
Old Dominion University
ODU Digital Commons
Modeling, Simulation & Visualization Engineering
Faculty Publications Modeling, Simulation & Visualization Engineering

2009

An Extended Interoperability Framework for Joint
Composability
Andreas Tolk
Old Dominion University, atolk@odu.edu

Charles D. Turnitsa
Old Dominion University, cturnits@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/msve_fac_pubs

Part of the Computer and Systems Architecture Commons

This Conference Paper is brought to you for free and open access by the Modeling, Simulation & Visualization Engineering at ODU Digital Commons.
It has been accepted for inclusion in Modeling, Simulation & Visualization Engineering Faculty Publications by an authorized administrator of ODU
Digital Commons. For more information, please contact digitalcommons@odu.edu.

Repository Citation
Tolk, Andreas and Turnitsa, Charles D., "An Extended Interoperability Framework for Joint Composability" (2009). Modeling,
Simulation & Visualization Engineering Faculty Publications. 52.
https://digitalcommons.odu.edu/msve_fac_pubs/52

Original Publication Citation
Tolk, A., & Turnitsa, C. D. (2009). An Extended Interoperability Framework for Joint Composability. Paper presented at the 2009 Fall
Simulation Interoperability Workshop, Orlando FL.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Old Dominion University

https://core.ac.uk/display/226775964?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_fac_pubs/52?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

An Extended Interoperability Framework for Joint Composability

Andreas Tolk, Ph.D.
Frank Batten College of Engineering &

Technology
Old Dominion University

Norfolk, VA 23529
atolk@odu.edu

Charles D. Turnitsa
Virginia Modeling Analysis and Simulation

Center
Old Dominion University

Suffolk, VA 23435
cturnits@odu.edu

Keywords:
Joint Common Object Model (JCOM), Levels of Conceptual

Interoperability Model (LCIM), Interoperability and Composability

ABSTRACT: Interoperation of systems is defined by the aspects of integratability, interoperability, and composability.
It is therefore needed, to address all levels of interoperation - from conceptual models via implemented systems to the
supported infrastructure - accordingly in an interoperation framework.

Several candidates are available and provide valuable part solution. This paper evaluates the Base Object Models
(BOMs), Discrete Event Simulation Specifications (DEVS), Unified Language Model (UML) artifacts as used within the
Test and Training Enabling Architecture (TENA), the Object-Process Methodology (OPM), and Conceptual Graphs
(CG) regarding their contribution.

Using the Levels of Conceptual Interoperability Model (LCIM), an extended interoperability framework based on the
contributions of BOM, DEVS, UML/TENA, OPM, and CG will be proposed and gaps in support of joint composability
are indentified.

1 Introduction
The variety and distinction present among all systems
that may need to be brought together for the purposes
of supporting Joint exercises is so large as to be almost
uncountable, especially when also accounting for the
various data models and perspectives that each system
can espouse. In light of this broad variety, the authors
propose that a framework that seeks to describe
methods for attaining composability between such
systems needs to be broad and (in as much as possible)
non-exclusionary. In order to contribute to such a
framework, this paper seeks to categorize several
widely known and widely used methods for modeling
systems and the interoperation between systems. From
this categorization, some highlights as to how each
method can contribute to an overall framework is
identified, and finally these are all described in terms
of the Levels of Conceptual Interoperability Model,
such that their contribution to a complete conceptual
composition can be evaluated.

From the presentation of [1], it can be seen that a goal
of the Joint Common Object Model project is the
increased interoperability and composability of
systems, achieved through methods that make use of
increased conceptual expressivity between object

models, for the purposes of discovery (for reuse of
existing object models) and interoperation (to increase
the capability for conceptual expression across existing
architectures). The use of meta-models describing
object models (OMs), and OM components, from a
variety of architectures is key to this process. Such
OMs (especially for architectures such as HLA and
TENA, but also to include DIS and CTIA) describe the
entities (data objects and processes) that are exchanged
within their respective architectures. If a meta-
modeling technique can be applied to capture the
expressed meaning of such OMs, and then operate on
that meaning to see how such meaning can be
expressed in other OMs, this will greatly facilitate the
reuse of existing architectural artifacts (new federations
with existing OMs), as well as assist greatly in the
design and implementation of new architecture
instances (new federations with new OMs).

