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ABSTRACT: Interoperation of systems is defined by the aspects of integratability, interoperability, and composability. 
It is therefore needed, to address all levels of interoperation - from conceptual models via implemented systems to the 
supported infrastructure - accordingly in an interoperation framework. 

Several candidates are available and provide valuable part solution. This paper evaluates the Base Object Models 
(BOMs), Discrete Event Simulation Specifications (DEVS), Unified Language Model (UML) artifacts as used within the 
Test and Training Enabling Architecture (TENA), the Object-Process Methodology (OPM), and Conceptual Graphs 
(CG) regarding their contribution. 

Using the Levels of Conceptual Interoperability Model (LCIM), an extended interoperability framework based on the 
contributions of BOM, DEVS, UML/TENA, OPM, and CG will be proposed and gaps in support of joint composability 
are indentified. 

  

1 Introduction 
The variety and distinction present among all systems 
that may need to be brought together for the purposes 
of supporting Joint exercises is so large as to be almost 
uncountable, especially when also accounting for the 
various data models and perspectives that each system 
can espouse.  In light of this broad variety, the authors 
propose that a framework that seeks to describe 
methods for attaining composability between such 
systems needs to be broad and (in as much as possible) 
non-exclusionary.  In order to contribute to such a 
framework, this paper seeks to categorize several 
widely known and widely used methods for modeling 
systems and the interoperation between systems.  From 
this categorization, some highlights as to how each 
method can contribute to an overall framework is 
identified, and finally these are all described in terms 
of the Levels of Conceptual Interoperability Model, 
such that their contribution to a complete conceptual 
composition can be evaluated. 

From the presentation of [1], it can be seen that a goal 
of the Joint Common Object Model project is the 
increased interoperability and composability of 
systems, achieved through methods that make use of 
increased conceptual expressivity between object 

models, for the purposes of discovery (for reuse of 
existing object models) and interoperation (to increase 
the capability for conceptual expression across existing 
architectures).  The use of meta-models describing 
object models (OMs), and OM components, from a 
variety of architectures is key to this process.  Such 
OMs (especially for architectures such as HLA and 
TENA, but also to include DIS and CTIA) describe the 
entities (data objects and processes) that are exchanged 
within their respective architectures.  If a meta-
modeling technique can be applied to capture the 
expressed meaning of such OMs, and then operate on 
that meaning to see how such meaning can be 
expressed in other OMs, this will greatly facilitate the 
reuse of existing architectural artifacts (new federations 
with existing OMs), as well as assist greatly in the 
design and implementation of new architecture 
instances (new federations with new OMs). 

The criteria to be used for searching across such a 
meta-modeling technique would come, at least within 
the training community, from well defined training 
objectives, expressed in doctrinally/operationally sound 
language, such as a Joint Mission Thread (JMT).  The 
meta-modeling technique used, must therefore support 
the representation of the concepts used in defining a 
training mission, but also be able to translate it into the 



   

  

elements of existing OM components, for purposes of 
meaningful search.  JMT are intended to be an end-to-
end description, relying on a common process model (a 
conceptual model) that will identify all of the essential 
activities and operational nodes required to complete 
the mission being described.  Such threads have been 
mandated by the Joint Battle Management Command 
and Control road map [2], and are to be developed by 
Joint Forces Command. 

The JCOM operational picture, from [12], is to begin 
with a requirement, from training objectives, expressed 
in a conceptual model of the JMT that make up the 
training mission.  That conceptual model will be used 
as the basis for a semantic search, resulting in an 
accumulation of existing object models (representing 
federates) that meet the approximate needs.  From that 
accumulation, an evaluation of the best fitting 
candidates can be made.  The selected candidates will 
most likely have to be put through the process of 
adaptation, bringing them into specific alignment with 
the composition goals to support the mission.  The 
adapted candidates are now composed.  The results are 

added to an expanding repository of federate OMs.  
Finally, if no matching, or near-matching, candidates 
can be found implementation of a new configuration of 
federate, resulting in an OM that matches the semantic 
needs of the mission, can be made. 

