solution used for implementing the projected architecture. Chapter 6 shows the performed tests

on the implemented solution. Chapter 7 presents a summary of the report, states the conclusions

reached and a summary of the possible future work.
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Chapter 2

Contextualisation

This chapter will serve to contextualise the reader in regards to existing co-simulation standards

and architectures, as well as the categorisation of the environmental disturbances that will be

addressed in The Platform.

2.1 Co-Simulation Standards and Architectures

This section will outline the standards and architectures for distributed and co-simulation. These

can either be simulation-oriented, or non-simulation-oriented. The ones presented first are simulation-

oriented standards and architectures for co-simulation. This means that these have been thought of,

from the ground up, with simulation and aspects relevant to them in mind. The last one, however,

is not simulation-oriented.

Co-simulation can be defined as a composition of heterogeneous simulators used to simulate a

global environment, with specialised simulators being used for different objectives [Gomes et al.,

2018]. This can differ from distributed or parallel simulation, where the main purpose is simply

to distribute a single simulation model over multiple machines, in order to achieve higher perfor-

mance [Fujimoto, 2015].

2.1.1 Distributed Interactive Simulation

Distributed Interactive Simulation (DIS) is a protocol created in the mid-1980s by the United

States Department of Defense (DoD) [Fullford, 1996]. It was primarily built with military op-

erations in mind, but later became an Institute of Electrical and Electronics Engineers (IEEE)

Standard, being utilised in other areas [IEEE C/SI, 2015].

The main component of DIS is the Protocol Data Unit (PDU), which is defined as the data

messages which are traded between simulation applications [Hofer and Loper, 1995]. There are

several domains with defined PDUs, which are called protocol families, including Entity Informa-

tion/Interaction, Warfare, Logistics, Simulation Management, Distributed Emission Regeneration,

5



6 Contextualisation

Radio Communications, Entity Management, Minefield, Synthetic Environment, Simulation Man-

agement with Reliability, Information Operations, Live Entity Information/Interaction, and Non-

Real-Time protocol [IEEE C/SI, 2012]. There are, as of the latest revision of the standard, 72 of

these network packets, which are then distributed through the simulation nodes. They are encap-

sulated in UDP/IP frames and distributed via broadcast, or over the Internet using IP multicasting

[Fullford, 1996].

Even though there are relatively recent updates on the standards, DIS is limited in the scope of

what it can bring as a simulation standard [IEEE C/SI, 2012, IEEE C/SI, 2015]. Because the PDU

is the only well-defined building block for DIS, it did not achieve the interoperability that was

required of higher-order war game models. At the time, DIS only supported real-time simulations

(which was solved in newer versions of the standard) and the fact that the message structure was

immutable might also become a problem. Because of this, a new generation DIS was developed,

which is known as High Level Architecture [Fullford, 1996].

2.1.2 High Level Architecture

High Level Architecture (HLA) is a newer family of the DoD simulation common architecture

[Dahmann et al., 1998a]. It also has since become a widely implemented IEEE standard [IEEE

C/SI, 2010b].

HLA was built based on the premise that no individual simulation model can possibly satisfy

all uses and users requirements. For this reason, its main purpose is to allow the reuse of the

capabilities of different simulations, cutting down the cost and time required to bring together a

new simulation environment for a new purpose [Dahmann et al., 1998a]. A functional view of

HLA can be seen in Fig. 2.1.

There are three main terms used to describe elements in HLA: a federation, which is a set of

models forming a bigger simulation; a federate, a member of a federation, which can represent

a simple model or an aggregate simulation; and a federation execution, which is a simultaneous

execution of federations [Dahmann et al., 1998b].

With these three terms in mind, it is possible to define the essential HLA triad:

• HLA Rules, principles which define the responsibilities of federates, ensuring proper inter-

action between them.

• Object Model Template (OMT), a generic way to define the entities and their interactions

in a federation. Federates have Simulation Object Models (SOM) and federations have

Federation Object Models (FOM). They are a common representation in a federation or

federation execution.

• Interface Specification, which defines the interface between the federates and the Run-

time Infrastructure (RTI). The RTI is the base of the communication of simulation entities.

However, it is not the RTI that is standardised, but the interface to it.
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Figure 2.1: Functional View of an HLA Federation [Dahmann and Morse, 1998]

It is now possible to understand that in HLA, federates share a common RTI, which they

communicate with through an interface. Federates belonging to the same simulation environment

constitute a federation, and their SOM representation is common inside the federation. Multiple

federations can be running atop the RTI. This differentiates HLA from DIS in the aspect that HLA

allows defining new types of message contents, whereas in DIS has a strict set of types. If a certain

simulation needs to communicate about things that are out of the scope of DIS, HLA is a good

alternative.

The Federation Development and Execution Process was developed and updated to help with

the user implementation of HLA [IEEE C/SI, 2003]. Dahmann and Morse reckon that the utility

of HLA will be based on the availability of HLA tools that allow for easily maintaining such a

simulation environment [Dahmann and Morse, 1998]. In particular, RTI software and object model

tools are useful in the implementation of an HLA simulation. There are known implementations

of the RTI, both commercial and non-commercial, such as MAK RTI1, CERTI 2.

2.1.3 Test and Training Enabling Architecture

Test and Training Enabling Architecture3 (TENA) is a newer architecture by the DoD for simulat-

ing activities that are live, virtual and constructive (LVC) simulations [Noseworthy, 2008].

The concepts of LVC are as follows: live means the ability to support real, physical assets in the

simulation; virtual, being able to support simulated physical assets; and constructive, simulation

environments in which models of physical assets are used.

1MARK RTI is available at https://www.mak.com/products/link/mak-rti.
2CERTI is available at https://savannah.nongnu.org/projects/certi/.
3TENA is available at https://www.tena-sda.org/.

https://www.mak.com/products/link/mak-rti
https://savannah.nongnu.org/projects/certi/
https://www.tena-sda.org/
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The critique of HLA and DIS by TENA developers is that simulations built on top of the

aforementioned are inherently virtual and constructive. Because they’re not real, the flow of time

is not constrained by reality and the cost of failure is generally low, unlike the simulations with

real components in the war scenarios, which involve real machinery and operators.

To that end and to support the kinds of LVC simulations required of the DoD, TENA was

developed, which enforces the form of data exchange to reduce faults in the simulation, and there-

fore its costs. It has at its core the TENA Middleware, a tool that uses Unified Modeling Language

(UML) to automatically generate high-level, model-driven code. The object model needs to be

created within the middleware and is regarded as the most important task of the development

[Hudgins and Secondline, 2018]. The general TENA architecture can be observed in Fig. 2.2.

Figure 2.2: TENA Architecture [Hudgins and Secondline, 2018]

At this time, the TENA Middleware is in full control of the DoD and, to be able to use it, one is

required to create an account on their platform and abide by United States Government sanctioned

usage. The creation of the account and usage of the middleware is free, however.

2.1.4 Functional Mockup Interface

The Functional Mockup Interface4 (FMI) is a tool developed by the coordination of European

industry and academic researchers, under the Information Technology for European Advancement

(ITEA2) project MODELISAR [Chombart, 2012]. It serves as a tool independent standard to

exchange dynamic models and for co-simulation [Blochwitz et al., 2011].
4FMI is available at https://fmi-standard.org/.

https://fmi-standard.org/
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The context of the development of FMI was that, at the time, the model exchange between

simulation tools was largely done through low-level interfaces available in modelling languages,

which require much effort to be supported in a tool.

FMI defines two main modes of operation: FMI for Model Exchange and FMI for Co-simulation.

In FMI for Model Exchange, the main idea is to have a generation of C-Code which can later be

used as input/output blocks in other simulation environments. In FMI for Co-simulation, the

participant sub-systems communicate using discrete communication points. However, when not

communicating, they are each running their own algorithms. Data exchange and time management

are done by so-called master algorithms, which in turn manage the slaves.

FMI components are Functional Mockup Units (FMU), which consist of a .fmu zip-file. This

file contains an Extensible Markup Language (XML) file that defines what FMU variables are

exposed to the environment it is inserted in and another one to define the slave capabilities. It

also contains C functions in either source or binary code, both for using model exchange and for

co-simulation, which in the latter case the functions serve communication purposes, for instance,

establishment, step advancement and data exchange.

2.1.5 Data Distribution Service

Data Distribution Service (DDS) is a protocol in which data is distributed using a publish-subscribe

model developed by the Object Management Group (OMG) [OMG, 2015, Pardo-Castellote, 2003].

It is highly performant, oriented for real-time systems. Nodes that produce content (publishers)

can send a message of a certain topic, and then nodes that receive content (subscribers) seamlessly

receive the content to topics they have subscribed. Nodes can be publishers and subscribers at the

same time. It also implements Quality of Service (QoS) peer discovery mechanisms.

It is used in multiple platforms and it has implementations in various programming languages,

which makes it useful for models who are also in the same situation [Madden and Glaab, 2017].

The only downside would be that because it is not specifically simulation-oriented, an aspect

that is essential in simulation, time management, is not specified as part of DDS. To counter this,

one would have to implement their own solution or use other existing synchronisation tools that

can accomplish the same objective.

2.2 The Platform

As mentioned in section 1.1, The Platform is a tool to simulate missions of heterogeneous au-

tonomous vehicles. It was developed in FEUP’s LIACC. The missions to be simulated would be

cases where it would be too dangerous for humans to intervene in such a situation, or because

the cost of this kind of missions is too high. The Platform’s initial architecture, as proposed by

Silva, can be seen in Fig. 2.3. FSX is the simulation engine of The Platform. Its main point of

interaction with the user is the Control Panel, where one can configure the simulation environment

and monitor its execution. There are also Air Traffic Control (ATC) Agents, which are responsible

for managing traffic within a given area or for a type of vehicle. These vehicles are represented
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Figure 2.3: The Platform’s Initial Architecture [Silva, 2011]

through the Vehicle Agents. Then, with the Log Files generated by the Logging Tool, we can

use the Performance Analysis module to assess the current simulation performance. Finally, and

perhaps the most important module for the project at hands, there’s the Disturbances Manager, cre-

ated to manage the disturbances not able to be within FSX. Most of the connection between The

Platform’s modules and the simulator is done through the SimConnect Software Development Kit

(SDK), which can be used to create add-on components for Microsoft ESP-based simulators [Mi-

crosoft Corporation, 2008b, Microsoft Corporation, 2008a]. That is the case for Microsoft’s own

FSX. For the communication between agents, AgentService was used, which allows for Founda-

tion for Intelligent Physical Agents (FIPA) compliant message exchange [Vecchiola et al., 2008].

The Control Panel graphical user interface (GUI) was visually revamped by the work of Esteves,

but the functionality was retained [Esteves, 2020]. Figure 2.4 shows the GUI in its current state.

Together with The Platform, Silva proposed four XML-based dialects to define aspects related

to the mission to be performed [Silva, 2011]. The four dialects are related to the static and dynamic

properties of the mission definition. For the team, there’s a dialect to define static items, the

vehicles and their characteristics, and a dynamic one to define the missions they perform. In terms

of the scenario, there’s a dialect to define its static elements, such as bases of operation and no-fly

areas and one to define dynamic features of the scenario. This last one is being further described
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Figure 2.4: The Control Panel GUI [Esteves, 2020]

next because of its significance for this work.

To have a way to define the disturbances in an adjustable manner, the Disturbance Description

Language (DDL) was created [Silva et al., 2016]. It allows for a flexible definition of the distur-

bances existing in The Platform. A diagram of DDL’s schema, with the most recent additions the

language from Almeida highlighted in blue boxes, can be seen in Fig. 2.5. One or more distur-

bances can be described at a time. DDL allows for the specification of the disturbance’s nature, be

it naturally occurring or man-made. It also allows for the definition of its location and time, which

can be set to specific ones or also random values in a given range, like an area or time interval. The

multiplicity and evolution of the disturbance are also detailed. It can be stationary, move, or grow.

DDL allows for the specification of the evolution of the disturbance, using its distSize element, and

the readings for sensors associated with a disturbance’s component using the generatedReading

element. However, should a co-simulator be successfully coupled, some of these fields would be

set as custom so as to allow these parameters to be retrieved from the external simulator. Another

important field is the component’s medium, which refer to land, air, water and underwater boolean
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values. This matches the reality of The Platform, in which the simulated vehicles can usually

travel through one of these mediums, even though DDS was made for general usage.

2.3 Environmental Disturbances

Almeida outlined several types of environmental disturbances that were considered to be relevant

to be represented in The Platform [Almeida, 2017]. The term environmental disturbance was

chosen because natural disaster usually refers to non-man-made disasters, and the former was

chosen to refer to every kind of disaster. This work served as a basis for the following tables

that outline the varying kinds of environmental disturbances. However, several changes were

made to the existing classification and groupings of the disturbances, as some of the existing ones

seemed redundant or too specific. The work of Alexander was also used as a guideline for the

types and categorisation of natural disasters [Alexander, 1993]. In his work, there are three main

categories of natural disasters: earthquakes and volcanoes, atmospheric and hydrological hazards,

and disasters and the land surface. These categories suggest of tectonics, fluids and surfaces,

respectively, and are grouped as such because of the geophysical agent that causes those disasters,

e.g. tsunamis are in the earthquakes and volcanoes category. However, because environmental

disturbances include non-natural disasters, a geophysical agent aggregation makes less sense than

it would if solely talking about natural disasters, seeing that man-made disasters would all be

relegated to their own category. Another important aspect is that this listing is made in accordance

with how The Platform works and how DDL is specified. The disturbances are defined there

according to the medium in which they exist. Also, amphibious agents are not yet simulated.

For these reasons and because it is, in a sense, suggested by the original natural disaster triad, the

environmental disturbances are then categorised by the medium in which they occur. Tectonics and

surfaces come together to represent land disturbances, while fluids get separated into atmospheric

and waterbody disturbances.

The following tables include the name of the disturbance, its origin (ManMade, Natural or

Any), the kinds of sensors that might be of interest in obtaining information regarding the distur-

bance, and if there is a growth rate associated with it. This is necessary for specifying its size

evolution using DDL. They all also have a seriousness degree, i.e. the varying importance at-

tributed to different occurrences of the same disturbance. Phenomena might not be directly stated

in any of the tables; however, some other listed phenomena might represent it in a broader way or

sense. The opposite situation can also happen, i.e. a disturbance that could probably be contained

by another is listed; in this situation, it might be the case that the more specific disturbance is

subject of more interest because of the effects it might have in the simulation, in the context of

The Platform.

The land environmental disturbances (Table 2.1) groups events that occur because of and alter

the terrain itself. Disturbances like vehicular accidents, which were previously on this table, were

relocated since they’re something that happen on land, but not within the land itself. Landslides
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Figure 2.5: DDS Schema Diagram [Almeida, 2017]
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refer to its many forms of manifestation, as is the case of avalanches. As for subsidence, it in-

cludes disturbances like sinkholes and cave-ins. The distinction between wildfire and urban fire is

justified in the different way that their propagation is usually modelled and how it is combated.

Table 2.1: Land Environmental Disturbances

Name Origin Sensor Types
Growth

Rate

Landslide Natural CameraIntensity; Microphone yes

Subsidence Natural CameraIntensity; Microphone yes

Earthquake Natural CameraIntensity; Microphone yes

Flood Natural CameraIntensity yes
Volcano
Eruption

Natural
CameraIntensity; IRCameraIntensity;

Temperature; Microphone
yes

Wildfire Any
CameraIntensity; Chemical;

IRCameraIntensity; Temperature
yes

Urban Fire ManMade
CameraIntensity; Chemical;

IRCameraIntensity; Temperature
yes

The waterbody environmental disturbances (Table 2.2) consist of disturbances occurring at a

waterbody. Changes from the previous work include the aggregation of oil spills and chemical

spills into a single disturbance since oil can be considered a chemical and they are both spills.

Glacier hazards include all sorts of disturbances that can be caused by glaciers, as is the case of

iceberg separations, for example. Strong waves include extreme cases, like tsunamis.

Table 2.2: Waterbody Environmental Disturbances

Name Origin Sensor Types
Growth

Rate

Strong Waves Natural CameraIntensity; Microphone yes

Chemical Spill ManMade CameraIntensity; Chemical yes
Hydrothermal

Vent
Natural

CameraIntensity; IRCameraIntensity;
Microphone; Temperature

yes

Submarine
Volcano Eruption

Natural
CameraIntensity; Chemical; IRCamera-

Intensity; Microphone; Temperature
yes

Glacier Hazards Natural
CameraIntensity; IRCameraIntensity;

Microphone; Temperature
yes

The atmospheric environmental disturbances (Table 2.3) contains events that happen in the at-

mosphere. These are the disturbances that would be commonly referred to as happening in the air.

