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Abstract

This paper considers a formalisation of classical logic using general introduction rules
and general elimination rules. It proposes a definition of ‘maximal formula’, ‘segment’
and ‘maximal segment’ suitable to the system, and gives reduction procedures for
them. It is then shown that deductions in the system convert into normal form, i.e.
deductions that contain neither maximal formulas nor maximal segments, and that
deductions in normal form satisfy the subformula property. Tarski’s Rule is treated as
a general introduction rule for implication. The general introduction rule for negation
has a similar form. Maximal formulas with implication or negation as main operator
require reduction procedures of a more intricate kind not present in normalisation for
intuitionist logic.
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1 Introduction

Deductions in normal form in Gentzen’s formalisation of intuitionist logic in natural
deduction [2, 186] satisfy the subformula property. Precise definitions will be given
in the next section, but for this preliminary discussion, the following explanations of
terminology suffice. A deduction is in normal form if it contains no maximal formula,'
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I We can distinguish occurrences of formulas, which in the present context occur for the most part in
deductions, from a more abstract notion of formula which collects together formulas of the same shape or
form, as it is customary to say. The former could also be referred to as formula types, the latter as their
tokens. For brevity, by ‘formula’ I will often mean an occurrence of a formula, but be explicit about the
distinction where this aids understanding. There are also schematic formulas and their instances, which
may or may not be formulas of the same shape, and we can distinguish the general statement of a rule
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that is a formula that is the conclusion of an introduction rule and the major premise of
an elimination rule for its main connective. A deduction has the subformula property
if any formula that occurs on it is a subformula of either an undischarged assump-
tion or of the conclusion. The normalisation theorem for intuitionist logic states that
any deduction can be brought into normal form, and so for any deduction of A from
assumptions I" in intuitionist logic, there is a deduction of A from some of the assump-
tions in I" that satisfies the subformula property. This was shown by Prawitz [8, Ch
v].2

Systems of natural deduction for classical propositional logic in which any deduc-
tion converts into one with the subformula property have proved to be more elusive.
In general, deductive systems for classical logic with this property relinquish some of
the features of natural deduction for intuitionist logic. The obvious route is to aban-
don single conclusions and adopt Gentzen’s sequent calculus. Deductions in normal
form in Prawitz’s system of natural deduction for classical logic, for instance, only
satisfy a restricted version of the subformula property: allowance must be made for
assumptions of the form —A that are discharged by classical reductio ad absurdum
and formulas 1 concluded from them [8, 42].

The main result of this paper is a proof that in a system of natural deduction for
classical propositional logic ¢ put forward by Milne [5], every deduction converts
into one in normal form, and every deduction in normal form satisfies the subformula
property without any restrictions. The system has some rather original features. It
couples the well-known general elimination rules for v, A, 53 with introduction rules
that are unusual in that, rather than permitting the conclusion of a formula with the
connective they govern as main operator, they permit the discharge of such a formula.
These were called ‘general introduction rules’ by Negri and von Plato, who formalised
a system of intuitionist logic with such rules [6, 217]. While Negri and von Plato use
L as primitive, and define negation in terms of it, Milne has general introduction and
elimination rules for a primitive negation operator. Milne’s general introduction rules
for implication are also unexpected and original. Negri and von Plato’s system is the
subject of an independent investigation [3], in which normalisation and subformula
property are proved for this system, too and general introduction and elimination rules
for identity are also considered.

Footnote 1 continued

of inference from its application in a deduction: the former is made in terms of schematic formulas and
specifies the common form of all its instances, the latter have formula occurrences as their premises and
conclusions and are used in the construction of deductions. I will thus speak of rules as well as of their
applications, but for brevities sake by ‘rule’ I will often mean an application of a rule. This clarification
and the ensuing greater precision in the use of terminology in this paper was added at the request of a
referee for this journal, to whom I thank for the helpful comments on this paper. A second referee also
made valuable comments on the previous version of this paper and pointed me to Michel Parigot’s work,
which is discussed in Sect. 3. This referee also suggested a comparison of the results reported here with
Seldin’s [13], but this must wait for another occasion. I would like to thank Andrzej Indrzejczak, Michat
Zawidski and Yaroslav Petrukhin for comments on this paper, and Peter Milne for his system, discussions
and support. During the preparation of the final version of this paper I was an Alexander von Humboldt
research fellow at the University of Bochum, to whom also many thanks are due.

2 Von Plato has edited previously unpublished material of Gentzen’s that shows that he had also proved
these results for intuitionist logic (See [15] and [16]).

3 See [14]. Such rules were also considered by Prawitz in [9].
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Milne’s system is closely related to a formalisation of classical logic by Michel
Parigot [7]. The main difference is that Parigot’s system is formalised in sequent
calculus, but translating one framework into the other, they are, mutatis mutandis, the
same. A brief section of this paper compares the two systems.

Milne observes that, while adding rules for the universal quantifier to his system
cannot produce one in which any deduction can be transformed into one that satisfies
the subformula property, this is not so for the existential quantifier. The penultimate
section of the present paper sheds some further light on this result: if the universal
quantifier is added, the reduction procedures for maximal formulas with negation
as main operator, and one of the reduction procedures for maximal formulas with
implication as main operator, are no longer applicable. Thus deductions in the system
do not normalise. The problem does not arise when the existential quantifier is added:
any deduction in C plus 3 converts into one in normal form, and deductions in normal
form have the subformula property.

Finally, the conclusion considers transposing general introduction rules back into
the more usual form of introduction.

Milne gives a model-theoretical and non-constructive proof that in his system, if,
whenever all of I" are true, then A is true, then there is a deduction of A from I' that
has the subformula property [4]. By soundness it follows that for any deduction in his
system, there is one that satisfies the subformula property. Here this result is proved
proof-theoretically and constructively as a consequence of the normalisation theorem
for the system.