The criteria to be used for searching across such a
meta-modeling technique would come, at least within
the training community, from well defined training
objectives, expressed in doctrinally/operationally sound
language, such as a Joint Mission Thread (JMT). The
meta-modeling technique used, must therefore support
the representation of the concepts used in defining a
training mission, but also be able to translate it into the

elements of existing OM components, for purposes of
meaningful search. JMT are intended to be an end-to-
end description, relying on a common process model (a
conceptual model) that will identify all of the essential
activities and operational nodes required to complete
the mission being described. Such threads have been
mandated by the Joint Battle Management Command
and Control road map [2], and are to be developed by
Joint Forces Command.

The JCOM operational picture, from [12], is to begin
with a requirement, from training objectives, expressed
in a conceptual model of the JMT that make up the
training mission. That conceptual model will be used
as the basis for a semantic search, resulting in an
accumulation of existing object models (representing
federates) that meet the approximate needs. From that
accumulation, an evaluation of the best fitting
candidates can be made. The selected candidates will
most likely have to be put through the process of
adaptation, bringing them into specific alignment with
the composition goals to support the mission. The
adapted candidates are now composed. The results are

added to an expanding repository of federate OMs.
Finally, if no matching, or near-matching, candidates
can be found implementation of a new configuration of
federate, resulting in an OM that matches the semantic
needs of the mission, can be made.

Within the operational scope of JCOM as presented in
figure 1, it can be seen that the best components
selected for step five in the process may come from
different types of federates, employing different

distributed simulation techniques, and requiring a
framework that is both flexible and allows for different
levels of conceptual expressivity. One method for
describing the different levels of conceptual
expressivity is the Levels of Conceptual
Interoperability model. Such a model can serve as a
guide to the strength of contributing methods, as well
as serve as the benchmark to highlight what must be
employed to reach the higher levels in the model.

Figure 1- JCOM Composition Process

Example of OM Composition
Process

#1 Conceptualization
•Application Domain Conceptual Model
•Component‐level analysis and design

#2 Accumulation
•Identify existing OM components that
meet component requirements

#3 Evaluation
•Select best existing OM
component(s) for each
component requirement of the
conceptual design

#4 Adaptation
•Adapt the selected OM components
to the specific requirements of the
conceptual components.

#5 Composition
Use adapted OM components to meet characteristics of system
under development

#6 Expansion
•Evaluate new OM component and added to
repository of reusable components

#7 Implementation
•Alternative to OM compositional reuse
•Implement from scratch if suitable candidate
cannot be found

#8 Architecture Specific Features
•Add architecture specific features
•Example – delivery characteristics, DDM, info, etc.

I 11 I

I I

I t i
I I I I

I

2 Levels of Conceptual Interoperability
Model

The Levels of Conceptual Interoperability Model
(LCIM) is a model that stratifies the continuum of
possible conceptual expressivity within an
interoperable coupling of systems. It stratifies such
expressivity into a number of layers, and describes
each layer. The uses of such a model are varied, but
two broad categories exist. The first use of such a
model is to rely on the model to describe an
interoperability scenario that already exists, and then
measures (based on how rich the expression of
conceptual meaning between the systems is) how high
up the levels of the model the interoperability can be
said to be. The second use of the model is to describe
the requirements for attaining a particular level, in
terms of what a system must be able to express to
another system (meaningfully) in order to satisfy that
level.

From the LCIM, it can be seen that several levels are
each grouped together under a general title – the lowest
levels (levels 1,2) represent integratability, the middle
levels (levels 3,4) represent interoperability, and the
highest levels (levels 5,6) represent composability.
The integratability levels describe the means of
attaining connection between systems (level 1), and the
means of exchanging electronic communications (level
2), as such they don’t address the nature of the data
being exchanged, nor its meaning, beyond the
requirements that it structurally adopt the protocols
mandated for its exchange. Such decisions are best left
to the technicians who know their systems well and
also know the restrictions and requirements for each
operational instance where systems must be brought
together. So long as such methods can support the
higher groupings (interoperability and composability),
the details here are not of interest to a framework
describing conceptually meaningful exchange.

In light of the integratability levels not being addressed
by a framework for composability, it then follows that
the framework should concentrate on describing the
capabilities and requirements at levels 3 and up of the
LCIM.

3 Candidate Methods for Interoperation
There are a wide number of methods that currently
support interoperation between systems, to a greater or
lesser degree of conceptual expressivity. The more
common of these methods are described here. Note
that there is no prejudice either for or against methods
that are used during development or during execution,
only that they exist as a standard method agreed to by a
community of users.

3.1 Base Object Models

Base Object Models (BOMs) are a description of
objects to be simulated, based on a published standard
that seeks to describe the object in such a way that
interoperability and composability are supported. In
short, the standard calls for a XML document
describing an object’s model in four main areas (and
two minor ones). The four main areas are:

• Model identification, which is basically a header
section

• Conceptual model, which consists of four
elements, which are (1) a pattern description that
describes the entity and events (actions) of the
object and how they are related, (2) a state
machine description of the pattern, (3) the entity
description, and (4) the event description.

