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Abstract

The recently initiated approach called computability logic is a formal theory of interactive computation. It understands compu-
tational problems as games played by a machine against its environment, and uses logical formalism to describe valid principles of
computability, with formulas representing computational problems and logical operators standing for operations on computational
problems. The concept of computability that lies under this approach is a generalization of Church–Turing computability from
simple, two-step (question/answer, input/output) problems to problems of arbitrary degrees of interactivity. Restricting this concept
to predicates, which are understood as computational problems of zero degree of interactivity, yields exactly classical truth. This
makes computability logic a generalization and refinement of classical logic.

The foundational paper “Introduction to computability logic” [G. Japaridze, Ann. Pure Appl. Logic 123 (2003) 1–99] was
focused on semantics rather than syntax, and certain axiomatizability assertions in it were only stated as conjectures. The present
contribution contains a verification of one of such conjectures: a soundness and completeness proof for the deductive system CL3
which axiomatizes the most basic first-order fragment of computability logic called the finite-depth, elementary-base fragment. CL3
is a conservative extension of classical predicate calculus in the language which, along with all of the (appropriately generalized)
logical operators of classical logic, contains propositional connectives and quantifiers representing the so called choice operations.
The atoms of this language are interpreted as elementary problems, i.e. predicates in the standard sense. Among the potential
application areas for CL3 are the theory of interactive computation, constructive applied theories, knowledgebase systems, systems
for resource-bound planning and action.

This paper is self-contained as it reintroduces all relevant definitions as well as main motivations. It is meant for a wide audience
and does not assume that the reader has specialized knowledge in any particular subarea of logic or computer science.
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1. Introduction

The question “What can be computed?’’ is fundamental to theoretical computer science. The approach initiated
recently in [10], called computability logic, is about answering this question in a systematic way using logical for-
malism, with formulas understood as computational problems and logical operators as operations on computational
problems.
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The collection of operators used in [10] to form the language of computability logic can be seen as a non-disjoint
union of those of classical, intuitionistic and—in a very generous sense—linear logics, with the computational semantics
of classical operators fully consistent with their standard meaning, and the semantics of the intuitionistic-logic and
“linear-logic’’ operators formalizing the (so far rather abstract) computability and resource intuitions traditionally
associated with those two logics. This collection captures a set of most basic and natural operations on computational
problems. But it generally remains, and will apparently always remain, open to different sorts of interesting extensions,
depending on particular needs and taste. Some of such extensions are outlined in [12]. Due to the fact that the language
of computability logic has no clear-cut boundaries, every technical result in this area will deal with some fragment of
that logic rather than the whole logic. The result presented in this paper concerns what in [10] was called the finite-depth,
elementary-base fragment.

This fragment is axiomatized as a rather unusual type of a deductive system called CL3. It is a conservative extension
of classical first-order logic in a language obtained by incorporating into the formalism of the latter the “additive’’
and “multiplicative’’ groups of to what we—with strong reservations—referred as “linear-logic operators’’. The main
technical result of this paper is a proof of soundness and completeness for CL3 with respect to computability semantics.
A secondary result is a proof of decidability for the classical-quantifier-free (yet first-order) fragment of CL3. These
proofs are given in Part 2. Part 1 is mainly devoted to a relatively brief (re)introduction to the relevant fragment
and relevant aspects of computability logic, serving the purpose of keeping the paper self-contained both technically
and motivationally. A more detailed and fundamental introduction to computability logic can be found in [10]. A
considerably less technical and more compact—yet comprehensive and self-contained—overview of computability
logic is given in [12], reading which is most recommended for the first acquaintance with the subject and for a better
appreciation of the import of the present results. The soundness and completeness of the propositional fragment CL1
of CL3 has been proven in [11].

Traditionally construed computational problems correspond to interfaces in transformational programs where the
interaction between a system and its environment is simple and consists of two steps: querying the system and gen-
erating an answer. The computational problems that our approach deals with are more general in that the underlying
interfaces may have arbitrary complexity. Such problems and the corresponding computations can be called interactive
as they model potentially long dialogues between the system and the environment. From the technical point of view,
computability logic is a game logic, because it defines interactive computations as games. There is an extensive litera-
ture on “game-style’’ models of computation in theoretical computer science: alternating Turing machines, interactive
proof systems, etc., that are typically only interesting in the context of computational complexity. Our approach, which
is concerned with computability rather than complexity and deals with deterministic rather than non-deterministic
choices, at present is only remotely related to that line of research, and the similarity is more terminological than
conceptual. From the other, “games in logic’’ or “game semantics for linear logic’’ line, the closest to our present study
appears to be Blass’s work [3], and less so some later studies by Abramsky and Jagadeesan [1], Hyland and Ong [6]
and others. See [10] for discussions of how other approaches compare with ours.

There are considerable overlaps between the motivations and philosophies of linear (as well as intuitionistic) and
computability logics, based on which [10] employed some linear-logic terminology. It should be pointed out, however,
that computability logic is by no means about linear logic. Unlike most of the other game semantics approaches, it is
not an attempt to use games to construct good models for Girard’s linear logic, Heyting’s intuitionistic calculus or any
other, already given popular syntactic targets. Rather, computability logic evolves by the more and only natural scheme
“from semantics to syntax’’: it views games as foundational entities in their own right, and then explores the logical
principles validated by them. Its semantics, in turn, follows the scheme “from truth to computability’’. It starts from the
classical concept of truth and generalizes it to the more constructive, meaningful and useful concept of computability.
As we are going to see, classical truth is nothing but a special case of computability; correspondingly, classical logic
is nothing but a special fragment of computability logic and of CL3 in particular.

The scope of the significance of our study is not limited to logic or theory of computing. As we will see later and
more convincingly demonstrated in [10] and [12], some other application areas include constructive applied theories,
knowledgebase systems, or resource-bound systems for planning and action.

Part 1
This part briefly reintroduces the subject and states the main results of the paper.
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2. Computational problems

The concept of computability on which the semantics of our logic is based is a natural but non-trivial generalization
of Church–Turing computability from simple, two-step (question/answer, or input/output) problems to problems of
arbitrary degrees and forms of interactivity where, in the course of interaction between the machine and the environment,
input and output can be multiple and interlaced, perhaps taking place throughout the entire process of computation
rather than just at the beginning (input) and the end (output) as this is the case with simple problems. Technically the
concept is defined in terms of games: an interactive computational problem/task is a game between a machine and the
environment, where dynamic input steps are called environment’s moves, and output steps called machine’s moves.

The necessity in having a clear mathematical model of interactive computation hardly requires any justification: after
all, most tasks that real computers and computer networks perform are truly interactive. And this sort of tasks cannot
always be reduced to simple series of (the well-studied and well-modeled) two-step tasks. For example, interactive tasks
involving multiple concurrent subtasks naturally generate situations/positions where both parties may have meaningful
actions to take, and it may be up to the player whether to try to make a move or wait to see how things evolve, perhaps
performing some vital computations while waiting and watching. 1 It is unclear whether the steps corresponding to
such situations should be labeled as ‘machine-to-move’ or ‘environment-to-move’, which makes it impossible to break
the whole process into consecutive pairs or alternately labeled steps.

Standard game-semantical approaches that understand players’ strategies as functions from positions to moves 2

fail to capture the substance of interaction in full generality, as they essentially try to reduce interactive processes to
simple chains of question/answer events. This is so because the ‘strategy = function’ approach inherently only works
when at every step of the play the player who is expected to make a move is uniquely determined. Let us call this sort
of games strict. Strictness is typically achieved by having what in [2] is called procedural rules or equivalent—rules
strictly regulating who and when should move, the most standard procedural rule being the one according to which
players should take turns in alternating order.

One of the main novel and distinguishing features of our games among the other concepts of games studied in the
logical literature—including the one tackled by the author [7] earlier—is the absence of procedural rules, based on
which our games can be called free. In these games, either player is free to make any move at any time. Instead of
having procedural rules common for all games, each particular game comes with its own what we call structural rules.
These are rules telling what moves are legal for a given player in a given position. Making an illegal move by a player
is possible but it results in a loss for that player. The difference between procedural and structural rules is not just
terminological. Unlike the standard procedural rules that allow only one player to move (at least move without penalty)
in every given situation, structural rules can be arbitrarily lenient. In particular, they do not necessarily have to satisfy
the condition that in every position at most one of the players may have legal moves. When, however, this condition
still is satisfied, we essentially get the above-mentioned strict type of a game: the structural rules of such a game can be
thought of as procedural rules according to which the player that is expected to move in a given non-terminal position
is the (now uniquely determined) one that has legal moves in that position. Strict games are thus special cases of our
more general free games. The latters present a more adequate and apparently universal modeling tool for interactive
tasks.

Strategies for playing free games can and should no longer be defined as functions from positions to moves. In the
next section we will define them as higher-level entities called play machines.

To define our games formally, we fix several classes of objects and dedicated (meta-) variables for them. By placing
the common name for objects between braces we denote the set of all objects of that type. Say, {variables} stands for
the set of all variables. These objects are:
• Variables, with {variables} = {v0, v1, v2, . . .}. Letters x, y, z will be used as metavariables for variables.
• Constants, with {constants} = {0, 1, 2, . . .}. Letter c will be used as a metavariable for constants.
• Terms, with {terms} = {variables} ∪ {constants}. Letter t will be used as a metavariable for terms.
• Valuations, defined as any functions of the type {variables} → {constants}. A metavariable for valuations: e. Each

valuation e extends to a function of the type {terms} → {constants} by stipulating that, for every constant c, e(c) = c.

1 See Sections 3 and 15 of [10] for more detailed discussions and examples.
2 Often some additional restrictions are imposed on this sort of strategies. Say, in Abramsky’s tradition, strategies only look at the other player’s

immediately preceeding moves.
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• Moves, defined as any finite strings over the standard keyboard alphabet plus the symbol ♠. Metavariables for moves:
�, �, �.

• Players, with {players} = {�, ⊥}. Here and from now on � and ⊥ are symbolic names for the machine and the
environment, respectively. Letter ℘ will range over players, with ¬℘ meaning “℘’s adversary’’, i.e. the player that
is not ℘.

• Labeled moves, or labmoves. They are defined as any moves prefixed with � or ⊥, with such a prefix (label)
indicating who has made the move.

• Runs, defined as any (finite or infinite) sequences of labmoves. Metavariables for runs: �, �.
• Positions, defined as any finite runs. A metavariable for positions: �.
Runs and positions will often be delimited with “〈’’ and “〉’’, with 〈〉 thus denoting the empty run. The meaning of an
expression such as 〈�, ℘�, �〉 must be clear: this is the result of appending to the position � the position 〈℘�〉 and then
the run �.

Definition 2.1. A game is a pair A = (LrA, WnA), where:
• LrA is a function that sends each valuation e to a set LrA

e of runs, such that the following two conditions are satisfied:
(a) A run is in LrA

e iff all of its non-empty finite initial segments are in LrA
e .

(b) No run containing the (whatever-labeled) move ♠ is in LrA
e .

Elements of LrA
e are called legal runs of A with respect to e, and all other runs called illegal. In particular, if the last

move of the shortest illegal initial segment of � is ℘-labeled, then � is said to be a ℘-illegal run of A with respect
to e.

• WnA is a function of the type {valuations} × {runs} → {players} such that, writing WnA
e 〈�〉 for WnA(e, �), the

following condition is satisfied:
(c) If � is a ℘-illegal run of A with respect to e, then WnA

e 〈�〉 = ¬℘.

To what we earlier referred as “structural rules’’ are thus represented by the Lr component of a game, and we call
it the structure of that game. The meaning of the Wn component, called the content, is that it tells us who has won a
given run of the game. When WnA

e 〈�〉 = ℘, we say that � is a ℘-won (or won by ℘) run of A with respect to e.
Just as predicates (their truth values) in classical logic generally depend on how certain variables are interpreted,

so do games: both the structure and the content of a game take valuation e as a parameter. We will typically omit this
parameter when it is irrelevant or clear from the context.

Meaning by an illegal move a move adding which (with the corresponding label) to the given position makes it
illegal, condition (a) of Definition 2.1 corresponds to the intuition that a run is legal iff no illegal moves have been made
in it. This automatically makes the empty run 〈〉 a legal run of every game. Our selection of the set of moves is very
generous, and it is natural and technically very convenient to assume that certain moves will never be legal. According
to condition (b), ♠ is such a move. As for condition (c), it tells us that an illegal run is always lost by the player who
has made the first illegal move.

We say that a game A depends on a variable x iff there are two valuations e1 and e2 that agree on all variables except
x such that either LrA

e1
�= LrA

e2
or WnA

e1
�= WnA

e2
.

A game A is said to be finitary iff there is a finite set 	x of variables such that, for any two valuations e1 and e2 that
agree on all variables from 	x, we have LrA

e1
= LrA

e2
and WnA

e1
= WnA

e2
. Otherwise A is infinitary. One can easily

show that for each finitary game A there is a unique smallest set 	x that satisfies the above condition—in particular, the
elements of this 	x are exactly the variables on which A depends. A finitary game that depends on exactly n variables is
said to be n-ary.

A constant game means a 0-ary game. There is a natural operation, called instantiation, of the type {valuations} ×
{games} → {constant games}. The result of applying this operation to (e, A) is denoted e[A]. Intuitively, e[A] is the
constant game obtained from A by fixing the values of all variables to the constants assigned to them by e. Formally,
game e[A] is defined by stipulating that, for any valuation e′, Lre[A]

e′ = LrA
e and Wne[A]

e′ = WnA
e . This makes e′

irrelevant, so that it can be omitted and we can just write Lre[A] and Wne[A]. For any game A, these two expressions
mean the same as LrA

e and WnA
e .

Games whose Lr component does not depend on the valuation parameter are said to be unistructural. Constant
games are thus special cases of unistructural games where the Wn component does not depend on valuation, either.
Formally, a game A is unistructural iff, for any two valuations e1 and e2, LrA

e1
= LrA

e2
.
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We say that a game A is finite-depth iff there is a (smallest) integer n, called the depth of A, such that, for every
valuation e and run � with � ∈ LrA

e , the length of � does not exceed n. Games of depth 0 are said to be elementary.
Thus, elementary games are games that have no legal moves: the empty run 〈〉 is the only legal run of such games. This
automatically makes all elementary games unistructural.

Constant elementary games are said to be trivial. Obviously there are exactly two trivial games. We denote them by
the same symbols � and ⊥ as we use for the two players. In particular, � is the (unique) trivial game with Wn�〈〉 = �,
and ⊥ is the (unique) trivial game with Wn⊥〈〉 = ⊥.

Let us agree to understand classical predicates—in particular, predicates on {0, 1, 2, . . .}—as functions from valua-
tions to {�, ⊥} rather than, as more commonly done, functions from tuples of constants to {�, ⊥}. Say, x > y is the
predicate that is true at a valuation e (returns � for it) iff e(x) > e(y). This understanding of predicates is technically
more convenient, and is also slightly more general as it captures infinite-arity predicates along with finite-arity ones.