The results of this paper are of some philosophical interest. Normalisation and
subformula property of deductions in normal form are commonly regarded as nec-
essary conditions for harmony.* Harmony consists in a certain balance in the rules
governing a logical constant: an elimination rule for a logical connective should not
license the deduction of more conclusions from a formula with it as main operator
than are justified by its introduction rules. Prawitz’s formalisation of classical logic
of [8], for instance, lacks the subformula property for normal deductions and its rules
for negation are not considered to be harmonious. The disappearance of a negation
from the assumptions and conclusions of a deduction in those cases where the strict
subformula property is violated establish that too much has been derived from the
discharged assumptions: Prawitz’s rules for classical negation license the deduction
of more conclusions from formulas of the form —A than are justified by the introduc-
tion rule governing this connective. A more detailed discussion of the philosophical
implications of the results presented here goes beyond the purposes of this paper.

2 A system of classical propositional logic

The definition of the language of C is standard.

4 Dummett provides the most extended discussion of harmony and its meaning-theoretical foundations [1].
Prawitz made many contributions to the surrounding debate, for instance [10] and [11].
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Definition 1 (Connective, atomic formula, degree of a formula) —, D, A and V are the
connectives. An atomic formula is one that contains no connective. The degree of a
formula is the number of connectives occurring in it.

Occasionally, the discussion mentions L. Being a connective, it is not an atomic
formula, but a formula of degree 1.

Deductions in C have the familiar tree shape, with the (discharged or undischarged)
assumptions at the top-most nodes or leaves and the conclusion at the bottom-most
node or root. The conclusion of a deduction is said to depend on the undischarged
assumptions of the deduction. Similar terminology is applied to subdeductions of
deductions.

Every assumption in a deduction belongs to an assumption class, marked by a nat-
ural number, different numbers for different assumption classes. Formula occurrences
of different types® must belong to different assumption classes. Formula occurrences
of the same type may, but do not have to, belong to the same assumption class. Dis-
charge of assumptions is marked by a square bracket around the formula: [A]’, i being
the assumption class to which A belongs, with the same label of the assumption class
also occurring at the application of the rule at which the assumption is discharged.
Assumption classes are chosen in such a way that if one assumption of an assumption
class is discharged by an application of a rule, then it discharges all assumptions of said
assumption class. Empty assumption classes are permitted: they are used in vacuous
discharge, when a rule that allows for the discharge of assumptions is applied with no
assumptions being discharged.

Upper case Greek letters X, I, E, possibly with subscripts or superscripts, denote
deductions. In general some of the assumptions and the conclusion of the deduction
are mentioned explicitly at the top and bottom of X, I'1, E. Using the same designation
more than once to denote subdeductions of a deduction means that these subdeductions
are exact duplicates of each other apart from, possibly, the labels for assumption
classes: the deductions have the same structure and at every node formulas of the
same type are premises and conclusions of applications of the same rules.

Definition 2 (Deduction in C)

(1) The formula occurrence A", where n marks an assumption class, is a deduction
in C of A from the undischarged assumption A.

(i) If X, I, E are deductions in C, then following are deductions of C in C from the
undischarged assumptions in X, I1, E apart from those in the assumption classes
i and j, which are discharged:

[A A BY [A) [B)
¥ nl o) b nl
A BC c . A/\BC C pi;
[AV BY [AV B] [A] (B)
¥ nl > 3| b nl B
%vli %vu Av B CC ¢ VE i,j

5 See footnote 1.
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[A D B [A] [A D B)
I1 = I1 b
Bcicgli C‘%TRi,j
[B]
I1 b ©)
ADB A C B
C
i AT
[A] [-A] n 5
1 x —A A,
C - C 1 C

(iii) Nothing else is a deduction in C.

In writing deductions we may suppress the label indicating the rule applied, but the
labels indicating discharge must always be present.

A few words on the rules for implication will be in order. In Negri and von Plato’s
intuitionist system with general introduction and elimination rules, the introduction
rule for D permits the discharge of an assumption A above its first premise B. Thus
letting C be A D B in their rule derives the usual introduction rule for D, which
licenses the deduction to A D B from a deduction of B from A. T R is named after
Tarski: Milne calls it Tarski’s Rule. Following the patterns of the other rules, it is
treated as a second general introduction rule for D. The usual introduction rule for D
is derived in C in the following way:

[A]?
y|
B [Agmlll
ADB > [A>BP?
ADB

The usual negation introduction rule, reductio ad absurdum, licenses the deduction of
—A from a deduction of a contradiction from A. It is derived like this in C:

[A]! [A]!
I1 >
—-B B
—A -~ (Al 1 =1
—A -

Classical reductio ad absurdum, which licenses the deduction of A from a deduction of
a contradiction from —A, is derived by interchanging A and —A. Conversely, Milne’s
general introduction rules are clearly valid rules of inference of classical logic. Thus
we have a system of classical propositional logic.

When added to the system, L is governed by a sole elimination rule, ex falso
quodlibet. Tt licenses the deduction of any formula from L. The rule may be restricted
to atomic conclusions. It is the limiting case of a general elimination rule where there
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are no side-deductions with discharged assumptions corresponding to subformulas of
the major premise above them. Having no introduction rule, it is trivially governed
only by rules of the same form as the other connectives.

Notice that —=F has the form of a general elimination rule. This can be seen by
treating —=A as A D L and replacing L for B in D E. As everything follows from
L, a side-deduction showing that the conclusion of the application of the rule follows
from L is redundant.

For recording from which assumptions a conclusion has been derived, it suffices to
list the assumption classes to which the undischarged assumptions of the deduction
belong. This will be a multiset. If a set is preferred, delete multiple occurrences of
assumption classes of formulas of the same type. We can write I' ¢ A if there is a
deduction of (the formula occurrence) A from (occurrences of) some of the formulas
inI"in C.

The premise A of D E and —A and C in all four elimination rules are normally
called the minor premises, but in the current system it is useful to have terminology
that allows to distinguish them.

Definition 3 (Terminology for premises and discharged assumptions)

(i) In applications of the elimination rules, formula occurrences taking the places of
AANB,A D B, AV B and —A to the very left above the line are the major
premises; formula occurrences taking the places of C are the arbitrary premises,
and a formula occurrence taking the place of A in an application of D E and in
—E is the minor premise of those rules.