Within the operational scope of JCOM as presented in 
figure 1, it can be seen that the best components 
selected for step five in the process may come from 
different types of federates, employing different 

distributed simulation techniques, and requiring a 
framework that is both flexible and allows for different 
levels of conceptual expressivity.  One method for 
describing the different levels of conceptual 
expressivity is the Levels of Conceptual 
Interoperability model.  Such a model can serve as a 
guide to the strength of contributing methods, as well 
as serve as the benchmark to highlight what must be 
employed to reach the higher levels in the model. 

Figure 1- JCOM Composition Process 

Example of OM Composition 
Process

#1 Conceptualization
•Application Domain Conceptual Model
•Component‐level analysis and design

#2 Accumulation
•Identify existing OM components that 
meet component requirements 

#3 Evaluation
•Select best existing OM 
component(s) for each 
component requirement of the 
conceptual design

#4 Adaptation
•Adapt the selected OM components 
to the specific requirements of the 
conceptual components.

#5 Composition
Use adapted OM  components to meet characteristics of system 
under development

#6 Expansion 
•Evaluate new OM component   and added to 
repository of reusable components

#7 Implementation
•Alternative to OM compositional reuse
•Implement from scratch if suitable candidate 
cannot be found

#8 Architecture Specific Features
•Add architecture specific features
•Example – delivery characteristics, DDM, info, etc.

I 11 I 

I I 

I t i 
I I I I 
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2 Levels of Conceptual Interoperability 
Model 

The Levels of Conceptual Interoperability Model 
(LCIM) is a model that stratifies the continuum of 
possible conceptual expressivity within an 
interoperable coupling of systems.  It stratifies such 
expressivity into a number of layers, and describes 
each layer.  The uses of such a model are varied, but 
two broad categories exist.  The first use of such a 
model is to rely on the model to describe an 
interoperability scenario that already exists, and then 
measures (based on how rich the expression of 
conceptual meaning between the systems is) how high 
up the levels of the model the interoperability can be 
said to be.  The second use of the model is to describe 
the requirements for attaining a particular level, in 
terms of what a system must be able to express to 
another system (meaningfully) in order to satisfy that 
level. 

From the LCIM, it can be seen that several levels are 
each grouped together under a general title – the lowest 
levels (levels 1,2) represent integratability, the middle 
levels (levels 3,4) represent interoperability, and the 
highest levels (levels 5,6) represent composability.  
The integratability levels describe the means of 
attaining connection between systems (level 1), and the 
means of exchanging electronic communications (level 
2), as such they don’t address the nature of the data 
being exchanged, nor its meaning, beyond the 
requirements that it structurally adopt the protocols 
mandated for its exchange.  Such decisions are best left 
to the technicians who know their systems well and 
also know the restrictions and requirements for each 
operational instance where systems must be brought 
together.  So long as such methods can support the 
higher groupings (interoperability and composability), 
the details here are not of interest to a framework 
describing conceptually meaningful exchange. 

 

In light of the integratability levels not being addressed 
by a framework for composability, it then follows that 
the framework should concentrate on describing the 
capabilities and requirements at levels 3 and up of the 
LCIM. 

3 Candidate Methods for Interoperation 
There are a wide number of methods that currently 
support interoperation between systems, to a greater or 
lesser degree of conceptual expressivity.  The more 
common of these methods are described here.  Note 
that there is no prejudice either for or against methods 
that are used during development or during execution, 
only that they exist as a standard method agreed to by a 
community of users.  