All elementary games have the same structure, so their trivial Lr component can be ignored and each such game
identified with its Wn component; furthermore, by setting the run parameter to its only relevant value 〈〉 in such games,
Wn becomes a function of the type {valuations} → {players}, i.e. exactly what we call a predicate. We thus get a
natural one-to-one correspondence between elementary games and predicates: every predicate p can be thought of as
the (unique) elementary game A such that WnA

e 〈〉 = � iff p is true at e; and vice versa: every elementary game A
thought of as the predicate p that is true at e iff WnA

e 〈〉 = �. With this correspondence in mind, we will be using the
terms “predicate’’ and “elementary game’’ as synonyms. So, computability logic understands each predicate p as a
game of zero degree of interactivity, (the only legal run 〈〉 of) which is automatically won by the machine if p is true,
and lost if p is false. This makes the classical concept of predicates a special case of our concept of computational
problems; correspondingly, the classical concept of truth is going to be a special case of our concept of computability—in
particular, computability restricted to elementary games.

The class of games in the above-defined sense is general enough to model anything that we would call a (two-player,
two-outcome) interactive problem. However, it is too general. There are games where the chances of a player to succeed
essentially depend on the relative speed at which its adversary responds and, as it is not clear what particular speed
would be natural to assume for the environment, we do not want to consider that sort of games meaningful computational
problems. A simple example would be the game where all non-♠ moves are legal and that is won by the player who
moves first. This is merely a contest of speed.

Below we define a subclass of games called static. Intuitively, static games are games where speed is irrelevant: in
order to succeed, only matters what to do (strategy) rather than how fast to do (speed).

We say that a run � is a ℘-delay of a run � iff the following two conditions are satisfied:
• for each player ℘′, the subsequence of the ℘′-labeled moves of � is the same as that of �, and
• for any n, k�1, if the nth ℘-labeled move is made later than (is to the right of) the kth ¬℘-labeled move in �, then

so is it in �.
The above means that in � each player has made the same sequence of moves as in �, only, in �, ℘ might have been
acting with some delay.

Definition 2.2. A game A is said to be static iff, whenever WnA
e 〈�〉 = ℘ and � is a ℘-delay of �, we have WnA

e 〈�〉 = ℘.

Roughly, in a static game, if a player can succeed when acting fast, it will remain equally successful acting the same
way but slowly. This releases the player from any pressure for time and allows it to select its own pace for the game.
The following fact is a rather straightforward observation:

Proposition 2.3. All elementary games are static.

One of the main theses on which computability logic relies philosophically is that the concept of static games is an
adequate formal counterpart of our intuitive notion of “pure’’, speed-independent computational problems. See Section
4 of [10] for a detailed discussion and examples in support of this thesis.

Now we are ready to formally clarify what we mean by computational problems: we use the term “(interactive)
computational problem’’ (or simply “problem’’) as a synonym of “static game’’.

As shown in [10] (Proposition 4.8), all strict games are static. But not vice versa. The class of static games is
substantially more general, and is free of the limitations of strict games discussed earlier. The closure of the set of all
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predicates under the game operations that we will define in Section 4 forms a natural class of static yet free games.
Section 3 of [10] shows an example of a natural problem from this class that is impossible to model with strict games.

3. Computability

The definitions that we give in this section are semiformal and incomplete. All of the omitted technical details
are however rather standard and can be easily restored by anyone familiar with Turing machines. If necessary, the
corresponding detailed definitions can be found in Part II of [10].

The central point of our philosophy is to require that agent � be implementable as a computer program, with effective
and fully determined behavior. On the other hand, the behavior (including speed) of agent ⊥, who represents a capricious
user or the blind forces of nature, can be arbitrary. This intuition is captured by the model of interactive computation
where � is formalized as what we call HPM.

A hard-play machine (HPM) H is a Turing machine with the capability of making moves. At any time, the current
position of the game is fully visible to this machine, as well as it is fully informed about the valuation with respect to
which the outcome of the play will be evaluated. This effect is achieved by letting the machine have—along with the
ordinary read/write work tape—two additional read-only tapes: the valuation tape and the run tape. The former spells
some valuation e by listing constants in the lexicographic order of the corresponding variables. Its contents remain
unchanged throughout the work of the machine. As for the run tape, it serves as a dynamic input, spelling, at any time,
the current position of the game. Every time one of the players makes a move, that move (with the corresponding label)
is automatically appended to the contents of the run tape.

As always, the computation proceeds in discrete steps, also called clock cycles. The technical details about how
exactly H makes a move � are not very interesting, but for clarity let us say that this is done by constructing � in a
certain section (say, the beginning) of the work tape and then entering one of the specially designated states called move
states. Thus, H can make at most one move per clock cycle. On the other hand, as we noted, there are no limitations to
the relative speed of the environment, so the latter can make any finite number of moves per cycle. We assume that the
run tape remains stable during a clock cycle and is updated only on a transition from one cycle to another. Again, there
is flexibility in arranging details regarding what happens if both of the players make moves “simultaneously’’. For
clarity, we assume that if, during a given cycle, H makes a move � and the environment makes moves �1, . . . , �n, then
the position spelled on the run tape throughout the next cycle will be the result of appending 〈⊥ �1, . . . ,⊥ �n, � �〉 to
the current position.

A configuration of H is defined in the standard way: this is a full description of the (“current’’) state of the machine,
the locations of its three scanning heads, and the contents of its tapes, with the exception that, in order to make finite
descriptions of configurations possible, we do not formally include a description of the unchanging contents of the
valuation tape as a part of configuration, but rather account for it in our definition of computation branches as this will
be seen shortly. The initial configuration is the configuration where H is in its initial state and the work and run tapes
are empty. A configuration C′ is said to be an e-successor of a configuration C iff, when valuation e is spelled on the
valuation tape, C′ can legally follow C in the standard (standard for multitape Turing machines) sense, based on the
transition function of the machine and accounting for the possibility of the above-described non-deterministic updates
of the contents of the run tape. An e-computation branch of H is a sequence of configurations of H where the first
configuration is the initial configuration and every other configuration is an e-successor of the previous one. Thus, the
set of all e-computation branches captures all possible scenarios corresponding to different behaviors by ⊥.

Each e-computation branch B of H incrementally spells (in the obvious sense) some run � on the run tape, which we
call the run spelled by B. Then, for a game A, we write H �e A (“H wins A on e’’) iff, whenever B is an e-computation
branch of H and � the run spelled by B, we have WnA

e 〈�〉 = �. And we write H � A iff H �e A for every valuation e.
The meaning of H � A is that H wins (computes, solves) A. Finally, we write �A and say that A is winnable (computable,
solvable) iff there is an HPM H with H � A.

The above “hard-play’’ model of interactive computation seemingly strongly favors the environment in that the latter
may be arbitrarily faster than the machine. What happens if we start limiting the speed of the environment? The answer
is: nothing as far as computational problems are concerned. The model of computation called EPM takes the idea of
limiting the speed of the environment to the extreme, yet it yields the same class of computable problems.

An easy-play machine (EPM) is defined in the same way as an HPM, with the only difference that now the environment
can (but is not obligated to) make a move only when the machine explicitly allows it to do so, the event that we
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call granting permission. Technically permission is granted by entering one of the specially designated states called
permission states. The only requirement that the machine is expected to satisfy is that, as long as the adversary plays
legal, the machine should grant permission every once in a while; how long that “while’’ lasts, however, is totally up
to the machine. This amounts to having full control over the speed of the adversary.

The above intuition is formalized as follows. We say that an e-computation branch B of a given EPM is fair if
permission is granted infinitely many times in B. A fair EPM is an EPM whose every e-computation branch (for every
valuation e) is fair. For an EPM E and valuation e, we write E �e A (“E wins A on e’’) iff, whenever B is an e-computation
branch of E and � the run spelled by B, we have:
• WnA

e 〈�〉 = �, and
• B is fair unless � is a ⊥-illegal run of A with respect to e.
Just as with HPMs, for an EPM E , E � A (“E wins (computes, solves) A’’) means that E �e A for every valuation e.
Note that when we deal with fair EPMs, the second one of the above two conditions is always satisfied, and then the
definition of �e is literally the same as in the case of HPMs.

Remark 3.1. When trying to show that a given EPM wins a given game, it is always perfectly safe to assume that
the environment never makes an illegal move, for if it does, the machine automatically wins (unless the machine itself
has made an illegal move earlier, in which case it does not matter what the environment did afterwards anyway, so
that we may still assume that the environment did not make any illegal moves). Making such an assumption can often
significantly simplify computability proofs.

The following fact, proven in [10, Theorem 17.2], establishes equivalence between the two models for computational
problems:

Proposition 3.2. For any static game A, the following statements are equivalent:
(i) there is an EPM that wins A;

(ii) there is an HPM that wins A;
(iii) there is a fair EPM that wins A.
Moreover, there is an effective procedure that converts any EPM (resp. HPM) M into an HPM (resp. fair EPM) N
such that, for every static game A and valuation e, N �e A whenever M �e A.

The philosophical significance of this proposition is that it reinforces the thesis according to which static games
are games that allow us to make full abstraction from speed. Its technical importance is related to the fact that the
EPM-model is much more convenient when it comes to describing strategies as we will have a chance to see in Part
2, and is a more direct and practical formal counterpart of our intuitive notion of what could be called interactive
algorithm.

The two models act as natural complements to each other: we can meaningfully talk about the (uniquely determined)
play between a given HPM and a given EPM, while this is impossible if both players are HPMs or both are EPMs.
This fact will be essentially exploited in our completeness proof for logic CL3, where we describe an environment’s
strategy as an EPM and show that no HPM can win the given game against such an EPM.

Let us agree on the following notation and terminology:
• For a run �, ¬� denotes the result of reversing all labels in �, i.e. changing each labmove ℘� to ¬℘�.
• For a run � and a computation branch B of an HPM or EPM, we say that B cospells � iff B spells ¬�.
Intuitively, when a given machine M plays as ⊥ (rather than �), then the run that is generated by a given computation
branch B of M is the run cospelled (rather than spelled) by B, for the moves that M makes get the label ⊥, and the
moves that its adversary makes get the label �.

The following lemma will be used in our completeness proof for CL3. Its second clause assumes some standard
encoding for play machines and their configurations.

Lemma 3.3. Let E be a fair EPM.
(a) For any HPM H and any valuation e, there are a uniquely defined e-computation branch BE of E and a uniquely

defined e-computation branch BH of H—which we, respectively, call the (E, e, H)-branch and the (H, e, E)-branch—
such that the run spelled by BH is the run cospelled by BE .
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(b) Suppose e0, e1, e2, . . . are valuations such that the function g defined by g(c, i) = ec(vi) is effective. Then there
is an effective function which takes (the code of) an arbitrary HPM H and arbitrary non-negative integers c, n, and
returns the (code of the) n’th configuration of the (E, ec, H)-branch. Similarly for the (H, ec, E)-branch.

When e, H, E , BH are as in clause (a) of the above lemma, we call the run � spelled by BH the H vs. E run on e;
then, if A is a game with WnA

e 〈�〉 = � (resp. WnA
e 〈�〉 = ⊥), we say that H wins (resp. loses) A against E on e.

A formal proof of Lemma 3.3 is given in [10, Lemma 20.4], 3 and we will not reproduce it here. Instead, the following
intuitive explanation would suffice:

Assume E is a fair EPM, H is an arbitrary HPM and e an arbitrary valuation. The play that we are going to describe
is the unique play generated when the two machines play against each other, with H in the role of �, E in the role of ⊥,
and valuation e spelled on the valuation tapes of both machines. We can visualize this play as follows. Most of the time
during the play H remains inactive (sleeping); it is woken up only when E enters a permission state, on which event H
makes a (one single) transition to its next computation step—that may or may not result in making a move—and goes
back to sleep that will continue until E enters a permission state again, and so on. From E’s perspective, H acts as a
patient adversary who makes one or zero move only when granted permission, just as the EPM-model assumes. And
from H’s perspective, who, like a person under global anesthesia, has no sense of time during its sleep and hence can
think that the wake-up events that it calls the beginning of a clock cycle happen at a constant rate, E acts as an adversary
who can make any finite number of moves during a clock cycle (i.e. while H was sleeping), just as the HPM-model
assumes. This scenario uniquely determines an e-computation branch BE of E that we call the (E, e, H)-branch, and
an e-computation branch BH of H that we call the (H, e, E)-branch. What we call the H vs. E run on e is the run
generated in this play. In particular—since we let H play in the role of �—this is the run spelled by BH. E , who plays
in the role of ⊥, sees the same run, only it sees the labels of that run in negative colors. That is, BE cospells rather than
spells that run. This is exactly what clause (a) of Lemma 3.3 asserts. Now suppose e0, e1, e2, . . . and g are as in clause
(b), and e is one of the ec. Then, using g, the contents of any initial segment of the valuation tape(s) can be effectively
constructed from c. Therefore the work of either machine can be effectively traced up to any given computation step
n, which implies clause (b).

4. Operations on computational problems

As noted, computability logic is an approach that uses logical formalism for specifying and studying interactive
computational problems in a systematic way, understanding logical operators as operations on games/problems. It is
time to define basic operations on games. It should be noted that even though our interests are focused on static games,
the operations defined in this section are equally meaningful for non-static (dynamic) games as well. So, we do not
restrict the scope of those definitions to static games, and throughout the section we let the letters A, B range over any
games. Here comes the first definition:

Definition 4.1. Let A be any game, x1, . . . , xn (n�0) pairwise distinct variables, and t1, . . . , tn any terms. For any
valuation e, let e◦ denote the unique valuation that agrees with e on all variables that are not among x1, . . . , xn, such that,
for each xi ∈ {x1, . . . , xn}, e◦(xi) = e(ti). Then we define the game A[x1/t1, . . . , xn/tn] by stipulating that, for any
valuation e, LrA[x1/t1,...,xn/tn]

e = LrA
e◦ and WnA[x1/t1,...,xn/tn]

e = WnA
e◦ ; in other words, e[A[x1/t1, . . . , xn/tn]] = e◦[A].

This operation, that we call substitution of variables, is a generalization of the standard operation of substitution of
variables known from classical predicate logic. Intuitively, A[x1/t1, . . . , xn/tn] is the same as A, only with (the values of)
variables x1, . . . , xn “read as’’ (the values of) t1, . . . , tn, respectively. Each ti here can be either a variable or a constant.
Remember from Section 2 that when ti is a constant, e(ti) = ti .

Example: If A is the elementary game x × y > z + u, then A[x/z, z/6, u/y] would be the game z × y > 6 + y.
Sometimes it is convenient to fix a certain tuple (x1, . . . , xn) of pairwise distinct variables for a game A throughout

a context and write A in the form A(x1, . . . , xn). We will refer to such a tuple (x1, . . . , xn) as the attached tuple of (the
given representation of) A. When doing so, we do not necessarily mean that A(x1, . . . , xn) is an n-ary game and/or that

3 Clause (b) of our Lemma 3.3 is slightly stronger than the official formulation of the corresponding clause (c) of Lemma 20.4 of [10]. However,
the proof given in [10] is just as good for our present strong formulation.
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x1, . . . , xn are exactly the variables on which this game depends. Once A is given with an attached tuple (x1, . . . , xn),
we will write A(t1, . . . , tn) to mean the same as the more clumsy expression A[x1/t1, . . . , xn/tn]. A similar notational
practice is common in the literature for predicates. Thus, the above game x × y > z + u can be written as A(x, z, u),
in which case A(z, 6, y) will denote the game z × y > 6 + y.