(i) In applications of AI, VI, D I, formula occurrences taking the places of A and B
to the very left above the line are the specific premises (both in case of AT), and
those taking the place of C to their right are also called the arbitrary premises;
formula occurrences taking the places of the discharged assumptions AAB, AV B,
A D B and —A are the major assumptions discharged by applications of AI, VI,
D I, TR and —1, and those taking the places of the discharged assumptions A in
—1I and T R are the minor assumptions discharged by applications of those rules.

Like L E, —I has no arbitrary premises.

Vacuous discharge happens when in an application of a rule that permits discharge
no formula is in fact discharged. In systems of natural deduction with the rules of
Gentzen and Prawitz, applications of rules with vacuous discharge above arbitrary
premises are removed from deductions by what is often called simplification con-
versions® The procedure is obvious, and I will give no details here. In C, all vacuous
discharge happens above arbitrary premises, and there it is clearly superfluous: instead
of applying a rule and discharging vacuously, we might as well go on with the deduc-
tion straight from the arbitrary premise. In C there is no need for vacuous discharge
at all, and in the following, I will assume that any deduction is cleaned up so as to
contain no vacuous discharge above arbitrary premises; in particular, I will assume
that this is done should vacuous discharge above an arbitrary premise arise as a result
of the conversions of deductions to be given in Sect. 4. In AE, it is of course often
necessary to make use of the option of discharging only one assumption.

6 See, e.g., [13, 181].
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3 Comparison with Parigot’s free deduction

The feature of Milne’s system that all conclusions of rules are identical to an arbitrary
premise and hence no logical constants appear below the inference line in any of the
general statements of its rules has a close parallel in Michel Parigot’s system of free
deduction [7]. This is a system of multiple conclusion sequent calculus for classical
logic where it is also the case that no formulas with logical constants appear in the
conclusions of the general statement of the rules:

Axiom
AFA

Conjunction

IMAABEA MmEAY '+ B, %

LA
CILITFA, XY
e TEAABA  TLAES T'HFAAB.A T.B+YX
A CIFA. Y CIFA Y
Disjunction
L, DAVBEA THAS IAVBHEFA MFB, >
Vv FIFA Y FIFA Y
ey, TEFAVBA  TLAES .BF Y
TILITFA S Y
Negation
,_ D-AbA  MAFE oo, TF-AA  TEAS
o LAY o LIIFA, X
Implication
, . TLADBFA ILAFE ILADBFA MEB. Y
- FTIFA.S FTIFA.S
FrFASDB, A TIFAYX .BF Y
RO

OLILIOEA X Y

I', A, II, ¥ are sets of formulas. Weakening and contraction may be added either
in their usual form as explicit rules or in an implicit form through the conventions
that active formulas need not occur in a premise and that the conclusions of rules are
contracted.

Parigot explains how to obtain common systems of sequent calculus and natural
deduction for classical logic from free deduction. In both cases, some of the premises
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of the rules of free deduction are replaced by axioms and then suppressed [7, 367f].
Parigot gives the examples of a common formulation of the classical sequent calculus’
and a system of natural deduction with multiple conclusions.

Milne’s system can be obtained from Parigot’s by using replacing its right conjunc-
tion rules by a variant [7, 364]:

'AAB,A IN,A,BF X
raoFEA XY

RA:

Instead of replacing premises by axioms and suppressing them, we simply restrict the
succedents of sequents of free deduction to single conclusions in the most obvious way.
Right rules turn into general elimination rules. Left rules turn into general introduction
rules. Not carrying an active formula of a rule of free deduction to the left of - into the
conclusion corresponds to the discharge of that formula; active formulas to the right
of - turn into premises of the rules:

Al:take LA, let A ={C}andlet ¥ =¥ = @.

AE:take RN let ¥ = {C}andlet A = @.

VvI:take LV,let A = {C}and let ¥ = &.

VE:take RV,let A= Jandlet X = &' = {C}.

—I:take L—,let A = ¥ = {C}.

—E:take L—, let A = ¥ = & in the premise and {C} in the conclusion.
T R: take the first L D,let A = ¥ = {C}

D I:take the second L D andlet A = {C}andlet ¥ = @.

DE:take R Dandlet A =% = andlet X' = {C}.

The result is Milne’s system when written in natural deduction in sequent calculus
style.

At one point the correspondence is not quite so perfect: in —FE, the succedents of
the premises and the conclusion are treated differently. But this is a minor blemish. It
could be remedied by adding L to the system and treating — as defined in terms of it
and D.

A closer comparison of the proof-theoretic properties of Milne’s system with
Parigot’s free deduction and other systems of classical logic found in the literature
merits its own investigation is left for another occasion.

4 Normalisation for C

We begin by adjusting the common notion of a maximal formula to deductions in C:

Definition 4 (Maximal formula) A maximal formula in a deduction in C with main
operator * is an occurrence of a formula A * B or %A (i.e. * is —) that is the major
premise of an application of % E and the major assumption discharged by an application
of xI or TR in case % is D.

7 With explicit rules for weakening and contraction on the left and right, it is the calculus called G1lc¢ with
a primitive negation operator and without L [13, 61], and with alternative rules for implication: Parigot’s
system has two right rules for D: in one rule [T + A D B, X is inferred from I1, A - %, in the other from
I+ B, x%.
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Maximal formulas are removed from deductions by procedures to be given shortly.
But first an observation about negation.

It would be possible to restrict the conclusion of —FE to formulas not having D, A
or V as main connectives. Similar constructions that show that L E can be restricted
to atomic conclusions are easily adapted to —E of C. We cannot, however, restrict the
conclusion to atomic formulas nor to literals: they sometimes need to be of the form
—C, where C may be a complex formula.

An attempt to avoid deriving —C by —E while also avoiding the creation of a
maximal formula would need to appeal to —/ where the major assumption discharged
by the application of the rule is also the right arbitrary premise and of the same shape
as the conclusion. Hence we would need to derive —C from C to gain the left arbitrary
premise using the premises —A and A of the application of —E that concluded —C.
The only way to do so would be to derive =C from A and —A, which was to be
avoided.