3.1 Base Object Models 

Base Object Models (BOMs) are a description of 
objects to be simulated, based on a published standard 
that seeks to describe the object in such a way that 
interoperability and composability are supported.  In 
short, the standard calls for a XML document 
describing an object’s model in four main areas (and 
two minor ones).  The four main areas are: 

• Model identification, which is basically a header 
section 

• Conceptual model, which consists of four 
elements, which are (1) a pattern description that 
describes the entity and events (actions) of the 
object and how they are related, (2) a state 
machine description of the pattern, (3) the entity 
description, and (4) the event description. 

• Model mapping, which consists of mapping the 
entities and events identified in the conceptual 
model to the object classes and interaction classes 
described in the HLA object model. 

• High Level Architecture (HLA) object model, 
which has three parts – the description of the HLA 
objects (used to define the BOM entities from the 
conceptual model), the HLA interactions (used to 
define the BOM events from the conceptual 
model), and finally the HLA data types used to 
help structure the events and interactions. 

Also mentioned are two minor areas, which are the 
Notes and Definitions describing the BOM. 

As can be seen from this description of the BOM 
definition, this is a method for conceptually modeling 
something so that it can be defined using HLA objects 
and interactions.  For HLA based federations, this is a 
strong tool for having a standard description of what 

Level 5
Dynamic Interoperability

Level 4
Pragmatic Interoperability

Level 3
Semantic Interoperability

Level 2
Syntactic Interoperability

Level 0
No Interoperability

Level 1
Technical Interoperability

Level 6
Conceptual Interoperability Increasing C

apability for Interoperation

Modeling /
Abstraction

Simulation /
Implementation

Network /
Connectivity

Figure 2 - Levels of Conceptual Interoperability 
Model



   

  

HLA elements would be required in order to have a 
model of something represented.  Defined by the layers 
of the Conceptual Interoperability Model, this seats a 
BOM description firmly between (entailing some 
aspects of both) level 3 (semantic interoperability) and 
level 4 (pragmatic interoperability).    The dynamic 
level is seen as being supported, because the 
conceptual model, as well as the HLA objects and 
interactions, within the BOM description can describe 
a number of changing situations, representing the 
dynamic states of the system.  The reason for this strata 
is because the BOM describes objects and actions with 
a rich semantic labeling method (the BOM XML 
document), which is satisfying level 3, and also gives 
(through the model mapping that ties together the 
conceptual model with the HLA object model) a 
definition of what is meant by the semantic objects 
(satisfying part of level 4).  The reason that all of the 
pragmatic level is not included here, is because the 
contextual use of the objects and actions is not 
described (which is an intended strength of the BOM – 
it is context free).  

3.2 Discrete Event System Specification 

The Discrete Event System (DEVS) Specification is a 
mathematical formal method relied on for describing 
discrete and continuous systems [3].  The formalism 
has been extended to cover a large number of related 
systems, and in many different application areas.  This 
includes extensions to cover continuous systems, and 
specifications aimed formally addressing the 
description of discrete event systems for many different 
types of implementations. 

The formal method has been applied to many 
applications of dynamic system modeling and 
simulation, including distributed modeling, working 
with techniques such as HLA [4].  In brief, the formal 
method consists of a description of a system 
component expressed in a collection of sets and 
functions.  These include a description of possible 
inputs, outputs and states of the component, as well as 
functions describing internal changes, external 
changes, output and time advance.  Additionally there 
is a function that describes the situation where an 
internal change and external change are due to occur at 
the same time (confluence).  Such component 
descriptions can be atomic (intended to be stand-alone) 
or  

In terms of what a DEVS specification of a system can 
provide to an interoperability framework, it can present 
the components of the system, their interdependence 
(especially in terms of component input and output), 
and terms of component state context (in terms of 
internal state translation with regard to time advance) 
[5].  If the component identity descriptions (which are 

implied but not defined by the formalism) are based on 
an agreed-to set of tags or names, then LCIM levels 3 
(semantic) are well supported.  In addition, the richness 
of state derived situations that can be described within 
a DEVS specification of a system, also allow it to 
satisfy LCIM levels 4 and 5 (pragmatic and dynamic). 