• Model mapping, which consists of mapping the
entities and events identified in the conceptual
model to the object classes and interaction classes
described in the HLA object model.

• High Level Architecture (HLA) object model,
which has three parts – the description of the HLA
objects (used to define the BOM entities from the
conceptual model), the HLA interactions (used to
define the BOM events from the conceptual
model), and finally the HLA data types used to
help structure the events and interactions.

Also mentioned are two minor areas, which are the
Notes and Definitions describing the BOM.

As can be seen from this description of the BOM
definition, this is a method for conceptually modeling
something so that it can be defined using HLA objects
and interactions. For HLA based federations, this is a
strong tool for having a standard description of what

Level 5
Dynamic Interoperability

Level 4
Pragmatic Interoperability

Level 3
Semantic Interoperability

Level 2
Syntactic Interoperability

Level 0
No Interoperability

Level 1
Technical Interoperability

Level 6
Conceptual Interoperability Increasing C

apability for Interoperation

Modeling /
Abstraction

Simulation /
Implementation

Network /
Connectivity

Figure 2 - Levels of Conceptual Interoperability
Model

HLA elements would be required in order to have a
model of something represented. Defined by the layers
of the Conceptual Interoperability Model, this seats a
BOM description firmly between (entailing some
aspects of both) level 3 (semantic interoperability) and
level 4 (pragmatic interoperability). The dynamic
level is seen as being supported, because the
conceptual model, as well as the HLA objects and
interactions, within the BOM description can describe
a number of changing situations, representing the
dynamic states of the system. The reason for this strata
is because the BOM describes objects and actions with
a rich semantic labeling method (the BOM XML
document), which is satisfying level 3, and also gives
(through the model mapping that ties together the
conceptual model with the HLA object model) a
definition of what is meant by the semantic objects
(satisfying part of level 4). The reason that all of the
pragmatic level is not included here, is because the
contextual use of the objects and actions is not
described (which is an intended strength of the BOM –
it is context free).

3.2 Discrete Event System Specification

The Discrete Event System (DEVS) Specification is a
mathematical formal method relied on for describing
discrete and continuous systems [3]. The formalism
has been extended to cover a large number of related
systems, and in many different application areas. This
includes extensions to cover continuous systems, and
specifications aimed formally addressing the
description of discrete event systems for many different
types of implementations.

The formal method has been applied to many
applications of dynamic system modeling and
simulation, including distributed modeling, working
with techniques such as HLA [4]. In brief, the formal
method consists of a description of a system
component expressed in a collection of sets and
functions. These include a description of possible
inputs, outputs and states of the component, as well as
functions describing internal changes, external
changes, output and time advance. Additionally there
is a function that describes the situation where an
internal change and external change are due to occur at
the same time (confluence). Such component
descriptions can be atomic (intended to be stand-alone)
or

In terms of what a DEVS specification of a system can
provide to an interoperability framework, it can present
the components of the system, their interdependence
(especially in terms of component input and output),
and terms of component state context (in terms of
internal state translation with regard to time advance)
[5]. If the component identity descriptions (which are

implied but not defined by the formalism) are based on
an agreed-to set of tags or names, then LCIM levels 3
(semantic) are well supported. In addition, the richness
of state derived situations that can be described within
a DEVS specification of a system, also allow it to
satisfy LCIM levels 4 and 5 (pragmatic and dynamic).

3.3 Test and Training Enabling Architecture

The Test and Training Enabling Architecture (TENA)
is a method for describing objects and processes that
are commonly encountered within simulations that
work with defense testing environments and training
exercises [11] – it has been mainly (but not
exclusively) applied to support test range operations. It
concentrates on providing a common architecture for
different range environments to work together in
describing simulated and real range activity (the phrase
virtual range is used). This is done by providing for a
common object model, as well as a software
middleware that all objects can interact with.

The architecture is intended to be interactive with and
compliant with HLA, but again, specifically
concentrates on interoperability and reuse between
ranges. Because of the features described here – that it
is specifically for test range work; that it is intended to
support simulating a virtual range; that it relies on a
common object model and common middleware – it is
very much capable of supporting activities that all
support a common contextual viewpoint, and for a
community that shares a common set of semantics.

The TENA middleware that is used to connect systems
to the architecture network includes the provision for a
repository of object models (representing the
characteristics of the entities and events that are
supported in the architecture). This repository and the
object models it has described within it are what could
be of use to a JCOM effort.