—E will therefore be treated like all the other elimination rules and it will be shown
that its conclusion need never be the major premise of an elimination rule.

Applications of general introduction and elimination rules except —F require
deductions of arbitrary premises C which also provide the conclusion of the appli-
cation of the rule. They form part of a sequence of formula occurrences of the same
shape:®

Definition 5 (Segment) A segment is a sequence of formula occurrences Cy ... C, in
a deduction such that either

(i) n > 1 and for all i < n, C; is an arbitrary premise of an application of a rule and
C;41 is its conclusion, and C,, is not an arbitrary premise of an application of a
rule; or

(i) n > 1 and Cj is the conclusion of —E and for all i < n, C; is an arbitrary premise
of an application of a rule and C;4 is its conclusion, and C,, is not an arbitrary
premise of an application of a rule.

The length of a segment is the number of formula occurrences of which it consists, its
degree the degree of any such formula. As C; ... C, are all of the same shape, I will
speak of the formula (as a type) constituting the segment.

Every conclusion of —F forms part of a segment of length 1. The motivation for
classifying conclusions of —E as giving rise to segments is that this rule is like a
crossing between O E and L E: it has a minor premise, like D E, but lacks arbitrary
premises, like LE.

Due to the ban on vacuous discharge above arbitrary premises, in all other cases
the first formula of a segment is an arbitrary premise discharged by an introduction
rule the conclusion of which is the second formula of the segment.

The major, minor and specific premises of rules are either assumptions or the last
formulas of segments.

Definition 6 (Maximal segment) A maximal segment is a segment the last formula of
which is the major premise of an elimination rule.

8 See footnote 1.
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Maximal segments are removed from deductions by procedures to be given shortly. It
will be a consequence of their successive application that maximal segments the first
formula of which is the conclusion of —F are removed from deductions.

Definition 7 (Normal form) A deduction is in normal form if it contains neither max-
imal formulas nor maximal segments.

It will be shown that any deduction can be brought into normal form by successive
and systematic application of the procedures to be given now, which remove maximal
segments and formulas from deductions. I will call the deduction to which such a
procedure is applied the initial deduction and the result the reduced deduction.

First we need to take care of a minor issue. In the initial deduction, more assumptions
of the form A * B or xA than the maximal formula to be removed by the procedure may
be discharged above the arbitrary premise of the introduction rule. There are several
ways of dealing with this issue. A fuller discussion of the options is reserved for the
companion piece to the present paper which covers intuitionist logic [3]. Here I will
simply adopt the easiest solution to the problem, which consists in the observation
that any application of a general introduction rule can be transformed into one that
discharges exactly one major assumption. An advantage besides simplicity is that the
normalisation theorem for C with rules so restricted transposes directly to a system of
classical logic with the more common introduction rules in the style of Gentzen and
Prawitz. This will be established in the conclusion to the present paper.

Suppose, for instance, one wanted to discharge n formula occurrences of the type
A Vv B by an application of VI:

[AVB]',[AVB]...[AV BY

z I1
A C
C

Then instead of making this one application of VI, one can apply it n times:

i

[AV B]',[AV BJ*...[AV BI"

z :
A C

C
The cases for the other connectives are similar.

There are now two options: either make the restriction part of the construction of
deductions, or first transform a given deduction into one that satisfies the restriction
before the reduction procedures are applied. Either option works, as the system with
the unrestricted introduction rules and the system with their restricted versions are
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evidently equivalent. Obviously any application of a restricted introduction rule is
also a correct application of the unrestricted version, and the converse holds in virtue
of the following:

Lemma 1 Any deduction can be transformed into one in which every application of a
general introduction rules discharges exactly one major assumption.

Proof By the ban on vacuous discharge above arbitrary premises, the transforma-
tions indicated above and an induction over a suitable measure of the complexity of
deductions, e.g. the number of applications of introduction rules discharging multi-
ple formula occurrences of highest degree in a deduction. Take such an application
such that no other such application stands above it in the deduction. Applying the
transformation reduces the measure. O

Moreover, any sequence of applications of introduction rules as in the example above
can be collapsed into one application, so one could, after maximal formulas have been
removed from a deduction, also simplify it again in that respect.

As it lends itself to a very straightforward normalisation proof, unless otherwise
stated, in the following I assume what I call the unique discharge convention on
introduction rules: every application of an introduction rule for * discharges exactly
one formula occurrence of the form A x B or x A.

Now for the procedures to remove maximal segments and formulas from deductions.
Concerning the procedures to remove maximal formulas of the form A D B and —A,
observe once more that all discharge happens above arbitrary premises, and so they can
be used to conclude any formula. This observation is used to ensure that assumptions
that may have been discharged in the initial deduction are also discharged in the reduced
deduction: we will reuse certain applications of rules that discharge assumptions in the
initial deduction with new arbitrary premises and conclusions in the reduced deduction
for the purpose of ensuring the conclusion of the reduced deduction does not depend
on more formulas than the conclusion of the initial deduction.

Reduction Procedures for Maximal Formulas

Maximal formulas are removed from deductions by applying the following reduction
procedures for maximal formulas, where I1, ¥ above [A], [B] indicate that these
deductions are used to conclude each formula occurrence in the assumption class to
which A, B belong (assumption class markers are deleted):

1. The maximal formula is of the form A A B. Convert the deduction on the left into
the deduction on the right:

[AY (B) S %

. T [A][B]
[A A B] c 0
i, 1
C S
P p3y} I, n
A B D >
D k D
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2. The maximal formula is of the form A Vv B. Convert the deduction on the left into
the deduction on the right:

(AT [B)

Py

[A v B 9 c o

C i,j —~ 1

C

| I3 m;
A D ‘ D

Similarly for the case where the premise of VI is B concluded by X».