3.3 Test and Training Enabling Architecture 

The Test and Training Enabling Architecture (TENA) 
is a method for describing objects and processes that 
are commonly encountered within simulations that 
work with defense testing environments and training 
exercises [11] – it has been mainly (but not 
exclusively) applied to support test range operations.  It 
concentrates on providing a common architecture for 
different range environments to work together in 
describing simulated and real range activity (the phrase 
virtual range is used).  This is done by providing for a 
common object model, as well as a software 
middleware that all objects can interact with. 

The architecture is intended to be interactive with and 
compliant with HLA, but again, specifically 
concentrates on interoperability and reuse between 
ranges.  Because of the features described here – that it 
is specifically for test range work; that it is intended to 
support simulating a virtual range; that it relies on a 
common object model and common middleware – it is 
very much capable of supporting activities that all 
support a common contextual viewpoint, and for a 
community that shares a common set of semantics. 

The TENA middleware that is used to connect systems 
to the architecture network includes the provision for a 
repository of object models (representing the 
characteristics of the entities and events that are 
supported in the architecture).  This repository and the 
object models it has described within it are what could 
be of use to a JCOM effort. 

In terms of the LCIM, the TENA contribution to Joint 
Composability could be viewed as supporting 
interoperability at levels 4 (pragmatic) and 5 
(dynamic).  The reasons this appears to be so are (1) 
the pragmatic level is supported by having everything 
in the TENA repository being not only semantically 
labeled in a manner that the whole community agrees 
to, but also having meaning to other members of the 
community, and (2) the dynamic level is supported 
because the context is so well established among the 
community of users that even with a shifting context, 
the pragmatics remain known.  Outside of an 
environment based on the TENA middleware, and 
supported by only systems described by TENA OMs, it 
appears as if only level 3 and part of level 4 can be 
supported. 



   

  

3.4 Unified Modeling Language 

The Unified Modeling Language (UML) is a method 
for describing, through a number of unified graphical 
methods, the objects and actions that make up a 
system.  As this may also include a system of systems, 
it is a worthwhile method to consider as a candidate.  
The different diagramming techniques that make up 
UML are briefly introduced here: 

• Use-Case diagram: provides an illustration of 
some element of functionality of the described 
system. 

• Class diagram: illustrates the different objects of 
the system, and describes their relationships with 
each other. 

• Sequence diagram: shows the flow of activities for 
a use case, or part of a use case.  It specifically 
illustrates the calls that take place between 
different objects, and their relative timing. 

• Statechart diagram: illustrates the different states 
that an object can be in, and how they are related. 

• Activity diagram: shows the specific relationships 
between different objects describing activity that 
takes place between them.  The illustration 
describes the activity, indicating which object it 
belongs to, and also what the next activity to take 
place will be (and for what object). 

• Component diagram: illustrates the actual 
components of the system, and their functional 
dependencies and relations to other components in 
the system (such as software libraries, service 
components etc). 

• Deployment diagram: shows the relationship of 
deployed (physical) components, and how they are 
interconnected.  Useful for depicting system 
architecture or network architecture for dispersed 
components. 

What UML specification of systems can bring to a 
Joint Composability Framework, in terms of providing 
for interoperability (by LCIM metrics), is partially up 
to level 5, dynamic, in that it shows the context and 
timing of the systems and their components, as well as 
attempting to show some of the dynamic nature of the 
system (the changes in relationship of the components, 
over).  The depiction of definition of semantically 
described elements, however, is noticeably lacking 
from UML.  There is no requirement within the 
diagramming techniques given, to show the structure, 
scope or resolution of the elements being addressed.  
One of the reasons that the authors allege that it is not 
completely satisfying level 5 is that it does not 
accomplish the goals of level 4 completely – the 

pragmatic definition of the system, and its components, 
at a level where the objects and processes are all 
defined, rather than just given semantic labels. 