In terms of the LCIM, the TENA contribution to Joint
Composability could be viewed as supporting
interoperability at levels 4 (pragmatic) and 5
(dynamic). The reasons this appears to be so are (1)
the pragmatic level is supported by having everything
in the TENA repository being not only semantically
labeled in a manner that the whole community agrees
to, but also having meaning to other members of the
community, and (2) the dynamic level is supported
because the context is so well established among the
community of users that even with a shifting context,
the pragmatics remain known. Outside of an
environment based on the TENA middleware, and
supported by only systems described by TENA OMs, it
appears as if only level 3 and part of level 4 can be
supported.

3.4 Unified Modeling Language

The Unified Modeling Language (UML) is a method
for describing, through a number of unified graphical
methods, the objects and actions that make up a
system. As this may also include a system of systems,
it is a worthwhile method to consider as a candidate.
The different diagramming techniques that make up
UML are briefly introduced here:

• Use-Case diagram: provides an illustration of
some element of functionality of the described
system.

• Class diagram: illustrates the different objects of
the system, and describes their relationships with
each other.

• Sequence diagram: shows the flow of activities for
a use case, or part of a use case. It specifically
illustrates the calls that take place between
different objects, and their relative timing.

• Statechart diagram: illustrates the different states
that an object can be in, and how they are related.

• Activity diagram: shows the specific relationships
between different objects describing activity that
takes place between them. The illustration
describes the activity, indicating which object it
belongs to, and also what the next activity to take
place will be (and for what object).

• Component diagram: illustrates the actual
components of the system, and their functional
dependencies and relations to other components in
the system (such as software libraries, service
components etc).

• Deployment diagram: shows the relationship of
deployed (physical) components, and how they are
interconnected. Useful for depicting system
architecture or network architecture for dispersed
components.

What UML specification of systems can bring to a
Joint Composability Framework, in terms of providing
for interoperability (by LCIM metrics), is partially up
to level 5, dynamic, in that it shows the context and
timing of the systems and their components, as well as
attempting to show some of the dynamic nature of the
system (the changes in relationship of the components,
over). The depiction of definition of semantically
described elements, however, is noticeably lacking
from UML. There is no requirement within the
diagramming techniques given, to show the structure,
scope or resolution of the elements being addressed.
One of the reasons that the authors allege that it is not
completely satisfying level 5 is that it does not
accomplish the goals of level 4 completely – the

pragmatic definition of the system, and its components,
at a level where the objects and processes are all
defined, rather than just given semantic labels.

3.5 Object Process Methodology

The Object Process Methodology (OPM) is a method
of describing a system, whereby data objects and states
are equaled in their depiction by a similarly robust
depiction of the processes that affect those objects, and
connect those states. This is done by using a
diagramming technique that has two types of elements
– entities and links. Entities, within OPM, depict the
objects, states, and process of a system. Links are of
two varieties for OPM, structural links which relate
two or more objects and procedural links which relate
an object with a process.

OPM has a relationship to UML, in that both are
graphical diagramming techniques, and more than that,
certain types of UML diagrams can be mapped to from
OPM diagrams. One of the strengths that OPM has in
addition to all that UML can provide is its emphasis on
the importance to model processes separately from
objects, and also to provide for the different
relationships that processes can have on objects, their
potential states, and their actual state (which is referred
to in OPM as an object’s status). This gives a good
overview of both the static view of the system (objects
and states), as well as the dynamic view (processes and
effects).

When viewed in light of its expressivity via the LCIM,
OPM can describe a system with enough expressivity
to show the pragmatic and dynamic (levels 4 and 5).
What it offers in addition to some of the methods
already discussed that operate at those levels (BOMs,
TENA) is that it remains independent from the specific
architectures that those systems espouse (HLA in the
case of BOM, and the TENA architecture for the
latter). Because of this, however, it does not have a
specific manner for capturing the definitional attributes
of objects and processes that those other architecture
specific methods use. Because of this, OPM seems
very strongly suited to be a method for connecting
other methods at either level 4 or 5 (pragmatic or
dynamic), by describing the objects and processes in
the methods mandated by the pragmatic and dynamic
level definitions, so that various architectures can make
use of such a description for composability.

3.6 Conceptual Graphs

Conceptual Graphs (CG) are a method for describing
the conceptual entities found within a system, both
concepts and relations. They are based on an idea
introduce in [6] by Sowa. It is a graphical method used
to describe a logical system that is used to express

knowledge. As a potential contributor to a Joint
Composability Framework, it would be a strong
contender for describing the meaning of objects and of
the relationships between objects. One of the original
uses where the CG method was employed was to
describe the conceptual constructs of relational data
bases and data models.