3. The major premise of D E is discharged by D I. Convert the deduction on the left
into the deduction on the right:

(BY 5

o b [B]

[A D BY A ; I,

. = B
B > D ; D

4. The major premise of D F is discharged by T'R. Convert the deduction on the left
into the deduction on the right, where E* is constituted by applications of rules in E
that discharge assumptions in ITy:

k
[B] g
. I Il [A]
 [ADBY A c . 5
L
4 c -5
) vk
D D i D

D

E* is constructed in the following way. Let p; ... p, be the sequence of applications
of rules in E that discharge assumptions in IT; from top to bottom. Let p} be an
application of the same rule as p;, with its major, minor and specific premises con-
cluded as in pj and its arbitrary premises and conclusion replaced by D. If p{ has only
one arbitrary premise, conclude it with the deduction ending in the upper D in the
schematic representation of the reduction procedure (i.e. it is concluded by X, in turn
the continuation of IT; through A). If ,0’1" has two arbitrary premises, then one is con-
cluded as described previously, and to conclude the other, observe that in that case &
contains a subdeduction of D from the conclusion E of p;: append it to the deduction
concluding the other arbitrary premise of p; to conclude the other arbitrary premise of
P}, deleting redundant applications of rules (i.e. those discharging assumptions that
do not stand above that arbitrary premise of p;). Continue in the same way with p;
until you reach pj,.
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Examples of applications of the reduction procedures will make this more concrete,
and I will give two shortly. For now, notice that the reduction procedure removes the
maximal formula A D B without introducing any new ones, as it only uses (some of
the) material already present in E.

5. The maximal formula is of the form —A. Convert the deduction on the left into the
deduction on the right, where Z* is constructed from all those applications of rules in
E that discharge assumptions in IT as in the previous reduction procedure:

I I

, [—A)/ A [A]

[A] B )

5 o s C

C C .. 2*
L]

C C

This completes the reduction procedures for maximal formulas.

Examples Let’s illustrate the method of reusing rules that discharge assumptions in the
reduced assumption with two examples. First, suppose there is a sole application of a
rule below the major premise discharged by —I and above its right arbitrary premise
that discharges an assumption above the minor premise of —E, and let it be VE:

[B]!

I1
[—-A]* A
C [E]?
g1 P &3
BV E D D 12
3 bl
[A] D
b By
F F 34
F

In this case any applications of rules in E, can only be of —=F, and any application of a
rule in E4 that discharges assumptions (i.e. rules other than —F) discharge them in E.
E of the schematic representation of the reduction procedure for maximal formulas
of the form —A is constituted by E1, E;, B3, E4 in the example. E* consists of an
application of VE with its major premise derived by &1, its first arbitrary premise
derived by IT and X, and the second arbitrary premise derived by E3 and applications
of those rules of E4, call them EZ, that do not discharge assumptions in E; (these

become redundant). The reduced deduction is:

By EP

mn =3

[A] [ ]

&1 )y Sy
BV E FF F 12
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As all discharge happens above arbitrary premises, we could also first permute the
application of V E in the initial deduction downwards to conclude with F. This would
duplicate E4 and in most cases create redundant applications of rules in the copy of E4
under E3, which are to be removed. Then apply the reduction procedure. The result
would be the same in this example, but in the general case this method is not enough,
as applying the reduction procedure removes E, from the deduction, and some of it
may be needed to discharge assumptions in IT: these rules would still have to be reused
somehow.

Now consider the case in which there are more than one applications of rules
discharging assumptions above the minor premise A of —F in the initial deduction,
and let v E be the top-most such rule. Then all other applications of such rules are in Ey4,
and E, can disappear in the reduction procedure without loss. After concluding F by
V E, the deduction needs to continue with those rules of E4 that discharge assumptions
in IT. This poses no further problem: as discharge happens above arbitrary premises,
we can apply the relevant rules of E4 with F' as the arbitrary premises and conclusions,
deriving the major, minor, specific and remaining arbitrary premise (if any) as in E.

As a second example, suppose T R is the top most application of a rule below the
major premise discharged by —/ and above its right arbitrary premise that discharges
an assumption above the minor premise of —E:

[B]!

I1
[—AT* A
c [BD EJ?
81 P
3 D D 1,2
[A] D
by E3
F - F 34

Then E of the schematic representation of the reduction procedure for maximal for-
mulas of the form —A is constituted by E1, &3, E3. E* consists of an application of
T R with its left arbitrary premise concluded by X, IT, and its right arbitrary premise
concluded by E, and those applications of E3, call them E;‘ ,needed to derive F from
D, and with its conclusion followed by applications of the rules of 23, call them E32,
that discharge assumptions in I1. The reduced deduction is:

(B! [BD EJ?
m 22
[D]
[A] o
) =3
F F |,
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Once more, as all discharge happens above arbitrary premises, constructing E;z from
E3 poses no further problem.

C has 10 rules, 4 of which are elimination rules. So there are 40 permutative reduction
procedures. Most of them are handled by permuting the application of the elimination
rule upwards. The 4 cases where the major premise of an elimination rule is concluded
by —FE do not really involve any permutation upwards, but I will class them with
the permutative reduction procedures. None of this presents any difficulty, so I will
only give some of the permutativereduction procedures as examples, the others being
similar.

Premutative Reduction Procedures for Maximal Segments
1. The major premise of D E is derived by V1. Convert the deduction on top into the
deduction below:

[AV BY
IT I, [D]/
A CO>D | P ¥
Co>D ’ C E .
E J
—
[AV BJ (D}
I, P pI))
Iy CoD c E .
A E !
E

2. The major premise of D E is derived by D /. Convert the deduction on top into the
deduction below:

[A D BY/
IT I, [D]k
B C>D . po} p2})
CoD ¢ E
E
-
[A D BY [DIF
I, P} p3y}
IT; C>D C E
B . E

3. The major premise of O E is derived by AE. Convert the deduction on top into the
deduction below:
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[A]" [B)Y
I I, [D]k
AAB C>D i 2 p3;)
C>D ’ C E
E
RS
[A] [BY [DIF
I, > >
I, C>D C E
AANB E ..
E b

4. The major premise of —E is derived by T R. Convert the deduction to the left of ~~
into the one on its right:

[AY [A D BY [AY [AD BV

I I, I 21 I1; 21

-C -C i P ~ -C C -C C
—C - C D - D,

5. In the case a major premise of an elimination rule is concluded by —FE, remove the
application of the elimination rule and use —E to conclude the discharged assump-
tion(s) of (one of) the side deductions concluding with an arbitrary premise instead.
For instance, convert the deduction to the left of ~~ into the one on its right:

I1 IT
noom B CP A4
—A A X X - [B]

BvC _ D D, s,
D

Alternatively, we could have concluded C by—E and used X, to conclude D. The
normal form of deductions is therefore not unique.