3.5 Object Process Methodology 

The Object Process Methodology (OPM) is a method 
of describing a system, whereby data objects and states 
are equaled in their depiction by a similarly robust 
depiction of the processes that affect those objects, and 
connect those states.  This is done by using a 
diagramming technique that has two types of elements 
– entities and links.  Entities, within OPM, depict the 
objects, states, and process of a system.  Links are of 
two varieties for OPM, structural links which relate 
two or more objects and procedural links which relate 
an object with a process. 

OPM has a relationship to UML, in that both are 
graphical diagramming techniques, and more than that, 
certain types of UML diagrams can be mapped to from 
OPM diagrams.  One of the strengths that OPM has in 
addition to all that UML can provide is its emphasis on 
the importance to model processes separately from 
objects, and also to provide for the different 
relationships that processes can have on objects, their 
potential states, and their actual state (which is referred 
to in OPM as an object’s status).  This gives a good 
overview of both the static view of the system (objects 
and states), as well as the dynamic view (processes and 
effects). 

When viewed in light of its expressivity via the LCIM, 
OPM can describe a system with enough expressivity 
to show the pragmatic and dynamic (levels 4 and 5).  
What it offers in addition to some of the methods 
already discussed that operate at those levels (BOMs, 
TENA) is that it remains independent from the specific 
architectures that those systems espouse (HLA in the 
case of BOM, and the TENA architecture for the 
latter).  Because of this, however, it does not have a 
specific manner for capturing the definitional attributes 
of objects and processes that those other architecture 
specific methods use.  Because of this, OPM seems 
very strongly suited to be a method for connecting 
other methods at either level 4 or 5 (pragmatic or 
dynamic), by describing the objects and processes in 
the methods mandated by the pragmatic and dynamic 
level definitions, so that various architectures can make 
use of such a description for composability. 

3.6 Conceptual Graphs 

Conceptual Graphs (CG) are a method for describing 
the conceptual entities found within a system, both 
concepts and relations.  They are based on an idea 
introduce in [6] by Sowa.  It is a graphical method used 
to describe a logical system that is used to express 



   

  

knowledge.  As a potential contributor to a Joint 
Composability Framework, it would be a strong 
contender for describing the meaning of objects and of 
the relationships between objects.  One of the original 
uses where the CG method was employed was to 
describe the conceptual constructs of relational data 
bases and data models. 

In terms of the LCIM, CG provide a good method for 
describing the meaning of objects from the semantic 
level (level 3), so that they could be fully realized at 
the pragmatic level (level 4).  This definition of objects 
and processes is more from a relationship perspective, 
than from the perspective of specific attribute maps or 
enumerated characteristics.  There is some work being 
done, an early report being [7], that indicates the 
usefulness of CG in describing dynamic systems.  A 
more modern description, reflecting some of the 
development done in the CG community, is in [14].    
Specific usefulness for the JCOM might be in 
describing the relationships between objects and 
processes (or actors and roles), as the work in [8] 
describes. 

4 Comparison of Methods 
The previous six methods are not each placed in 
relationship to the LCIM, to describe the appropriate 
contribution to the overall interoperability/ 
composability picture that each can make.  Of the six 
methods described here, two are related to specific 
architectures (BOM and TENA), two are architecture-
free graphical representations of systems (UML and 
OPM), one is a method for describing the pragmatics 
of a data model (CG), and one (DEVS) is a formalism 
for describing the changing states within a system 
(interdependence and context).  

Based on the findings of this paper, when expressed in 
comparison to the LCIM, the various methods 
described can be seen to address a range of levels of 
conceptual interoperability.  From the figure, there are 
two types of identifiers describing which levels of the 
LCIM a method can express, for the purposes of 
contributing to a Joint Composability Framework.  For 
each method, at the levels supported, the indicator is 
either a black “XX” representing a complete satisfying 
match, or a red “PP” representing a partial match. 