In terms of the LCIM, CG provide a good method for
describing the meaning of objects from the semantic
level (level 3), so that they could be fully realized at
the pragmatic level (level 4). This definition of objects
and processes is more from a relationship perspective,
than from the perspective of specific attribute maps or
enumerated characteristics. There is some work being
done, an early report being [7], that indicates the
usefulness of CG in describing dynamic systems. A
more modern description, reflecting some of the
development done in the CG community, is in [14].
Specific usefulness for the JCOM might be in
describing the relationships between objects and
processes (or actors and roles), as the work in [8]
describes.

4 Comparison of Methods
The previous six methods are not each placed in
relationship to the LCIM, to describe the appropriate
contribution to the overall interoperability/
composability picture that each can make. Of the six
methods described here, two are related to specific
architectures (BOM and TENA), two are architecture-
free graphical representations of systems (UML and
OPM), one is a method for describing the pragmatics
of a data model (CG), and one (DEVS) is a formalism
for describing the changing states within a system
(interdependence and context).

Based on the findings of this paper, when expressed in
comparison to the LCIM, the various methods
described can be seen to address a range of levels of
conceptual interoperability. From the figure, there are
two types of identifiers describing which levels of the
LCIM a method can express, for the purposes of
contributing to a Joint Composability Framework. For
each method, at the levels supported, the indicator is
either a black “XX” representing a complete satisfying
match, or a red “PP” representing a partial match.

Some description of what it takes to fully satisfy the
levels 3, 4, 5 and 6 of the LCIM is in order here, so that
the evaluation, and the contributing analysis, can be
understood. The lowest of the levels above
integratability, level 3 (semantic), is really the first
level of interest to a Joint Composability Framework.
As mentioned earlier, the lower (integration) levels (1
and 2) are not of interest to what can be expressed
within the framework, as they are the domain of the

implementations of a connecting architecture enabling
the framework. So starting with level 3, semantic, a
description of what is needed will be listed here.

4.1 LCIM Requirements

At the semantic level (level 3 of the LCIM), what is
required is for all components and exchanged data to
be given a meaningful name that is accepted by all
systems that are involved in the interoperability. Note
that meaning here is a shared meaning (from a common
data model, or a taxonomical directory of terms) that is
independent of the particular use of the data.

At the pragmatic level (level 4 of the LCIM), there are
two requirements. First, the data elements and
components are defined at this level. Commonly, this
means that the structure, scope and resolution of such
elements (and components that use them) are made
explicit. Second, the context of application in which
elements are used – both the processes of the system
component affecting the elements, and also the place
within the operational life span (accumulated time)
where the element is intended to be used. This
information is made clear by the origin system, and is
understood by the receiving system.

At the dynamic level (level 5 of the LCIM), there are
additionally two requirements, that are extensions of
the pragmatic level. First, the definition of elements
and components that took place at the pragmatic level
(structure, scope and resolution) is further defined with
respect to the dynamic states that change with respect
to elapsed time within the operational span of the
system. Second, the context of application of how such
elements and components are used, and their relations
to each other, as these (context and relations) change
during the operational span of the system is
understood, again with respect to elapsed time and
dynamic system states. The state-specific definition of
elements and components, and the state-specific
definition of context are expressed from the origin
system to the receiving system, and also the effects
such exchange will have on the receiving system’s
elements and components (and their context) is
understood.

At the conceptual level (level 6 of the LCIM),
alignment must take place between systems as to their
perspective and frame of reference on the referents
being represented to each other. This is so that
assumptions and constraints can be made explicit and
understood by each other. Much more can be said in
regards to the conceptual level, but as the elements of a
Joint Composability Framework currently being
assessed do not rise to this level of expressivity, this
will be left to future work.

4.2 Methods and Their Fit

The specific methods addressed within this paper will
now have their comparison to the LCIM explained. A
brief mention of the levels that have a complete fit will
be made, but more information about the analysis
leading to a partial fit indication will be given.

4.2.1 Base Object Models

In the case of Base Object Models, full compliance at
the semantic level (level 3 of the LCIM) is indicated,

although this is only partly justified. It is in full
compliance if one considers the use to which the
documented standard indicates (i.e. – as a link between
context-free conceptual models, and HLA elements)
will be made. The HLA elements being described are
well known, at least to the term level, within the
federation they are employed. Therefore these
elements are sufficiently described for semantic
exchange. If the BOM template were to be expanded
to other uses, however, then some sort of controlled
vocabulary would be have to be employed for the

conceptual models within each template, to ensure
semantic alignment with other templates.