This completes the permutative reduction procedures.

Repeated application of a permutative reduction procedure reduces the length of a max-
imal segment by permuting applications of elimination rules upwards in the deduction.
As noted earlier, the first formula of a segment can only be one discharged by an intro-
duction rule, and so repeated application of a permutative reduction procedure turns
a maximal segment into a maximal formula. At the top of every maximal segment,
there stands a maximal formula, so to speak.

Definition 8 (Rank of deductions) The rank of a deduction IT is the pair (d, [), where
d is the highest degree of a maximal formula or maximal segment in IT or O if there
is none, and / is the sum of sum of the lengths of maximal segments of highest degree
and number of maximal formulas in I1. (d,l) < {(d’, ) iff either (i) d < d' or (ii)
d=d andl </
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Applying reduction procedures for maximal formulas cannot introduce new maximal
formulas into the reduced deduction, but it may increase the lengths of maximal
segments that were in the initial deduction.” In the case of maximal formulas of form
A A B, this can happen if A is concluded by a rule in ¥; or B is in ¥, (i.e. X1 or
3, is not empty) and some formula occurrence in the assumption class to which the
formulas discharged by A E belong is the major premise of an elimination rule in IT;.
Similarly for maximal formulas of the form A Vv B. In the case of maximal formulas
of the form A D B, this can happen in reduction procedure 3 if B is concluded by a
rulein ¥ (i.e. X is not empty) and some formula occurrence in the assumption class to
which the formulas discharged by D E belong is the major premise of an elimination
rule in Iy, and in reduction procedure 4 if A is concluded by a rule in IT; (i.e. T is
not empty) and some formula occurrence in the assumption class to which the minor
assumptions discharged by T R belong is the major premises of an elimination rule in
3. The case of maximal formulas of the form —A is similar to the last one with T R.

Any maximal segment that suffers an increase in length as a result of a reduction
procedure is, however, of lower degree than the maximal formula removed, as the
formula that form part of the segment are subformulas of the latter. Hence applying a
reduction procedure for maximal formulas cannot increase the rank of a deduction.

An application of a permutative reduction procedure reduces the length of a maximal
segment by 1 or removes it entirely, if the maximal segment is of length 1 (i.e. it is
the conclusion of —E and major premise of an elimination rule). In the latter case,
another maximal segment is also reduced by 1, namely should the conclusion D in the
schematic representation of the procedure above form part of a maximal segment. The
other permutative reduction procedures may increase the lengths of maximal segments
that were in the initial deduction. To ensure the decrease of the rank of a deduction,
the permutative reduction procedures must be applied with a strategy.

Adopting the convention that a deduction that already is in normal form converts
into itself, we have:

Theorem 1 Any deduction in C can be converted into a deduction in normal form.

Proof By Lemma 1, it suffices to consider deductions in which introduction rules
discharge exactly one major assumption. The theorem follows by the considerations
of the paragraphs immediately preceding the theorem and an induction over the rank
of deductions. Applying reduction procedures for maximal formulas cannot increase
the rank of a deduction, and as a maximal formula is removed, applying a reduction
procedure to a maximal formula of highest degree decreases the rank of the deduction.
Permutative reduction procedures must be applied so as to avoid an increase of a length
of segments of highest degree. This can be achieved by applying one to a maximal
segment of highest degree such that no maximal segment of highest degree stands
above it in the deduction. This reduces the rank of the deduction. O

The deduction in normal form has the same undischarged assumptions as the initial
deduction:

91t may also shorten maximal segments, i.e. if the arbitrary premises marked by C or D in the reduction
procedures form part of one.
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Theorem 2 For any deduction in C, there is a deduction in normal form of the same
conclusion from the same undischarged assumptions.

Proof By theorem 1 and the ban on vacuous discharge. O

This is a noteworthy difference to normalisation in Gentzen’s and Prawitz’s systems
of classical intuitionist logic, where during the course of the normalisation procedure
typically some undischarged assumptions of the deduction are removed together with
maximal formulas above which they occur.

The form of normal deductions has other noteworthy features:

Theorem 3 If 11 is a deduction in normal form, then all major premises of elimination
rules are (discharged or undischarged) assumptions of T1.

Proof This is a consequence of the way the permutative reduction procedures are
applied in normalisation. O

Deductions in normal form in C are particularly perspicuous.

Definition 9 (Subformula property) A deduction IT of a conclusion C from the undis-
charged assumptions Aj ... A, has the subformula property if every formula on the
deduction is a subformula either of C orof Ay ... A,,.

The crucial detail of deductions in normal form in C that ensures that they enjoy the
subformula property is that the major premise —A of —E is not the major assumption
discharged by —1, and because the minor assumption discharged by T R is a subfor-
mula of the major assumption, which is not the major premise of O E. To prove the
subformula property formally, we need the notion of a branch:

Definition 10 (Branch)

A branch in a deduction is a sequence of formula occurrences o7 . . . g, such that o]
is an assumption of the deduction that is neither discharged by an elimination rule nor
the major assumption discharged by an introduction rule other than —7 or TR, oy, is
either the conclusion of the deduction or the minor premise of O E or —E, and for
eachn > i:

(i) if o7 is the major premise of an elimination rule other than —F, 071 is an assump-
tion discharged by it, and if it is the major premise of —E, o;4 is the conclusion
of the rule;

(ii) if o; is the specific premise of an introduction rule, ;4 is a major assumption
discharged by it;

(iii) and if o; is an arbitrary premise (of an introduction or an elimination rule rule),
0;+1 is the conclusion of the rule.