Some description of what it takes to fully satisfy the 
levels 3, 4, 5 and 6 of the LCIM is in order here, so that 
the evaluation, and the contributing analysis, can be 
understood.  The lowest of the levels above 
integratability, level 3 (semantic), is really the first 
level of interest to a Joint Composability Framework.  
As mentioned earlier, the lower (integration) levels (1 
and 2) are not of interest to what can be expressed 
within the framework, as they are the domain of the 

implementations of a connecting architecture enabling 
the framework.  So starting with level 3, semantic, a 
description of what is needed will be listed here. 

4.1 LCIM Requirements 

At the semantic level (level 3 of the LCIM), what is 
required is for all components and exchanged data to 
be given a meaningful name that is accepted by all 
systems that are involved in the interoperability.  Note 
that meaning here is a shared meaning (from a common 
data model, or a taxonomical directory of terms) that is 
independent of the particular use of the data.   

At the pragmatic level (level 4 of the LCIM), there are 
two requirements.  First, the data elements and 
components are defined at this level.  Commonly, this 
means that the structure, scope and resolution of such 
elements (and components that use them) are made 
explicit.  Second, the context of application in which 
elements are used – both the processes of the system 
component affecting the elements, and also the place 
within the operational life span (accumulated time) 
where the element is intended to be used.  This 
information is made clear by the origin system, and is 
understood by the receiving system. 

At the dynamic level (level 5 of the LCIM), there are 
additionally two requirements, that are extensions of 
the pragmatic level.  First, the definition of elements 
and components that took place at the pragmatic level 
(structure, scope and resolution) is further defined with 
respect to the dynamic states that change with respect 
to elapsed time within the operational span of the 
system.  Second, the context of application of how such 
elements and components are used, and their relations 
to each other, as these (context and relations) change 
during the operational span of the system is 
understood, again with respect to elapsed time and 
dynamic system states.  The state-specific definition of 
elements and components, and the state-specific 
definition of context are expressed from the origin 
system to the receiving system, and also the effects 
such exchange will have on the receiving system’s 
elements and components (and their context) is 
understood. 

At the conceptual level (level 6 of the LCIM), 
alignment must take place between systems as to their 
perspective and frame of reference on the referents 
being represented to each other.  This is so that 
assumptions and constraints can be made explicit and 
understood by each other.  Much more can be said in 
regards to the conceptual level, but as the elements of a 
Joint Composability Framework currently being 
assessed do not rise to this level of expressivity, this 
will be left to future work. 



   

  

4.2 Methods and Their Fit 

The specific methods addressed within this paper will 
now have their comparison to the LCIM explained.  A 
brief mention of the levels that have a complete fit will 
be made, but more information about the analysis 
leading to a partial fit indication will be given. 

4.2.1 Base Object Models 

In the case of Base Object Models, full compliance at 
the semantic level (level 3 of the LCIM) is indicated, 

although this is only partly justified.  It is in full 
compliance if one considers the use to which the 
documented standard indicates (i.e. – as a link between 
context-free conceptual models, and HLA elements) 
will be made.  The HLA elements being described are 
well known, at least to the term level, within the 
federation they are employed.  Therefore these 
elements are sufficiently described for semantic 
exchange.  If the BOM template were to be expanded 
to other uses, however, then some sort of controlled 
vocabulary would be have to be employed for the 

conceptual models within each template, to ensure 
semantic alignment with other templates. 

At the pragmatic level (level 4 of the LCIM), BOMs 
are evaluated to have a partial fit with the 
requirements.  This is because the definition of the 
HLA elements (structure, scope, and resolution) would 
be well known within the federation they are used in.  
This is the part of the pragmatic level that fits.  
However, the requirement of the pragmatic level for an 
explicit depiction of context of application is not 

supported by BOMs.  This is due to the definition of 
the BOM template as capturing a context-free model of 
the object being modeled – application specific context 
is not part of the template.  This absence of application 
specific context is also what prohibits the BOM 
method from addressing the dynamic level (level 5 of 
the LCIM). 