At the pragmatic level (level 4 of the LCIM), BOMs
are evaluated to have a partial fit with the
requirements. This is because the definition of the
HLA elements (structure, scope, and resolution) would
be well known within the federation they are used in.
This is the part of the pragmatic level that fits.
However, the requirement of the pragmatic level for an
explicit depiction of context of application is not

supported by BOMs. This is due to the definition of
the BOM template as capturing a context-free model of
the object being modeled – application specific context
is not part of the template. This absence of application
specific context is also what prohibits the BOM
method from addressing the dynamic level (level 5 of
the LCIM).

4.2.2 Discrete Event System Specification

For systems described by the DEVS formal method,
there are two basic approaches, that of the atomic

Figure 3 - Comparison of Methods to LCIM

6 ‐ Conceptual

5 ‐ Dynamic

4 ‐ Pragmatic

3 ‐ Semantic

2 ‐ Syntactic

1 ‐ Technical

0 – None

XX

PP

PP

XX

XX

PP

XX

PP

PP

XX

PP

PP

XX

PP

PP

XX

PP

PP

Ba
se
 O
bj
ec
t

M
od
el
s

D
is
cr
et
e
Ev
en
t

Sy
st
em
 S
pe
c.

Te
st
 a
nd
 T
ra
in
in
g

En
ab
lin
g
Ar
ch
.

U
ni
fie
d
M
od
el
in
g

La
ng
ua
ge

O
bj
ec
t‐
Pr
oc
es
s

M
et
ho
do
lo
gy

Co
nc
ep
tu
al

G
ra
ph
s

Details at the Interoperation range of LCIM
levels (1 and 2) are not in the domain of what a
Joint Framework of Interoperability should

describe – they are left to the implementation
requirements of each participating system or

framework enabling technology.

Comparison of Methods for
a Joint Interoperability
Framework

Measured by the Levels of
Conceptual Interoperability Model

Le
ve
ls
 o
f C
on
ce
pt
ua
l

In
te
ro
pe
ra
bi
lit
y
M
od
el ------------------------

DEVS structure, and the coupled DEVS structure. As
we are discussing distributed simulation systems
(hence the need for interoperability), then the best
employment of DEVS will be with coupled structures
[9], or to rely on a DEVS specified model for model
based engineering [10]. In that light, as all of the
DEVS structures are defined in regards to each other
(or some central model), then the semantic level (level
3 of the LCIM) is fully satisfied.

As the contextual interactions and definitions of
structure, scope and resolution of the elements being
described by the formalism are well known amongst all
of the DEVS described components, the pragmatic
level (level 4 of the LCIM) can be said to be satisfied.
The ability of the DEVS specification to show the
many different system states, and describe the object-
interactions for those states, also shows an ability to
support the dynamic level (level 5 of the LCIM). As
with BOMs, which are intended to support a specific
architecture (HLA), DEVS described components in a
system of systems are intended to interoperate with
other components that are also described using the
DEVS formalism. To adopt DEVS to describe the
components implies that all components must be
described with DEVS, although this requirement may
be true of all approaches (see section 5 below).

4.2.3 Test and Training Enabling Architecture

TENA is listed as being fully compliant with the
semantic (level 3 of the LCIM), and partially compliant
with the pragmatic and dynamic levels (levels 4 and 5
of the LCIM, respectively) of interoperability. It
should be pointed out, while beginning this evaluation
that this is in light of the intended use of TENA – that
is, to have object models describing the different
objects of interest to a TENA federation, and then
exchanging that information over TENA middleware.
It is possible that a method of translating a TENA
object model into a different architecture could be
accomplished. In which case the application specific
context that comes from relying on all TENA OMs
operating over the TENA middleware could likely be
absent, prohibiting interoperability at the dynamic
level, and severely limiting the fit at the pragmatic
level.

If, however, TENA OMs are used as they are intended,
then the semantic level is fully satisfied, as all OMs
have a common base of terms from which to draw their
semantic tagging. Additionally, the TENA middleware
supports, fully, the operational context within which
components of the OM will be used – thus partially
satisfying the pragmatic level (level 4). Further, the
dynamic level (level 5) is partially satisfied, when
employing TENA OMs, as the changes to operational
context (if existent) are well known among represented

components of the architecture. What is lacking for
both pragmatic and dynamic levels (and why they are
both indicated as being only partially compliant) is the
depiction of state-specific definition of elements and
components (the structure, scope and resolution of
such). It is likely that this is due to the immaturity of
systems employing the architecture – such context
specific definitions do not change – however this is the
subject of future classification.