We have already seen two meanings of symbol ¬: one was that of an operation on players (Section 2), and one that
of an operation on runs (Section 3). Here comes the third meaning of it—that of an operation on games:

Definition 4.2. The negation ¬A of a game A is defined by:
• Lr¬A

e = {� | ¬� ∈ LrA
e }.

• Wn¬A
e 〈�〉 = ¬WnA

e 〈¬�〉.

Intuitively, ¬A is game A with the roles of the two players switched: �’s moves or wins become ⊥’s moves or wins,
and vice versa. For example, if Chess is the game of chess from the point of view of the white player, then ¬Chess
would be the same game from the point of view of the black player.

The operations ∧ and ∨ produce parallel combinations of games. Playing A1 ∧ · · · ∧ An or A1 ∨ · · · ∨ An means
playing the n games concurrently. Both A1 ∧· · ·∧An and A1 ∨· · ·∨An have exactly the same structure (legal moves),
and the only difference is in how the winner is determined: in order to win, in the former � needs to win in each of
the n components, while in the latter winning in one of the components is sufficient. To indicate that a given move is
made in the ith component, the player should prefix it with the string “i.’’. Any move that does not have one of such
prefixes will be considered illegal.

Here comes the formal definition. In it the notation �� means the result of removing from � all labeled moves except
those of the form ℘�� (℘ ∈ {�, ⊥}), and then deleting the prefix “�’’ in the remaining moves, i.e. changing each such
℘�� to ℘�.

Definition 4.3. Let A1, . . . , An (n�2) be any games.
The parallel conjunction A1 ∧ · · · ∧ An of A1, . . . , An is defined by:

• � ∈ LrA1∧···∧An
e iff every move of � has one of the prefixes “1.’’,. . . , “n.’’ and, for each i ∈ {1, . . . , n}, �i. ∈ LrAi

e .
• Whenever � ∈ LrA1∧···∧An

e , WnA1∧···∧An
e 〈�〉 = � iff, for all i ∈ {1, . . . , n}, WnAi

e 〈�i.〉 = �.
The parallel disjunction A1 ∨ · · · ∨ An of A1, . . . , An is defined in exactly the same way, only with “�’’ replaced

by “⊥’’. Equivalently, it can be defined by A1 ∨ · · · ∨ An =def ¬(¬A1 ∧ · · · ∧ ¬An).

The other operation from the same group—the parallel implication A → B of games A and B—is defined by
A → B =def (¬A) ∨ B.

Intuitively, A → B is the problem of reducing B (consequent) to A (antecedent). That is, solving A → B means
solving B having A as a computational resource. Generally, computational resources are symmetric to computational
tasks/problems: what is a problem for one player to solve, is a resource for the other player to use, and vice versa.
Since in the antecedent of A → B the roles of the players are switched, A becomes a problem for ⊥ to solve, and
hence a resource that � can use. Thus, our semantics of computational problems is, at the same time, a semantics of
computational resources. As noted before, this offers a materialization of the abstract resource philosophy associated
with linear logic [4]. We will see a couple of examples later supporting this claim. More elaborated examples and
discussions can be found in [10], where, in Section 26, the context of computational resources is further extended to
informational and physical resources as well. Ref. [12] also abounds with illustrative examples.

On an intuitive level, our parallel operations can be related to the corresponding multiplicative operators of linear
logic. The game-semantical approach to linear-logic-style connectives is not new in principle, even if it has rather stub-
bornly resisted a complete treatment within natural frameworks. What makes our understanding of “multiplicatives’’
substantially different from other ([1,3,6] etc.) interpretations is that they are free, i.e. generate free games, even when
applied to strict games. As an example, consider the game Chess ∧ Chess. Assume an agent plays this two-board game
over the Internet against two independent adversaries—adversary #1 on board #1 and adversary #2 on board #2—that,
together, form the (one) environment for the agent. As we agreed, Chess is the game playing which means playing the
game of chess white. Hence, in the initial position of Chess ∧ Chess, only the agent has legal moves. But once such a
move is made, say, on board #1, the picture changes. Now both the agent and the environment have legal moves: the
agent may make another opening move on board #2, while the environment—in particular adversary #1—may make
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a reply move on board #1. This is a situation where which player ‘is to move’ is no longer strictly determined, so
the next player to move will be the one who can or wants to act faster. A strict-game approach would impose some
additional conditions uniquely determining the next player to move. Such conditions would most likely be artificial and
not quite adequate, for the situation we are trying to model is a concurrent play on two boards against two independent
adversaries, and we cannot or should not expect any coordination between their actions. Most of the compound tasks we
perform in everyday life are free rather than strict, and so are most computer communication/interaction protocols. A
strict understanding of ∧ would essentially mean some sort of an (in a way interspersed but still) sequential rather than
truly parallel/concurrent combination of tasks, where no steps in one component would be allowed to be made until
receiving a response in the other component, contrary to the very spirit of the idea of parallel/distributed computation.

It is no accident that we use classical symbols for the above operations. As this is easy to see, the meanings of these
operations, as well as the meanings of the so called blind quantifiers ∀, ∃ that will be defined shortly, are exactly
classical when their scope is restricted to elementary games (in which case the compound games generated by these
operations also remain elementary). This is what makes classical logic just a special fragment of the more general
and expressive computability logic. Once the scope of the “classical’’ propositional connectives is extended beyond
elementary games, however, their behavior starts resembling that of the multiplicative operators of linear logic. For
example, the principle A → A ∧ A generally fails for non-elementary games. Yet, this resemblance is rather shallow,
and typically disappears as soon as we start considering longer and “deeper’’ formulas. See [10] for more about how
computability logic relates to linear logic. We do not want to go into details of this discussion here because, as pointed
out in Section 1, this work is not at all an attempt to find a justification for linear logic—the popular logic that is
syntactically so appealing yet lacks a convincing semantics.

The next group of operations: �, �, � and � that we call choice operations, on the other hand, bear resemblance
with the additive operators of linear logic. Based on their semantics, in more traditional terms they can be characterized
as constructive versions of conjunction, disjunction, universal quantifier and existential quantifier, respectively.�xA(x) is the game where, in the initial position, only ⊥ has legal moves. Such a move consists in a choice of
one of the elements of the universe of discourse. After ⊥ makes a move c ∈ {0, 1, . . .}, the game continues (and the
winner is determined) according to the rules of A(c). If no initial move is made, � is considered the winner as there
was no particular (sub)problem specified by ⊥ that � failed to solve. A�B is similar, only here the choice is just made

between “left’’ (“1’’) and “right’’ (“2’’). � and � are symmetric to � and �, with the only difference that now it is
� rather than ⊥ who makes an initial move/choice. Here is the formal definition:

Definition 4.4. Let A(x), A1, . . . , An (n�2) be any games.
The choice conjunction A1 � · · · � An of A1, . . . , An is defined by:

• LrA1�···�An
e = {〈〉} ∪ {〈⊥i, �〉 | i ∈ {1, . . . , n}, � ∈ LrAi

e }.
• WnA1�···�An

e 〈�〉 = ⊥ iff � = 〈⊥i, �〉, where i ∈ {1, . . . , n} and WnAi
e 〈�〉 = ⊥.

The choice disjunction A1 � · · · �An of A1, . . . , An is defined in exactly the same way, only with “�’’ instead of “⊥’’.
Equivalently, it can be defined by A1 � · · · � An =def ¬(¬A1 � · · · � ¬An).

The choice universal quantification �xA(x) of A(x) is defined by:
• Lr�xA(x)

e = {〈〉} ∪ {〈⊥c, �〉 | c is a constant, � ∈ LrA(c)
e }.

• Wn�xA(x)
e 〈�〉 = ⊥ iff � = 〈⊥c, �〉, where c is a constant and WnA(c)

e 〈�〉 = ⊥.
The choice existential quantification �xA(x) of A(x) is defined in exactly the same way, only with “�’’ instead of
“⊥’’. Equivalently, it can be defined by �xA(x) =def ¬�x¬A(x).

A few examples would help. The problem of computing a function f can be specified as �x�y(f (x) = y). This
is a game of depth 2, where the first legal move—selecting a particular value k for x—is by ⊥. Making such a move
brings the game down to �y(f (k) = y). The second move—selecting a value n for y—is by �, after which the game
continues (or rather stops) as f (k) = n. The latter is an elementary game won by � iff f (k) really equals n. Obviously
f is computable in the standard sense iff �x�y(f (x) = y) is winnable, i.e. computable in our sense.

Next, the problem of deciding a predicate p(x) would be specified as �x(p(x) � ¬p(x)). This is the game where,
after ⊥ selects a value k for x, the machine should reply by one of the moves 1 or 2; the game will be considered won
by the machine if p(k) is true and the move 1 was made, or p(k) is false and the choice was 2, so that decidability of
p(x) means nothing but existence of a machine that wins the game �x(p(x) � ¬p(x)).
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To get a feel of → as a problem reduction operation, let us consider reduction of the acceptance problem to the

halting problem (the example borrowed from [10]). The halting problem can be expressed by �x�y(Halts(x, y) �
¬Halts(x, y)),where Halts(x, y) is the predicate “Turing machine x halts on input y’’. Similarly, the acceptance problem
can be expressed by the formula�x�y(Accepts(x, y)�¬Accepts(x, y)), where Accepts(x, y) is the predicate “Turing
machine x accepts input y’’. While the acceptance problem is not decidable, it is algorithmically reducible to the halting
problem. In particular, there is an HPM that wins

�x�y(Halts(x, y) � ¬Halts(x, y)) → �x�y(Accepts(x, y) � ¬Accepts(x, y)).

Here is a strategy for solving this problem: Wait till the environment selects values k and n for x and y in the consequent
(if such a selection is never made, the machine wins). Then specify the same values k and n for x and y in the antecedent
(where the roles of the machine and the environment are switched), and see whether ⊥ responds by 1 or 2 there. If the
response is 1, simulate machine k on input n until it halts, and select, in the consequent, 1 or 2 depending on whether
the simulation accepted or rejected. And if ⊥’s response in the antecedent was 2, then select 2 in the consequent.

We can see that what the machine did in the above strategy indeed was a reduction: it used an (external) solution to
the halting problem to solve the acceptance problem. There are various natural concepts of reduction, and the sort of
reduction captured by →, that we call linear reduction, is most basic among them.

One of the other, well-established, concepts of reduction is mapping reduction: a predicate p(x) is said to be mapping
reducible to a predicate q(x) iff there is an effective function f such that, for any constant c, p(c) is true iff q(f (c)) is
true. Using A ↔ B as an abbreviation for (A → B) ∧ (B → A), it is not hard to see that mapping reducibility of
p(x) to q(x) means nothing but winnability of the game �x�y(p(x) ↔ q(y)).

Notice that while standard approaches only allow us to talk about (a whatever sort of) reducibility as a relation between
problems, in our approach reduction becomes an operation on problems, with reducibility as a relation simply meaning

computability of the corresponding combination (such as �x�y(p(x) ↔ q(y)) or A → B) of problems. Similarly
for other relations or properties such as the property of decidability. The latter becomes the operation of deciding if we
define the problem of deciding a predicate (or any computational problem) p(x) as the game �x(p(x) � ¬p(x)). So,
now we can meaningfully ask questions such as “Is the linear reduction of the problem of deciding p(x) to the problem
of deciding q(x) linearly reducible to the mapping reduction of p(x) to q(x)?’’. This question would be equivalent to
whether the following problem is (always) computable:

�x�y(p(x) ↔ q(y)) → (�x(q(x) � ¬q(x)) → �x(p(x) � ¬p(x))). (1)

This problem is indeed computable no matter what particular predicates p(x) and q(x) are, which means that mapping
reduction is at least as strong as linear reduction. Here is a strategy: wait till ⊥ selects a value k for x in the consequent
of the consequent of (1). Then specify the same value k for x in the antecedent of (1), and wait till ⊥ replies there by
selecting a value n for y. Then select the same value n for x in the antecedent of the consequent of (1). ⊥ will have to
respond by 1 or 2 in that component of the game. Repeat that very response in the consequent of the consequent of (1),
and celebrate victory.

Expression (1) is a legal formula of the language of CL3 which, according to our main Theorem 5.9, is sound and
complete with respect to computability semantics. So, had our ad hoc methods failed to find an answer (and this would
certainly be the case if we dealt with a more complex problem), the existence of a successful algorithmic strategy could
have been established by showing that (1) is provable in CL3. Moreover, by clause (a) of Theorem 5.9, after finding
an CL3-proof of (1), we would not only know that an algorithmic solution to (1) exists, but we would also be able to
constructively obtain such a solution from the proof. On the other hand, the fact that linear reduction is not as strong
as mapping reduction could be established by showing that CL3 does not prove

(�x(q(x) � ¬q(x)) → �x(p(x) � ¬p(x))) → �x�y(p(x) ↔ q(y)). (2)

This negative fact, too, can be established effectively as, according to Theorem 5.7, the relevant fragment of CL3 is
decidable. Our proof of the completeness part of Theorem 5.9 would then offer a way how to construct particular
predicates p(x) and q(x) for which (2) is not computable.

These few examples must be sufficient to provide insights into the utility of computability logic and CL3 in particular
for theory of computing: our logic offers a convenient tool for asking and answering questions in the above style (and
beyond) in a systematic way, something that so far has been mostly done in an ad hoc manner or has been simply
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impossible to do. By iterating available operators, we can express and explore an infinite variety computational problems
and relations between them, only few of which may have special names established in the literature.

The next, already mentioned group of operations is what we call “blind quantifiers’’: ∀ and ∃, with hardly any
reasonably close counterparts in linear logic. For certain reasons, the operations ∀x and ∃x we only define for games
called x-unistructural. A game A is said to be x-unistructural (or unistructural in x) iff, for any two valuations e1 and e2
that agree on all variables except perhaps x, we have LrA

e1
= LrA

e2
. Intuitively, this is a game whose structure does not

depend on x. In fact whether we impose the x-unistructurality condition or not is irrelevant in our present case because
this condition is automatically satisfied anyway: as shown in [10], all games that can be expressed in the language of
CL3 are unistructural, and obviously all unistructural games are also x-unistructural.

Definition 4.5. Let x be any variable and A(x) any x-unistructural game.
The blind universal quantification ∀xA(x) of A(x) is defined by:

• Lr∀xA(x)
e = LrA(x)

e .

• Wn∀xA(x)
e 〈�〉 = � iff, for every constant c, WnA(c)

e 〈�〉 = �.
The blind existential quantification ∃xA(x) of A(x) is defined in exactly the same way, only with “⊥’’ instead of “�’’.
Equivalently, it can be defined by ∃xA(x) =def ¬ ∀x¬A(x).

The meaning of ∀xA(x) is similar to that of �xA(x), with the difference that ⊥ does not make a move specifying
a particular value of x, so that � has to play blindly in a way that would be successful for any possible value of
x. Alternatively, ∀xA(x) can be thought of as the version of �xA(x) where the particular value of x selected by
⊥ remains invisible to �. This way, ∀ and ∃ produce games with imperfect information. Compare the problems�x(Even(x) � Odd(x)) and ∀x(Even(x) � Odd(x)). The former is an easy-to-compute problem of depth 2, while
the latter is an incomputable problem of depth 1 with only by the machine to make a move—select the true disjunct,
which is hardly possible to do as the value of x remains unspecified. Some problems that depend on x can be however
solved having only partial information on x. For example, in order to tell whether x is even or odd, we do not really
need to read the whole (decimal representation of) x—it would be sufficient to look at its last digit, i.e. know the value
of (x Mod 10). Thus, the problem ∀x(�y(y = (x Mod 10)) → (Even(x)� Odd(x))) is computable, which is a more
informative statement than if we had stated computability of the same problem with � instead of ∀. As noted a while
ago, the meanings of ∀ and ∃ are exactly classical when applied to elementary games, which explains why we use the
classical notation for them.