They were renamed from storm disturbances in order to follow the new medium categorisation.

For the tropical thunderstorms, they can be designated as hurricanes or typhoons, depending on

their location. As for tornadoes, they also comprise similar phenomenon, e.g. dust devils, which

are simply special manifestations of the former. Storm is a very broad disturbance which can
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represent high persistence of winds or precipitation. It also represents some other, more specific

disturbances that aren’t otherwise mentioned, like sandstorms. However, other specific manifes-

tations of storms, as is the case of blizzards and thunderstorms, exist in this listing because they

pose great danger in aviation [Evans, 2014].

Table 2.3: Atmospheric Environmental Disturbances

Name Origin Sensor Types
Growth

Rate

Storm Natural
CameraIntensity; HumiditySensor;

AirPressure; WindSpeed; Microphone
yes

Hail Natural
CameraIntensity; IRCameraIntensity; Humidity-
Sensor; AirPressure; WindSpeed; Microphone

yes

Blizzard Natural
CameraIntensity; IRCameraIntensity; Humidity-

Sensor; AirPressure; WindSpeed
yes

Fog Natural CameraIntensity; HumiditySensor; AirPressure yes

Thunderstorm Natural
CameraIntensity; HumiditySensor;

AirPressure; WindSpeed;
ElectricField; MagneticField; Microphone

yes

Tornado Natural
CameraIntensity; AirPressure;

WindSpeed; Microphone
yes

Tropical
Cyclone

Natural
CameraIntensity; AirPressure;

WindSpeed; Microphone
yes

The last category, assorted environmental disturbances (Table 2.4), encloses occasions that

would not fit directly within a table above. Most of these disturbances happen independently of

the conditions of the previous categories, even though they might happen within their mediums.

They fit the new flock disturbance, a large group of birds, which is highly relevant and dangerous

for aviation [Allan, 2000], causing a potential bird strike. The specific relevance it might have

in the context of the simulated aerial vehicles is the reason it is differentiated from an animal

infestation. The chemical contamination disturbance is included here as a broad manifestation of

this event. It differs from the chemical spill, a specific case of chemical contamination, where

the waterbody is severely affected by the spill. The contamination can refer to cases that would

otherwise not be included, like an ammonia leak in a lab, or high CO2 concentration in a room.

This categorisation and listing of disturbances should in no way be taken as exhaustive. Even

though it is obviously as complete as it can be, it is always to be seen through the optics of The

Platform’s context, where certain events are of higher interest for simulation scenarios.

Accordingly, the sensor types indicated are the same from Almeida [Almeida, 2017]. These

are sensors that can be included in the simulated unmanned vehicles. They are the following:

• AirPressure - An air pressure sensor, which outputs air pressure data, for example, in stan-

dard atmosphere (atm);
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Table 2.4: Assorted Environmental Disturbances

Name Origin Sensor Types
Growth

Rate

Animal Infestation Natural CameraIntensity yes

Extreme Temperature Natural Temperature yes

Chemical Contamination ManMade Chemical yes

Radiation ManMade GeigerCounter yes

Vehicular Accident ManMade CameraBinary no

Lost/Fleeing Being ManMade CameraBinary; Microphone no

Flock Natural
CameraIntensity;

IRCameraIntensity
no

• CameraBinary - A camera, which reads true or false, according to whether the disturbance

in question can be observed. It will be calculated by whether or not the disturbance is within

the agent’s field of view;

• CameraIntensity - A camera, which reads an observed disaster normalised estimate intensity.

A heuristic will be applied to calculate the intensity reading. It simulates results that a

smart-camera, applying computer vision and/or machine learning algorithms to determine

intensity values from a disturbance would yield;

• IRCameraIntensity - A camera, which reads an observed disaster normalised estimate inten-

sity via infrared imaging. A heuristic will be applied to calculate the intensity reading;

• Chemical - A generic chemical sensor, which may convey readings in a specified concen-

tration unit. A common use for this sensor is a CO2 sensor;

• ElectricField - Measures the intensity of affecting electric fields, typically in newtons per

coulomb (N/C);

• MagneticField - Gauges the intensity of affecting magnetic fields, typically in teslas (T);

• GeigerCounter - Indicates radiation intensity, usually measured in sievert (Sv);

• HumiditySensor - Measures the relative humidity of the air, expressed in a percentage;

• Microphone - Listens to sound waves. It is not limited to regular microphones, but can also

mean hydrophones or other sensors that detect sound, independently of the medium. The

loudness is commonly expressed in decibels (dB);

• Temperature - A sensor which reads the temperature, frequently in Celsius (oC);

• WindSpeed - Measures the wind speed, generally in meters per second (m/s).



Chapter 3

State of the Art

This section describes the researched state of the art relating to co-simulation architectures, im-

plementations of co-simulation platforms and natural disturbances simulators.

3.1 Co-Simulation Standards and Architectures

A good starting point for the research in what are the current challenges in co-simulation are the

works of Gomes et al. [Gomes et al., 2017, Gomes et al., 2018]. In summary, it is stated that

the increase in complex systems leads to a need for coupling different simulation models. There-

fore, an exhaustive search was performed on state of the art of the previous five years, in search

of generic approaches for co-simulation. There are two main standards outlined: the Functional

Mock-up Interface (FMI) standard, and the High Level Architecture (HLA) standard. The former

is said to be used in Continuous Time (CT) simulations, while the latter is used in Discrete Event

(DE) ones. The one more carefully detailed is FMI, which was found to be used more than HLA

recently in the researched environment. One advantage pointed out for FMI was that it allowed

communication without revealing the IP behind a certain model, which was relevant for the men-

tioned industries. However, it was found that the aforementioned standards are limited in hybrid

co-simulation, meaning that both CT and DE simulations are trying to be coupled. There are

some proposed techniques and standard extensions to attenuate these shortcomings [Awais et al.,

2013, Tavella et al., 2016].

Bauer and Van Duijsen outline two possible solutions for integrated simulations: parameter/-

data exchange or co-simulation [Bauer and Van Duijsen, 2005]. Parameter/Data exchange is not

relevant for this work as the simulated models are not equivalent in any way. Thus, the pointed

out relevant solutions for co-simulation are Application Programming Interfaces (API) or Inter-

process interfaces. However, no standard is mentioned in this work.

Fujimoto points out that distributed simulation faces many challenges, such as, but not re-

stricted to, time management or distributing information between simulators efficiently [Fujimoto,

17
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2015, Fujimoto, 2016]. Since interoperability has since been another of the goals in this area, stan-

dards to interconnect simulators have been created, such as HLA and DIS.

Lasnier et al. have some information about the HLA implementation and terminology [Las-

nier et al., 2013]. The entire simulated system is a federation, which is composed of federates,

these being the various simulation entities belonging to the system. These federates will need to

communicate through a Run-Time Infrastructure (RTI). It points out that HLA defines three main

characteristics: an interface specification for a set of services that enable federate management,

an object model template for standardisation of federate communication, and rules that describe

federate and federation responsibilities. Another notable thing in this work is the use of CERTI1,

an open-source HLA-compliant RTI.

Madden and Glaab delve into a different approach for running distributed simulations [Madden

and Glaab, 2017]. Having previously used HLA and DIS, the researchers tried to implement a

new simulation architecture based on the Distributed Data Service (DDS) specification, developed

by the Object Managing Group, in a cloud setting [OMG, 2015]. It presented good results in

providing data exchange in different network topologies (across same subnet, different subnets

and from their intranet to the cloud provider). It was also found that implementation in various

programming languages existed for this. As DDS is a specification for data exchange between

real-time applications and has configurable quality of service (QoS), no-cost implementations,

and includes interoperability wire protocols to deal with different vendor implementations, it was

expected that it would be good for a simulation environment. However, because DDS is not a

simulation framework, it lacks an important aspect which is time management. People who wish

to use DDS will have to rely on other services, like Network Time Protocol (NTP), or implement

their own solution. Another issue that DDS presents is that extensions to the DDS protocol are

usually proprietary and thus, not interoperable.

Schweiger et al. use the Delphi method and performed a quantitative analysis of the strengths,

weaknesses, opportunities and threats (SWOT) of co-simulation using the Analytic Hierarchy Pro-

cess (AHP) [Schweiger et al., 2018, Okoli and Pawlowski, 2004]. However, it is mentioned that

FMI is the prime candidate to become the industry and academy standard, going so far as to being

included as a specific question in the Delphi study.

With this in mind, a matrix to outline the traits of the different standards and architectures

is presented in Table 3.1. The analysed traits are ones that are relevant for this work, such as

those important for simulation, performance, communication security and the overall usage of the

standard or architecture. One big takeaway is that besides TENA, only an ad hoc solution might be

able to achieve over the internet simulation right away, because the other standards, by themselves,

are made to run on a single machine. Also, only an ad hoc solution might possibilitate a secure

communication channel.

1CERTI is available at https://savannah.nongnu.org/projects/certi.

https://savannah.nongnu.org/projects/certi
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Table 3.1: Trait Matrix for Standards and Architectures. The symbol ‘?’ denotes the inability in
understanding if the trait is present or not on a given standard or architecture.

Traits DIS HLA TENA FMI DDS Ad hoc
Simulation-oriented Yes Yes Yes Yes No ?

Run-time infrastructure No Yes Yes Yes No ?
Synchronisation No Yes Yes Yes No ?

Hot-plugging No No ? ? Yes ?
High throughput No ? ? ? Yes ?
Over the internet No No Yes No No ?

Secure communication No No ? No No ?
Widespread usage Yes Yes No Yes Yes Yes

3.2 Related Work

Králíček uses the aforementioned CERTI RTI and builds a plugin for FSX, to achieve HLA co-

simulation [Králíček, 2011]. This is very relevant to the present work. The plugin is compiled

using FSX’s SDK, SimConnect, an FSX interface, and CERTI. It also takes into consideration

different federation object models, like Real-time Platform Reference FOM (RPR-FOM). Advan-

tages and disadvantages between the two are detailed. However, as we won’t be simulating aircraft

and their flight, these pros and cons might differ from what they would be in this application sce-

nario.

Bian et al. developed a co-simulation platform using OPAL-RT2 and OPNET3, communica-

tion and power system simulators, respectively, for analysing smart grid performance [Bian et al.,

2015]. The integration between these two tools was performed under MATLAB R©. It is concluded

that the co-simulation platform was successful in analysing communication failures on smart grid

operation.

Schloegl et al. tried to achieve a classification schema for co-simulation in energy [Schloegl

et al., 2015]. It also makes mention of mosaik4, a Smart Grid co-simulation framework that allows

one to reuse and combine existing simulation models and simulators to create large-scale Smart

Grid scenarios. It is noted that an automated process to treat and analyse co-simulation platforms

that consist of mainly black-box models must be developed, in order to achieve integrated and

interdisciplinary energy systems.

Melman et al. present a distributed simulation framework for the investigation of autonomous

underwater vehicles’ real-time behaviour using their own implementation [Melman et al., 2015].

It consists of three layers: a server, which contains a supervisor and a database; managers, which

contain the different simulation modules, and allow the data exchange with other modules and the

server; and an interface, the control panel through which a user can control the simulation execu-

tion. The results regarded the architectural concepts as positive. Future improvements include the

framework integration in an event-oriented software environment to control the vehicles.

2OPAL-RT is available at https://www.opal-rt.com/.
3OPNET is available at http://opnetprojects.com/opnet-network-simulator/.
4Mosaik is available at https://mosaik.offis.de/.

https://www.opal-rt.com/
http://opnetprojects.com/opnet-network-simulator/
https://mosaik.offis.de/
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Cicirelli et al. implement a multi-agent system spacial environment architecture using THE-

ATRE, an HLA-based agent infrastructure [Cicirelli et al., 2009, Cicirelli et al., 2015]. The sys-

tem works using actor agents and messages, like common agent behaviour. The borders of the

simulated space work like such: there’s always a local replica of the border area of the remote

environment, and vice-versa; when an agent is in the border of the remote environment, it gets in

the locally replicated border area; when it crosses, it becomes part of the local world and is being

replicated locally in the remote area of the remote environment. The results for the shared spatial

environment are regarded as good, by allowing more parallelism and simpler territory manage-

ment. Respective to the architecture, it is considered that benefits were provided when compared

to not using any platform.

Brito et al. use HLA to implement a distributed simulation platform using several commercial-

of-the-self (COTS) simulation packages (CSP), like Ptolemy II5, SystemC6, OMNeT++7, Veins8

and Stage9, and physical robots [Brito et al., 2015]. The general architecture of the platform can

be seen in Fig. 3.1. Ptolemy II is used to model the different Embedded Systems; OMNeT++ sim-

ulates network communication; SystemC is used to simulate circuitry; Veins as a way to simulate

vehicle-to-everything communication; Stage, for simulated robots, and actual robots are used on

the side to interact with the system. It is expressed that the platform was successfully applied to

the five different experimental scenarios that are outlined in this work.

Figure 3.1: General Architecture in Brito et al. [Brito et al., 2015]

5Ptolemy II is available at https://ptolemy.berkeley.edu/ptolemyII/index.htm.
6SystemC is available at https://www.accellera.org/downloads/standards/systemc.
7OMNeT++ is available at https://omnetpp.org/.
8Veins is available at https://veins.car2x.org/.
9Stage is available at http://wiki.ros.org/stage.

https://ptolemy.berkeley.edu/ptolemyII/index.htm
https://www.accellera.org/downloads/standards/systemc
https://omnetpp.org/
https://veins.car2x.org/
http://wiki.ros.org/stage
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Albagli et al. developed a smart grid framework co-simulation using HLA architecture [Al-

bagli et al., 2016]. It is mentioned that a good approach to co-simulation is to develop a layer that

deals with synchronisation and data transfer and then use a given framework to control the flow of

information. An important referenced aspect is the standard IEEE 1516.3-2003 , which describes

the best practices and procedures to create distributed simulation and execution (DSEEP) [IEEE

C/SI, 2003]. This standard was, however, superseded by IEEE 1730-2010, which provided insight

onto other 3 different architectures, like Distributed Interactive Simulation (DIS), HLA, and Test

and Training Enabling Architecture (TENA) [IEEE C/SI, 2010a]. Because this work used homo-

geneous simulation agents, a common ontology was proposed to assist the HLA implementation,

something that is not part of the standard requirements. However, it is not relevant in the project at

hand, as simulators will have vastly different models and purposes. The usage of the frameworks

in the implementation of the simulation environment and the common ontology for the simulators

was successful. The results of the studied network configurations were not as positive since the

simulated communication network leads to high simulation time.

Hong et al. implemented the occupant behaviour required of energetic simulations to be used

with FMI, creating an FMU which contains the respective XML schema, interface, data model

and solvers [Hong et al., 2016]. EnergyPlus is a simulation tool used frequently in energy simu-

lation and it has support for the FMI standard. For that reason, it was used to test the developed

FMU. FMI was also used by Dols et al., which coupled multizone airflow and contaminant trans-

port software CONTAM10 with EnergyPlus11 [Dols et al., 2016]. The authors concluded that the

developed model was flexible and interoperable and would aid in the detection of discrepancies

between simulated and actual building energy use.

Manbachi et al. have a different approach to the co-simulation architecture [Manbachi et al.,

2016]. It studies smart grid volt-VAR optimisation using the International Electrotechnical Com-

mission (IEC) 61850 Manufacturing Message Specification, a standard which defines commu-

nication protocols for intelligent devices at electronic stations using TCP/IP [TC 57, 2020]. It

distributes messages to the control components of the simulators using Distributed Network Pro-

tocol 3 [Majdalawieh et al., 2006]. The paper concludes that the IEC 61850 protocol can be of

much help in volt-VAR optimisation and that the implemented real-time co-simulation platform

could perform all the required tasks to achieve it.

D’Angelo et al. give an idea on how to simulate the Internet of Things, distributed and inter-

connected in its nature [D’Angelo et al., 2016]. It is claimed that an approach to this problem is

to simulate CPU cores, CPUs or hosts that are parallelised and interconnected. However, due to

the massive extension of a real Internet of Things network, it isn’t feasible to simulate that many

execution units. Hence, a multi-level simulation approach is proposed, using GAIA/ARTIS12 for

10CONTAM is available at https://www.nist.gov/services-resources/software/contam.
11EnergyPlus is available at https://energyplus.net/.
12GAIA/ARTIS is available at https://pads.cs.unibo.it/doku.php?id=pads:download.

https://www.nist.gov/services-resources/software/contam
https://energyplus.net/
https://pads.cs.unibo.it/doku.php?id=pads:download
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high-level simulation and, when more detail is needed, then tools like OMNeT++, Network Sim-

ulator 3 (ns-3)13 and SUMO14 are used.