4.2.4 Unified Modeling Langauge

The various diagramming techniques of UML, as a
means of directing interoperability between systems
described in a Joint Composability Framework, are
evaluated to be fully compliant with the semantic level
(level 3 of the LCIM). This is because all of the
elements and components are well described with
informative labels, providing the semantic basis for
addressing such elements and components.

Moving beyond the semantic level, while employing
the UML method, proves to be somewhat problematic,
given the requirements of the LCIM given in section
4.1. While specific application context is well defined,
given a full suite of the diagramming techniques, what
is missing is the definition of the terms that are
semantically labeled. The definition (structure, scope
and resolution) of the elements and components is not
required by any of the diagramming techniques of
UML, so such definition cannot be given (even though
the context within which such definition would have
pragmatic meaning). Since the definition of objects is
not given, then the change to that definition over time
(required by the dynamic level of the LCIM) cannot be
described.

One of the advantages of UML, however, over the
previous methods described (BOMs, DEVS, TENA) is
that it can be an implementation neutral guide to
applying some of the required artifacts that enable the
other methods. BOMs and TENA each describe
specific object models, to be implemented over specific
architectures, and DEVS requires that all components
be described using the same simulation-modeling [5]
technique (although a specific architecture is not
mandated in the case of DEVS). With UML, there are
no implementation requirements, yet it may serve to
augment the BOM, TENA or DEVS approaches.

4.2.5 Object Process Methodology

OPM is a diagrammatic approach, similar to UML,
however it concentrates on showing (specifically) the
relationship between objects (elements of the system)
and processes (the means of change and activity for the
elements of the system). Because of this, it addresses
all of the components of the system in a meaningful

way, which allows for semantic identification of those
components, meaning that an OPM described system
would fully support the semantic level (level 3 of the
LCIM).

The pragmatic level (level 4 of the LCIM) is identified
as being partially satisfied by OPM (as with UML,
TENA and BOMs). In the case of OPM what is
missing is (not surprisingly) a different part of the
whole. OPM describes, very well, the specific
application context by making the relations between
objects, as well as the contextual changes to those
objects, clear in a well described manner. The specific
changes to context are made clear, as are the specific
objects affected by that change, and the framework for
describing the specific changes to component and
element definition are made (by specifically identifying
processes) – but not enabled to the extent that they are
made explicit within some of the other techniques
(within the OMs of BOM or TENA for instance, or the
component description of DEVS). Because of this lack
of element and component definitional detail, the
dynamic level (level 5 of the LCIM) can only be
partially satisfied.

4.2.6 Conceptual Graphs

CGs are analyzed to provide a description of a system
fully compliant with the semantic level (level 3 of the
LCIM), in that they address all of the system concepts
– elements, components, and relations – and identify
them with a semantic element. CGs are uniquely
(among the methods addressed here) identified as
partially supporting levels 5 and 6, because they
capture the conceptual meaning of the components of
the system, but lack lower level (notably level 4, and
part of level 5) support because of the lack of
specificity within the representation.

5 The Way Ahead
Clearly, from the methods evaluated here, there is no
one method that fully embraces the semantic,
pragmatic, and dynamic levels of interoperability. In
order to achieve composability, when defined in light
of the LCIM, then dynamic interoperability (level 5 of
the LCIM) needs to be supported between systems.

In order to achieve dynamic interoperability (or the
first level of composability), especially if existing
artifacts (OMs, architectures, etc.) are to be relied on,
then a merger of existing methods must be attempted.
Elements of the methods described here could be relied
on. Both OM based architectures (HLA, as seen
through the BOMs, and TENA) are very good as
describing the definition of elements (part of what is
needed at the pragmatic level). The DEVS formal
method is very good at identifying the specific model

based I/O between components. UML and OPM each
give part of the picture of context and relations
between elements, as well as indications of how that
context changes over the operational span of the
system. Merging the best of each of these techniques
could result in a Joint Composability Framework that is
capable of supporting actual composability (as defined
by the LCIM – that is, dynamic interoperability).

A recognized barrier, to be addressed in future
research, is the limits that the existing systems that will
take part in the federations described here will bring to
any interoperability asked of them. It is difficult to
mandate dynamic interoperability (complete explicit
expression of meaning and definition as it changes
from state to state within a system), when such
dynamic changes don’t take place within the systems
we are currently using. However, we will not always
be using the same systems that we have today, and it is
might do well to look towards the requirements for
composing richer systems in the future.