Another important group of operations comprises recurrence operations. They come in different flavors (see [12]),
perhaps the most interesting of which is what is called branching recurrence 4 ◦| . Intuitively ◦| A, as a resource, is
A that can be reused an arbitrary number of times. The same is true for the other sorts of recurrences, but there are
several natural understandings of reusage, with ◦| corresponding to the strongest form of it and the other recurrence
operations corresponding to weaker concepts of reusage/recycling (and it is not clear which of the recurrence operations
best corresponds to what the exponential operator ! of linear logic was meant to capture). The operation ◦– , called
weak reduction, 5 is defined by A ◦– B = ◦| A → B. This operation formalizes our weakest possible intuitive concept
of reduction. The difference between → and ◦– as reduction operations is that while in the former every act of
resource (antecedent) consumption is strictly accounted for, the latter allows uncontrolled usage of resources. One
of the conjectures stated in [10] is that we get exactly intuitionistic calculus when the intuitionistic implication is
understood as ◦– and the other intuitionistic operators understood as the corresponding choice operations. Recurrence
operators and weak reduction are not in the logical vocabulary of CL3, and hence we do not give formal definitions
for them. Such definitions can be found in [10,12].

According to Theorem 14.1 of [10], all of the operations that we discussed in this section preserve the static and
unistructural properties of games. Taking into account that predicates as elementary games are static (Proposition 2.3)
and obviously unistructural, their closure under those operations forms a natural class of unistructural computational
problems. All of those operations except ◦| and ◦– also preserve the finite-depth property. Hence the closure of the
set of all elementary problems under substitution of variables, ¬, ∧, ∨, →, ∀, ∃, �, �, � and � forms a natural
class of finite-depth, unistructural computational problems. As we are going to see, this is exactly the class of problems

4 In [10] this operation is called branching conjunction and is denoted by !.
5 Ref. [10] uses the symbol ⇒ for this operation.
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expressible in the language of CL3. Finally, as already noted more than once, the operations ¬, ∧, ∨, →, ∀, ∃ preserve
the elementary property of games: they send predicates to predicates; and, when restricted to predicates, they coincide
with the same-name classical operations. Of course, the same applies to the operation of substitution of variables, as
well as the trivial games ⊥ and � that can be understood as 0-ary operations on games.

One more game operation that we are going to look at is that of prefixation, which is somewhat reminiscent of the
modal operator(s) of dynamic logic. This operation takes two arguments: a game A and a position � that must be what
we call a unilegal position of A (otherwise the operation is undefined). � is said to be a unilegal run (position if finite) of
a game A iff, for every valuation e, � ∈ LrA

e . As noted above, all games that we deal with in this paper are unistructural,
and for such games obviously there is no difference between “unilegal’’ and “legal’’.

Definition 4.6. Assume � is a unilegal position of a game A. The �-prefixation of A, denoted 〈�〉A, is defined as
follows:
• Lr〈�〉A

e = {� | 〈�, �〉 ∈ LrA
e }.

• Wn〈�〉A
e 〈�〉 = WnA

e 〈�, �〉.

Intuitively, 〈�〉A is the game playing which means playing A starting (continuing) from position �. That is, 〈�〉A
is the game to which A evolves (is “brought down’’) after the (lab)moves of � have been made. We have already used
this intuition when explaining the meaning of the choice operations. For example, we said that after ⊥ makes an initial
move c, the game �xA(x) continues as A(c). What this meant was nothing but that 〈⊥c〉(�xA(x)) = A(c). The
following proposition summarizes this sort of a characterization of the choice operations, and extends it to the other
operations, too. It tells us what the legal initial moves for a given game are, and to what game that game evolves after
such a (uni)legal move is made.

Proposition 4.7. In each of the following clauses, e is any valuation, ℘ either player, and �, � any moves; in each
subclause (b), the game on the left of the equation is assumed to be defined, i ∈ {1, . . . , n} and c ∈ {0, 1, 2, . . .}:
(1) (a) 〈℘�〉 ∈ Lr¬A

e iff 〈¬℘�〉 ∈ LrA
e ,

(b) 〈℘�〉¬A = ¬(〈¬℘�〉A).
(2) (a) 〈℘�〉 ∈ LrA1∧···∧An

e iff � = i.�, where i ∈ {1, . . . , n} and 〈℘�〉 ∈ LrAi
e ,

(b) 〈℘i.�〉(A1 ∧ · · · ∧ An) = A1 ∧ · · · ∧ Ai−1 ∧ 〈℘�〉Ai ∧ Ai+1 ∧ · · · ∧ An.
(3) (a) 〈℘�〉 ∈ LrA1∨···∨An

e iff � = i.�, where i ∈ {1, . . . , n} and 〈℘�〉 ∈ LrAi
e ,

(b) 〈℘i.�〉(A1 ∨ · · · ∨ An) = A1 ∨ · · · ∨ Ai−1 ∨ 〈℘�〉Ai ∨ Ai+1 ∨ · · · ∨ An.

(4) (a) 〈℘�〉 ∈ LrA→B
e iff � = i.�, where

{
i = 1 and 〈¬℘�〉 ∈ LrA

e , or

i = 2 and 〈℘�〉 ∈ LrB
e ,

(b)

{ 〈℘1.�〉(A → B) = 〈¬℘�〉A → B,

〈℘2.�〉(A → B) = A → 〈℘�〉B.

(5) (a) 〈℘�〉 ∈ LrA1�···�An
e iff ℘ = ⊥ and � = i ∈ {1, . . . , n},

(b) 〈⊥i〉(A1 � · · · � An) = Ai .

(6) (a) 〈℘�〉 ∈ LrA1�···�An
e iff ℘ = � and � = i ∈ {1, . . . , n},

(b) 〈�i〉(A1 � · · · � An) = Ai .

(7) (a) 〈℘�〉 ∈ Lr�xA(x)
e iff ℘ = ⊥ and � = c ∈ {0, 1, 2, . . .},

(b) 〈⊥c〉�xA(x) = A(c).

(8) (a) 〈℘�〉 ∈ Lr�xA(x)
e iff ℘ = � and � = c ∈ {0, 1, 2, . . .},

(b) 〈�c〉�xA(x) = A(c).

(9) (a) 〈℘�〉 ∈ Lr∀xA(x)
e iff 〈℘�〉 ∈ LrA(x)

e ,

(b) 〈℘�〉 ∀xA(x) = ∀x〈℘�〉A(x).

(10) (a) 〈℘�〉 ∈ Lr∃xA(x)
e iff 〈℘�〉 ∈ LrA(x)

e ,
(b) 〈℘�〉 ∃xA(x) = ∃x〈℘�〉A(x).

The above fact is known from [10]. Its proof consists in just a routine analysis of the relevant definitions.
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Just like this is the case with recurrence operations, the language of CL3 does not have any constructs corresponding
to prefixation. However, this operation will be heavily exploited in our soundness and completeness proof for CL3
in Part 2. Generally, prefixation is very handy in visualizing a (unilegal) run of a given game A. In particular, every
(sub)position � of such a run can be represented by, or thought of as, the game 〈�〉A.

Here is an example. Remember game (1). Based on Proposition 4.7, the run 〈⊥2.2.7, �1.7, ⊥1.9, �2.1.9, ⊥2.1.1,

�2.2.1〉 is a (uni)legal run of that game, and to it corresponds the following sequence of games:

(i) (�x�y(p(x) ↔ q(y))) → (�x(q(x) � ¬q(x)) → �x(p(x) � ¬p(x))),
i.e. 〈〉(1);

(ii) (�x�y(p(x) ↔ q(y))) → (�x(q(x) � ¬q(x)) → (P (7) � ¬p(7))),
i.e. 〈⊥2.2.7〉(i), i.e. 〈⊥2.2.7〉(1);

(iii) (�y(p(7) ↔ q(y))) → (�x(q(x) � ¬q(x)) → (p(7) � ¬p(7))),
i.e. 〈�1.7〉(ii), i.e. 〈⊥2.2.7, �1.7〉(1);

(iv) (p(7) ↔ q(9)) → (�x(q(x) � ¬q(x)) → (p(7) � ¬p(7))),
i.e. 〈⊥1.9〉(iii), i.e. 〈⊥2.2.7, �1.7, ⊥1.9〉(1);

(v) (p(7) ↔ q(9)) → ((q(9) � ¬q(9)) → (p(7) � ¬p(7))),
i.e. 〈�2.1.9〉(iv), i.e. 〈⊥2.2.7, �1.7, ⊥1.9, �2.1.9〉(1);

(vi) (p(7) ↔ q(9)) → (q(9) → (p(7) � ¬p(7))),
i.e. 〈⊥2.1.1〉(v), i.e. 〈⊥2.2.7, �1.7, ⊥1.9, �2.1.9, ⊥2.1.1〉(1);

(vii) (p(7) ↔ q(9)) → (q(9) → p(7)),
i.e. 〈�2.2.1〉(vi), i.e. 〈⊥2.2.7, �1.7, ⊥1.9, �2.1.9, ⊥2.1.1, �2.2.1〉(1).

Player � is the winner because the run hits a true elementary game. In this run � has followed the winning strategy
that we described for (1) earlier.

We finish this section by reproducing a fact proven in [10, Proposition 21.3], according to which modus ponens
preserves computability, and does so in a constructive sense:

Proposition 4.8. For any computational problems A and B, if � A and � A → B, then �B. Moreover, there is an
effective procedure that converts any two HPMs H1 and H2 into an HPM H3 such that, for any computational
problems A, B and any valuation e, whenever H1 �e A and H2 �e A → B, we have H3 �e B.

A similar closure property was proven in Section 21 of [10] with respect to the rules A �→ �xA and A �→ ◦| A, with
P �→ C here and later meaning “from premise(s) P conclude C’’.

5. Logic CL3

By the classical language we mean the language of pure classical first-order logic with individual constants but
without equality and functional symbols. We assume that the set of terms—i.e. variables and constants—of this
language is the same as the one we fixed in Section 2. As always, each predicate letter comes with a fixed ar-
ity. An (n-ary non-logical) atom is the expression p(t1, . . . , tn), where p is an n-ary predicate letter and the ti are
terms.

The language of CL3 extends the classical language by adding the operators �, �,�,� to its vocabulary. The names
that we use for the logical operators of the language are the same as for the (same-symbolic-name) game operations
defined in the previous section. Throughout the rest of this paper by a formula we mean a formula of this language.
The definition is standard—the set of formulas is the smallest set of expressions such that:
• Non-logical atoms and the logical atoms � and ⊥ are formulas;
• If F1, . . . , Fn (n�2) are formulas, then so are ¬F1, F1∧· · ·∧Fn, F1∨· · ·∨Fn, F1 → F2, F1�· · ·�Fn, F1�· · ·�Fn;
• If F is a formula and x is a variable, then ∀xF , ∃xF , �xF , �xF are formulas.
The definitions of what a free or bound occurrence of a variable means are also standard, keeping in mind that now a
variable can be bound by any of the four quantifiers ∀, ∃,�,�. Every occurrence of a constant also counts as free.
By a free variable of a formula F we mean a variable that has free occurrences in F. Similarly, the free terms of F are
its free variables plus the constants occurring in F. As known, classical validity of a formula of the classical language
that contains constants means the same as validity of the same formula with its constants understood as free variables.
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So, for a reader more used to the version of classical logic where variables are the only terms, it is perfectly safe to
think of constants as free variables.

Furthermore, for known reasons that equally apply to both classical and computability logics, there is no loss of
expressive power if the scope of the term formula is narrowed down to expressions in which no quantifier binds a variable
that also has free occurrences within the same expression. Indeed, if this condition is violated, nothing would be easier
than to just rename variables. So, we agree that, from now on, the term “formula” will be exclusively understood in
this restricted sense, unless otherwise suggested by the context.

In the previous section, substitution of variables was defined as an operation on games. Here we define a “similar’’
operation on formulas called substitution of terms. Suppose F is a formula, t1, . . . , tn are pairwise distinct terms, and
t ′1, . . . , t ′n are any terms not bound in F. Then F [t1/t ′1, . . . , tn/t ′n] stands for the result of simultaneously substituting
in F all free occurrences of t1, . . . , tn by t ′1, . . . , t ′n, respectively.

In concordance with a similar notational practice established in Section 4 for games, sometimes we represent a
formula F as F(t1, . . . , tn) where the ti are pairwise distinct terms. In the context defined by such a representation,
F(t ′1, . . . , t ′n) will mean the same as F [t1/t ′1, . . . , tn/t ′n]. Our disambiguating convention is that the context is set
by the expression that was used earlier. That is, when we first mention F(t1, . . . , tn) and only after that use the
expression F(t ′1, . . . , t ′n), the latter should be understood as F [t1/t ′1, . . . , tn/t ′n] rather than the former understood as
F [t ′1/t1, . . . , t

′
n/tn]. It should be noted that, when representing F as F(t1, . . . , tn), we do not necessarily mean that

t1, . . . , tn are exactly the free terms of F.
An interpretation is a function ∗ that sends each n-ary predicate letter p to an elementary game p∗ = A(x1, . . . , xn)

with an attached n-tuple of (pairwise distinct) variables. This assignment extends to formulas by commuting with
all operations. That is: where p and A(x1, . . . , xn) are as above and t1, . . . , tn are any terms, (p(t1, . . . , tn))

∗ =
A(t1, . . . , tn); ⊥∗ = ⊥; (¬F)∗ = ¬(F ∗); (F1 �· · ·�Fk)

∗ = F ∗
1 �· · ·�F ∗

k ; ( ∀xF)∗ = ∀x(F ∗); etc. For a predicate
letter p, we will say “ ∗ interprets p as A’’ to mean that p∗ = A. Similarly, for a formula F, if F ∗ = A, we say that ∗
interprets F as A.

For a formula F, an interpretation ∗ is said to be F-admissible iff, for any n-ary predicate letter p, the game
A(x1, . . . , xn) assigned to p by ∗ does not depend on any variables that are not among x1, . . . , xn but occur in F.
We need this condition to avoid possible collisions of variables.

Definition 5.1. A formula F is said to be valid iff �F ∗ for every F-admissible interpretation ∗.

To axiomatize the set of valid formulas, we need some technical preliminaries. Understanding F → G as an
abbreviation for ¬F ∨ G, a positive (resp. negative) occurrence of a subformula is one that is in the scope of an even
(resp. odd) number of occurrences of ¬. A surface occurrence of a subformula is an occurrence that is not in the scope
of any choice operators. A formula not containing choice operators—i.e. a formula of the classical language—is said to
be elementary. The elementarization of a formula F is the result of replacing in F all surface occurrences of subformulas
of the form G1 � · · · � Gn or �xG by ⊥ and all surface occurrences of subformulas of the form G1 � · · · � Gn or�xG by �. A formula is said to be stable iff its elementarization is classically valid. Otherwise it is instable.