Morakinyo et al. studied the effect of different roof types on the temperature and cooling

demand [Morakinyo et al., 2017]. EnergyPlus and ENVI-met15 were the two simulation tools

used. However, they simply performed the data exchange between the models using the output

of ENVI-met and creating a modified file that is accepted as the input in EnergyPlus, using no

simulation standard. Results do not comment on the impact of the used architecture, with the

main takeaway being that “the intent of green-roof installation should be a determining factor for

the type and spatial extent to be implemented". It is also mentioned that these results shouldn’t be

taken into account in a vacuum, but rather with the results of the related work.

Garau et al. evaluate smart grid communication technologies [Garau et al., 2017]. There is

mention of a tool, EPOCHS16, which implements an RTI based on HLA. However, the solution

used other tools, Open Distribution System Simulator (OpenDSS)17 as the power system simu-

lator, and ns-3 as the network simulator. MATLAB R© was used as the RTI for this simulation,

where distribution/energy management systems models were implemented. Thus, the simulation

didn’t follow any particular standard but is closely related to HLA. The results mention that the

used co-simulation tools, such as the ones proposed by the authors, were necessary to be able to

make any proper simulations regarding the matter. It was concluded that wireless technologies

such as WiMAX, Wi-Fi and LTE meet the necessary smart-grid requirements for IEC 61850 [TC

57, 2020], even if additional work might be needed.

Cellura et al. integrate a building simulation and a Life Cycle Assessment (LCA) tool using

simple text database files, in order to study the energy and environmental life cycle of buildings

[Cellura et al., 2017]. The research was deemed by the authors as one of the first to study the over-

lap of LCA and building simulation. The proposed architecture was pitted against existing LCA

tools and only negligible differences were encountered. However, the structure of the simulation

will allow for more flexible application and simulation integration in the researched area.

Li et al. implement large scale distributed smart grid co-simulation [Li et al., 2017]. It makes

reference of previous frameworks mentioned in other smart grid simulation implementations, such

as EPOCH, which is based on HLA. However, it ends up using its own implementation, using

Gridlab-D18, an open-source power system simulation with good third-party integration for the

power simulation, and Common Open Research Emulator19, a node-based distributed server plat-

form. It was concluded that the co-simulation, combining the power grid simulator with a com-

munication network emulator, was able to pass the performance and distribution tests necessary

for the algorithms required of the smart grids.

13ns-3 is available at https://www.nsnam.org/.
14SUMO is available at https://www.eclipse.org/sumo/.
15ENVI-met is available at https://www.envi-met.com/.
16EPOCHS is available at http://www.cs.cornell.edu/hopkik/epochs.htm.
17OpenDSS is available at https://sourceforge.net/projects/electricdss/.
18Gridlab-D is available at https://www.gridlabd.org/.
19Common Open Research Emulator is available at https://www.nrl.navy.mil/itd/ncs/products/

core.

https://www.nsnam.org/
https://www.eclipse.org/sumo/
https://www.envi-met.com/
http://www.cs.cornell.edu/hopkik/epochs.htm
https://sourceforge.net/projects/electricdss/
https://www.gridlabd.org/
https://www.nrl.navy.mil/itd/ncs/products/core
https://www.nrl.navy.mil/itd/ncs/products/core
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Bragard et al. create a distributed traffic simulation tool, dSUMO, by using the SUMO simu-

lator as a basis [Bragard et al., 2017]. It implements dynamic border management, load balancing

and synchronisation. For a given model to work with this tool, it needs to provide an API that’s

compatible, like SUMO’s Traci or VISSIM20’s COM interface. The main objective of this work

is, however, to use the distributed computing power to speed up the simulation. The platform was

able to achieve a speed-up of 5.5 when compared to single-instance SUMO, with proper dynamic

load-balancing and decentralised synchronisation.

All of these implementations and their architectural solutions are compiled in Table 3.2. A

general overview of the implemented solutions is that, in most cases, an ad hoc solution is cho-

sen. Some occurrences of HLA-based and FMI works exist, whilst a single DDS solution was

implemented.

Table 3.2: Architectural Solution by Implementation

Standard or Architecture
DIS HLA TENA FMI DDS Ad hoc

[Králíček, 2011] ×
[Bian et al., 2015] ×

[Schloegl et al., 2015] ×
[Melman et al., 2015] ×
[Cicirelli et al., 2015] ×

[Brito et al., 2015] ×
[Albagli et al., 2016] ×
[Hong et al., 2016] ×
[Dols et al., 2016] ×

[Manbachi et al., 2016] ×
[D’Angelo et al., 2016] ×

[Madden and Glaab, 2017] ×
[Morakinyo et al., 2017] ×

[Garau et al., 2017] ×
[Cellura et al., 2017] ×

[Li et al., 2017] ×
[Bragard et al., 2017] ×

3.3 Disturbances Simulators

The areas that are seen as most promising in which we could make a proof of concept of the

co-simulation architecture are wildfires, earthquakes and tsunamis. Parallel to these, atmospheric

dispersion is also a very promising and interesting possibility. It relates to many other disturbances,

from fires to chemical contamination, in the form of the propagation of particles. Ergo, having

a simulator that can accurately simulate how particles from other disturbances propagate is of

interest. However, it is important to note that besides for wildfires, input data for the other types of

20VISSIM is available at https://www.ptvgroup.com/en/solutions/products/ptv-vissim/.

https://www.ptvgroup.com/en/solutions/products/ptv-vissim/
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disturbances are very sparse if not actually non-existent inside FSX. For this reason, the wildfire

simulator search was more in-depth than the rest. Nevertheless, the other possible areas were still

researched, in the case that a tool that required compatible data showed up.

Some of the possible wildfire simulators to be integrated are analysed ahead.

FlamMap21 is a fire analysis desktop application that can simulate fire characteristics like fire

growth and spread published by the United States Department of Agriculture’s Forest Service Fire

and Aviation Interagency Incident Applications. It is free to use and runs on Windows. It includes

the department’s previous tool, FARSITE [Finney, 1998] and various fire behaviour models, such

as Rothermel’s surface fire spread model [Rothermel, 1972], Van Wagner’s crown fire initiation

model [Wagner, 1977], Rothermel’s crown fire spread model [Rothermel, 1991], Albini’s spotting

model [Albini, 1979], Finney’s or Scott and Reinhardt’s crown fire calculation method [Finney,

1998, Scott and Reinhardt, 2001], and Nelson’s dead fuel moisture model [Nelson, 2001]. The

last one is the only model that allows for conditioning of dead fuels based on the environment’s

characteristics (such as rain). FlamMap does not support variation in the environment’s condi-

tions while the simulation is running. All the parameters are set only through a GUI before the

simulation starts, after which one has to wait for the whole run to be finished for the output data.

ForeFire22 is an open-source set of simulation tools and API designed to perform forest fire

simulation, released under the GNU General Public License [Filippi et al., 2014]. It simulates high

resolution and large fire fronts of wildland fire. It implements the Rothermel and Balbi surface

spread models, and a series of heat flux models [Rothermel, 1972, Balbi et al., 2009]. It is event-

based and accepts commands via a command shell, which can open script files. It can progress the

time and output data on demand.

Forest Fire Simulation is a simulation tool to be used within CALCHAS, a project which

studies the fire conservancy of forests [Kiranoudis, 2013, CALCHAS, 2010]. It is a case study

funded by the European Union. Since Forest Fire Simulation’s usage outside the CALCHAS

project is forbidden, it is not a viable solution for this work. Because of this, it is not considered

when comparing the simulators.

Wildfire Analyst23 is a tool which allows for the offline study of wildfire behaviour. It can

calculate common outputs, such as rate of spread, flame length, fireline intensity or crown fire

potential. It can generate high definition wind fields based on various weather data. It also can

calculate the fire supression capacity, based on criteria defined by the user.

In Table 3.3, a comparison is made between the simulators which are viable for this work.

As we can see, FlamMap seems to have more models that can deliver a more detailed simulation,

with the spread, crown fire and dead fuel models. Wildfire Analyst can have better information

on the flame, rather than the deal fuel models in FlamMap. They require more environment input

data for each model. ForeFire can only simulate surface fire spread and heat flux. However, both

FlamMap and Wildfire Analyst are complete solutions that have features to analyse and visualise

21FlamMap is available at https://www.firelab.org/project/flammap.
22ForeFire is available at http://forefire.univ-corse.fr/.
23Wildfire Analyst is available at https://www.wildfireanalyst.com/.

https://www.firelab.org/project/flammap
http://forefire.univ-corse.fr/
https://www.wildfireanalyst.com/
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the results, while ForeFire only contains the simulator itself. This can be an advantage, seeing that

it’s more lightweight. FlamMap and Wildfire Analyst can also only be used through their GUI,

while ForeFire can be interacted with programmatically. Wildfire Analyst is also a commercial

solution.

Table 3.3: Wildfire Simulators Features

Free Open-Source API
Documentation

Quality
Features

FlamMap Yes No No Poor
Fire spread, crown

fire, dead fuel
ForeFire Yes Yes Yes Rich Fire spread, heat flux

Wildfire Analyst No No Yes N/A
Fire spread, crown
fire, fire intensity

The following are found earthquake simulators that are analysed.

Virtual Quake is an earthquake simulation tool that “performs simulations of fault systems

based on stress interactions between fault elements” [Wilson et al., 2017].

OpenSees24 is a framework that allows the development of apps for simulation of structural

systems that are subjected to earthquakes.

In Table 3.4, the earthquake simulators’ features are outlined. While Virtual Quake is better

oriented to simulate tectonic faults, OpeeSees allows to see how structures are affected by earth-

quakes.

Table 3.4: Earthquake Simulators Features

Free Open-Source API Documentation Quality
VirtualQuake Yes Yes Yes Medium

OpenSees Yes No Yes Rich

For tsunamis, TOAST (Tsunami Observation And Simulation Terminal)25 is a commercial

tsunami simulation software, which can perform on-the-fly simulation accelerated with graphics

processors.

Multipurpose tool Geowave26 can simulate earthquake, landslide, and volcanic tsunamis using

a 4th order Boussinesq equation model. It is published under the GNU General Public License.

However, its parameters are not dynamically configurable and are mostly optimised for tsunami

simulation. For this reason, it is not included in the earthquake simulator comparison.

The tsunami simulating tools’ features are available in Table 3.5. Geowave has a narrower use

case, but is non-commercial and has better integration capabilities.

24OpenSees is available at https://opensees.berkeley.edu/.
25TOAST is available at https://gempa.de/products/toast/.
26Geowave is available at http://www.appliedfluids.com/geowave.html.

https://opensees.berkeley.edu/
https://gempa.de/products/toast/
http://www.appliedfluids.com/geowave.html
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Table 3.5: Tsunami Simulators Features

Free Open-Source API Documentation Quality
Geowave Yes Yes No N/A
TOAST No No No Rich

HYSPLIT27 is a tool with a set of atmospheric transport and dispersion models. The models

use a hybrid between Lagrangian and Eulerian methods. Some applications include determining

the origin of particle emissions and tracking and forecasting the release of particles.

CAMx28 is a tool with a photochemical grid model which allows for the simulation of air qual-

ity, treatment of pollutants and conducting source attribution analysis. It is written in FORTRAN,

and available as sources to be built for Unix-based platforms.

GRAL29 is the Graz Lagrangian Model framework, which allows for the simulation of numer-

ous situations of particle dispersion. The model’s original purpose was to tackle low wind speed

conditions, as well as dispersion of emissions from road tunnel portals.

openair30 is an R module for the analysis of air quality. Its features include access to data

from air pollution monitoring sites, air and pollution roses, and access to pre-calculated HYSPLIT

annual back trajectories.

Their features are outlined in the Table 3.6. openair, unlike HYSPLIT, CAMx and GRAL, is a

module which is more useful for analysing air data, rather than simulating it. For the rest, they are

programs with overall feature parity.

Table 3.6: Atmospheric Dispersion Simulators Features

Free Open-Source API Documentation Quality
HYSPLIT Yes No No Medium

CAMx Yes Yes No Rich
GRAL Yes Yes No Rich
openair Yes Yes No Rich

3.4 Summary

This chapter presented us with the literature trends and information regarding co-simulation ar-

chitectures and standards. Important information in how the different architectures might be used

was found. Examples of such architectures, standards and protocols are DIS, HLA, FMI, DDS

and ad hoc implementations. An ad hoc implementation would be, essentially, the lack of use of a

given standard, framework, or protocol. This is, however, a common occurrence, as one is able to

see in Table 3.2.

27HYSPLIT is available at https://www.ready.noaa.gov/HYSPLIT.php.
28CAMx is available at http://www.camx.com/home.aspx.
29GRAL is available at http://lampz.tugraz.at/~gral/.
30openair is available at https://davidcarslaw.github.io/openair/.

https://www.ready.noaa.gov/HYSPLIT.php
http://www.camx.com/home.aspx
http://lampz.tugraz.at/~gral/
https://davidcarslaw.github.io/openair/
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The observable trend in current co-simulation architectures is that, as of late, they are using

their own solutions with an ad hoc implementation, and not exactly following an available exist-

ing co-simulation standard. However, there are some older examples of implementations using

HLA and FMI. Another special case was the proposal of DDS, a data transmission protocol as a

replacement for HLA.

The shift into custom ad hoc solutions might be a consequence of the simulation models,

especially in energy, being available in tools with their own or no coupling solutions, and the lack

of necessity of using standards which add unneeded features in a given architecture.

As for the simulators, models for earthquakes, tsunamis and air dispersion require a lot of input

data and non-trivial parameter adjustments. As such, the fire simulators are of more interest in this

work. Between those, FlamMap and ForeFire are possible solutions, depending on the available

input data.
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Chapter 4

Proposed Solution

In this chapter, there will be an overview of the projected solution’s architecture, along with its

technological choices. Afterwards, the work plan and risk analysis are presented.

4.1 Projected Architecture

The new projected architecture could vary with regards to the concurrent work that has been devel-

oped in The Platform. Esteves worked on bringing distributed simulation to The Platform, in order

to achieve better performance and a greater virtual region of simulation [Esteves, 2020]. Costa de-

veloped more efficient and secure communication middleware, to replace AgentService’s slow and

insecure message distribution [Costa, 2020]. Therefore, there was a need for a coordinated effort

to choose a common architecture for all of the ongoing developments.

If a simulation-oriented standard or protocol architecture were to be chosen, then an HLA RTI

would be the most likely contender, seeing that it’s the most used architecture in the literature.

However, properly using an HLA RTI would imply big shifts in the entire Platform’s architecture.

Some management aspects of HLA might not have a feasible way of being integrated with FSX

and the existing components of The Platform and might actually overlap with existing concepts

defined within the project and FSX.

If such a standard or protocol did not provide any seemingly important advantage versus using

a common architecture for the Disturbances Manager and its co-simulators, and the other ongoing

projects, The Platform would probably have an architecture which is similar to the one proposed

by Almeida [Almeida, 2017]. A diagram of The Platform’s components with such a choice can be

observed in Fig. 4.1, where the connection between the co-simulators, the Disturbances Manager

and new instances of the Simulator communicate using the chosen standard or protocol.

29
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Figure 4.1: The Platform’s Proposed Architecture [Almeida, 2017]

4.2 Technological Choices

As observed in the trends from section 3.2, there aren’t many implementations following dis-

tributed and co-simulation standards. It is unclear if they were unsuitable for their needs or if

there were simply not known (although some cases mentioned frameworks that used them but

chose other implementations anyway). Because these standards feel appropriate to ensure that the

Disturbances Manager has a proper future-proof solution to coupling new co-simulators, it seems

pertinent to use a standard in the architecture. As mentioned before, the overall best choice, in

this case, would be to use HLA, using a publicly available HLA RTI implementation. This choice

would suffer, however, of some issues that were mentioned in the previous section.

