112 research outputs found

    Normalisation and subformula property for a system of classical logic with Tarski's rule

    Get PDF
    This paper considers a formalisation of classical logic using general introduction rules and general elimination rules. It proposes a definition of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system, and gives reduction procedures for them. It is then shown that deductions in the system convert into normal form, i.e. deductions that contain neither maximal formulas nor maximal segments, and that deductions in normal form satisfy the subformula property. Tarski’s Rule is treated as a general introduction rule for implication. The general introduction rule for negation has a similar form. Maximal formulas with implication or negation as main operator require reduction procedures of a more intricate kind not present in normalisation for intuitionist logic

    Gentzen-Prawitz Natural Deduction as a Teaching Tool

    Full text link
    We report a four-years experiment in teaching reasoning to undergraduate students, ranging from weak to gifted, using Gentzen-Prawitz's style natural deduction. We argue that this pedagogical approach is a good alternative to the use of Boolean algebra for teaching reasoning, especially for computer scientists and formal methods practionners

    Normalisation and subformula property for a system of classical logic with Tarski’s rule

    Get PDF
    This paper considers a formalisation of classical logic using general introduction rules and general elimination rules. It proposes a definition of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system, and gives reduction procedures for them. It is then shown that deductions in the system convert into normal form, i.e. deductions that contain neither maximal formulas nor maximal segments, and that deductions in normal form satisfy the subformula property. Tarski’s Rule is treated as a general introduction rule for implication. The general introduction rule for negation has a similar form. Maximal formulas with implication or negation as main operator require reduction procedures of a more intricate kind not present in normalisation for intuitionist logic

    From truth to computability I

    Get PDF
    The recently initiated approach called computability logic is a formal theory of interactive computation. See a comprehensive online source on the subject at http://www.cis.upenn.edu/~giorgi/cl.html . The present paper contains a soundness and completeness proof for the deductive system CL3 which axiomatizes the most basic first-order fragment of computability logic called the finite-depth, elementary-base fragment. Among the potential application areas for this result are the theory of interactive computation, constructive applied theories, knowledgebase systems, systems for resource-bound planning and action. This paper is self-contained as it reintroduces all relevant definitions as well as main motivations.Comment: To appear in Theoretical Computer Scienc

    Introduction to clarithmetic I

    Get PDF
    "Clarithmetic" is a generic name for formal number theories similar to Peano arithmetic, but based on computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html) instead of the more traditional classical or intuitionistic logics. Formulas of clarithmetical theories represent interactive computational problems, and their "truth" is understood as existence of an algorithmic solution. Imposing various complexity constraints on such solutions yields various versions of clarithmetic. The present paper introduces a system of clarithmetic for polynomial time computability, which is shown to be sound and complete. Sound in the sense that every theorem T of the system represents an interactive number-theoretic computational problem with a polynomial time solution and, furthermore, such a solution can be efficiently extracted from a proof of T. And complete in the sense that every interactive number-theoretic problem with a polynomial time solution is represented by some theorem T of the system. The paper is written in a semitutorial style and targets readers with no prior familiarity with computability logic

    A machine-checked constructive metatheory of computation tree logic

    Get PDF
    This thesis presents a machine-checked constructive metatheory of computation tree logic (CTL) and its sublogics K and K* based on results from the literature. We consider models, Hilbert systems, and history-based Gentzen systems and show that for every logic and every formula s the following statements are decidable and equivalent: s is true in all models, s is provable in the Hilbert system, and s is provable in the Gentzen system. We base our proofs on pruning systems constructing finite models for satisfiable formulas and abstract refutations for unsatisfiable formulas. The pruning systems are devised such that abstract refutations can be translated to derivations in the Hilbert system and the Gentzen system, thus establishing completeness of both systems with a single model construction. All results of this thesis are formalized and machine-checked with the Coq interactive theorem prover. Given the level of detail involved and the informal presentation in much of the original work, the gap between the original paper proofs and constructive machine-checkable proofs is considerable. The mathematical proofs presented in this thesis provide for elegant formalizations and often differ significantly from the proofs in the literature.Diese Dissertation beschreibt eine maschinell verifizierte konstruktive Metatheorie von computation tree logic (CTL) und deren Teillogiken K und K*. Wir betrachten Modelle, Hilbert-Kalküle und History-basierte Gentzen-Kalküle und zeigen, für jede betrachtete Logik und jede Formel s, Entscheidbarkeit und Äquivalenz der folgenden Aussagen: s gilt in allen Modellen, s ist im Hilbert-Kalkül ableitbar und s ist im Gentzen-Kalkül ableitbar. Die Beweise bauen auf Pruningsystemen auf, welche für erfüllbare Formeln endliche Modelle und für unerfüllbare Formeln abstrakte Widerlegungen konstruieren. Die Pruningsysteme sind so konstruiert, dass abstrakte Widerlegungen zu Widerlegungen sowohl im Hilbert- als auch im Gentzen-Kalkül übersetzt werden können. Dadurch wird es möglich, die Vollständigkeit beider Systeme mit nur einer Modellkonstruktion zu zeigen. Alle Ergebnisse dieser Dissertation sind formalisiert und maschinell verifiziert mit Hilfe des Beweisassistenten Coq. In Anbetracht der Fülle an Details und der informellen Beweisführung in großen Teilen der Originalliteratur, erfordert dies teilweise tiefgreifende Veränderungen an den Beweisen aus der Literatur. Die Beweise in der vorliegenden Arbeit sind so aufgebaut, dass sie zu eleganten Formalisierungen führen