Definition 5.2. Logic CL3 is given by the following rules:
A. 	H �→ F , where F is stable and 	H is a set of formulas satisfying the following conditions:

(i) Whenever F has a positive (resp. negative) surface occurrence of a subformula G1 � · · · � Gn (resp.

G1 � · · · � Gn), for each i ∈ {1, . . . , n}, 	H contains the result of replacing that occurrence in F by Gi ;
(ii) Whenever F has a positive (resp. negative) surface occurrence of a subformula �xG(x) (resp. �xG(x)), 	H

contains the result of replacing that occurrence in F by G(y) for some variable y not occurring in F.
B1. F ′ �→ F , where F ′ is the result of replacing in F a negative (resp. positive) surface occurrence of a subformula

G1 � · · · � Gn (resp. G1 � · · · � Gn) by Gi for some i ∈ {1, . . . , n}.
B2. F ′ �→ F , where F ′ is the result of replacing in F a negative (resp. positive) surface occurrence of a subformula�xG(x) (resp. �xG(x)) by G(t) for some term t such that t is not bound in F ′.

Axioms are not explicitly stated, but note that the set 	H of premises of Rule A can be empty, in which case
the conclusion F of that rule acts as an axiom. Even though this may not be immediately obvious, CL3 essen-
tially is a (refined sort of) Gentzen-style system. Consider, for example, Rule B1. It is very similar to the additive-
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disjunction-introduction rule of linear logic. The only difference is that while linear logic requires that Gi be a ∨-
(multiplicative) disjunct of the premise, CL3 allows it to be any positive surface occurrence. This is what the calculus
of structures [5] calls deep inference, as opposed to the shallow inference of linear logic. Natural semantics ap-
pear to naturally call for this sort of inference. Yet the traditional Gentzen-style axiomatizations for classical logic
do not use it. To the question “why only shallow inference?’’ classical logic has a simple answer: “because it is
sufficient’’ (for Gödel’s completeness). Linear logic, however, may not have a very good answer to this or similar
questions.

In the following examples and exercise, p and q are unary predicate letters.

Example 5.3. The following is a CL3-proof of �x�y(p(x) ∨ ¬p(y)):
1. p(z) ∨ ¬p(z) (from {} by Rule A);

2. �y(p(z) ∨ ¬p(y)) (from 1 by Rule B2);
3. �x�y(p(x) ∨ ¬p(y)) (from {2} by Rule A).

Example 5.4. While ∃y ∀x(p(x) ∨ ¬p(y)) is a classically valid elementary formula and hence derivable in CL3
by Rule A from the empty set of premises, CL3 does not prove its “constructive version’’ �y�x(p(x) ∨ ¬p(y)).
Indeed, the latter is instable, so it could only be derived by Rule B2 from the premise �x(p(x) ∨ ¬p(t)) for some
term t different from x. Rules B1 or B2 are not applicable to �x(p(x)∨¬p(t)), so this formula could only be derived
by Rule A. Then its (single) premise should be p(z) ∨ ¬p(t) for some variable z different from t. But p(z) ∨ ¬p(t) is
now an instable formula not containing any choice operators, so it cannot be derived by any of the rules of CL3.

Exercise 5.5. With Logic � F (resp. Logic � � F ) here and later meaning “F is provable (resp. not provable) in Logic’’,
verify that:
1. CL3 � ∀x p(x) → �x p(x);
2. CL3 � ��x p(x) → ∀x p(x);
3. CL3 proves formula (1) from Section 4;
4. CL3 does not prove formula (2) from Section 4.

From the definition of CL3 it is clear that if F is an elementary formula, then the only way to prove F in CL3 is to
derive it by Rule A from the empty set of premises. In particular, this rule will be applicable when F is stable, which
for an elementary F means nothing but that F is classically valid. And vice versa: every classically valid formula is an
elementary formula derivable in CL3 by Rule A from the empty set of premises. Thus we have:

Proposition 5.6. The �, �,�,�-free fragment of CL3 is exactly classical logic.

This is what we should have expected for, as noted in Section 4, when restricted to elementary problems—and
elementary formulas are exactly the ones that represent such problems—the meanings of all non-choice operators of
CL3 are exactly classical.

Another natural fragment of CL3 is the one obtained by forbidding the blind operators in its language. This is still

a first-order logic as it contains the constructive quantifiers � and �. So, the following theorem, that will be proven
later in Section 10, may come as a pleasant surprise:

Theorem 5.7. The ∀,∃-free fragment of CL3 is decidable.

Of course CL3 in its full language cannot be decidable as it contains classical logic. However, taking into account
that classical validity and hence stability of a formula is recursively enumerable, the following fact can be immediately
seen from the way CL3 is defined:

Proposition 5.8. CL3 is recursively enumerable.

Here comes our main theorem, according to which CL3 precisely describes the set of all valid principles of com-
putability. This theorem is just a combination of Propositions 8.1 and 9.3 proven in Part 2.



116 G. Japaridze / Theoretical Computer Science 357 (2006) 100 –135

Theorem 5.9. CL3 � F iff F is valid (any formula F). Furthermore:
(a) There is an effective procedure that takes a CL3-proof of a formula F and constructs an HPM that wins F ∗ for

every F-admissible interpretation ∗.
(b) If CL3 � � F , then F ∗ is not computable for some F-admissible interpretation ∗ that interprets atoms as finitary

predicates of arithmetical complexity 6 �2.

CL3 is a fragment of the logic FD introduced in [10]. The language of FD is more expressive 7 in that it has an
additional sort of letters called general letters. Unlike our predicate letters (called elementary letters in [10]) that can
only be interpreted as elementary games, general letters can be interpreted as any computational problems. CL3 is
obtained from FD by mechanically deleting the last two Rules C and D. Those two rules introduce general letters
that are alien to the language we now consider. Once a general letter is introduced, it never disappears in any later
formulas of an FD-proof. Based on this observation, a formula in our present sense is provable in FD iff it is provable
in CL3, so that FD is a conservative extension of CL3. It was conjectured in [10, Conjecture 25.4] that FD is sound and
complete with respect to computability semantics. Our Theorem 5.9 signifies a successful verification of that conjecture
restricted to the general-letter-free fragment of FD. This fragment is called elementary-base as it only has elementary
letters, i.e. all atoms of it represent elementary problems. The fragment of computability logic that FD is conjectured
to axiomatize, in turn, is called finite-depth as all of its logical operators represent game operations that preserve the
finite-depth property of games. Hence the fragment of computability logic captured by CL3 was called in [10] the
finite-depth, elementary-base fragment.

The language of FD, in turn, is just a fragment of the bigger language introduced in [10] for computability logic,
called the universal language. The latter is the extension of the former by adding the operators ◦| , ◦| (◦| = ¬◦| ¬) and
◦– to it. Ref. [12] further augments the official language of computability logic with a few other natural operators.
Along with the above-mentioned Conjecture 25.4 regarding the soundness and completeness of FD, there were two
other major conjectures stated in [10] regarding the universal language: Conjectures 24.4 and 26.2. A positive verifi-
cation of those two conjectures restricted to the language of CL3 is also among the immediate consequences of our
Theorem 5.9.

When restricted to the language of CL3, Conjecture 24.4 of [10] sounds as follows:

If a formula F is not valid, then F ∗ is not computable for some F-admissible interpretation ∗ that interprets every
atom as a finitary predicate. 8

The significance of this conjecture is related to the fact that showing non-validity of a given formula by appealing
to interpretations that interpret atoms as infinitary predicates generally would seriously weaken such a non-validity
statement. For example, if game p∗ depends on infinitely many variables, then p∗ � ¬p∗ may be incomputable just
due to the fact that the machine would never be able to finish reading all the relevant information from the valuation
tape necessary to determine whether p∗ is true or false. On the other hand, once we restrict our considerations only
to interpretations that interpret atoms as finitary predicates, the non-validity statement for p � ¬p is indeed highly
informative: the failure to solve p∗ � ¬p∗ in such a case signifies fundamental limitations of algorithmic methods
rather than just impossibility to obtain all the necessary external information. A positive solution to Conjecture 24.4 of
[10] restricted to the language of CL3 is contained in clause (b) of our Theorem 5.9.

As for Conjecture 26.2, it was about equivalence between validity and another version of this notion called uniform
validity. If we disabbreviate “�F ∗ ’’ as “∃H (H � F ∗) ’’ (with ∗ ranging over F-admissible interpretations and H over
HPMs), then validity of F in the sense of Definition 5.1 can be written as “∀ ∗ ∃H (H � F ∗) ’’. Reversing the order of
quantification yields the following stronger property of uniform validity:

Definition 5.10. A formula F is said to be uniformly valid iff there is an HPM H such that, for every F-admissible
interpretation ∗, H � F ∗.

6 See before Proposition 9.3 for an explanation of what “arithmetical complexity �2’’ means.
7 Ignoring the minor detail that constants were not allowed in FD.
8 The original formulation of Conjecture 24.4 imposes three more restrictions on the problems through which atoms are interpreted: those problems

can be chosen to also be determined (see [10] for a definition), strict (in the sense that in every position at most one of the players has legal moves)
and unistructural. These conditions can be omitted in our case as they are automatically satisfied for elementary games.
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Intuitively, uniform validity means existence of an interpretation-independent solution: since no information regard-
ing interpretation ∗ comes as a part of input to our play machines, the above HPM H with ∀∗(H � F ∗) will have to
play in some standard, uniform way that would be successful for any possible ∗.

The term “uniform’’ is borrowed from [1] as this understanding of validity in its spirit is close to that in Abramsky
and Jagadeesan’s tradition. The concepts of validity in Lorenzen’s [15] tradition, or in the sense of Japaridze [8,9], also
belong to this category. Common to those uniform-validity-style notions is that validity there is not defined as being
“always true’’ (true = ẇinnable) as this is the case with the classical understanding of this concept; in those approaches
the concept of truth is often simply absent, and validity is treated as a basic concept in its own rights. As for (simply)
validity, it is closer to validities in the sense of Blass [3] or Japaridze [7], and presents a direct generalization of the
corresponding classical concept in that it indeed means being true (winnable) in every particular setting.

Which of our two versions of validity is more interesting depends on the motivational standpoint. It is validity rather
than uniform validity that tells us what can be computed in principle. So, a computability-theoretician would focus on
validity. Mathematically, non-validity is generally by an order of magnitude more informative—and correspondingly
harder to prove—than non-uniform-validity. Say, the non-validity of p�¬p, with the above-quoted and now successfully
verified Conjecture 24.4 of [10] in mind, means existence of solvable-in-principle yet algorithmically unsolvable
problems—the fact that became known to the mankind only as late as in the 20th century. As for the non-uniform-
validity of p � ¬p, it is trivial: of course there is no way to choose one of the two disjuncts that would be true for all
possible values of p because, as the Stone Age intellectuals were probably aware, some p are true and some are false.

On the other hand, it is uniform validity rather than validity that is of interest in more applied areas of computer
science such as knowledgebase systems (see Section 6) or resourcebase and planning systems (see Section 26 of [10]
or Section 8 of [12]). In such applications we want a logic on which a universal problem-solving machine can be
based. Such a machine would or should be able to solve problems represented by formulas of CL3 without any specific
knowledge of the meaning of their atoms, i.e. without knowledge of the actual interpretation. Remembering what was
said about the intuitive meaning of uniform validity, this concept is exactly what fits the bill.

Anyway, the good news, signifying a successful verification of Conjecture 26.2 of [10] restricted to the language
of CL3, is that the two concepts of validity yield the same logic. If F is uniformly valid, then it is automatically also
valid, as uniform validity is stronger than validity. Suppose now F is valid. Then, by the completeness part of Theorem
5.9, CL3 � F . But then, according to the ‘furthermore’ clause (a) of the same theorem, F is uniformly valid. Thus,
where—in accordance to our present convention—“formula’’ means formula of the language of CL3, we have:

Theorem 5.11. A formula is valid if and only if it is uniformly valid.

In many contexts, such as the one of the following section, the above theorem allows us to talk about “the semantics’’
of CL3 without being specific regarding which of the two possible underlying concepts of validity we have in mind.

6. CL3-based applied systems

As demonstrated in Section 4, the language of CL3 presents a convenient formalism for specifying and studying
computational problems and relations between them. Its axiomatization provides a systematic way to answer not only
the question ‘what can be computed’ but—in view of clause (a) of Theorem 5.9—also ‘how can be computed’. Our
approach brings logic and theory of computing closer together, and its general theoretical importance is obvious. The
property of computability is at least as interesting as the property of (classical) truth. Moreover, as we saw, computability
is also more general than truth: the latter is nothing but the former restricted to formulas of classical logic, i.e. elementary
formulas. Thus, studying the logic of computability makes at least as much sense as studying the logic of truth. The
latter—classical logic—is well-studied and well-explored. The former, however, has never received the treatment it
naturally deserves.

The significance of our study is not limited to the theory of computation or pure logic. The fact that CL3 is a
conservative extension of classical logic makes the former a reasonable and appealing alternative to the latter in every
aspect of its applications. In particular, there are good reasons to try to base applied theories—such as, say, Peano
arithmetic—on CL3 instead of just classical logic. From axioms of such a theory we would require to be “true’’ in
our sense, i.e. represent (under the fixed, “standard’’ interpretation/model) computable problems, and from its rules
of inference require to preserve the property of computability. One of the particular ways to construct such theories is
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to treat the theorems of CL3 as logical axioms and use modus ponens as the only logical rule of inference. 9 All of
the non-logical axioms of the old, classical-logic-based version of the theory are true elementary formulas and hence
computable in our sense, so they can be automatically included into the new set of non-logical axioms. To those could
be added new, more constructive and informative axioms that involve choice operators, which would allow us to delete
some or most of the old axioms that have become no longer independent. A new, computability-preserving inference
rule that could be included in the CL3-based arithmetic is the constructive rule of induction:

�x(F (x) → F(x + 1)), F (0) �→ �xF(x).

No old information whatsoever would be lost when following this path. On the other hand we would get a much more
expressive, constructive and computationally meaningful theory. All theorems of such a theory would be computable

problems in our sense. For example, provability of �x�y p(x, y)—as opposed to ∀x ∃y p(x, y)—would imply
that, for every x, a y with p(x, y) not only exists, but can be algorithmically found. Moreover, such an algorithm
itself can be effectively constructed from a proof of the formula and algorithmic solutions (winning HPMs) to the
problems represented by the non-logical axioms of the theory. This would be guaranteed by clause (a) of Theorem 5.9,
Proposition 4.8 and similar facts regarding any additional, non-logical rules of inference if such are present, such as
the above constructive rule of induction.

Looks like our approach materializes what the constructivists have been calling for, yet without unsettling the
classically minded: whatever we could say or do by the means that classical logic offered, we can automatically still say
and do, with the only difference that now many things we can say and do in a much more informative and constructive
way. Our way of constructivization of theories is conservative and hence peaceful. This contrasts with many other
attempts to constructivize theories, that typically try to replace classical logic by weaker logics with “constructive’’
syntactic features (often in a not very clear sense)—such as intuitionistic calculus—yielding loss of information and
causing the frustration of those who see nothing wrong with the classical way of reasoning.