The pros and cons of both HLA and other protocols (as is the case of DDS) in the context of

The Platform were discussed and carefully analysed within the current developing group, in order

to try and achieve a common architectural ground. The main point was that if the advantages of

choosing the same architecture aligned with both of these other works’ objectives and work plan,

then a common architecture, allowing distributed and co-simulation architecture, and a secure

and efficient communication service, would be chosen. If not, each of the works would have the

architecture that is best suited for their purpose.
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4.2.1 Co-Simulation Architecture

Initially, the outcome of the coordination was to make a first effort communication test using DDS,

for the projects trying to achieve distributed and co-simulation. Advantages such as hot-plugging

and overall implementation simplicity that didn’t imply a major architectural (which would be

the case for HLA) change were seen as positive for choosing this protocol. It also supported

various programming languages. Several DDS implementations exist, but only non-commercial

solutions are considered for this project. The following are available free DDS implementations:

Vortex OpenSplice Community Edition1, Eclipse Cyclone DDS2 and OpenDDS3. OpenDDS only

has bindings for C++ and Java, thus not being a viable option for this project (because of the

programming language used in The Platform, C#). As for Eclipse Cyclone DDS, early releases

were experimental in nature, with C compatibility. At the time of writing (with the latest version

being 0.6.0 Florestan), only bindings for C++ had been implemented and security is scheduled

for a future release. Given this, Eclipse Cyclone DDS is also not a viable option. Taking lead

from the existing experiments and the availability of DDS implementations, Vortex OpenSplice

Community Edition was chosen [Madden and Glaab, 2017]. It has bindings for C# and Python,

and it has security via the DDS Secure standard [OMG, 2018]. However, an increasing number of

issues occurred. It was found that this implementation did not behave similarly between different

programming languages’ clients, having different behaviours between its Python and C# client in

the way that the data was consumed from the topics. Whilst things worked well between clients

of the same language, seemingly equivalent basic Hello World test projects in the two languages

would not work when interacting between themselves. Messages would get sent repeatedly and, in

some instances, could even cause the receiving client to crash. The clients do not have a uniform

interface, meaning that to define the same behaviour in the different programming languages is

done in a vastly different way. Another aspect is that these clients were actually only a wrapper

for a service running in the background, which had to be previously installed in each machine.

Furthermore, this service had unneeded functionality in the form of extensions, making it bloated,

and established connections mainly using peer discovery, which besides not working outside of

a subnet, did not always work even within one. Finally, by looking at the provided support to

the community, it was found that some of these issues existed for other users and were fixed in

the commercial version of this product. These complications discouraged the use of OpenSplice

and thus, the use of DDS was abandoned, as there was no other free DDS implementation with

the requirements that were needed. Creating our own DDS standard implementation is out of the

question for two different reasons. Firstly, the standards are extensive and would take more time

to implement than is available for the completion of this work. A simple reference for this point is

the Eclipse Cyclone DDS project, which even with the help of a company that has been working

on DDS for some time still has its development undergoing. Secondly, not all features of the

1Vortex OpenSplice Community Edition is available at https://github.com/ADLINK-IST/opensplice.
2Eclipse Cyclone DDS is available at https://projects.eclipse.org/projects/iot.cyclonedds.
3OpenDDS is available at https://opendds.org/.

https://github.com/ADLINK-IST/opensplice
https://projects.eclipse.org/projects/iot.cyclonedds
https://opendds.org/
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standards would be required and, because of that, there would be no reason to fully implement the

specification, as doing that would be lost time.

4.2.2 Middleware Selection

From a pre-selection of message queue implementations that would support a variety of program-

ming languages, tests were run on ActiveMQ4, a Java broker which implements the Java Message

Service (JMS) and other message queue protocols, such as Advanced Message Queuing Protocol

(AMQP), Simple (or Streaming) Text Oriented Message Protocol (STOMP), Message Queuing

Telemetry Transport (MQTT), etc., and RabbitMQ5, an Erlang broker which originally imple-

mented AMQP, but has since added support for MQTT, STOMP and others. JMS is part of the

Java Enterprise Edition.

To find out how good the compatibility between different programming language’s clients is,

a message would be broadcast from a C# client, The Platform’s main programming language, and

other prospects to be used in the co-simulation integration, like Java and Python. The time for

the message to be received since it was sent was measured. The C# producer would instantly

send 1000 messages to 10 consumers: first, 10 C# clients, then 9 C# clients and a single Java or

Python client (to represent the probable use case where there’s mostly The Platform’s components

communicating), then half of each, then finally only Java or Python clients. The broker’s native

protocols and suggested clients for each language were used. However, because the JMS is not

part of Java Standard Edition, the tests weren’t performed on ActiveMQ Java consumers. The tests

were performed three times to diminish the impact of outliers.

The results can be seen in Figs. 4.2, 4.3 and 4.4, with times expressed in milliseconds. For

ActiveMQ with C# and Python clients, as we increase the number of Python clients, the average

time increases and tops out at 3.1553 ms. The maximum value can go as high as 25.5 ms. For

RabbitMQ with C# and Python clients, the same pattern is found, but this time at a much worse

scale. The average time goes up to 67 ms, while the maximum hits 117.4 ms when only using

Python consumers. For RabbitMQ with C# and Java clients, the results are on the same scale as

the previous test. The times for RabbitMQ consumers to receive a message go exceedingly high

to a maximum of 139.3 ms.

This first batch of tests shows that RabbitMQ performs much worse when compared to Ac-

tiveMQ, even when only using C# producers and consumers. The latter only worsens when de-

creasing the number of C# clients. On the other hand, it was noticed that ActiveMQ had a really

big memory usage, in the order of the gigabytes, while RabbitMQ kept in the order of megabytes.

However, it was noticed that this test might not be representative of the expected behaviour of The

Platform, and is akin to a stress test. Because of this, a new “slow” test was devised, where the

producer would wait 1 millisecond between broadcasting each message.

4ActiveMQ is available at http://activemq.apache.org/.
5RabbitMQ is available at https://www.rabbitmq.com/.

http://activemq.apache.org/
https://www.rabbitmq.com/
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Figure 4.2: Stress Test of ActiveMQ with C# and Python Clients

The results can be seen in Figs. 4.5, 4.6 and 4.7, with times expressed in milliseconds. For

ActiveMQ with C# and Python clients, it keeps relatively the same profile as the stress test. How-

ever, for RabbitMQ with C# and Python clients, the average time never exceeds 2 ms, and even

the maximum delay is lower, increasing the case of only Python clients, but with times lower than

the ActiveMQ counterpart. For RabbitMQ with C# and Java clients, the average is always close

to zero, with the maximum not exceeding 25 ms.

After this test, it is assumed that RabbitMQ is better in scenarios similar to what is existing in

The Platform, where no such high number of messages is sent at the exact same time. Nonetheless,

with the increase of disturbances readings and agents, the numbers can get to a point similar to the

ones in the stress test. However, other challenges would have to be tackled beforehand, such as

the number of agents an FSX instance supports. Other measures could also be applied to diminish

the impact, such as having more instances of the broker. This is, however, out of the scope of

this work and better analysed in the works of Costa and Esteves [Costa, 2020, Esteves, 2020]. In

alignment with other tests performed in those works regarding security and scaling, RabbitMQ

was found to be the better choice.
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Figure 4.3: Stress Test of RabbitMQ with C# and Python Clients
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Figure 4.4: Stress Test of RabbitMQ with C# and Java Clients

4.2.3 External Simulator

For the simulator to be coupled, ForeFire will be used. Unlike most other simulators listed, which

work on an input parameters, output data basis, with no way to programmatically achieve this,

ForeFire has an interactive command shell in which we can dynamically specify simulation pa-

rameters and time jumps. Having the possibility to generate on-demand and on the fly output was

a key feature that made this simulator stand out from all of the others. The inclusion of Python

tools to help generate the simulation data was also helpful. Because of this, the middleware to link

ForeFire to the Disturbances Manager is made in Python. C# is not the best solution since Fore-

Fire runs in Unix-based environments. The choice between Python and Java is made based on the

ease of using the pre-distributed Python tools in ForeFire. Finally, the data used in fire simulations

are easier to obtain from FSX than other, more complicated data used in earthquake or tsunami

simulation. For example, ForeFire requires fuel, elevation and wind data for a basic simulation,

which FSX contains, unlike tectonic, atmospheric particles or wave data. One thing to take into

account is that only the surface fire spread model of ForeFire will be used, so no advantage would

be had by choosing a simulator with more models, like FARSITE, because the same Rothermel

spread model would be chosen. This also means that there will be no information to be had on
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Figure 4.5: Slow Test of ActiveMQ with C# and Python Clients
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Figure 4.6: Slow Test of RabbitMQ with C# and Python Clients

how much the fire is burning or if the fuel is depleted, as the model does not have those features.

4.3 Planning

To implement the proposed solution, the following implementation steps were followed:

• Analysis and preparation of the input data required by the external simulator – it is necessary

to understand how ForeFire needs its input data to be provided, and where this data can come

from. Having correctly identified this input format and where to retrieve the input data from,

tools to convert the data to be used by ForeFire will be developed;

• Creation of a communication middleware between the external simulator and the Distur-

bances Manager – using Python, a middleware to couple ForeFire to the Disturbances Man-

ager will be implemented. With this, a communication protocol between the two will also

be established;
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Figure 4.7: Slow Test of RabbitMQ with C# and Java Clients
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• Implementation of the co-simulation architecture and externally simulated disturbances –

After having the communication middleware and protocol, implementing the protocol on

the Disturbances Manager is required;

• Test and validation – guarantee that the coupling is performing correctly, evaluating the

solution’s functionality and the overall performance of the co-simulation architecture.



Chapter 5

Implementation

In this chapter, the detailing of the implementation and the considerations that influenced it are

described.

5.1 Input Data

This section will describe the implementation steps in order to achieve the wildfire simulation in

accordance with FSX’s data. In short, four types of data are extracted from FSX’s files and run-

time. Land class and elevation data are extracted from the BGL files and kept raw in various files

for easy access by the Python middleware. Using various BGL files, a list of airports is compiled

using MakeRunways and kept on a CSV file. Finally, the weather information is requested for the

necessary airports. After having access to all of this data, the Python middleware manipulates it

to the format required by ForeFire, which then receives the layers of fuel indexes, elevation and

wind components. The fuels are pre-described in a different file. Figure 5.1 shows the overall

structure of the information flow for all required data for ForeFire to perform its wildfire spread

simulation. One thing to notice is that the figure only shows the information flow and does not take

into account the communication between the different components that was required to achieve it.

5.1.1 BGL File Format

The BGL File Format is a type of file used to store information related to simulators which use

Microsoft ESP [FSDeveloper, 2020]. It is a binary file with a common base structure. However,

for different types of information and simulators, the data is stored in different ways.

As can be seen in Fig. 5.2, the BGL file has 3 main records: the header, sections, and sub-

sections. They contain metadata about the contents of each file. Each of these records states the

geographical region that they refer to, via quad mesh identifiers (QMID), their size, and the offset

to the start of the relevant record, e.g the first section offset, first subsection offset, first data record

offset. The file always starts with a header which contains the number of sections the file has. The

37
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Figure 5.1: Information Flow

sections, in turn, contain the number of subsections each section has, and information about the

type of data stored in them. For this work, only sections of type TerrainElevation and Terrain-

LandClass are relevant. Each subsection contains the number of data records existing within.

The information regarding land classification and elevation, which is relevant later on in this

work, is stored within TRQ1 records. These records have headers which indicate the types of the

parent sections, with them being the aforementioned ones. They also contain the compression

scheme of their data. Compression algorithms used in the land class data are Ziv and Lempel’s

LZ1 [Ziv and Lempel, 1977], delta encoding, and bit packing, whereas elevation data also use

Microsoft’s proprietary progressive transform coder (PTC) compression [Malvar, 2000]. They

also include month indicators for seasonal sensitive data, which is, in this case, left empty. The

final, decompressed data is a 257 by 257 grid of integers. They are 8 bit in the case of land class

data, and 16 bit in the case of elevation data. These grids overlap on the edges with the adjacent

grid, i.e. the edges of adjacent grids are the same. This means that when stitching these, the final

edge size for a grid will be 256n+ 1 (hence the grid size of 256+ 1), where n is the number of

stitched grids in that edge’s orientation.
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Figure 5.2: BGL File Format’s General Structure [FSDeveloper, 2020]

5.1.2 QMID

QMID is the way that stored simulation data’s location is indicated in some flight simulators

[Microsoft Corporation, 2008c]. They refer to the size of the grid used in a data record. QMID

is consisted of three values: l, u and v. l represents the level of the grid, starting at 2, which

divides each hemisphere into three regions. Increasing the value of l by one divides each previous

grid into four. u and v refer to the number of the grid at a given level, for longitude and latitude,

respectively. This can be seen in Fig. 5.3.

5.1.3 ForeFire Input Format

ForeFire is executed by running the CommandShell binary, a shell interface which accepts com-

mands to define certain parameters. However, some of the necessary data to run a simulation is

defined in a file. The information about the types of existing fuels is loaded via the fuelsTable-

File parameter, whilst the information about the fuel, elevation and wind maps is loaded using the

loadData command.

The fuel file is essentially a comma-separated values (CSV) file, with predefined fuels and

their parameters in accordance with the fuel model. The indexes refer to the CORINE Land Cover
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Figure 5.3: FSX’s World QMID Grids for Levels 4 and 7 (adapted from [Microsoft Corporation,
2008c])

(CLC), a European database of biophysical occupation of land [Bossard et al., 2000]. This file is

included by default with the simulator and has not been changed.

The fuel, elevation and wind maps are stored in a Network Common Data Form (netCDF)

file. This is a binary file format for exchanging scientific data. However, there’s a Common Data

Language (CDL) format which is a readable format of a netCDF file. Using tools such as ncdump

and ncgen, the CDL file can be generated from a netCDF one and vice-versa. For ForeFire, this is

an example of the CDL format:

1 netcdf fsx {

2 dimensions:

3 ...

4 variables:

5 int fuel(ft, fz, fy, fx) ;

6 fuel:type = "fuel" ;

7 double altitude(at, az, ay, ax) ;

8 altitude:type = "data" ;

9 double windU(wt, wz, wy, wx) ;

10 windU:type = "data" ;

11 double windV(wt, wz, wy, wx) ;

12 windV:type = "data" ;

13 char domain ;

14 domain:type = "domain" ;

15 domain:SWx = -9601306.f ;

16 domain:SWy = 4775530.f ;

17 domain:SWz = 0 ;
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18 domain:Lx = 417448.1f ;

19 domain:Ly = 413577.2f ;

20 domain:Lz = 0 ;

21 domain:t0 = 0 ;

22 domain:Lt = Infinityf ;

23 char parameters ;

24 parameters:type = "parameters" ;

25 parameters:projection = "EPSG:3395" ;

26 ...

27 data:

28 fuel = ...

29 altitude = ...

30 windU = ...

31 windV = ...

32 }

Listing 5.1: ForeFire netCDF format

The input format for fuel is an array of integers, indexes which assign a fuel from the fuel file

to a tile in the fuel grid.

The input format for elevation and wind maps are arrays with decimal values entries. Items

in the elevation array correspond to the elevation in metres. For the wind maps, we have two

arrays, where one indicates the zonal flow, corresponding to the x-axis, and the other indicating

the meridional flow, which corresponds to the y-axis. These wind components are expressed in

metres per second.

The domain field defines the boundaries of the simulated area with the coordinates of the south-

westernmost corner of the region to be considered, and its length and height. These coordinates,

length and height should all be in the map projection selected in the parameters.

5.1.4 Fuel Data

FSX contains a lot of terrain-related information, e.g. elevation, land and water classification, etc.

For the fuel data, land classification is the most adequate data to create a fuel map, seeing that

even ForeFire itself uses essentially the same kind of information as fuel types.

However, ForeFire uses the previously mentioned CLC, while FSX uses a modified Olson

Land Classification [Olson et al., 2001]. Consequently, there’s a need to match the FSX’s data

with the CLC. Since the simulation area for the fire is dynamically chosen, it is necessary to map

all of the Olson Land classification entries to CLC. This was done by choosing the closest or most

relevant CLC entry for a given classification, and with the help of CLC nomenclature guidelines

[Kosztra et al., 2019]. The mapping can be observed in Appendix A.

The land classification data for FSX is stored in a file called worldlc.bgl. This file is a BGL

file, structured as described in section 5.1.1.

To extract the data from this file, a tool which is able to correctly parse the entries in a BGL file

and decompress them was developed. As was mentioned in the aforementioned section, the land
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class file only uses LZ1, Delta, and Bitpack compression algorithms, which have the correspond-

ing decompression algorithms described in public BGL file format documentation [FSDeveloper,

2020].

The final, raw output is stored in a file for each level 7 QMID grid, to easily access the neces-

sary land classification data later on.

5.1.5 Elevation Data

FSX’s elevation data is stored in various files in the Scenery directory. In this directory, there are

various folders with a four-digit name. These digits represent QMID u and v values for a level 4

grid, as can be seen in Fig. 5.3. Each of these folders will then have a file named demUUVV.bgl,

where UU and VV represent the QMID u and v values.