    Refinement of Classical Proofs for Program Extraction

    Get PDF
    The A-Translation enables us to unravel the computational information in classical proofs, by first transforming them into constructive ones, however at the cost of introducing redundancies in the extracted code. This is due to the fact that all negations inserted during translation are replaced by the computationally relevant form of the goal. In this thesis we are concerned with eliminating such redundancies, in order to obtain better extracted programs. For this, we propose two methods: a controlled and minimal insertion of negations, such that a refinement of the A-Translation can be used and an algorithmic decoration of the proofs, in order to mark the computationally irrelevant components. By restricting the logic to be minimal, the Double Negation Translation is no longer necessary. On this fragment of minimal logic we apply the refined A-Translation, as proposed in (Berget et al., 2002). This method identifies further selected classes of formulas for which the negations do not need to be substituted by computationally relevant formulas. However, the refinement imposes restrictions which considerably narrow the applicability domain of the A-Translation. We address this issue by proposing a controlled insertion of double negations, with the benefit that some intuitionistically valid \Pi^0_2-formulas become provable in minimal logic and that certain formulas are transformed to match the requirements of the refined A-Translation. We present the outcome of applying the refined A-translation to a series of examples. Their purpose is two folded. On one hand, they serve as case studies for the role played by negations, by shedding a light on the restrictions imposed by the translation method. On the other hand, the extracted programs are characterized by a specific behaviour: they adhere to the continuation passing style and the recursion is in general in tail form. The second improvement concerns the detection of the computationally irrelevant subformulas, such that no terms are extracted from them. In order to achieve this, we assign decorations to the implication and universal quantifier. The algorithm that we propose is shown to be optimal, correct and terminating and is applied on the examples of factorial and list reversal.Die A-Übersetzung ermöglicht es, die rechnerische Information aus klassischen Beweisen einzuholen. Dennoch hat sie den Nachteil, dass die Programme, die man aus auf diese Weise transformierten Beweisen extrahiert, viele redundante Teile enthalten. Das liegt daran, dass die A-Übersetzung viele doppelte Negationen hinzufügt und alle diese Negationen durch die rechnerisch relevante Form der Ziel-Formel substituiert werden. In dieser Doktorarbeit werden Methoden dargestellt, um Teile der redundante Information in den extrahierten Programen zu entfernen. Einerseits wird das Einfügen der Negationen minimal gehalten und anderseits werden die nicht rechnerischen Teile als solche indentifiziert und ausgezeichnet. Wir bemerken zuerst, dass in der Minimallogik das Einfügen der doppelten Negationen nicht mehr nötig ist. Darüber hinaus, um das Ersetzen aller Negationen zu vermeiden, identifizieren (Berger et al., 2002) diejenigen, wo die Substitution nicht nötig ist. Diese verfeinerte A-Übersetzung hat aber den Nachteil, dass sie den Anwendungsbereich begrenzt. Um das zu beseitigen, wird in dieser Dissertation eine verfeinerte Doppel-Negation angewandt, die bestimmte Formeln so umsetzt, dass die verfeinerte A-Übersetzung darauf anwendbar ist. Als Zugabe kann diese Methode auch benutzt werden, um konstruktive Beweise mancher \Pi^0_2-Formeln in der Minimallogik durchzuführen. Dieses Verfahren wird durch Anwendung der verfeinerten A-Übersetzung auf eine Reihe von bedeutenden Fallstudien illustriert. Es werden das Lemma von Dickson, das unendliche Schubfachprinzip und das Erdös-Szekeres Theorem betrachtet. Dabei wird es festgestellt, dass ein Zusammenhang zu der Endrekursion und dem Rechnen mit Fortsezungen besteht. Ferner, um möglichst viel der überflüssigen Information zu entfernen, wird ein Dekorationsalgorithmus vorgelegt. Dadurch werden die rechnerisch irrelevanten Komponenten identifiziert und entsprechend annotiert, so dass sie während der Extraktion nicht berücksichtigt werden. Es wird gezeigt, dass das vorgeschlagene Dekorationsverfahren, das auf Beweisebene eingesetzt wird, optimal, korrekt und terminierend ist
    corecore