4.2.2 Discrete Event System Specification 

For systems described by the DEVS formal method, 
there are two basic approaches, that of the atomic 

Figure 3 - Comparison of Methods to LCIM 
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DEVS structure, and the coupled DEVS structure.  As 
we are discussing distributed simulation systems 
(hence the need for interoperability), then the best 
employment of DEVS will be with coupled structures 
[9], or to rely on a DEVS specified model for model 
based engineering [10].  In that light, as all of the 
DEVS structures are defined in regards to each other 
(or some central model), then the semantic level (level 
3 of the LCIM) is fully satisfied. 

As the contextual interactions and definitions of 
structure, scope and resolution of the elements being 
described by the formalism are well known amongst all 
of the DEVS described components, the pragmatic 
level (level 4 of the LCIM) can be said to be satisfied.  
The ability of the DEVS specification to show the 
many different system states, and describe the object-
interactions for those states, also shows an ability to 
support the dynamic level (level 5 of the LCIM).  As 
with BOMs, which are intended to support a specific 
architecture (HLA), DEVS described components in a 
system of systems are intended to interoperate with 
other components that are also described using the 
DEVS formalism.  To adopt DEVS to describe the 
components implies that all components must be 
described with DEVS, although this requirement may 
be true of all approaches (see section 5 below). 

4.2.3 Test and Training Enabling Architecture 

TENA is listed as being fully compliant with the 
semantic (level 3 of the LCIM), and partially compliant 
with the pragmatic and dynamic levels (levels 4 and 5 
of the LCIM, respectively) of interoperability.  It 
should be pointed out, while beginning this evaluation 
that this is in light of the intended use of TENA – that 
is, to have object models describing the different 
objects of interest to a TENA federation, and then 
exchanging that information over TENA middleware.  
It is possible that a method of translating a TENA 
object model into a different architecture could be 
accomplished.  In which case the application specific 
context that comes from relying on all TENA OMs 
operating over the TENA middleware could likely be 
absent, prohibiting interoperability at the dynamic 
level, and severely limiting the fit at the pragmatic 
level. 

If, however, TENA OMs are used as they are intended, 
then the semantic level is fully satisfied, as all OMs 
have a common base of terms from which to draw their 
semantic tagging.  Additionally, the TENA middleware 
supports, fully, the operational context within which 
components of the OM will be used – thus partially 
satisfying the pragmatic level (level 4).  Further, the 
dynamic level (level 5) is partially satisfied, when 
employing TENA OMs, as the changes to operational 
context (if existent) are well known among represented 

components of the architecture.  What is lacking for 
both pragmatic and dynamic levels (and why they are 
both indicated as being only partially compliant) is the 
depiction of state-specific definition of elements and 
components (the structure, scope and resolution of 
such).  It is likely that this is due to the immaturity of 
systems employing the architecture – such context 
specific definitions do not change – however this is the 
subject of future classification. 

4.2.4 Unified Modeling Langauge 

The various diagramming techniques of UML, as a 
means of directing interoperability between systems 
described in a Joint Composability Framework, are 
evaluated to be fully compliant with the semantic level 
(level 3 of the LCIM).  This is because all of the 
elements and components are well described with 
informative labels, providing the semantic basis for 
addressing such elements and components. 

Moving beyond the semantic level, while employing 
the UML method, proves to be somewhat problematic, 
given the requirements of the LCIM given in section 
4.1.  While specific application context is well defined, 
given a full suite of the diagramming techniques, what 
is missing is the definition of the terms that are 
semantically labeled.  The definition (structure, scope 
and resolution) of the elements and components is not 
required by any of the diagramming techniques of 
UML, so such definition cannot be given (even though 
the context within which such definition would have 
pragmatic meaning).  Since the definition of objects is 
not given, then the change to that definition over time 
(required by the dynamic level of the LCIM) cannot be 
described.  