6 References
[1] Lutz, R., Wallace, J., Bowers, A., Cutts, D.,

Gustavson, P., and Bizub, W., (2009). Common
Object Model Components: A first Step Toward
LVC Interopeability. Proceedings of the 2009
Spring Interoperability Workshop (Spring SIW-09).
San Diego, CA.

[2] US Office of the Secretary of Defense, (2004).
Joint Battle Management Command and Control
Roadmap, Washington, DC.

[3] Zeigler, B.P., Praehofer, H., and Kim, T.G., (2000).
Theory of Modeling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic
Systems, Second Edition: Academic Press.

[4] Zeigler, B.P., Ball, G., Cho, H., Lee, J.S., and
Sarjoughian, H., (1999). Implementation of the
DEVS Formalism over the HLA/RTI: Problems
and Solutions. Proceedings of the 1999 Spring
Simulation Interoperability Workshop.

[5] Yilmaz, L., (2004). On the Need for
Contextualized Introspective Models to Improve
Reuse and Composability of Defense Simulations.
The Journal of Defense Modeling and Simulation
1:3, pp141-151.

[6] Sowa, J.F., (1984). Conceptual Structures:
Information Processing in Mind and Machine,
Addison Wesley, Reading, Mass.

[7] Lukose, D. & Mineau, G.W., (1998). A
Comparative Study of Dynamic Conceptual
Graphs. Proceedings of the 11th Banff Knowledge
Acquisition for Knowledge-Based Systems

Workshop (KAW-98). B. Gaines & M. Musen
(Eds). University of Calgary, Calgary, Alberta,
Canada.

[8] Lee, J., Lai, L.F., (1998). Verifying task-based
specifications in conceptual graphs. Information
and Software Technology, 39:14-15, pp913-923,
Elsvier Science.

[9] Touraille, L., Traore, M.K., Hill, D.R.C., (2009).
On the Interoperability of DEVS Components,
Research Report LIMOS/RR-09-04, ISIMA,
France.

[10] Schmidt, D.C., (2006). Model-Driven
Engineering - guest editor's introduction, IEEE
Computer, February 2006 (Vol. 39, No. 2) pp. 25-
31

[11] Noseworthy, J.R., (2008). The Test and Training
Enabling Architecture (TENA) Supporting the
Decentralized Development of Distributed
Applications and LVC Simulations. Proceedings of
the 2008 12th IEEE/ACM International Symposium
on Distributed Simulation and Real-Time
Applications, IEEE Computer Society, Washington,
DC, pp. 259-268

[12] Wallace, J., Ceranowicz, A., Powell, E., Lutz, R.,
Bowers, A., Bizub, W., Cutts, D., Gustavson, P.,
Rheinsmith, R., McCloud, T. (2009). Object Model
Composability and Multi-Architecture LVC
Interoperability. Proceedings of Interservice/
Industry Training, Simulation, and Education
Conference, paper no. 9014, Orlando, FL

[14] Sowa, J.F., (1992). "Conceptual Graphs
Summary," in Conceptual Structures: Current
Research and Practice, P. Eklund, T. Nagle, J.
Nagle, and L. Gerholz, eds., Ellis Horwood, 1992,
pp. 3-52

Acknowledgments
The underlying research was partly supported by the JTEOW
contract, under Mr. Warren Bizub. The goal of that work is
to contribute to a Joint Common Object Model that can
support interoperability of a wide field of systems, at a
number of different levels of conceptual representation. The
authors thank Mr. Bizub for providing this opportunity to
support the project with this publication.

Authors' Biographies
CHARLES TURNITSA is a Senior Project Scientist at the
Virginia Modeling Analysis and Simulation Center at Old
Dominion University. In addition he is also a Ph.D.
Candidate, studying under Dr. Andreas Tolk at ODU. He has
a M.S. in Electrical and Computer Engineering from that
institution.

ANDREAS TOLK is Associate Professor in the Faculty for
Modeling, Simulation, and Visualization at the Engineering
Management Department of the College of Engineering and
Technology at Old Dominion University (ODU) of Norfolk,
Virginia. He is affiliated with the Virginia Modeling Analysis
& Simulation Center (VMASC). His domain of expertise is
the integration of M&S functionality into real world
applications based on open standards. He received a Ph.D.
and an M.S in Computer Science from the University of the
Federal Armed Forces in Munich, Germany.

	Old Dominion University
	ODU Digital Commons
	2009

	An Extended Interoperability Framework for Joint Composability
	Andreas Tolk
	Charles D. Turnitsa
	Repository Citation
	Original Publication Citation

	Microsoft Word - 09F-SIW-011.doc