From the purely logical point of view, it could be especially interesting to study applied theories in the ∀, ∃-free
sublanguage of the language of CL3. Let us use CA to denote the version of arithmetic based on the ∀, ∃-free fragment
of CL3. Of course, it would be more accurate to use the indefinite article “a’’ instead of “the’’ here, for we are not
very specific about what the axioms of CA should be. Let us just say that CA has some “standard’’ collection of basic
axioms characterizing =, +, × and the successor function, and includes the above constructive rule of induction. For the
traditional, classical-logic based version of arithmetic we use the standard name PA. Due to the big difference between
the underlying logics of CA and PA—enough to remember that one is decidable and the other is not—CA might have
some new and interesting features. Could we obtain a reasonably expressive yet decidable theory this way? 10 Generally,
how strong a theory (whether decidable or not) could we get and what would be the fundamental limitations to its
deductive power? Would CA still be able to numerically represent all decidable predicates and functions as PA does?
How much of its own metatheory would CA be able to formalize? One can show that the property of computability of
the problems represented by formulas of CA can be expressed in the language of CA, so that CA, unlike PA, would be
able to talk about its own “truth’’. One can also show that PA can constructively prove that everything provable in CA
is true and hence CA is consistent. What are the limitations of the deductive strength of CA that make it impossible
to reproduce the same proof? If there are none, then what happens to Gödel’s incompleteness theorems in the context
of CA? How about provability logic in general, which has been so well-studied for PA (see [13])? These are a few
examples of the many intriguing questions naturally arising in this new framework and calling for answers.

CL3 can as well be of high interest in applied areas of computer science such as AI. The point is that the language of
CL3, being a specification language for computational problems, is, at the same tame, a coherent and comprehensive
query and knowledge specification language—something that the language of classical logic fails to be. Where Age(x, y)

is the predicate “Person x is y years old’’, the knowledge represented by the formula ∀x ∃y Age(x, y) is knowledge of
the almost tautological fact that all people have their age. However, how to express (the stronger) knowledge of every
person’s actual age, which is more likely to be of relevance in a knowledgebase system? In classical logic we cannot do

9 One could show that including some other standard logical rules such as quantification rules along with modus ponens generally would not
increase the deductive power of the theory as long as non-logical axioms are (re)written in a proper manner.

10 Even if the set of non-logical axioms of CA is chosen finite and the rule of induction is not included, the fact that the underlying logic is decidable
does not imply the decidability of CA itself, for the deduction theorem for CL3-based theories would work in a way rather different from how it
works for classical-logic-based theories.
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this, and this limited expressive power precludes classical logic from serving as a satisfactory logic of knowledgebase
systems, that all the time deal with the necessity to distinguish between just truth and the system’s actual ability to
know/find/tell what is true. Within the framework of traditional approaches, classical logic needs to be extended (say,
by adding to it epistemic modalities and the like) to obtain a more or less suitable logic of knowledgebases. In our
case, however, the situation is much more nice: there is no need to have separate languages and logics for theories on
one hand and knowledgebases on the other hand: the same logic CL3, with its standard semantics, can be successfully
used in both cases, without the need to modify/extend/adjust it. Back to our example, knowledge of everyone’s actual
age can be expressed by �x�y Age(x, y). Obviously the ability of an agent to solve this problem means its ability
to correctly tell each person’s age. Within the framework of computability logic, the concept of the knowledge of an
agent can formally be defined as the set of the queries that the agent can actually solve. The word “query’’ here is a
synonym of what we call “problem’’ (game), and we prefer to use the former in this new context only because it is
more common in the database and knowledgebase systems lingo.

Let us look at the query intuitions associated with our game semantics. Every formula whose main operator is �
or � can be thought of as a question asked by the user (environment). For example, Male(Dana) � Female(Dana)
is the question “Is Dana male or female?’’. Solving this problem, by our semantics for �, means correctly telling
the gender of Dana. Formulas whose main operator is � or �, on the other hand, represent questions asked by the
system. For example, �x(Male(x) � Female(x)) is the question “Whose gender do you want me to tell you?’’. The
user’s response can be “Dana’’, which will bring the game down to the above user-asked question regarding the gender
of Dana. Just as we noted when discussing computational problems, the language of CL3 allows us to form queries
of arbitrary complexities and degrees of interactivity. Negation turns queries into counterqueries; parallel operators
generate parallel queries where both the user and the system can have simultaneous questions and counterquestions,
with → acting as a query reduction operator; and blind quantifiers generate imperfect-information queries. Let us
look at

∀x(�y Age(x, y) ∧ (Male(x) � Female(x)) → �zBestDiet(z, x)), (3)

where BestDiet(z, x) is the predicate “z is the best diet for x’’. The ability of the knowledgebase system to solve this
query means its ability to determine the best diet for any person, provided that the system is told that person’s age and
gender—that is, its ability to reduce the ‘best diet’ problem to the ‘age and gender’ problem. That x is quantified with
∀ rather than � means that the system does not need to be told who the person really is. The following is a possible
legal scenario of interaction over this query. The system is waiting till the user specifies, in the antecedent, the age
and gender of x (without having explicitly specified the value of x). Our semantics automatically makes the system
successful (winner) if the user fails to respond to either of those two counterqueries. Once responses in the antecedent
are received, the system selects a diet for x. The system has been successful if the diet it selected is really the best diet
for x as long as the user has told it the true age and gender of x.

Most of the real information systems are interactive, and this makes our logic, which is designed to be a logic
of interactive tasks, a well-suited formal framework for them and an appealing alternative to the more traditional
frameworks. Imagine a medical diagnostics system. What we would like the system to do is to tell us, for any patient
x, the diagnosis y for x. That is, to solve the query for all x �yDiagnosis(x, y). If here we understand ‘for all ’ as
∀, the problem has no solution: an abstract x cannot be diagnosed even by God. With ‘for all ’ understood as �, the
query does have a solution in principle. But diagnosing a patient just based on his/her identity would require having
all the relevant medical information regarding that patient, which in a real knowledgebase system is unlikely to be the
case. Most likely, the query that the system solves would look like ∀x(Q(x) → �yDiagnosis(x, y)), where Q(x) is
a (counter)query with questions regarding x’s symptoms, blood pressure, cholesterol level, reaction to various drugs,
etc. (one of such questions could be �z(x = z), effectively turning the main quantifier ∀x into �x). Most likely
Q(x) would not be just a ∧-conjunction of such questions as this was the case with the antecedent of (3), but rather it
would have a more complex structure, where what questions are asked could depend on the answers that the user gave
to previous questions, yielding a long dialogue with a series of interspersed moves by both parties.

A more familiar to each of us real-life example is the automated bank account information system. You dial the
bank-by-phone number to inquire about your balance. But the query that the system solves is not really as simple as�xMyBalance(x). If this was the case, then you would be told your balance right after dialing the number. Rather,
you will have to go through quite a dialogue, with all sorts of questions regarding your preferences, account type and
number, secret PIN or even mother’s maiden name.
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The style of the above examples and the terminology employed to explain the associated intuitions are somewhat
different from those that we saw in Section 4 when discussing computational problems and operations on them, or at
the beginning of the present section when discussing CL3-based applied theories. But notice that the underlying formal
semantics remains the same: whether we talk about valid principles of computability, constructive applied theories, or
knowledgebase systems—in each case we deal with the same (language of) CL3 with its standard semantics. Using
the same logic CL3 in all these cases is possible only due to Theorem 5.11 though. The reason for the failure of the
principle p � ¬p in the context of computability theory is that the corresponding problem may have no algorithmic
solution. That is, p � ¬p is not valid. The reason for the failure of the same principle in the context of knowledgebase
systems is much simpler. An intelligent system may fail to solve the problem Male(Dana) �¬Male(Dana) not because
the latter has no algorithmic solution (of course it has one), but simply because the system does not possess sufficient
knowledge to determine Dana’s gender. In particular, the system with empty non-logical (but perfect logical) knowledge
would not be able to solve p �¬p because it is not uniformly valid. According to Theorem 5.11, however, validity and
uniform validity are equivalent. Hence, the logic of computability, which is about what can be computed in principle,
is the same as the logic of knowledgebase systems, which is about what can be actually solved by knowledge-based
agents.

The point to be made here is that our approach brings together applied theories and knowledgebase systems, tradi-
tionally studied by different clans of researchers with different motivations, visions and methods. Every computability-
logic-based applied theory automatically is a knowledgebase system, and vice versa. Knowledgebase systems can be
axiomatized in exactly the same way as we would axiomatize arithmetic. The set of non-logical axioms of such a system
may include atomic formulas representing factual knowledge, such as Father(Bob,Jane) (“Bob is Jane’s father’’); it
can include non-atomic elementary formulas representing general knowledge, such as ∀x(x × (y + 1) = (x × y)+ x)

or ∀x( ∃yFather(x, y) → Male(x)); and it can include non-elementary formulas such as �x�y�z(z = x × y)

or �x�yAge(x, y), expressing the ability of the system to compute the × function or its knowledge of (ability to
tell) everyone’s age. These axioms would represent what can be called the explicit knowledge of the system—the basic
set of problems/queries that the system is able to solve. And the set of theorems of such a system would represent
its overall—perhaps what can be called implicit—knowledge. Each theorem would be a query that the system, with
CL3 built into it, is actually capable of solving: as we noted when discussing CL3-based applied theories, a solution
to the problem/query expressed by a formula F can be automatically obtained from a proof of F and known solutions
to the non-logical axioms. Furthermore, one can show that it is not even necessary for the knowledgebase system to
know actual solutions (winning HPMs) for its axioms. Rather, it would suffice to have unlimited access to machines or
other knowledgebase systems (external computational/informational resources) that solve those axioms. “Unlimited
access’’ here means the possibility to query (play against) those resources any finite number of times and perhaps in
parallel. There is no need for the system to know how exactly those external resources do their job as long as they do it
right. The system would still be able to dynamically solve any theorem F, even if no longer able to construct an actual
HPM that solves F.

Extending the meaning of the term “resource’’ to physical resources as well, computability-logic-based knowledge-
base systems can be further generalized to resourcebase systems and systems for resource-bound planning and action.
See Section 26 of [10] for a discussion and illustrations. A more elaborated discussion of applied systems based on
computability logic is given in Section 8 of [12].

Part 2
This part can be considered a technical appendix to Part 1. It is exclusively devoted to proofs of our two main results:
Theorem 5.9 (Sections 7–9) and Theorem 5.7 (Section 10).

7. Preliminaries

The concept of admissible interpretation can be naturally extended from formulas to sets of formulas: For a set S of
formulas, an S-admissible interpretation is an interpretation that is F-admissible for each F ∈ S. To simplify things,
we will assume throughout the rest of this paper that all the formulas we deal with are from some fixed set S, and by
“interpretation’’ we will always mean S-admissible interpretation.
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Reiterating and extending our earlier conventions, in what follows E, F, G, H, I, J, K will be exclusively used as a
metavariable for formulas, �, � for moves, ∗,� for interpretations, x, y, z, s, u, w for variables, a, b, c, d for constants,
t for terms and e, f for valuations.

The following lemma, on which our reasoning will often rely implicitly, is just a straightforward observation:

Lemma 7.1. For any formula F(x1, . . . , xn), the set Lr(F (t1,...,tn))∗
e does not depend on e, ∗ or t1, . . . , tn.

With the above fact in mind and in accordance with our conventions from Section 2, we will usually omit the
parameter e in the expression LrF ∗

e , as well as omit “with respect to e’’ in the phrase “legal run of F ∗ with respect to
e’’. Remember also from Section 2 that e can as well be omitted in the expression WnA

e when A is a constant game
and hence e is irrelevant.

Lemma 7.2. Suppose x is a variable occurring in a formula F. Then, for any interpretation ∗, constant c and subformula
G of F, (G[x/c])∗ = G∗[x/c].

Proof. Assume x occurs in F. Pick an arbitrary interpretation ∗, constant c and subformula G of F. Our goal statement
(G[x/c])∗ = G∗[x/c] can be proven by induction on the complexity of G. We will only outline the proof scheme.
Verification of details can be done by a routine analysis of the relevant definitions, which we lazily omit and just say
something like “it is easy to see that...’’

Assume G is an n-ary non-logical atomp(t1, . . . , tn) (the case of logical atoms⊥, � is trivial). Letp∗ = A(x1, . . . , xn).

First consider the case when x is not among t1, . . . , tn. Then G[x/c] = G, so it would be sufficient to show that
G∗ = G∗[x/c]. But indeed, by our convention, ∗ is F-admissible; since x occurs in F, according to the definition of
F-admissible interpretation, either A(x1, . . . , xn) does not depend on x, or x is among x1, . . . , xn. In either case it can
be seen that A(t1, . . . , tn) does not depend on x. Hence A(t1, . . . , tn)[x/c] = A(t1, . . . , tn), i.e. G∗[x/c] = G∗.

Next consider the case when x is among t1, . . . , tn. For convenience of visualization, we may assume that t1 =
· · · = ti = x and all tj with i < j �n are different from x. Then G[x/c] = p(c, . . . , c, ti+1, . . . , tn) and hence
(G[x/c])∗ = A(c, . . . , c, ti+1, . . . , tn). It is not hard to verify that A(c, . . . , c, ti+1, . . . , tn) = A(t1, . . . , tn)[x/c], so
that we get (G[x/c])∗ = G∗[x/c]. This competes our proof of the basis case of induction.

For the inductive step, let us consider the case when G = H1 ∧ H2 as an example. The following equation is based
on the obvious fact that substitution of terms commutes with ∧:

((H1 ∧ H2)[x/c])∗ = ((H1[x/c]) ∧ (H2[x/c]))∗. (4)

Next, the operation ∗ also commutes with ∧, so that we have

((H1[x/c]) ∧ (H2[x/c]))∗ = (H1[x/c])∗ ∧ (H2[x/c])∗.
By the induction hypothesis, (H1[x/c])∗ = H ∗

1 [x/c] and (H2[x/c])∗ = H ∗
2 [x/c], so we have

(H1[x/c])∗ ∧ (H2[x/c])∗ = (H ∗
1 [x/c]) ∧ (H ∗

2 [x/c]).
Since the game operation of substitution of variables obviously commutes with ∧, we have

(H ∗
1 [x/c]) ∧ (H ∗

2 [x/c]) = (H ∗
1 ∧ H ∗

2 )[x/c].
Finally, again because ∗ commutes with ∧, we have

(H ∗
1 ∧ H ∗

2 )[x/c] = (H1 ∧ H2)
∗[x/c]. (5)

The chain of equations from (4) to (5) yields ((H1 ∧ H2)[x/c])∗ = (H1 ∧ H2)
∗[x/c], i.e. (G[x/c])∗ = G∗[x/c].

The cases with the other propositional connectives will be handled in a similar way, based on the fact that the three
operations: ∗, [x/c] (as an operation on formulas) and [x/c] (as an operation on problems) commute with ¬, ∨, →, �, �
just as they commute with ∧. Moreover, those three operations commute with Qy as well, where Q is any of the four
quantifiers and y is a variable different from x, so the case G = QyH with y �= x can also be handled in a way similar
to the way we handled the case G = H1 ∧ H2.
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The only remaining case is G = QxH (one can see that [x/c] does not commute with Qx). Obviously, we have
(QxH)[x/c] = QxH , so that

((QxH)[x/c])∗ = (QxH)∗. (6)

The operation ∗ commutes with Qx, and therefore

(QxH)∗ = Qx(H ∗).