There is a particularity in these BGL files: the compression algorithm used is PTC. This

algorithm is not described anywhere publicly, with a lot of common tools to navigate BGL files

not having support for decompressing data that was compressed using this algorithm. However,

there exists a tool, called BGLDEC1, which can decompress files using the PTC algorithm.

Because the land classification data is only available as QMID level 7 grids, the same level is

used for the elevation data. With the help of a Python script, BGLDEC was used to decompress

all of the elevation files and then store only the relevant raw level data, deleting higher or lower

resolution ones.

5.1.6 Wind Maps

In FSX, the wind information is not stored in any file. It is, instead, described in run-time, before

starting a flight, along with other weather information. One can choose from certain existing

presets or manually describe one. An option to use real-world data exists but isn’t functional, as the

service from where the simulator obtained the data is no longer available. Besides manually setting

the weather information, there are programs which inject the weather into the game using the

SimConnect SDK. Tools that can perform this task are, for example, Active Sky2 and FSrealWX3.

However, these tools are payware and therefore were not considered for this task.

The weather information is stored for various weather stations that FSX has scattered around

the globe. These stations correspond to existing airports and are denoted using the airport’s Inter-

national Civil Aviation Organization (ICAO) code. ICAO codes consist of four letters, with the

first two letters indicating region and country, respectively. However, not all airports have cor-

responding weather stations. FSX includes many minor airports and airfields, which often don’t

have weather stations nor an ICAO code, which is usually reserved for larger aerodromes. Fig-

ure 5.4 shows an example of the weather stations available in a given area. The information is

stored in the Meteorological Aerodrome Report (METAR) format, a human-readable format used

1BGLDEC is available at https://www.fsdeveloper.com/forum/threads/
bgldec-a-resample-bgl-decompressor.433789/.

2Active Sky is available at https://hifisimtech.com/.
3FSrealWX is available at https://www.fsrealwx.de/.

https://www.fsdeveloper.com/forum/threads/bgldec-a-resample-bgl-decompressor.433789/
https://www.fsdeveloper.com/forum/threads/bgldec-a-resample-bgl-decompressor.433789/
https://hifisimtech.com/
https://www.fsrealwx.de/
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in aviation to report weather information. A relevant detail of this format is that wind is described

with the direction the wind is blowing from, in degrees, and its speed, in knots. When FSX needs

to have the weather information for arbitrary coordinates, it generates an interpolated METAR

observation for the location.

Figure 5.4: FSX’s Weather Stations and Wind Information. The airplane denotes the spawn point
for the player’s airplane. In brown, there’s the ICAO codes for available weather stations and, next
to them, an arrow with the wind direction reported there.

SimConnect’s SDK has three relevant functions for this purpose:

• SimConnect_WeatherRequestInterpolatedObservation – This function takes the coordinates

of a location, in latitude, longitude and altitude, and returns an interpolated METAR report

for that location.

• SimConnect_WeatherRequestObservationAtNearestStation – This function takes the coor-

dinates of a location, in latitude, longitude and altitude, and returns a METAR report for the

location’s closest weather station.

• SimConnect_WeatherRequestObservationAtStation – This function takes the ICAO code of

a weather station and returns its METAR report.

Hence, an initial approach to extracting the wind information was to request interpolated ob-

servations for coordinates in the centre of the tiles corresponding to the grids used in the land class

and elevation data. However, SimConnect’s SDK was found to have an extremely low throughput,

yielding anywhere from 40 to 60 requests per second. On a worst-case scenario, a 257 by 257

would require 66049 readings, which in turn would take around half an hour to finish. Because the

weather can be arbitrarily changed, SimConnect requests for FSX to generate interpolated read-

ings for a given area are not a one-shot task. Because The Platform is used to perform several
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tests on vehicular missions, having such a long pre-processing time, which is often comparable to

a test’s duration, is unacceptable.

Because of the time limitation of trying to request the interpolated readings, the alternative

approach was to instead create a list of all the available airports in FSX, which would be equivalent

to enumerating all the existing weather stations, filter them by airports inside the relevant area,

request the METAR reports for those, and finally, interpolate them for all the tiles for the required

grid.

Make Runways4 was used to create a CSV file of all existing FSX airports. This file includes

various fields, but the necessary ones are the airport’s code and its longitude and latitude. As

mentioned before, these include many minor airports and airfields, some of which don’t have

IACO codes (and instead have an International Air Transport Association code or a pseudo-ICAO

code). For that reason, airports are filtered by having a valid ICAO code and then by a given

bounding box. Finally, the METAR reports for each of these airports is requested. Invalid airports,

which don’t have either a valid ICAO or an associated weather station, in which case SimConnect

will return an exception upon METAR request, are permanently deleted from the airports’ file.

Before interpolating the values, which will be done directly on their zonal and meridional

components, the METAR information is parsed and the direction and speed values of the wind

are extracted. Firstly, the magnitude of the speed is converted to metres per second. Finally, to

convert them to the necessary u and v components, we can use u = s× cos(90− d + 180) and

v = s× sin(90− d + 180) where s is the speed in metres per second and d is the direction the

wind is blowing from in degrees. This is because the wind direction is given in the angles of a

compass, with 0 degrees at north, 90 degrees at east, 180 degrees at south and 270 degrees at

west, unlike the usual mathematical notation. For this reason, d is subtracted from 90 degrees to

start at north and increase the angle clockwise. Also, 180 degrees are added to get the opposite

direction, considering that the d is the direction where the wind is blowing from, and not where it

is blowing to. After applying geometrical transformation, the result is then u = −s× sin(d) and

v =−s× cos(d) where simply reversing and negating the typical sine and cosine components for

the x and y axes allows for the correct calculation of the zonal and meridional components.

Searching the literature, it is possible to find comparisons between interpolation algorithms

for wind [Luo et al., 2008]. Different interpolation methods are usually used, separated by deter-

ministic and geostatistical methods (the latter are stochastic). The geostatistical methods are more

complex models to implement and require some different wind models to exist. As for determin-

istic methods, out of all the compared ones, the Inverse Distance Weighting method was not only

the simplest to implement, but was the only one not to present unnaturally smoothed values for

the interpolation. This method gives more weight to points closest to the interpolated value. A

version of this method was implemented, and two different weightings were tested.

Algorithm 1 shows how the interpolation for the converted heading/speed to zonal and merid-

ional components is performed. The interpolation uses the two closest airports to a given location

in the centre of a tile for the chosen grid. A linear interpolation was thought of at first. Consider

4Make Runways is available at http://fsuipc.simflight.com/beta/MakeRwys.zip.

http://fsuipc.simflight.com/beta/MakeRwys.zip
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Algorithm 1 Wind Components Interpolation

Require: le f t, right, top, bottom, umax, umin, vmax, vmin, airports, winds
windu← new list
windv← new list
y← (vmax− vmin +1)∗256+1
x← (umax−umin +1)∗256+1
for j = 0 to y do

for i = 0 to x do
lon← le f t +(right− le f t)/x∗ i+0.5∗ (right− le f t)
lat← top− (top−bottom)/y∗ j−0.5∗ (top−bottom)
distances← new list
for all airports do

distances.append((lat−airportlat)
2 +(lon−airportlon)

2))
end for
closest_airports← distances.indirect_sort()[:2]
total_distance← distances[closest_airports[0]]+distances[closest_airports[1]]
u = distances[closest_airports[0]]/total_distance ∗ winds[closest_airports[1]][0] +
distances[closest_airports[1]]/total_distance∗winds[closest_airports[0]][0]
v = distances[closest_airports[0]]/total_distance ∗ winds[closest_airports[1]][1] +
distances[closest_airports[1]]/total_distance∗winds[closest_airports[0]][1]
windu.append(u)
windv.append(v)

end for
end for
return windu, windv

two airports A and B, and the distances from a certain location to these airports a and b, respec-

tively. To calculate the coefficient for the wind values of airport B, one would use the expression

a
a+b

seeing that when the distance to airport A increases, the more weight should be given to the wind

of airport B. Therefore, a linear wind component interpolation would look like

windL =
b

a+b
∗windA +

a
a+b

∗windB

for a given location L. For a case where the location is colinear with the two airports and the dis-

tance between the airports A and B is 10 metres, meaning that a+b = 10, and for wind component

values of windA = 100 and windB = 10, the interpolation results can be seen in Fig. 5.5a.

However, a linear interpolation would cause two problems. The first is that to calculate these

distances, we would need the square roots of the squares of the distance differences. The square

root is a computationally intensive operation when compared to other basic algebraic operations.

The second is that when there are vastly different wind values for the two closest airports, just a

little distance from any airport will produce a fairly unnatural difference where the other airport’s
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Figure 5.5: Wind Interpolation Examples

wind value is taken too much into account. When near to an airport, that airport’s wind value

should have a stronger weight than the second closest airport’s.

To prevent this, to calculate the calculate the coefficient for the wind values of airport B one

can instead use
a2

a2 +b2

where there’s no need for square root operations. For this quadratic-based interpolation, a wind

component is calculated using

windL =
b2

a2 +b2 ∗windA +
a2

a2 +b2 ∗windB

for a given location L. The variation on the wind component values using the same example as

before can be seen in Fig. 5.5b. The main difference from the linear interpolation is that when

near an airport, the values decrease and increase in a smoother way. This is because even though

the distance between airports is constant, the denominator on the coefficient now varies and is

higher when closer to an airport than when in the middle, whereas in the linear interpolation the

denominator would be constant.

Consequently, quadratic interpolation is the one being currently used. However, this interpo-

lation is naive. In no way does it take into account actual wind behaviour. An example of this

is the case where currents with the same speed flowing in opposite directions meet. It might be

that this interpolation would produce a low or non-existent wind speed where instead there would

be turbulence and high wind speeds. It should also not be seen as a proper replica of FSX’s own

interpolation, which runs only for existing aircraft and not thousands of points. It is, however, a

computationally cheap approximation which is enough for approximating winds in a given area.
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5.2 Co-Simulation Architecture

To execute ForeFire, using the CommandShell binary, a Python middleware was developed. It

communicates with the binary using the Pexpect5 Python module. It uses Unix pseudoterminals

to communicate with applications via their standard input and output. Because ForeFire runs in

a Unix environment and The Platform and FSX run in Windows environments, ForeFire and its

middleware are being run in Windows Subsystem for Linux (WSL). This way, all of the compo-

nents can run in the same machine. The middleware communicates with ForeFire using ForeFire’s

shell commands.

The middleware communicates with the Disturbances Manager using a secure RabbitMQ con-

nection, which the work of Costa possibilitated [Costa, 2020]. They communicate using a single

exchange in which two different queues exist: one is named ForeFireRecv, in which the ForeFire

middleware receives commands, and the other is named ForeFireSend, in which ForeFire replies

to the commands it receives. The commands are sent in plaintext, with the following format:

“<COMMAND> <arg0> <arg1> <...>”. The commands that the middleware can receive are the

following:

• INIT <left> <right> <top> <bottom> – Initializes the landscape area for a given bounding

box for the fires’ locations. With this, the middleware can calculate the optimal area to be

simulated in ForeFire and then requests the weather information to interpolate the wind data.

It does this by calculating the necessary QMID tiles to enclose this bounding box, and then

surrounding this grid with a layer of QMID tiles. The number of layers used to surround the

area is definable.

• WIND <airport> <heading> <speed> <unit> – Receive the wind information for a given

weather station.

• START <timestamp> – Writes the landscape data and starts the ForeFire simulation, as soon

as possible, with the simulated time in the received timestamp.

• FIRE <latitude> <longitude> <time since start> – Indicates the location of a fire and when

to start it.

• STEP – Tells the middleware to retrieve another ForeFire simulation step.

At the time the middleware receives the START command, it uses the setParameters command

in the ForeFire shell to initialise required simulation parameters, like the data paths, simulation

resolution, and output mode. After that, when it receives one or more FIRE commands, it sends

them to the ForeFire shell using the startFire command. For the STEP command, the middleware

sends the step command to the ForeFire shell with the wanted time delta, which is one second

in this case. Because ForeFire works based on events, the time progress might a scheduled event

(which will, in turn, schedule further ones). After the command is sent, one of two things can

5Pexpect is available at https://pexpect.readthedocs.io/en/stable/index.html.

https://pexpect.readthedocs.io/en/stable/index.html
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happen: either an event occurred and ForeFire prints information related to it to the pseudoterminal

or no new event occurred, in which case ForeFire outputs nothing. If ForeFire responds with a fire

event, the middleware then sends the command print, to which the ForeFire shell replies with a

JSON object containing a timestamp, the burnt area and the area polygon defined by its vertexes.

However, if ForeFire didn’t respond after the timestep, the step command is simply sent again

until an event occurs and the simulation progresses.

As for commands that the middleware can send, they are the following:

• WIND <airport0> <airport1> <...> – Requests the wind information for a certain airport

list, if there’s an associated station with that airport. It then receives each of them indi-

vidually, and after a short period without receiving any information (100 milliseconds), it

assumes there’s no more information to be received.

• READY – After interpolating the wind data and preparing all the landscape, it sends this

message to signal it is prepared to start the simulation.

• STEP FRONT <timestamp0> <area0> <vertex00> <vertex01> <vertex0...> FRONT <times-

tamp1> <area1> <vertex10> <vertex11> <vertex1...> <...> – Returns a simulation step,

indicating the fire fronts’ timestamps, the affected areas, and the polygons that defines those

areas, via their vertexes.

At some time, the Disturbances Manager will make a request for FSX, using SimConnect, to

send it the simulation’s time periodically (currently set for one second), which it will then use to

compare to the steps’ timestamps.

An important aspect to mention is that while FSX utilises WGS 84 (used in global positioning

system) as its projection, which uses geodesic coordinates, ForeFire needs to have a conformal

projection with coordinates in metres [NIMA, 2004]. Because of this, the World Mercator pro-

jection, identified by the code EPSG:3395, was chosen [EPSG, 2020b]. It has certain limitations,

such as being limited to 85 degrees North and South. This is irrelevant, however, when we con-

sider that fire would not propagate on water or ice, which is what the entire non-included region

consists of. This conversion is used for the preparation of the domain data to go into the landscape

file, and later on in the simulation to convert the vertexes of the polygon to return to the Distur-

bances Manager. However, converting coordinates between projection is not trivial, and as such,

the PROJ6 software is used via its Python module, pyproj. The conversion of many vertexes, the

number of which increases as the affected area is bigger, is more and more time expensive. The

impact of this increasing delay is further explored later on. Converting in the opposite direction,

i.e. converting the agents’ telemetry to the projection used by ForeFire is also not feasible since

the number of agents can be bigger than the number of vertexes that define the affected area. The

agents’ telemetry would also have to be converted at a faster frequency than the simulation steps,

which often have a duration of several seconds. Finally, tools to display information on maps

6PROJ is available at https://proj.org/.

https://proj.org/
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normally use WGS 84 compatible projections (which the case for Google Maps, used on The Plat-

form), like the Web Mercator projection [EPSG, 2020a]. However, they aren’t compatible with

the World Mercator projection.

When the Disturbances Manager receives the simulation steps from ForeFire, it then uses the

basis of the work of Almeida to add the fire area to a disturbance’s component and check if the

simulated agents are affected by that disturbance’s component [Almeida, 2017]. The Disturbances

Manager buffers the simulation steps in a queue, always having a certain number of steps in

advance, to prevent hitching. The optimal number of buffered simulation steps is studied later

on, taking into account the simulation speed that FSX can support. The Disturbances Manager

is getting periodic timestamps of the simulation time. Whenever the simulation time is equal

or greater than the simulation step in front of the queue’s timestamp, that step is dequeued, its

information applied to the disturbance’s component and a new simulation step is requested to

restore the buffer’s optimal size.

Figure 5.6 shows the typical communication timeline for all the components of the co-simulation

architecture.
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Figure 5.6: Typical Co-Simulation Communication Timeline



Chapter 6

Testing and Results

In this section, the testing of the implementation and the obtained experimental results are dis-

played and analysed. Different implementation aspects and metrics are taken into consideration.

Firstly, a functional test is shown and afterwards, the solution’s performance is analysed.

6.1 Functional Test

To test that the implementation was working, a scenario was devised where five agents, flying

Cessnas 172SP Skyhawk (which can be seen in Fig. 6.1) would come out of John Glenn Columbus

International Airport (ICAO code KCMH), in Ohio, with a heading of 180 degrees (heading south),

at their cruise speed of 120 knots. This agent team was defined used the before mentioned Team

Description Language, which specifies the static information about the team [Silva et al., 2017].