One of the advantages of UML, however, over the 
previous methods described (BOMs, DEVS, TENA) is 
that it can be an implementation neutral guide to 
applying some of the required artifacts that enable the 
other methods.  BOMs and TENA each describe 
specific object models, to be implemented over specific 
architectures, and DEVS requires that all components 
be described using the same simulation-modeling [5] 
technique (although a specific architecture is not 
mandated in the case of DEVS).  With UML, there are 
no implementation requirements, yet it may serve to 
augment the BOM, TENA or DEVS approaches. 

4.2.5 Object Process Methodology 

OPM is a diagrammatic approach, similar to UML, 
however it concentrates on showing (specifically) the 
relationship between objects (elements of the system) 
and processes (the means of change and activity for the 
elements of the system).  Because of this, it addresses 
all of the components of the system in a meaningful 



   

  

way, which allows for semantic identification of those 
components, meaning that an OPM described system 
would fully support the semantic level (level 3 of the 
LCIM). 

The pragmatic level (level 4 of the LCIM) is identified 
as being partially satisfied by OPM (as with UML, 
TENA and BOMs).  In the case of OPM what is 
missing is (not surprisingly) a different part of the 
whole.  OPM describes, very well, the specific 
application context by making the relations between 
objects, as well as the contextual changes to those 
objects, clear in a well described manner.  The specific 
changes to context are made clear, as are the specific 
objects affected by that change, and the framework for 
describing the specific changes to component and 
element definition are made (by specifically identifying 
processes) – but not enabled to the extent that they are 
made explicit within some of the other techniques 
(within the OMs of BOM or TENA for instance, or the 
component description of DEVS).  Because of this lack 
of element and component definitional detail, the 
dynamic level (level 5 of the LCIM) can only be 
partially satisfied. 

4.2.6 Conceptual Graphs 

CGs are analyzed to provide a description of a system 
fully compliant with the semantic level (level 3 of the 
LCIM), in that they address all of the system concepts 
– elements, components, and relations – and identify 
them with a semantic element.  CGs are uniquely 
(among the methods addressed here) identified as 
partially supporting levels 5 and 6, because they 
capture the conceptual meaning of the components of 
the system, but lack lower level (notably level 4, and 
part of level 5) support because of the lack of 
specificity within the representation. 

5 The Way Ahead 
Clearly, from the methods evaluated here, there is no 
one method that fully embraces the semantic, 
pragmatic, and dynamic levels of interoperability.  In 
order to achieve composability, when defined in light 
of the LCIM, then dynamic interoperability (level 5 of 
the LCIM) needs to be supported between systems. 

In order to achieve dynamic interoperability (or the 
first level of composability), especially if existing 
artifacts (OMs, architectures, etc.) are to be relied on, 
then a merger of existing methods must be attempted.  
Elements of the methods described here could be relied 
on.  Both OM based architectures (HLA, as seen 
through the BOMs, and TENA) are very good as 
describing the definition of elements (part of what is 
needed at the pragmatic level).  The DEVS formal 
method is very good at identifying the specific model 

based I/O between components.  UML and OPM each 
give part of the picture of context and relations 
between elements, as well as indications of how that 
context changes over the operational span of the 
system.  Merging the best of each of these techniques 
could result in a Joint Composability Framework that is 
capable of supporting actual composability (as defined 
by the LCIM – that is, dynamic interoperability). 

A recognized barrier, to be addressed in future 
research, is the limits that the existing systems that will 
take part in the federations described here will bring to 
any interoperability asked of them.  It is difficult to 
mandate dynamic interoperability (complete explicit 
expression of meaning and definition as it changes 
from state to state within a system), when such 
dynamic changes don’t take place within the systems 
we are currently using.  However, we will not always 
be using the same systems that we have today, and it is 
might do well to look towards the requirements for 
composing richer systems in the future. 
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