Qx(H ∗) obviously does not depend on x, which easily implies

Qx(H ∗) = (Qx(H ∗))[x/c].
Again by the fact that ∗ commutes with Qx, we have

(Qx(H ∗))[x/c] = (QxH)∗[x/c]. (7)

The chain of equations from (6) to (7) yields ((QxH)[x/c])∗ = (QxH)∗[x/c], i.e. (G[x/c])∗ = G∗[x/c]. �

By a perfect interpretation we mean an interpretation that interprets any n-ary predicate letter p as a finitary predicate
A(x1, . . . , xn) that does not depend on any variables others than x1, . . . , xn. Every perfect interpretation ∗ is nothing
but a model in the classical sense (classical model) with domain {constants}—the model that interprets each constant
c as the element c of the domain and interprets each n-ary predicate letter p with p∗ = A(x1, . . . , xn) as the predicate
A(x1, . . . , xn). Such a predicate A(x1, . . . , xn) is generally �n-ary in our sense but can be thought of as exactly
n-ary under the more traditional understanding of n-ary predicates as sets of n-tuples of objects of the domain (the
understanding that we slightly revised in Section 2). By a closed formula we mean a formula not containing free
occurrences of variables.

A straightforward induction based on a routine analysis of relevant definitions reveals that:

Lemma 7.3. For any formula F and perfect interpretation ∗, the game F ∗ (is finitary and) does not depend on any
variables that do not occur free in F; hence, if F is closed, F ∗ is a constant game.

With the above fact in mind and in accordance with our conventions, as long as F is closed and ∗ is perfect, we can
always safely omit the valuation parameter e in WnF ∗

e and simply write WnF ∗
as this is done in Lemma 7.4 below.

Remembering the observations made in Section 4 about the classical behavior of our operations ⊥, �, ¬, ∧, ∨, →,
∀, ∃, we obviously have:

Lemma 7.4. For any closed elementary formula F and perfect interpretation ∗, WnF ∗〈〉 = � iff F is true in ∗
understood as a classical model.

Based on the above fact, for a closed elementary formula F and perfect interpretation ∗, the phrases “F is true in ∗’’
and “WnF ∗〈〉 = �’’ will be used interchangeably. Remember also from Section 2 that, for a predicate A, another way
to say “WnA

e 〈〉 = �’’ or “A is true at e’’ is to say “e[A] is true’’.
Let ∗ be an arbitrary interpretation and e an arbitrary valuation. The perfect interpretation induced by (∗, e) is the in-

terpretation � such that, for every n-ary predicate letter p with p∗ = A(x1, . . . , xn), we have p� = A′(x1, . . . , xn), where
A′(x1, . . . , xn) is the unique game such that, for any tuple c1, . . . , cn of constants, A′(c1, . . . , cn) = e[A(c1, . . . , cn)].
This means nothing but that A′(x1, . . . , xn) is the predicate such that A′(c1, . . . , cn) is true (at whatever valuation) iff
A(c1, . . . , cn) is true at e. Note that while A(c1, . . . , cn) may depend on some hidden variables, A′(c1, . . . , cn) is a
constant game.

For a formula F, we will be using the notation ‖F‖ for the elementarization of F. The following two lemmas can be
verified by straightforward induction on the complexity of F.

Lemma 7.5. For any formula F, interpretation ∗ and valuation e, WnF ∗
e 〈〉 = Wn‖F‖∗

e 〈〉.
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Lemma 7.6. Suppose � is the perfect interpretation induced by (∗, e), and F is a closed elementary 11 formula. Then
e[F ∗] = F�.

A valuation f is said to be finite iff there is a finite set 	x of variables such that for every variable y �∈ 	x, f (y) = 0. A
representation of a finite valuation f is a set {x1/c1, . . . , xn/cn}, where x1, . . . , xn are pairwise distinct variables such that
each variable x with f (x) �= 0 is among x1, . . . , xn, and c1, . . . , cn are constants with f (x1) = c1, . . . , f (xn) = cn. We
will say that such a set {x1/c1, . . . , xn/cn} represents f. By abuse of terminology, we will often identify a representation
of a given finite valuation with that valuation itself.

Where f is a valuation and F is a formula, fF will denote the result of substituting in F every free occurrence of
every variable x by the constant f (x). That is, f F = F [x1/f (x1), . . . , xn/f (xn)], where x1, . . . , xn are all the free
variables of F. Thus, fF is always a closed formula. Generally, we say that G is an instance of F iff G = f F for some
valuation f.

We say that a valuation f is F-distinctive iff for any free terms t1 and t2 of F, as long as t1 �= t2, we have f (t1) �= f (t2).

Lemma 7.7. For any formula F, interpretation ∗, and valuations e and f that agree on all free variables of F, we have
e[F ∗] = e[(f F )∗].

Proof. Assume F, ∗, e, f are as above. Let x1, . . . , xn be all the free variables of F, and let c1 = e(x1) = f (x1), . . . , cn =
e(xn) = f (xn). Obviously, we have

e[F ∗] = e[F ∗[x1/c1, . . . , xn/cn]]. (8)

Observe that F ∗[x1/c1, . . . , xn/cn] = (. . . ((F ∗[x1/c1])[x2/c2]) . . .)[xn/cn], and similarly for “F’’ instead of “F ∗’’.
Therefore, applying Lemma 7.2 n times, we get F ∗[x1/c1, . . . , xn/cn] = (F [x1/c1, . . . , xn/cn])∗ and hence

e[F ∗[x1/c1, . . . , xn/cn]] = e[(F [x1/c1, . . . , xn/cn])∗]. (9)

But F [x1/c1, . . . , xn/cn] is nothing but fF, so we have (F [x1/c1, . . . , xn/cn])∗ = (f F )∗ and hence

e[(F [x1/c1, . . . , xn/cn])∗] = e[(f F )∗]. (10)

Eqs. (8)–(10) yield e[F ∗] = e[(f F )∗]. �

Now we define a function that, for a formula F and a surface occurrence O in F, returns a string � called the
F-specification of O, which is said to F-specify O. In particular:
• The occurrence of F in itself is F-specified by the empty string.
• If F is ¬G, ∀xG or ∃xG, then an occurrence that happens to be in G is F-specified by the same string that G-specifies

that occurrence.
• If F is G1 ∧ · · · ∧ Gn, G1 ∨ · · · ∨ Gn or G1 → G2, then an occurrence that happens to be in Gi is F-specified by

i.�, where � is the Gi-specification of that occurrence.
Example: The second occurrence of p � q in F = G ∨ (p � q) ∨ ¬(p → ∃x(G ∧ (p � q))) is F-specified by the

string “3.2.2’’.
With Lemma 7.2 in mind and based on Proposition 4.7, the following lemma can be easily verified by induction on

the complexity of F, the routine details of which we omit:

Lemma 7.8. For every formula F, move � and interpretation ∗:
(a) 〈⊥�〉 ∈ LrF ∗

iff one of the following two conditions holds:
(1) � = �i, where � is the F-specification of a positive (resp. negative) surface occurrence of a subformula

G1 � · · · � Gn (resp. G1 � · · · � Gn) and i ∈ {1, . . . , n}. In this case 〈⊥�〉F ∗ = H ∗, where H is the result of
substituting in F the above occurrence by Gi .

(2) � = �c, where � is the F-specification of a positive (resp. negative) surface occurrence of a subformula�xG(x) (resp. �xG(x)) and c ∈ {constants}. In this case 〈⊥�〉F ∗ = H ∗, where H is the result of
substituting in F the above occurrence by G(c).

11 In fact the lemma holds for any closed formula, but for our purposes the elementary case is sufficient.
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(b) 〈��〉 ∈ LrF ∗
iff one of the following two conditions holds:

(1) � = �i, where � is the F-specification of a negative (resp. positive) surface occurrence of a subformula
G1 � · · · � Gn (resp. G1 � · · · � Gn) and i ∈ {1, . . . , n}. In this case 〈��〉F ∗ = H ∗, where H is the result of
substituting in F the above occurrence by Gi .

(2) � = �c, where � is the F-specification of a negative (resp. positive) surface occurrence of a subformula�xG(x) (resp. �xG(x)) and c ∈ {constants}. In this case 〈��〉F ∗ = H ∗, where H is the result of
substituting in F the above occurrence by G(c).

8. Soundness of CL3

Proposition 8.1. If CL3 � F , then F is valid (any formula F). Moreover, there is an effective procedure that takes a
CL3-proof of a formula F and returns an HPM H such that, for all ∗, H � F ∗.

Proof. Assume CL3 � F . Let us fix a particular CL3-proof of F. We will be referring to at as “the proof’’, and referring
to the formulas occurring in the proof as “proof formulas’’. We assume that this is a sequence (rather than tree) of
formulas without repetitions, and that every proof formula comes with a fixed justification—a record indicating by
which rule and from what premises the formula was derived.

It would be sufficient to describe an effective way of constructing an EPM E with ‘for all ∗, E � F ∗’. By Proposition
3.2, such an EPM E can then be effectively converted into an HPM H with ‘for all ∗, H � F ∗’.

We construct the EPM E , that will play in the role of �, as follows. At the beginning, this machine creates two
records on its work tape: E to hold a formula, and f to hold (a representation of) a finite valuation. E is initialized to F,
and f initialized to {x1/c1, . . . , xq/cq}, where x1, . . . , xq are all the free variables of F and, for each 1� i�q, ci is the
value assigned to xi by the valuation spelled on the valuation tape. After the initialization step, the machine follows
the algorithm LOOP described below.

Procedure LOOP: While E is a proof formula, do one of the following, depending on which of the three rules was
used (last) to derive E in the proof:

Case of Rule A: Keep granting permission until the adversary makes a move � that satisfies the conditions of one
of the following two subcases, and then act as the corresponding subcase prescribes:

Subcase (i): � = �i, where � E-specifies a positive (resp. negative) surface occurrence of a subformula
G1 � · · · � Gn (resp. G1 � · · · � Gn) and i ∈ {1, . . . , n}. Let H be the result of substituting in E the above
occurrence by Gi . Then update E to H, and update f by deleting in it all pairs u/d where u is not a free
variable of H.

Subcase (ii): � = �c, where � E-specifies a positive (resp. negative) surface occurrence of a subformula�xG(x) (resp. �xG(x)) and c ∈ {constants}. Let H be the premise 12 of E that is the result of substituting
in E the above occurrence by G(y), where y does not occur in E. Then update E to H, and update f to f ∪{y/c}
(unless x did not really have free occurrences in G(x), in which case f should stay the same as it was).

Case of Rule B1: Let H be the premise of E in the proof. H is the result of substituting, in E, a certain negative (resp.
positive) surface occurrence of a subformula G1 � · · · � Gn (resp. G1 � · · · � Gn) by Gi for some i ∈ {1, . . . , n}.
Let � be the E-specification of that occurrence. Then make the move �i, update E to H, and update f by deleting
in it all pairs u/d where u is not a free variable of H.

Case of Rule B2: Let H be the premise of E in the proof. H is the result of substituting, in E, a certain negative (resp.
positive) surface occurrence of a subformula �xG(x) (resp. �xG(x)) by G(t) for some term t such that t is not
bound in H. Let � be the E-specification of the above occurrence of �xG(x) (resp. �xG(x)). Let c = f (t) if t is
either a free variable of E or a constant, 13 and c = 0 otherwise. Then make the move �c, update E to H, and—if t
is a variable—update f to f ∪ {t/c} (unless x did not really have free occurrences in G(x), in which case f should
stay the same as it was).

12 If there are many such premises, select the lexicographically smallest one. The presence of more than one such premise, however, signifies that
the proof has some (easy-to-get-rid-of) redundancies, and we may safely assume that this is not the case.

13 Remember that when t is a constant, f (t) = t .
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It is obvious that (the description of) E can be constructed effectively from the CL3-proof of F. What we need to do
now is to show that E wins F ∗ for every ∗. In doing so, we will assume that E’s adversary never makes illegal moves.
By Remark 3.1, making such an assumption is perfectly legitimate.

Pick an arbitrary interpretation ∗, an arbitrary valuation e and an arbitrary e-computation branch B of E . Fix � as
the run spelled by B. Consider the work of E in B. For each i�1 such that LOOP makes at least i iterations in B, let
Ei and fi denote the values of the records E and f at the beginning of the ith iteration of LOOP, and Ki denote fiEi .

Thus, E1 = F and, by Lemma 7.7, e[F ∗] = e[K∗
1 ]. Our goal is to show that B is fair and WnF ∗

e 〈�〉 = �, i.e. Wn
K∗

1
e

〈�〉 = �.
Evidently Ei+1 is always one of the premises of Ei in the proof, so that LOOP is iterated only a finite number of

times. For the same reason, the value of record E is always a proof formula (incidentally, this means that the while
condition of LOOP is always satisfied, so that the reason why LOOP is only iterated a finite number of times is simply
that one of the iterations never terminates). Fix l as the number of iterations of LOOP. The lth iteration deals with the
case of Rule A, for otherwise there would be a next iteration. This implies that

El is stable. (11)

For each i with 1� i� l, let �i be the sequence of the moves made by the players by the beginning of the ith iteration
of LOOP, where the moves made by E are �-labeled and the moves made by its adversary ⊥-labeled.

For each i with 1� i� l, we have �i ∈ LrK∗
1 and 〈�i〉K∗

1 = K∗
i . (12)

This statement can be proven by induction on i. The basis case with i = 1 is trivial. Now consider an arbitrary i with
1� i < l. By the induction hypothesis, �i ∈ LrK∗

1 and 〈�i〉K∗
1 = K∗

i . If the ith iteration of LOOP deals with the
case of Rule B1 or B2, then exactly one move � is made during that iteration, and this move is by the machine, so that
�i+1 = 〈�i , ��〉. A simple analysis of the corresponding steps of our algorithm, in conjunction with Lemma 7.8(b),
can convince us that 〈��〉 ∈ LrK∗

i and 〈��〉K∗
i = K∗

i+1. With the equalities �i+1 = 〈�i , ��〉 and K∗
i = 〈�i〉K∗

1 in

mind, the former then implies �i+1 ∈ LrK∗
1 and the latter implies 〈�i+1〉K∗

1 = K∗
i+1. Suppose now the ith iteration

of LOOP deals with the case of Rule A. Then the machine does not make a move. This means that ⊥ makes a move
�, for otherwise we would have i = l. Our assumption that ⊥ never makes illegal moves here means nothing but that

〈�i , ⊥�〉 ∈ LrK∗
1 and therefore (as K∗

i = 〈�i〉K∗
1 ) 〈⊥�〉 ∈ LrK∗

i . Applying Lemma 7.8(a) to the fact that 〈⊥�〉 ∈ LrK∗
i

and analyzing the corresponding steps of our algorithm, it is easy to see that �i+1 = 〈�i , ⊥�〉 and 〈⊥�〉K∗
i = K∗

i+1.

Hence �i+1 ∈ LrK∗
1 and 〈�i+1〉K∗

1 = K∗
i+1. Statement (12) is proven.