The agents’ payloads contained two sensors each, a Chemical sensor (to measure CO2) and a

CameraIntensity one. These aeroplanes would keep their heading for 70 kilometres, at which time

they would get to the Ross Lake Wilderness Area. In this area, a circle with a 3000 feet radius was

defined, and a fire would start in a random location within the circle.

In the established scenario, we could see the simulated fire spread inside of the Disturbances

Manager built-in map, as the agents approached the fire spawn area. Figure 6.2a shows the Dis-

turbances Manager GUI, where it can be seen that the aeroplanes are approaching a burning area.

No aircraft have been affected by the fire disturbance, and no messages have been sent from the

Disturbances Manager to any agents. Other data available in the GUI are the aeroplanes telemetry

and the current disturbances’ components.

After a while, one of the agents gets to the area affected by the fire disturbance. At this time,

the Disturbances Manager marks it as affected by the component, because the agent contains a

sensor which is compatible with the reading simulated by the fire component (in this instance,

CameraIntensity). This can be seen in Fig. 6.2b.

51
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Figure 6.1: Simulated Cessna 172S Skyhawk in FSX

Afterwards, the agent exits the affected area, and is no longer sent any messages or marked

as affected by the disturbance. Figure 6.3 shows this situation. The figure also shows that the

Disturbances Manager sent various messages with readings of the aforementioned sensor to that

agent. The s10 sensor is correctly corresponding to the CameraIntensity sensor of that agent.

Knowing that the solution works, it is then needed to study, objectively, how well it works.

6.2 Performance Analysis

In this section, the performance of the implemented solution is studied, taking into account aspects

like the simulation speed, time drift, data compatibility and latency. To test the performance of the

solution, a little over an hour of fire simulation data was gathered and analysed. That experimental

data is used in this section and is available, in its entirety, in Appendix B. Experiments I and II were

performed with the exact same conditions, to rule out possible variations in processing time. They

had the same randomly selected start location, and a wind of 15 knots at 135 degrees. Experiment

III doubles the wind speed to 30 knots. Experiment IV has the same conditions as experiments I

and II, but a larger ForeFire domain. Experiment V uses the conditions in experiments I and II for

two simultaneous fire fronts.

6.2.1 Data Compatibility

As mentioned before in section 5.2, the map projections used by ForeFire are not the same as those

used by FSX. PROJ was used to convert the coordinates from one projection to the other. For an

average of 100 runs, the time it takes to convert between the World Mercator projection and WGS
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(a) Approach Phase (b) Affected Phase

Figure 6.2: Disturbance Manager’s View. The red arrows point to the aeroplanes, while the red
area defines where the fire has spread to.

84 is 32.835 milliseconds. However, this time scales linearly with the number of coordinate pairs

to convert. For the same 100 runs, Fig. 6.4 shows the time to convert up to 500 coordinate pairs.

On average, a single coordinate pair took 328 milliseconds to be converted.

To try and counter part of the impact that the conversion will surely have, all of the projection

conversion is performed on a different thread from the main middleware thread, in order to allow

for the simulation to continue while the polygons are being converted.

The data given to the fire simulator for the elevation is, one to one, the same present in FSX.

The fuel data and wind had to be slightly changed, as described in sections 5.1.4 and 5.1.6.

For the fuel data, some detail that is present on the Olson Land Cover system is lost when

converting to CLC. The former has more micro-oriented information for the land, especially in

specific vegetation types. However, because CLC is more oriented for the land purpose, some

present land types cannot be found in FSX’s data. This means that, unfortunately, there’s a loss of

information derived by the fact that the land systems were created with different purposes.

As for the wind, the implemented interpolation system is described in the aforementioned

section. It is working well and, for the mostly uniform wind patterns that FSX generates, it works

perfectly.

6.2.2 Simulation Speed

First, we’ll consider experiments I and II. Figure 6.5 shows how the simulation speed, otherwise

defined as the ratio between the simulated time and the real elapsed time, progressed along the time

steps, in Experiment I. Experiment II has shown no significant variance from the results obtained

in experiment I. It can be observed that it fluctuates a lot, but usually tops around 6x the real-time,
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Figure 6.3: Disturbance Manager’s View of Agents After Being Affected

and mostly above 2x the real-time. However, this is an issue, seeing that FSX can simulate at up

to 4x the real speed (though only in steps of 1x, 2x or 4x), and it would be good to attain the same

simulation speed in the implemented solution.

We can determine the impact of the projection conversion by measuring how long the projec-

tion conversion takes. First of all, the number of vertexes increases as the simulation time passes

(Fig. 6.6). From the previous section, it was learned that it will have an increasing impact on the

simulation steps. By subtracting the time it took to convert the projections in each step, named

conversion time, from the true time it took to calculate the step, named real time, we can get the

actual duration spent solely on the simulation. With this value, we can calculate the simulation

speed if the projection conversion wasn’t required. This is shown in Fig. 6.7, where the simulation

speed now rarely drops below 4x.

0 100 200 300 400 500
number of vertexes

0

5

10

15

co
nv

er
sio

n 
tim

e 
(s

)

Figure 6.4: Time to Convert Coordinates Between Projections
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Figure 6.5: Simulation Speed in Experiment I

By calculating the percentage of the time that is used for converting projections for each step,

and then sorting them by descending percentage, it can be seen that, bar outliers, small simulated

time steps are the ones that are hit the most by the conversion time, with around 90% of the time

those steps took to be calculated being spent solely converting the projection. The top and bottom

5 percentages are shown in Table 6.1. Another factor to take into account is that the printing of

simulation data also incurs a small overhead, which further affects the smaller time steps.

Table 6.1: Projection Conversion Percentage in Experiment I

Simulation Time Step Time (s) Real Time (s) Conversion Time (s) Percentage
00:51:44 1 1.639572 1.534392 93.58%
00:42:37 1 1.570443 1.46608 93.35%
00:25:51 1 0.953864 0.847916 88.89%
00:37:31 1 2.338254 1.950626 83.42%
00:42:03 2 1.508573 1.251898 82.99%

. . . . . . . . . . . . . . .
00:11:57 74 11.90522 0.441005 3.70%
00:00:29 29 3.600048 0.117649 3.27%
00:08:41 72 11.5264 0.37353 3.24%
00:03:09 54 8.46984 0.25928 3.06%
00:02:15 72 11.15213 0.226867 2.03%

The time synchronisation of the simulator and the Disturbances Manager is done by requesting

time a certain number of steps in advance. The size of this buffer is essential to guarantee that the

simulation doesn’t dip under a certain simulation speed.

In Table 6.2, the simulation speeds for the buffer of sizes 1 to 10 are shown for the first 10

steps. They are calculated by dividing, for a buffer of size n, the sum of the current and previous

n−1 step simulation times by the sum of the current and previous n−1 steps real times, i.e. the

total simulated time divided by the real time it took to simulate it in the current and last n− 1

steps. This calculates the effective buffered simulation speed, since it won’t matter if a single step
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Figure 6.6: Number of Vertexes in Experiments I and II

has a really high or low simulation speed, but how every step affects the simulation speed in the

buffer. The missing values mean that the buffer wasn’t yet at its full capacity. In those cases, the

simulation speed would be equal to the one in the buffer of size n−1. It is immediately noticeable

that, even though certain steps had a low simulation speed, the fact they occur in smaller time steps

means they are easily absorbed by the higher simulation speeds on bigger steps.

Calculating the average simulation speed for all the time steps in the experiment, we can

see what the improvement from the previous buffer size is. In Table 6.3, this improvement is

calculated and, from buffer size 11 onwards, the improvement is pretty much the same. For this

reason, a buffer size of 10 is ideal, since increasing the buffer size above this number would yield

diminishing returns.

The simulation speed with the selection of a 10 step buffer can be seen in Fig. 6.8. The result

is very improved upon the one in Fig. 6.5, where no buffer is taken into account, and closer to the

one on Fig. 6.7, where no projection conversion happens. However, the fact that the conversion

needs to happen and does happen in Fig 6.8 can be noticed with the slight downward trend at the

end. In any case, the fact that it has an average speed above 4x, even though it dips under this speed

Table 6.2: Simulation Speeds by Buffer Size

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
8.0554 — — — — — — — — —
5.7347 7.4678 — — — — — — — —
4.1111 4.9244 6.7916 — — — — — — —
4.0595 4.0880 4.6754 6.4082 — — — — — —
5.7800 5.3664 5.0792 5.2016 6.2152 — — — — —
6.4562 6.3086 6.1633 6.0117 5.9926 6.3414 — — — —
6.3756 6.4214 6.3335 6.2391 6.1353 6.1166 6.3511 — — —
5.2247 6.0990 6.2776 6.2166 6.1361 6.0469 6.0337 6.2581 — —
4.6306 5.0799 5.9934 6.2162 6.1645 6.0884 6.0040 5.9929 6.2159 —
6.3170 6.2026 6.0327 6.1542 6.2503 6.2119 6.1578 6.0961 6.0855 6.2425
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Figure 6.7: Simulation Speed Without Projection Conversion in Experiment I

for a bit around the 52 minute mark, and can keep constantly above 2x speed is very positive.

Experiment III shows us that increasing the wind leads to a faster propagation of the fire.

In these cases, more time steps are generated for the same simulation time. When compared to

experiment I, 1.734 times the amount of steps were generated in the same timeframe. This has,

unfortunately, a significant effect on the performance of the implemented solution. While in exper-

iment I a total of 5529 coordinates were converted, the number increased to 17485 in experiment

III. Applying the same analysis that was done on the previous experiment, the ideal buffer size

is smaller, at only 7 steps. This happens because the performance degrades at a much faster rate

and increasing the buffer size does not further allow for previous and next steps to compensate for

a slow step. The simulation speed for this experiment can be seen in Fig. 6.9. Generalising the

results of this experiment, it can be concluded that changes in simulation conditions that increase

the fire spread rate will have a great impact on the implemented solution’s performance.

Experiment IV was made to analyse the impact of the defined fire dimension on the simulation.
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Figure 6.8: Simulation Speed With 10 Step Buffer in Experiment I
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Table 6.3: Improvement in Average Simulation Speed by Buffer Size

Buffer Size Average Simulation Speed Improvement
1 4.616897 —
2 4.989636 8.07%
3 5.099315 2.20%
4 5.154257 1.08%
5 5.192315 0.74%
6 5.207528 0.29%
7 5.220316 0.25%
8 5.228226 0.15%
9 5.234754 0.12%

10 5.239840 0.10%
11 5.241240 0.03%
12 5.239909 -0.03%
13 5.240043 0.00%
14 5.241431 0.03%

While experiments I and II had their bounding boxes surrounded by 1 QMID layer (i.e. the QMID

tile that contained the bounding box was surrounded by 1 level of tiles, all around), experiment

IV was instead surrounded by 2 QMID layers. It shows that changing the defined dimension does

not alter the performance of the simulation. However, it does change how long the interpolation

takes. Because of this, this parameter needs to be manually fine-tuned for each scenario, taking

into account the fire conditions (fast or slow spread), the length of the experiment and the required

interpolation time. Some differences in the steps appeared after a while when compared to exper-

iments I and II. These differences can be attributed to the slightly different alignment of the wind

map after the interpolation.

Experiment V had two fire fronts in conditions similar to experiments I and II. The fronts can

be seen in Fig. 6.10. An immediate observation can be made that because twice the amount of

vertexes in each step needed to be converted, smaller time steps took a huge hit in their simulation
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Figure 6.9: Simulation Speed With 7 Step Buffer in Experiment III
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Figure 6.10: Disturbance Manager’s View of Two Fire Fronts

speed, frequently dipping under 1x. This can be seen in Fig. 6.11. After analysis, the ideal buffer

size was determined to be roughly the same as experiments I and II (with improvements stagnant

after a 10 step buffer). With this buffer size applied, the simulation speeds are, however, similar

to the ones in experiment III, and can be seen in Fig. 6.12. This might suggest that on one hand,

the buffer size depends on how fast the spread is and not directly the number of vertexes. On the

other hand, the simulation speed is indeed limited by the increasing number of vertexes.
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Figure 6.11: Simulation Speed in Experiment V

6.2.3 Information Latency

The implemented solution of keeping the steps in the Disturbances Manager ahead of time means

that, technically, there is no latency involved in regards with the Disturbances Manager applying

the simulation step to the simulation environment. In practice, however, there are always small

overheads in the way that the Disturbances Manager currently processes the incoming FSX agent

telemetry and then applies the disturbance data to the affected vehicles. However, these overheads
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Figure 6.12: Simulation Speed With 10 Step Buffer in Experiment V

are neither significant, in the aspect that they amount to some computational cycles, nor caused by

the present solution of the co-simulation architecture.

6.2.4 Time Drift

When it comes to time drift, the Disturbances Manager consumes the queue whenever the times-

tamp of the front step is equal or lower than the current time. This means that, if the simulation is

running late, the Disturbances Manager always tries to catch-up.

However, the amount of existing drift will be highly dependent on the simulation speed that

The Platform is running at. At 1x and 2x the real-time, using the implemented buffer solution, there

is no drift involved in slow spread simulations. In any case, for the highest simulation speed of

4x the real-time, even though the solution speed is, on average, above 4x, sometimes the buffered

simulation speed will dip under that value. If there is a fast fire spread, only the simulation speed

of 1x is achieved throughout the experiment, albeit having an average speed above 2x.

Because of the catch-up mechanic described before, this means that even though time drift

can occur at the highest simulation speed, it will eventually correct itself as the next simulation

steps come in faster. The exact amount of time drift will always depend on the simulation sce-

nario, increasing the longer the simulation goes on because of the current projection conversion

system. For the simulation speed described in Fig. 6.8, there’s an average of a −124.0% simu-

lation speed drift respective to a 4x simulation, meaning that effectively, it is running faster than

required. However, the average for the whole experiment does not paint the whole story, since, in

the beginning, the simulation is much faster than in later stages. For example, when considering

only the values from the latter half of the experiment (from 00:52:13 to 00:54:06, where the dip

occurred), an average simulation speed drift of 31.8% can be seen, when comparing to the 4x

simulation speed.



Chapter 7

Conclusions and Future Work

This section will list the conclusions that can be taken from the implemented solution and its

analysis, and future work that can improve upon that solution.

7.1 Conclusions

The increasing number of autonomous vehicles and environmental disturbances means that their

interaction needs to be better studied, in order to make these autonomous vehicles interact with

different kinds of disturbances. Previous works implemented the Disturbances Manager, where

disturbances were defined and readings for their components were generated [Almeida, 2017].

To get a more realistic simulation and to implement disturbances that could not be reproduced

inside the Disturbances Manager and FSX, a need to create a co-simulation architecture to add an

external tool to simulate such disturbances existed.

The literature review found that, in the need of implementing such an architecture, most related

works used their own ad-hoc implementations, despite standards such as HLA or FMI existing.

These standards are somewhat complex and perhaps better fitted for creating a simulation envi-

ronment from the ground up, as adapting the entire Platform’s architecture would be a massive

undertaking. Some alternatives, like DDS, appeared to be a good solution, but available im-

plementations of such standard were found to be lacklustre. To standardise the communication

architecture used in various components of the platform, RabbitMQ was chosen to perform that

task.

After a schematisation of different kinds of disturbances, and then a study of different simu-

lators, a fire simulator, ForeFire, was chosen to simulate a fire disturbance within The Platform.

Input retrieval from FSX and processing was required to extract the data from the scenery files for

various components, like fuel, which was based on land classification, elevation and wind data,
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which required interpolation. Coordinate systems also needed to be converted to be used in Fore-

Fire. Using a Python middleware, the communication between the simulator and the Disturbances

Manager was facilitated.

The implemented solution was tested and found to work. Several aspects of the performance

of this solution were analysed, and optimal parameters for the solution were found. The solution

runs in slow fire spread with 1x and 2x the real-time simulation speed. In the initial stages of the

fire spread the simulation speed is steadily above 4x. In later stages of the simulation, a low value

of time drift occurs, as the simulation speed dips under 4x. For fast fire spread scenarios, the 1x

speed is reached, and 2x speed can be used with some time drift.

7.2 Future Work

To further improve upon the developed work, the main aspect to take into consideration is the

development of better methods to create compatibility between the map projections between FSX

and ForeFire. The conversion between projections represents a major impact in the time a simu-

lation step requires to be calculated but is not a fault of fire simulator speed itself. Reworking the

simulator to be able to use non-conformal projections with geodesic coordinates is a possibility,

whereas creating a better conversion system, which has faster performance and further parallelises

operations, is another. A different take on this issue can be to use larger time steps (e.g. of one

minute and above), whose fast simulation speeds will absorb the conversion time, at the cost of

simulation realism at a micro time scale. Then, interpolation between step areas could be per-

formed directly on FSX’s projection to restore smaller time steps, therefore reducing the overall

number of projection conversions.