Definition 11 (Order of branches) A branch is of order O if its last formula is the
conclusion of the deduction; it is of order n + 1 if its last formula is the minor premise
of D E or of —F such that its major premise is on a branch of order n.

A branch of order O is also called a main branch in the deduction.
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Corollary 1 If any major premises of elimination rules are on a branch in a deduction
in normal form, then they precede any major assumptions discharged by introduction
rules that are on the branch.

Proof By theorem 3, the major premises of elimination rules that occur on a branch in a
deduction in normal form are assumptions. Hence they are not the last formulas of any
segments, and in particular they are not the last formulas of any segments beginning
with discharged major assumptions of introduction rules. O

TR and —1 are introduction rules without specific premises. Branches move from
their premises to their conclusions. A branch in a deduction in C begins with an
undischarged assumption or an assumption discharged by —1 or T R. If an assumption
discharged by TR or —I was also an arbitrary premise of the rule, there would be
vacuous discharge above the other arbitrary premises. But vacuous discharge was
banned. Hence the assumptions discharged by 7R and —/ can only be major, minor
or specific premises of rules. In deductions in normal form, the first option does not
occur in case of the major assumptions discharged. Hence the major assumptions
discharged by T R and —I are minor premises of —=E, D E or specific premises of
D I or VI, and consequently subformulas of other formulas on the deduction. The
minor premises discharged by TR and —E are subformulas of the major premises
discharged. This, in a nutshell, guarantees that deductions in normal form enjoy the
subformula property.

A branch in a deduction in normal form in C can be partitioned into an E-part,
the first part of the branch, which consists of major premises of elimination rules, and
an I-part, which consists of sequences of segments that are the major assumptions
discharged by introduction rules. Separating the two parts is the minimal formula or
minimal segment. Either part may be empty: some branches in normal deductions
consist of only an E-part, some of only an I-part, and in the case of a deduction that
consists of a single formula A, both parts are empty and there is only a minimal
formula.

For brevity we may speak of a segment being the premise, conclusion or discharged
assumption of the rule of which its last or first formula is the premise, conclusion or
discharged assumption.

An induction over the order of branches establishes the following result:

Corollary 2 Deductions in normal form have the subformula property.

Proof By inspection of the rules and an induction over the order of branches. Consider
a branch of order 0. If it has an E-part, it begins with a sequence of formulas and
segments that are major premises of elimination rules, going from major premise to
assumption discharged by the elimination rule, until it reaches a specific formula of an
introduction rule, and then continues with segments discharged by introduction rules,
until it reaches the conclusion of the deduction. All formulas in the latter part of the
branch are subformulas of the conclusion of the deduction. All the formulas on the
former part of the branch are subformulas of an assumption that remains undischarged
in the deduction. If the branch does not have an E-part, it begins with specific premises
of introduction rules. This is because the major assumptions discharged by 7 R and
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—E form branches consisting of only a minimal formula, because due to the normal
form of the deduction and the ban on vacuous discharge, they can only be the specific
premises of introduction rules. In a deduction in normal form branches beginning
with the major assumptions discharged by TR and —I cannot contain any major
premises of elimination rules. Hence the major assumptions discharged by 7'R and
—] are subformulas of the final formula of the branch, and therefore so are the minor
premises discharged by these rules. The only tricky case to consider is —E': here the
branch goes from the major premise of the form —A to a conclusion C, which may
not share any subformulas. But the case is really no different from applications of
L FE in Gentzen’s and Prawitz’s system of natural deduction for intuitionist logic: the
crucial point is that C is not the major premise of an elimination rule, and so it is on
the I-part of the branch, and hence a subformula of the last formula of the branch.
Any conclusion of —E on a branch of a deduction in normal form is either the last
formula of the branch, or the specific premise of an introduction rule, or the first
formula of a segment ending in a specific premise of an introduction rule, and hence
it is a subformula of the conclusion of the deduction. This completes the basis of the
induction. A branch that ends in the minor premise of O E or —F ends in a formula that
is a subformula of a branch of lower order, and hence the theorem holds by induction
over the order of branches. O

As a corollary of this corollary we have:

Corollary 3 For any deduction in C, there is a deduction of the same conclusion from
the same undischarged assumptions with the subformula property.

Proof From theorem 2 and corollary 2. O

Finally, normalisation yields a direct proof of the consistency of C. Let a proof in C
be a deduction that has no undischarged assumptions.

Corollary 4 Ifthere is a proof of A in C, then there is one that ends with an introduction
rule.

Proof Elimination rules do not discharge assumptions above their major premises.
Hence if in a deduction in normal form there is a main branch that begins with the
major premises of an elimination rule and does not have an I-part, it is not a proof.
Contraposing and applying theorem 1, if there is a proof of A in C, then there is one
that ends with an introduction rule. O

Corollary 5 C is consistent.

Proof Suppose there is a proof of an atomic formula p in C. Then there is a proof in
normal form of p. But as p contains no connective, it cannot end in an introduction
rule, and hence it is not a proof. Contradiction. O

A similar argument establishes that by the form of normal deductions, a proof of
A A —A would end with an introduction rule, hence both A and —A would need to
have been derived from no assumptions, which is impossible.
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5 Adding the quantifiers

To close this paper, let’s consider what happens when C is extended to quantificational
logic. The language is extended in standard fashion to contain the connectives V, 3,
constants, function and predicate symbols and variables. The language has two disjoint
sets of variables, the parameters a, b, c . . . playing the role of free variables, and the
variables to be bound by the quantifiers x, y, z . . ., which do not occur free in formulas.
The terms of the language are built up from the parameters, constant symbols and
function symbols. We may call an expression that is like a formula or a term, but
containing free variables instead of parameters, a pseudo-formula or a pseudo-term.