Time synchronisation can be improved by having the Disturbances Manager detect when a

simulated disturbance’s component is running behind in simulation time and holding the FSX

simulation nodes until the component’s simulation is up to speed. The implemented buffer mech-

anism can also be improved by automating the analysis of the simulation speed and adjusting its

parameters automatically. Other forms of buffering can also be analysed, i.e. using a buffer of a

certain time period instead of a number of simulation steps.

Improving the compatibility in the land classification systems is also a possibility. One can

achieve this by reworking the existing data from FSX to add relevant land classes from CLC, or

by using CLC, which classified the entire European Union using that system, within FSX.

Changing the wind interpolation methods to get even more realistic results can also be achieved

by using methods that better take into account the wind behaviour, albeit taking into account the

performance impact that such an interpolation scheme would have.

The current simulated sensors for detecting the fire only get triggered in a binary form and

when inside the disturbance area, despite it being an intensity sensor. Improving the way that

the sensor detects the fire, by having a range in which the sensor can detect the fire component,

or using other models of the simulator to calculate emitted heat or particles, in order to get an

intensity value for the fire, would further approximate the simulation to its definition.



7.2 Future Work 63

Finally, this work proves that an external simulator for a certain disturbance can be successfully

integrated into The Platform. This advance allows for the possibility of including further external

simulator for other types of disturbances, bringing even more realism to the disturbances to be

simulated within The Platform’s missions.
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Appendix A

Olson Land Classification to CORINE
Land Cover Matching

This appendix shows the matching between the different land classification systems that were used

in the implemented solution. The matching was done only from the Olson Land Classification

system to CLC, and not vice-versa.

Table A.1: Olson Land Classification to CORINE Land Cover Matching

Value Olson Land Classification Code CORINE Land Cover

0 Ocean, Sea, Large Lake 523 Sea and ocean

1 Large City Urban Grid Wet 111 Continuous urban fabric

2 Low Sparse Grassland 321 Natural grasslands

3 Coniferous Forest 312 Coniferous forest

4 Deciduous Conifer Forest 312 Coniferous forest

5 Deciduous Broadleaf Forest 311 Broad-leaved forest

6 Evergreen Broadleaf Forests 311 Broad-leaved forest

7 Tall Grasses And Shrubs 323 Sclerophyllous vegetation

8 Bare Desert 331 Beaches, dunes, sands

9 Upland Tundra 322 Moors and heathland

10 Irrigated Grassland 321 Natural grasslands

11 Semi Desert 331 Beaches, dunes, sands

12 Dry Crop and Town 243

Land principally occupied by agricul-

ture, with significant areas of natural

vegetation

13 Wooded Wet Swamp 411 Inland marshes

16 Shrub Evergreen 323 Sclerophyllous vegetation

17 Shrub Deciduous 323 Sclerophyllous vegetation

19 Evergreen Forest And Fields 312 Coniferous forest

20 Cool Rain Forest 313 Mixed forest
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21 Conifer Boreal Forest 312 Coniferous forest

22 Cool Conifer Forest 312 Coniferous forest

23 Cool Mixed Forest 313 Mixed forest

24 Mixed Forest 313 Mixed forest

25 Cool Broadleaf Forest 311 Broad-leaved forest

26 Southern Deciduous Broadleaf Forest 311 Broad-leaved forest

27 Conifer Forest 312 Coniferous forest

28 Montane Tropical Forests 313 Mixed forest

29 Seasonal Tropical Forest 313 Mixed forest

30 Cool Crops And Towns 243

Land principally occupied by agricul-

ture, with significant areas of natural

vegetation

31 Crops And Town 243

Land principally occupied by agricul-

ture, with significant areas of natural

vegetation

32 Dry Tropical Woods 311 Broad-leaved forest

33 Tropical Rainforest 313 Mixed forest

34 Tropical Degraded Forest 313 Mixed forest

35 Corn And Beans Cropland 241 Annual crops (permanent crops)

36 Rice Paddy And Field 213 Rice fields

37 Hot Irrigated Cropland 212 Permanently irrigated land

38 Cool Irrigated Cropland 212 Permanently irrigated land

40 Cool Grasses And Shrubs 322 Moors and heathland

41 Hot And Mild Grasses And Shrubs 321 Natural grasslands

42 Cold Grassland 321 Natural grasslands

43 Savanna (Woods) 324 Transitional woodland-shrub

44 Mire Bog Fen 412 Peat bogs

45 Marsh Wetland 411 Inland marshes

46 Mediterranean Scrub 323 Sclerophyllous vegetation

47 Dry Woody Scrub 324 Transitional woodland-shrub

48 Dry Evergreen Woods 311 Broad-leaved forest

50 Sand Desert 331 Beaches, dunes, sands

51 Semi Desert Shrubs 333 Sparsely vegetated areas

52 Semi Desert Sage 323 Sclerophyllous vegetation

53 Barren Tundra 322 Moors and heathland

54
Cool Southern Hemisphere Mixed

Forests
313 Mixed forest

55 Cool Fields And Woods 311 Broad-leaved forest

57 Cool Forest And Field 313 Mixed forest

58 Fields And Woody Savanna 324 Transitional woodland-shrub
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59 Succulent And Thorn Scrub 323 Sclerophyllous vegetation

60 Small Leaf Mixed Woods 313 Mixed forest

61 Deciduous And Mixed Boreal Forest 313 Mixed forest

62 Narrow Conifers 312 Coniferous forest

63 Wooded Tundra 324 Transitional woodland-shrub

64 Heath Scrub 322 Moors and heathland

69 Polar And Alpine Desert 335 Glaciers and perpetual snow

72 Mangrove 421 Salt marshes

76 Crop And Water Mixtures 242 Complex cultivation patterns

78 Southern Hemisphere Mixed Forest 313 Mixed forest

89 Moist Eucalyptus 311 Broad-leaved forest

90 Rain Green Tropical Forest 313 Mixed forest

91 Woody Savanna 324 Transitional woodland-shrub

92 Broadleaf Crops 311 Broad-leaved forest

93 Grass Crops 321 Natural grasslands

94 Crops Grass Shrubs 322 Moors and heathland

95 Grass Skirting 1 321 Natural grasslands

96 Grass Skirting 2 321 Natural grasslands

97 Grass and Shrub Skirting 322 Moors and heathland

98 Dry Grass and Dirt Skirting 322 Moors and heathland

99 Sand and Desert Skirting 331 Beaches, dunes, sands

100 Ocean, Sea, Large Lake 523 Sea and ocean

101 Large City Urban Grid Wet 111 Continuous urban fabric

102 Large City Urban Grid Dry 111 Continuous urban fabric

103 Large City Urban Non Grid Wet 111 Continuous urban fabric

104 Large City Urban Non Grid Dry 111 Continuous urban fabric

105 Medium City Urban Grid Wet 111 Continuous urban fabric

106 Medium City Urban Grid Dry 111 Continuous urban fabric

107 Medium City Urban Non Grid Wet 111 Continuous urban fabric

108 Medium City Urban Non Grid Dry 111 Continuous urban fabric

109 Large City Suburban Grid Wet 112 Discontinuous urban fabric

110 Large City Suburban Grid Dry 112 Discontinuous urban fabric

111 Large City Suburban Non Grid Wet 112 Discontinuous urban fabric

112 Large City Suburban Non Grid Dry 112 Discontinuous urban fabric

113 Medium City Suburban Grid Wet 112 Discontinuous urban fabric

114 Medium City Suburban Grid Dry 112 Discontinuous urban fabric

115 Medium City Suburban Non Grid Wet 112 Discontinuous urban fabric

116 Medium City Suburban Non Grid Dry 112 Discontinuous urban fabric

117 Small City Suburban Grid Wet 112 Discontinuous urban fabric

118 Small City Suburban Grid Dry 112 Discontinuous urban fabric
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119 Small City Suburban Non Grid Wet 112 Discontinuous urban fabric

120 Small City Suburban Non Grid Dry 112 Discontinuous urban fabric

121 Large City High-rise 111 Continuous urban fabric

122 Ice 335 Glaciers and perpetual snow

123 Inland Water 411 Inland marshes

124 Ocean Inlet 421 Salt marshes

125 Non Perennial Inland Water 411 Inland marshes

126 Non Perennial Inland Sea 411 Inland marshes

127 Reef 332 Bare rock

128 Grass 321 Natural grasslands

129 Arid 333 Sparsely vegetated areas

130 Rock 332 Bare rock

131 Dirt 333 Sparsely vegetated areas

132 Coral 332 Bare rock

133 Lava 332 Bare rock

134 Park 141 Green urban areas

135 Golf Course 142 Sport and leisure facilities

136 Cement 122
Road and rail networks and associated

land

137 Tan Sand Beach 331 Beaches, dunes, sands

138 Black Sand Beach 331 Beaches, dunes, sands

139 Airfield1 124 Airports

140 Airfield2 124 Airports

141 Rock Volcanic 332 Bare rock

142 Rock Ice 335 Glaciers and perpetual snow

143 Glacier Ice 335 Glaciers and perpetual snow

144 Evergreen Tree Crop 312 Coniferous forest

145 Deciduous Tree Crop 311 Broad-leaved forest

146 Desert Rock 332 Bare rock

147 Savanna Grass 322 Moors and heathland



Appendix B

Fire Simulation Experiments

This appendix includes the data from the various experiments ran on the implemented solution.

These experiments ended after 1 hour of simulation time. Experiment I is the baseline with a

randomly selected location and wind speed 15 knots at 135 degrees and can be found in Table B.1.

The second experiment uses the same location and wind and was ran to observe the performance

variability between executions. Table B.2 shows its data. Experiment III doubles the wind speed

of the previous experiments. Its experimental data can be seen in Table B.3. Experiment IV has

a bigger domain area than experiments I and II (1 more QMID layer surrounding the original

one), but otherwise has the same conditions. Table B.4 details the experiment’s data. Finally,

experiment V has the same conditions as experiments I and II, but with two fire fronts, and its data

can be observed in B.5.

Table B.1: Experiment I Data

Simulated Time (s) Real Time (s) Number of Vertexes Projection Conversion Time

29 3.600048 6 0.117649

7 1.220643 8 0.19133

5 1.216208 9 0.181983

4 0.985353 10 0.189917

18 3.114209 11 0.226168

72 11.15213 12 0.226867

54 8.46984 13 0.25928

14 2.679576 12 0.247758

4 0.86382 13 0.242185

75 11.87271 14 0.481717

35 5.346303 15 0.280006

43 6.668729 16 0.302369

33 5.640187 17 0.444591

12 2.479512 18 0.33166

44 7.096336 19 0.350079
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72 11.5264 20 0.37353

80 12.41205 21 0.623276

9 2.145283 22 0.40013

33 5.512438 23 0.422849

74 11.90522 24 0.441005

11 2.224271 25 0.471855

59 9.63848 26 0.640766

6 1.569118 25 0.475913

20 3.327142 26 0.540709

2 0.972013 27 0.518427

10 2.134886 28 0.52109

94 14.81474 29 0.609151

64 10.23667 30 0.582317

3 1.206391 31 0.632936

76 12.55722 32 0.92857

45 7.501552 33 0.877928

14 3.341545 34 0.808016

53 8.945046 35 0.955379

17 3.511785 36 0.715906

59 9.839478 37 0.751866

22 4.503867 38 0.966737

64 10.79207 39 0.765918

102 16.38383 40 0.796074

42 7.122076 41 0.789684

15 3.419923 42 0.794507

53 8.500472 41 0.813273

2 1.40144 42 0.841951

1 0.953864 43 0.847916

44 7.930875 44 1.306701

30 5.818118 45 0.925116

57 9.508793 46 0.905156

49 8.500404 47 0.913559

5 1.526274 48 0.965548

54 9.226433 47 0.938571

8 1.95391 48 0.939938

29 5.62499 49 1.124055

34 6.084584 48 0.981985

8 2.872889 49 1.422807

9 3.137505 50 1.279466

8 2.192791 51 1.027435
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46 7.982185 52 1.052561

45 7.89556 53 1.120695

89 14.48223 52 1.038959

11 3.012616 53 1.085886

34 6.851621 54 1.474097

15 3.979228 55 1.117757

79 13.51962 56 1.352701

23 4.925473 57 1.200722

22 5.527473 58 1.949331

1 2.338254 59 1.950626

48 9.426164 60 1.522629

131 21.834 61 1.463882

61 10.84437 60 1.230407

2 1.655388 61 1.22741

28 5.402144 62 1.202088

2 1.508573 63 1.251898

33 6.235259 64 1.276727

1 1.570443 65 1.46608

7 2.34224 66 1.330482

59 10.73994 67 2.137384

2 2.685236 68 2.143092

106 17.38604 69 1.361797

85 14.17162 68 1.325108

12 3.16705 69 1.395961

34 7.443078 70 1.946869

15 4.457137 71 1.732757

27 6.09212 72 1.460163

11 3.086787 73 1.462484

35 7.501792 74 1.793122

53 10.15173 75 1.459335

29 6.543612 76 1.803496

13 4.307995 75 1.850192

13 3.493421 76 1.567887

35 7.074058 77 1.963206

10 3.926359 78 1.587959

1 1.639572 77 1.534392

11 3.132997 78 1.514752

14 3.626717 79 1.549487

4 2.53975 78 1.841143

24 5.832612 79 2.236813
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12 3.355014 80 1.58293

27 5.644793 81 1.597342

8 3.180844 82 1.611457

26 5.554272 83 1.610089

16 4.279887 84 1.901677

38 7.826672 85 1.705023

34 7.413086 86 1.726581

38 7.95784 87 1.714899

52 9.993686 88 1.704442

78 14.06548 89 1.820469

28 6.437309 90 1.764901

40 8.463393 92 1.816856

30 6.926502 93 1.903472

24 6.278782 94 2.081307

Table B.2: Experiment II Data

Simulated Time (s) Real Time (s) Number of Vertexes Projection Conversion Time

29 3.60207 6 0.142443

7 1.20884 8 0.174229

5 1.226879 9 0.186275

4 0.992061 10 0.218331

18 3.133281 11 0.263195

72 11.19467 12 0.271246

54 8.473403 13 0.280314

14 2.687803 12 0.249019

4 0.871256 13 0.268405

75 11.69827 14 0.349837

35 5.351369 15 0.337322

43 6.824495 16 0.432533

33 5.591127 17 0.355224

12 2.376358 18 0.369911

44 7.08897 19 0.382645

72 11.54905 20 0.406455

80 12.15779 21 0.436614

9 2.19787 22 0.458072

33 5.56764 23 0.472927

74 11.90525 24 0.489841

11 2.23583 25 0.492884

59 9.541328 26 0.530002
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6 1.626378 25 0.62062

20 3.515527 26 0.643929

2 1.088215 27 0.581184

10 2.239843 28 0.557528

94 14.79584 29 0.583627

64 10.29755 30 0.633366

3 1.304105 31 0.664341

76 12.3229 32 0.651077

45 7.402294 33 0.771355

14 3.076792 34 0.680376

53 8.710587 35 0.717638

17 3.473341 36 0.74004

59 10.09858 37 1.02612

22 4.554807 38 0.784538

64 10.90461 39 0.97848

102 16.83511 40 1.075055

42 7.254557 41 0.846558

15 3.424319 42 0.86202

53 8.510081 41 0.825746

2 1.372972 42 0.815843

1 0.951308 43 0.847909

44 7.645225 44 1.019763

30 5.746148 45 0.946996

57 9.509248 46 0.91308

49 8.906627 47 1.168191

5 1.510762 48 0.951095

54 9.221078 47 0.92635

8 1.957758 48 0.942153

29 5.579664 49 1.078985

34 6.385875 48 1.280011

8 2.789539 49 1.17419

9 2.748142 50 1.05225

8 2.237925 51 1.073761

46 8.063708 52 1.137601

45 7.957199 53 1.180396

89 14.53012 52 1.081148

11 3.010269 53 1.120724

34 6.881232 54 1.446444

15 3.869511 55 1.164747

79 13.49374 56 1.365266
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23 4.956237 57 1.302161