Let A¢ be the result of substituting the variable x for the parameter a in A. Let A7
be the result of substituting all occurrences of the variable x in A by the term ¢, where
it is assumed that 7 is free for x in A, i.e. no variable in the pseudo-term ¢ becomes
bound as a result of the substitution.

The usual elimination rule for the existential quantifier already has the form of
general elimination rules. The general elimination rule for the universal quantifier has
the same form with a different use of terms:

[AZ]) (A7)
> I1 z I1
dxA - C IE i VxA - C VE i

where in JE, parameter a does not occur in IxA, nor in C, nor in any formulas
undischarged in IT except those of the assumption class [A] ].
The following are the general introduction rules for the quantifiers:

[3x A [VxAJ
¥ n b n
C c

where in VI, parameter a does not occur in any undischarged assumption of .19

It is worth remarking that the rules for both quantifiers have the same form and
differ only with respect to the occurrences of terms and parameters and consequently
where restrictions on parameters are imposed.

Milne observes that adding rules for both quantifiers upsets the subformula. It is
instructive to see why. Consider the classically, but not intuitionistically, valid inference
of Vx(Fx v A) = VxFx Vv A, (x not free in A). It may be derived in the following
way:

Vx(Fx Vv A) [—A) [A]?
FfvA [F]! Fi
FY ’ [Vx Fx]3
[A]* VxFx
VxFxV A VxFx Vv A 45
VxFx Vv A '

10 The general introduction rule for 3 is Milne’s [5].
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—A is a maximal formula. An attempt to remove it from the deduction by applying
the reduction procedure for maximal formulas of this form gives the following:

[FF]! [Vx Fx]?

Vx(Fx v A) VaFx ’ [A]?
FyVvA VxFx Vv A VxFx Vv A -
VxFxV A '

The application of V[ is now incorrect.

The problem is that E in the schematic representation of the reduction procedure
for maximal formulas of the form —A may contain applications of rules that discharge
formulas in which parameters of applications of VI lower down in the deduction occur,
but in E*, these applications become incorrect as they are permuted upwards.

So, for instance in the first example of an application for the reduction procedure
for maximal formulas of the form —A given in the previous section, there may be an
application of VI in E4 that is indispensable for the deduction of F from D (i.e. if
they are different), where E contains the parameter of that application: this application
becomes incorrect in Ej.

A similar problem occurs in case the maximal formula is the major assumption
discharged by T R.

The situation is different with applications of 3E, as there the restriction on param-
eters is imposed on a deduction above an arbitrary premise. If there is an application
of AF in B4, we apply it after the application of vV E, and the problem does not arise.

Let C7 be C plus the rules for the existential quantifier. We will give reduction
procedures for maximal formulas of the form 3x A and prove a normalisation theorem
for this system.

As we have an unlimited amount of parameters at our disposal, we may adopt the
convention that every application of E has its own parameter, so that the parameter
of an application of 3E occurs only in its discharged assumption and formulas derived
from it. Consequently, the parameter occurs only above the application of the rule in a
deduction, and any application of IE below it has a different parameter. Call this the
parameter convention.'!

Inspection of the reduction procedures for the propositional connectives shows that,
if the parameter convention is upheld, then any correct application of 3E in the initial
deduction remains correct in the reduced deduction. The same holds for the following
reduction procedure for maximal formulas of the form 3x A, where E¢ is the result of
substituting the term ¢ for the parameter a throughout E. We add to the list of reduction
procedures of the previous section:

6. The maxima formula is of the form 3x A. Convert the deduction on the left into the
deduction on the right:

n Alternatively we could assume the parameters in deductions are renamed as part of the reduction pro-
cedure, wherever necessary.
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[A;)

[Fx AT c . za

C
= IT
A7 D
i D

D
The additional permutative reduction procedures are evident and pose no further dif-
ficulty. Neither does extending the proof of theorem 1 to C?, and we have:

Theorem 4 Deductions in C3 normalise.

Consequently, for the standard notion of a subformula applicable to quantificational
logic, where all substitution instances of a formula 3xA are counted amongst its
subformulas, we have:

Corollary 6 Deductions in normal form C? have the subformula property.
Finally, as vacuous discharge remains banned in C¥, we have:

Corollary 7 For any deduction in C3, there is a deduction of the same conclusion from
the same undischarged assumptions with the subformula property.

Proof From theorem 4 and corollary 6. O

6 Conclusion

Having adopted the unique discharge convention meant that, for the purposes of nor-
malisation, consideration was restricted to applications of general introduction rules
that discharge exactly one major assumption. After normalisation, it would be possible
to collapse certain sequences of applications of general introduction rules into one.
On the other hand, the unique discharge convention allows for an easy transposition
of C into a more conventional system. The conclusion of an application of an intro-
duction rule in Gentzen’s system obviously occurs exactly once in a deduction, so if
the unique discharge convention is upheld, there is a simple correspondence between
deductions in Gentzen’s system and in the present system with general introduction
rules. Instead of assuming, concluding and discharging the major assumption A * B,
we only conclude it, without making and discharging the assumption. This works for
A, VI, D I and 31, but of course not for =/ and T R: them we must leave as they
are. Furthermore, although it is not necessary for a complete system of classical logic
to allow the discharge of an assumption A above B in D I, as this rule is derivable
from D I and T R, doing so does not upset the subformula property. The following
is therefore a complete system of classical quantificational logic in which for every
deduction, there is a deduction that satisfies the subformula property:

[A]' [BY
n
Al A B NE: ANB C i,

ANB C
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[AY [B]
I I1
B ~ ADB A C .
o1 714 5B i D E: C i
[A] [A D BY
I1 b
TR: <t ¢ C ¢ i,j
[A] (B}
I1 >
v] A B VE AV B C C i
AV B AV B C '
[A] [—A)
I1 >
C C .. —A A
ﬁI. C 12¥) ﬁE‘. C
[AX]
I1
Ay IxA C .
a7 A dE: —C i

Finally, we could also define — in terms of L and replace the two negation rules with
one rule:

1E: T

This rule can be restricted to atomic conclusions, and certain economies ensue in the
number of reduction procedures required to prove normalisation.
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