22 5.554451 58 1.911152

1 2.3432 59 2.061782

48 9.474654 60 1.431554

131 21.579 61 1.348448

61 10.82506 60 1.241789

2 1.480123 61 1.191522

28 5.471714 62 1.272591

2 1.547485 63 1.291104

33 6.314199 64 1.354156

1 1.588943 65 1.485537

7 2.316003 66 1.3019

59 10.60069 67 2.006063

2 2.720191 68 2.18581

106 17.47951 69 1.451755

85 14.20058 68 1.355882

12 3.144987 69 1.372722

34 7.167466 70 1.627221

15 4.213923 71 1.69474

27 6.020337 72 1.425292

11 3.129247 73 1.508994

35 7.537629 74 1.866068

53 10.16798 75 1.582373

29 6.589245 76 1.870586

13 4.251543 75 1.732829

13 3.58172 76 1.659356

35 7.077217 77 1.971684

10 3.950269 78 1.663379

1 1.649121 77 1.544687

11 3.204286 78 1.583579

14 3.859988 79 1.785801

4 2.395535 78 1.599539

24 5.741184 79 2.150189

12 3.402423 80 1.62727

27 5.759061 81 1.709618

8 3.369007 82 1.652524

26 5.658377 83 1.652114

16 4.174 84 1.79711

38 7.812358 85 1.726373

34 7.346849 86 1.693642
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38 8.065519 87 1.847189

52 10.07618 88 1.729202

78 14.02317 89 1.761624

28 6.526953 90 1.922802

40 8.538067 92 1.970981

30 6.88222 93 1.827228

24 6.143149 94 1.950035

Table B.3: Experiment III Data

Simulated Time (s) Real Time (s) Number of Vertexes Projection Conversion Time

22 2.277519 6 0.187223

2 1.519922 8 0.166822

1 0.505119 9 0.205131

14 2.011973 10 0.209219

5 1.310718 11 0.248051

22 3.593158 12 0.261319

23 3.762407 13 0.268806

47 7.265902 14 0.282305

8 1.677065 15 0.316008

13 2.342214 16 0.329074

19 3.101435 17 0.341815

16 2.985824 18 0.365062

11 2.026584 17 0.340248

4 1.040692 18 0.378129

12 2.391776 19 0.544426

29 4.946401 20 0.402514

11 2.186172 21 0.426082

38 6.302032 22 0.45462

35 5.904484 23 0.54962

15 2.833104 24 0.488709

23 4.105581 25 0.505462

7 1.684255 26 0.538425

37 6.445187 27 0.912103

1 1.40323 28 1.147495

43 7.519262 29 0.589437

18 3.409187 30 0.611019

5 1.477057 31 0.634755

8 2.007517 32 0.656103

32 5.874337 33 0.929578
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6 1.963735 34 0.879922

7 1.717046 35 0.704415

62 10.33971 35 1.136662

1 1.393219 36 1.170142

22 4.054652 37 0.767957

4 1.546307 38 0.78072

29 5.143394 39 0.789511

5 1.64547 40 0.807727

7 1.92365 41 0.833426

23 4.469144 42 0.837731

11 2.667587 44 1.047792

16 3.916372 43 1.441088

1 1.757553 45 1.466422

3 1.356323 46 0.944689

28 5.416427 47 0.946474

46 8.145218 48 1.218676

6 2.737608 47 1.56746

1 2.159559 48 1.775974

7 2.490471 49 1.000166

20 4.178648 50 1.031184

1 1.116754 51 1.012807

3 1.422212 52 1.015774

9 2.519688 53 1.198589

31 6.109235 55 1.091345

12 3.167032 56 1.11964

67 11.69464 57 1.199408

34 6.893262 58 1.904367

7 2.673938 59 2.323746

6 3.096275 60 1.566169

38 7.632529 61 1.367307

9 2.97678 60 1.201183

22 4.87943 61 1.677487

3 2.444721 62 1.702935

34 8.13886 63 2.725859

1 3.151341 64 2.816403

11 4.271883 65 1.287685

7 2.348363 66 1.335116

21 4.531982 67 1.393786

27 5.73785 68 1.331718

13 3.761208 69 1.464565
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31 6.707375 70 2.27209

2 2.832284 69 2.237777

2 1.823155 70 1.411806

6 2.478644 71 1.398659

27 5.511768 72 1.463124

25 5.571146 73 1.473492

36 7.413917 74 1.522731

10 3.996985 75 2.163349

13 4.930123 76 2.596508

3 3.274812 77 2.440956

53 10.48228 76 2.465399

11 3.732215 77 3.107791

8 4.493649 78 2.440225

14 6.40544 79 3.581018

1 3.466564 80 3.111495

30 6.126248 81 1.629655

37 7.776813 82 2.157528

3 2.052762 83 1.641437

1 1.776195 84 1.637016

18 4.372921 85 1.692125

30 7.158254 86 1.996627

30 7.234047 88 3.789893

7 4.668749 89 4.195837

15 5.965078 90 4.590394

10 5.741246 91 3.303331

67 13.97183 90 2.987298

3 3.575699 91 2.943233

13 4.09281 92 2.142027

19 6.394505 91 3.494362

4 5.088756 92 4.357047

1 4.668655 91 3.692581

7 2.998527 92 1.983418

5 3.033406 91 2.319143

5 5.05154 93 4.789319

19 8.227612 92 5.18421

4 5.414909 94 4.308612

3 2.974468 95 2.716669

1 3.13561 94 2.827154

4 2.494373 95 1.926163

33 5.844926 96 2.254547
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9 4.206478 97 2.159939

32 7.169236 98 2.525823

6 3.804272 97 2.406792

21 6.1 98 1.953025

20 6.337015 99 4.36335

17 7.274537 101 6.713934

15 7.656865 102 5.2405

6 6.05828 103 4.235981

37 8.96623 104 2.664185

7 4.118725 105 2.527505

26 7.07815 104 3.266998

6 4.651277 103 3.031361

12 5.044355 104 2.077675

17 6.384249 103 3.37528

14 4.173797 104 3.802069

19 6.496166 105 3.017389

11 5.972078 106 4.675186

18 8.365229 107 6.672229

13 10.44454 108 7.369376

3 7.866419 109 7.489595

2 7.450784 110 6.438306

19 8.355604 111 2.203694

19 6.471585 110 3.420214

3 4.887832 111 4.035487

33 8.122599 112 2.872724

9 4.621487 113 2.564399

39 8.346757 114 2.716532

7 4.736048 115 3.070714

18 6.870126 116 2.967557

48 10.51156 117 4.621442

16 7.26447 118 5.159806

20 6.723511 119 4.525984

12 6.502928 120 3.427432

41 10.2627 121 3.41797

4 4.55229 120 3.40727

14 7.181173 121 3.943873

18 5.024041 122 4.262785

15 7.049579 123 3.53132

37 9.392745 124 2.500204

17 5.897477 125 2.50967
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52 11.18153 126 2.537473

31 9.415391 127 5.355189

17 6.064434 128 5.568484

15 9.294082 129 7.077868

6 7.062917 130 4.576019

53 12.46911 131 2.524193

24 6.998233 132 2.604883

28 8.345206 134 3.217308

31 8.37074 135 2.741622

13 5.320892 136 2.640693

54 12.00662 136 3.07852

24 6.297419 136 3.230614

13 8.273183 137 5.516917

1 5.9292 138 5.437619

24 8.569978 139 2.904488

15 6.292147 140 3.197278

15 6.483571 141 3.132722

33 11.5439 142 5.797589

2 6.482302 143 5.916983

17 10.36526 142 5.840368

2 6.365724 141 5.821303

3 3.301239 140 2.889976

2 3.565114 141 3.258276

12 5.364973 142 4.348071

6 5.882773 143 4.366925

7 4.220512 144 2.897372

1 3.163525 145 2.96565

22 6.436787 146 3.079145

30 6.340291 147 3.352824

17 9.83844 148 7.453688

13 8.322499 147 7.182062

24 13.04398 148 11.26847

20 12.25822 150 8.13755

14 11.24966 151 8.73462

4 9.230601 152 7.651094

63 18.31879 153 5.840606

2 6.485548 154 5.944062

70 17.54768 153 6.041719

21 11.48005 154 9.66821

30 12.47057 155 10.78566
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24 13.14261 156 10.50313

30 14.40065 157 8.996805

16 9.944333 158 8.98995

25 10.28118 161 9.296791

26 13.18605 160 12.20861

38 18.67144 159 13.41397

24 13.35181 162 5.366503

69 16.04179 164 3.349083

65 14.11902 163 4.899759

Table B.4: Experiment IV Data

Simulated Time (s) Real Time (s) Number of Vertexes Projection Conversion Time

29 3.606432 6 0.126339

7 1.191428 8 0.16227

5 1.250698 9 0.197138

4 0.970116 10 0.205119

18 3.099279 11 0.237245

72 11.1542 12 0.229221

54 8.442381 13 0.246422

14 2.805723 12 0.333649

4 0.980084 13 0.340317

75 11.69473 14 0.277995

34 5.324839 15 0.335125

44 6.71006 16 0.303194

33 5.559766 17 0.317108

12 2.529465 18 0.50138

44 7.196838 19 0.354119

72 11.55107 20 0.440767

76 12.06235 21 0.404681

13 2.457516 22 0.540473

33 5.513686 23 0.445888

74 12.07552 24 0.679056

9 2.078989 25 0.540729

61 9.8291 26 0.46156

8 1.62978 25 0.453886

16 3.137676 26 0.525842

4 1.128066 27 0.568223

8 2.219903 28 0.685217

94 15.09963 29 0.703964
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65 10.37037 30 0.714715

1 1.186143 31 0.808399

77 12.22537 32 0.592044

44 7.23488 33 0.608964

16 3.189065 34 0.609743

53 8.611732 35 0.619854

17 3.536037 36 0.790298

59 9.795483 37 0.695863

22 4.291109 38 0.755116

62 10.27683 39 0.73175

104 16.63651 40 0.719233

42 7.103117 41 0.731056

16 3.368192 42 0.737443

44 7.695726 41 0.913381

5 1.464668 42 0.7517

7 1.629138 43 0.767775

41 7.124912 44 0.799545

36 6.558521 45 0.991025

54 9.004455 46 0.858184

46 8.050705 47 0.828809

9 2.011124 48 0.8456

46 7.898229 47 0.823525

6 1.834943 48 0.972931

36 6.267224 49 0.84849

30 5.395722 50 0.891799

6 2.042454 51 0.914417

8 2.402187 50 0.880378

26 5.050518 51 1.153402

65 10.7803 52 0.970271

20 3.902031 53 0.917598

69 11.36721 54 0.954268

62 10.59769 55 0.986475

57 9.883225 56 1.004401

21 4.49138 55 0.985439

33 6.309016 56 1.001894

8 2.466689 57 1.022905

13 3.262104 58 1.025765

29 5.992335 59 1.215992

36 6.730217 60 1.088407

6 2.057091 59 1.042505
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5 2.243919 60 1.533498

77 12.70894 61 1.228785

34 6.509433 62 1.248368

132 21.38288 63 1.411937

15 3.938389 64 1.308179

40 7.737457 65 1.336877

12 3.896103 66 1.529998

99 17.0334 67 1.507396

38 7.498799 68 1.387129

67 12.37805 69 1.714388

43 8.446872 70 1.473747

17 4.508228 71 1.450125

35 7.494816 72 1.881951

11 4.035192 71 1.776936

3 2.098235 72 1.691565

16 3.84484 73 1.46315

1 1.861994 74 1.757118

24 5.105799 75 1.515775

31 6.386235 76 1.733345

5 2.262198 77 1.550516

20 4.516502 76 1.531315

7 2.7768 77 1.761274

6 2.443692 78 1.578741

42 7.963468 79 1.643967

27 6.0311 78 1.603921

14 3.97626 77 1.551122

9 3.251686 78 1.569672

9 3.717939 79 1.937425

15 4.630583 80 1.741236

49 8.745027 79 1.970793

8 4.029602 80 2.969751

15 4.50196 81 3.467925

11 6.341358 82 3.685662

1 4.101904 83 3.527163

56 10.28104 84 1.833899

8 3.695281 85 1.960878

62 11.77938 86 1.741036

15 4.906605 87 2.188867

16 5.036672 88 2.10579

273 44.15064 89 2.426421
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Table B.5: Experiment V Data

Simulated Time (s) Real Time (s) Number of Vertexes Projection Conversion Time

29 3.812694 12 0.278453

7 1.46226 16 0.354361

5 1.490798 18 0.40562

4 1.238178 20 0.438413

18 3.862486 22 0.934068

72 11.8218 24 0.496231

54 8.79529 26 0.543483

14 3.003121 24 0.489005

4 1.221146 26 0.546704

75 12.11631 28 0.659848

35 5.761412 30 0.654531

43 7.407789 32 0.919012

33 6.198238 34 0.736277

12 2.861592 36 0.761701

44 7.632124 38 0.795234

72 12.0459 40 0.818066

80 12.66461 42 0.857421

8 2.804042 44 0.965316

34 6.140758 46 0.923932

74 12.50805 48 0.951497

11 2.96094 50 1.05744

59 10.21405 52 1.047947

6 2.221284 50 1.03387

20 4.506785 52 1.570476

2 2.175727 54 1.506099

10 3.113435 56 1.119793

94 15.66161 58 1.151081

67 11.31717 60 1.657278

3 2.41197 62 1.718271

76 13.31746 64 1.41555

44 8.27948 66 1.649082

15 4.06818 68 1.360367

53 10.43305 69 2.593613

1 2.968513 70 2.657523

17 4.971976 72 1.457398

59 11.49056 74 2.273291

22 5.780455 75 1.570847
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1 1.613232 76 1.508876

63 11.12616 78 1.617876

102 17.66201 80 1.751041

42 10.32432 81 3.781983

2 4.389943 82 4.070059

15 5.859138 84 2.372119

56 10.85561 82 3.170953

3 5.553801 83 4.63675

1 4.913626 85 4.390278

1 2.636911 86 2.532273

43 8.431074 88 1.955899

29 7.349533 89 2.389037

1 1.877472 90 1.772973

57 10.40538 92 1.808456

53 13.63592 93 6.18007

4 6.468743 94 6.000149

3 6.316249 96 5.017249

63 11.2133 94 2.916304

8 5.6965 95 4.085067

1 4.378975 96 3.816755

30 9.291673 97 3.616717

1 3.979231 98 3.703449

33 9.183843 97 3.995987

2 4.323228 96 3.756395

8 3.279243 97 2.111414

15 4.783934 98 3.769477

8 5.056725 99 4.470338

6 5.053703 100 3.682393

2 2.202581 101 1.946154

16 4.509549 102 2.099278

30 8.307408 104 3.150794

46 11.99825 105 4.199146

1 4.543151 106 4.206149

100 18.851 108 2.095362

33 8.152947 107 2.672444

21 6.228754 108 3.291534

15 5.817227 109 4.143256

8 5.058013 110 3.249911

1 5.103701 112 4.522669

65 15.65977 111 5.132431
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23 8.661432 111 4.097565

6 6.294925 112 5.196248

1 5.458709 113 5.091685

20 7.329275 114 2.364487

1 3.3348 115 3.027351

5 2.951899 116 2.23759

2 2.7037 117 2.44635

6 4.032036 118 2.949216

36 8.655035 120 2.53809

138 23.42769 121 3.605053

7 5.381045 122 3.464123

62 15.46533 121 6.311732

18 9.007249 120 7.765618

14 9.081859 121 7.602251

20 9.934736 122 7.214202

26 10.03523 123 7.301519

19 9.845663 125 7.149854

28 8.858875 126 5.689447

27 8.352586 127 3.271912

10 5.363474 128 2.867366

3 2.936847 129 2.513986

14 4.874903 130 2.498865

27 7.810856 129 6.187808

16 9.57308 130 7.831229

26 11.7405 131 9.122597

26 10.2824 132 8.975539

26 15.07432 133 9.458767

10 13.34584 134 10.79989

3 10.70965 135 10.01968

2 10.79571 136 9.988664

107 27.43929 137 6.857479

3 7.615083 138 6.918297

45 15.62341 137 6.013999

2 6.590847 138 6.039355

38 13.91394 137 6.398143

4 7.026426 138 5.723986

49 12.03168 139 3.443718

19 8.18496 140 6.297503

10 8.000843 141 5.796735

46 12.36114 143 5.331129
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18 14.88437 143 12.26992

4 12.1937 145 11.73375

8 14.55982 144 13.02572

3 12.93325 146 11.33217

45 14.57669 147 3.364547

39 13.75281 146 10.73685

27 11.40257 147 10.6988

25 11.81913 148 11.29871

39 16.38293 149 8.333668

28 10.09681 150 8.830385

30 14.85757 151 10.52412

36 14.58097 152 11.10681

25 13.23291 153 12.27826

39 17.23972 152 9.325296

23 11.35128 151 10.12217

44 15.31699 153 11.18708
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