� = �l . (13)

Indeed. Since the lth iteration of LOOP deals with the case of Rule A, E does not make any moves during that
iteration. We claim that ⊥ does not make any moves either, so that run � that is generated in the play is exactly �l . To
verify this claim, suppose, for a contradiction, that during the lth iteration of LOOP ⊥ makes a move �. As we assume
that ⊥ plays legal, we should have 〈�l , ⊥�〉 ∈ LrK∗

1 . In view of (12), this means that 〈⊥�〉 ∈ LrK∗
l . From Lemma

7.8(a), just as this was observed in the proof of (12), it is obvious that then � would satisfy the conditions of either
Subcase (i) or (ii), and then there would be an (l + 1)th iteration, which, however, is not the case. Statement (13) is
proven.

The fact that the last iteration of LOOP deals with the case of Rule A and ⊥ does not make any moves during that
iteration guarantees that E will grant permission infinitely many times during that iteration, so that branch B is fair.

Thus, in order to complete our proof of Proposition 8.1, what remains to show is that Wn
K∗

1
e 〈�〉 = �.

According to (12), �l is a legal position of K∗
1 and 〈�l〉K∗

1 = K∗
l . This implies that Wn

K∗
1

e 〈�l〉 = Wn
K∗

l
e 〈〉. But,

by (13), �l = �. Hence

Wn
K∗

1
e 〈�〉 = Wn

K∗
l

e 〈〉. (14)



126 G. Japaridze / Theoretical Computer Science 357 (2006) 100 –135

Suppose, for a contradiction, that Wn
K∗

1
e 〈�〉 �= �. Then, by (14), Wn

K∗
l

e 〈〉 �= �, whence, according to Lemma 7.5,

Wn‖Kl‖∗
e 〈〉 �= �. Then Lemma 7.6 implies that Wn‖Kl‖�〈〉 �= �, where � is the perfect interpretation induced by (∗, e).

That is, ‖Kl‖ is false in � understood as a classical model. But this is impossible because, by (11), ‖El‖ is classically
valid and hence ‖Kl‖, which is an instance of ‖El‖, is true in all classical models. �

9. Completeness of CL3

Lemma 9.1. Let t be any term, F(t) any formula, and t ′ any term that does not occur in F(t). Then CL3 � F(t) iff
CL3 � F(t ′).

Proof. This lemma can be proven by induction on the lengths of CL3-derivations. The step corresponding to Rule A
will rely on a similar fact known from classical logic. The routine details of this induction are left to the reader. Our
assumption that no free variable of a formula may be bound within the same formula is relevant here. �

In our completeness proof for CL3 we will employ the complementary logic CL3′, whose language is the same as
that of CL3 and which is given by the following rules:
A. 	H �→ F , where F is instable and 	H is a set of formulas satisfying the following conditions:

(i) Whenever F has a negative (resp. positive) surface occurrence of a subformula G1 � · · · � Gn (resp. G1 �
· · · � Gn), for each i ∈ {1, . . . , n}, 	H contains the result of replacing that occurrence in F by Gi .

(ii) Whenever F has a negative (resp. positive) surface occurrence of a subformula �xG(x) (resp. �xG(x)), 	H
contains the result of replacing that occurrence in F by G(y), where y is a variable that does not occur in F.

(iii) Whenever F has a negative (resp. positive) surface occurrence of a subformula �xG(x) (resp. �xG(x))
and t is a free term of F, 	H contains the result of replacing in F the above occurrence of �xG(x) (resp.�xG(x)) by G(y) and 14 all free occurrences of t by y, where y is a variable that does not occur in F.

B1. F ′ �→ F , where F ′ is the result of replacing in F a positive (resp. negative) surface occurrence of a subformula
G1 � · · · � Gn (resp. G1 � · · · � Gn) by Gi for some i ∈ {1, . . . , n}.

B2. F ′ �→ F , where F ′ is the result of replacing in F a positive (resp. negative) surface occurrence of a subformula�xG(x) (resp. �xG(x)) by G(y), where y is a variable that does not occur in F.

Lemma 9.2. If CL3 � � F , then CL3′ � F (any formula F).

Proof. We prove this lemma by induction on the complexity of F. Assume CL3 � � F . There are two cases to consider:
Case 1: F is stable. Then one of the following two subcases must hold (otherwise F would be CL3-derivable

by Rule A):
Subcase 1.1: There is a CL3-unprovable formula H that is the result of replacing in F some positive (resp.

negative) surface occurrence of a subformula G1 � · · · � Gn (resp. G1 � · · · � Gn) by Gi for some i ∈ {1, . . . , n}. By
the induction hypothesis CL3′ � H , whence, by Rule B1, CL3′ � F .

Subcase 1.2: There is a CL3-unprovable formula H that is the result of replacing in F some positive (resp.
negative) surface occurrence of a subformula �xG(x) (resp. �xG(x)) by G(y), where y is a variable that does not
occur in F. By the induction hypothesis CL3′ � H , whence, by Rule B2, CL3′ � F .

Case 2: F is instable. Let 	H be a minimal set of formulas satisfying the three conditions (i)–(iii) of Rule A of CL3′.
We claim that

None of the elements of 	H is CL3-provable. (15)

To show this, consider an arbitrary element H of 	H . One of the following three subcases must hold:
Subcase 2.1: H is the result of replacing in F a negative (resp. positive) surface occurrence of a subformula G1�· · ·�Gn

(resp. G1 � · · · �Gn) by Gi for some 1� i�n. If CL3 � H , then F would be CL3-derivable from H by Rule B1, which
is a contradiction.

14 “and” = “and replacing in the resulting formula”.
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Subcase 2.2: H is the result of replacing in F a negative (resp. positive) surface occurrence of a subformula �xG(x)

(resp. �xG(x)) by G(y) for some y not occurring in F. Just as in the previous subcase, CL3 � H is impossible, for
otherwise, by Rule B2, we would have CL3 � F .

Subcase 2.3: H is the result of replacing in F a negative (resp. positive) surface occurrence of a subformula �xG(x)

(resp. �xG(x)) by G(y) and all free occurrences of some term t by y, where y is a variable that does not occur in F.
Notice that then F [t/y] follows from H by Rule B2 of CL3. So, if CL3 � H , then CL3 � F [t/y], and therefore, by
Lemma 9.1, CL3 � F . Again a contradiction, and (15) is thus proven.

Applying the induction hypothesis to (15), we conclude that each element of 	H is CL3′-provable, whence, by Rule
A, CL3′ � F . �

Remember that a (finitary) predicate A is said to be of complexity �2 iff it is (“can be written as’’) ∃y ∀zB for some
decidable predicate B; and A is of complexity �2 iff both A and ¬A are of complexity �2. The rest of this section is
devoted to a proof of the following proposition:

Proposition 9.3. If CL3 � � F , then F is not valid (any formula F).
In particular, if CL3 � � F , then F ∗ is not computable for some interpretation ∗ that interprets atoms as finitary

predicates of complexity �2.

Proof. Assume CL3 � � F . Then, by Lemma 9.2, CL3′ � F . Let us fix a CL3′-proof for F, call it “the proof’’ and call
the formulas occurring in the proof “proof formulas’’. Our conventions about what a proof means are the same as in
Section 8. In particular, we assume that the proof has no repetitions: every proof formula appears in it exactly once.
Based on the proof, we are going to construct the fair EPM E which will be shown to be such that no HPM H wins
F ∗ against E on ec for an appropriately selected interpretation ∗ (which does not depend on H) and valuation ec. Our
selection of such ∗ and ec will be based on a diagonalization-style idea.

Let us agree for the rest of this section that x1, . . . , xq are all the (pairwise distinct) free variables of F, and that

Convention 9.3.1.
(a) e always means the (arbitrary but fixed) valuation spelled on the valuation tape of E ;
(b) B always stands for an (arbitrary but fixed) e-computation branch of E .

The work of E consists of three stages, that we call the preinitialization, initialization and postinitialization stages.
During the preinitialization stage, E checks whether e is F-distinctive (see before Lemma 7.7). If e passes the test
for F-distinctiveness, E goes to the initialization stage. Otherwise E simply goes into an infinite loop in a permission
state to formally ensure fairness, thus forever remaining in the preinitialization stage. During the initialization stage, E
creates two records: E to hold a formula, and f to hold (a description of) a finite valuation. E initializes E to F and f to
{x1/e(x1), . . . , xq/e(xq)}, and goes to the postinitialization stage. During the postinitialization stage, E simply follows
the following procedure:

Procedure LOOP: While E is a proof formula and f is an E-distinctive valuation, do one of the following, depending
on which of the three rules was used (last) to derive E in the proof:

Case of Rule A: Keep granting permission until the adversary makes a move �. Then act depending on which of the
following four subcases applies:

Subcase (i): � = �i, where � E-specifies a negative (resp. positive) surface occurrence of a subformula
G1 � · · · � Gn (resp. G1 � · · · � Gn) and i ∈ {1, . . . , n}. Let H be the result of substituting in E the above
occurrence by Gi . Then update E to H, and update f by deleting in it all pairs x/d such that x is not a free
variable of H.

Subcase (ii): � = �c, where � E-specifies a negative (resp. positive) surface occurrence of a subformula�xG(x) (resp. �xG(x)) and c is a constant not occurring in fE. Let H be the premise 15 of E that is the
result of substituting in E the above occurrence by G(y), where y is a variable that does not occur in E. Then

15 As in Section 8, if there are many such premises, select the lexicographically smallest one.
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update E to H, and update f to f ∪ {y/c} (unless x did not really have free occurrences in G(x), in which
case f should stay as it was).

Subcase (iii): � = �c, where � E-specifies a negative (resp. positive) surface occurrence of a subformula�xG(x) (resp. �xG(x)) and c is a constant that occurs in fE. Let t be the free term of E with f (t) = c.
Let H be the premise 16 of E that is the result of substituting in E the above occurrence of �xG(x) (resp.�xG(x)) by G(y) and all free occurrences of t by y, where y is a variable that does not occur in E. Then
update E to H; update f to f ∪ {y/c} if t is a constant, and to (f − {t/c}) ∪ {y/c} if t is a variable.

Subcase (iv): � does not satisfy any of the above conditions (i)–(iii). Then go into an infinite loop in a permission
state.

Case of Rule B1: Let H be the premise of E in the proof. H is the result of substituting, in E, a certain positive (resp.
negative) surface occurrence of a subformula G1 � · · · � Gn (resp. G1 � · · · � Gn) by Gi for some i ∈ {1, . . . , n}.
Let � be the E-specification of that occurrence. Then make the move �i, update E to H, and update f by deleting
in it all pairs x/d such that x is not a free variable of H.

Case of Rule B2: Let H be the premise of E in the proof. H is the result of substituting, in E, a certain positive
(resp. negative) surface occurrence of a subformula �xG(x) (resp. �xG(x)) by G(y) for some variable y not
occurring in F. Let � be the E-specification of that occurrence. Let c be the smallest constant not occurring in fE.
Then make the move �c, update E to H, and update f to f ∪ {y/c} (unless x did not really have free occurrences
in G(x), in which case f should stay as it was).

Lemma 9.3.2. Suppose e is F-distinctive. For each i�1 such that LOOP is iterated at least i times in B, let Ei and fi

be the values of E and f at the beginning of the i’th iteration. Then, for each such i (in clauses (a)–(c)), we have:
(a) Ei is a proof formula.
(b) fi is an Ei-distinctive valuation.
(c) As long as i > 1, Ei is a premise of Ei−1 in the proof.
(d) LOOP is iterated a finite, non-zero number of times in B.
(e) Where l is the number of iterations of LOOP in B, El is derived by Rule A and hence is instable.
(f) B is a fair branch.

Proof. Clauses (a)–(c) are obvious from the description of LOOP. Formally they can be verified by straightforward
induction on i. Note that clauses (a) and (b) imply that the while condition of LOOP is always satisfied.

In view of the assumption of the lemma regarding e, e will pass the test for F-distinctiveness during the preinitialization
stage, so LOOP will be iterated at least once. And clause (c) implies that the number of iterations of LOOP cannot be
infinite—in particular, cannot exceed the number of proof formulas. This proves clause (d).

For the remaining two clauses, assume l�1 is the number of iterations of LOOP in B. As El is a proof formula, it
should be derived by one of the three rules of CL3′. Among those rules, only Rule A is possible, for otherwise, as it is
easy to see, we would have a next iteration of LOOP. Thus, clause (e) holds.

For clause (f), we want to show that E will grant permission infinitely many times—in particular, it will do so during
the lth iteration of LOOP. By clause (e), the lth iteration of LOOP deals with the case of Rule A. What E does during
that iteration is that it keeps granting permission until the adversary responds by a move. If such a response is never
made, permission will be granted infinitely many times. Suppose now the adversary makes a move �. � cannot be a
move that satisfies the conditions of one of the Subcases (i)–(iii), for then we would have an (l+1)th iteration of LOOP.
Thus, we deal with Subcase (iv), in which, again, E will grant permission infinitely many times. �

Lemma 9.3.3. E is fair.

Proof. Keeping in mind that e and B are arbitrary (Convention 9.3.1), all we need to show is that B is fair, i.e.
permission will be granted infinitely many times in B. By Lemma 9.3.2(f), if e is F-distinctive, then B is fair. And if e
is not F-distinctive, then the fairness of B can be directly seen from the description of the preinitialization stage. �

16 Again, select the lexicographically smallest one if there are many such premises.
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As mentioned earlier, we are going to use E as an environment’s strategy, so that we will be interested in runs cospelled
rather than spelled by computation branches of E . This means that when analyzing how such runs are generated, we
should assume that the moves made by E get the label ⊥ rather than �, and the moves made by its adversary get the
label � rather than ⊥.

For the rest of this section, let us agree on the following:

Convention 9.3.4. Suppose e is F-distinctive so that, according to Lemma 9.3.2(d), LOOP makes a finite, non-zero
number of iterations in B. Then:
• l will denote the number of iterations of LOOP in B, so that the l’th iteration is the last iteration.
• Ei (where 1� i� l) will denote the value of record E at the beginning of the i’th iteration of LOOP in B.
• fi (where 1� i� l) will denote the value of record f at the beginning of the i’th iteration of LOOP in B.
• Ki (where 1� i� l) will stand for fiEi .
• �i (where 1� i� l) will stand for the sequence of the moves made by the players—in their normal order—by the

beginning of the i’th iteration of LOOP in B, where the moves made by E are ⊥-labeled and the moves made by its
adversary �-labeled.

Lemma 9.3.5. Suppose e is F-distinctive. Then, for every i with 1� i� l and every interpretation ∗, we have �i ∈ LrK∗
1

and 〈�i〉K∗
1 = K∗

i .

Proof. Assume e is F-distinctive. We proceed by induction on i. The basis case with i = 1 is trivial taking into
account that �1 = 〈〉. Now consider an arbitrary i with 1� i < l. By the induction hypothesis, �i ∈ LrK∗

1 and
〈�i〉K∗

1 = K∗
i .

Suppose the ith iteration of LOOP in B deals with the case of Rule A. Then E does not make a move during this
iteration. Since i is not the last iteration, the adversary should make a move � that satisfies the conditions of one of the
Subcases (i)–(iii), and then we will have �i+1 = 〈�i , ��〉. Analyzing how Ei and fi are updated to Ei+1 and fi+1
in this case, in view of Lemma 7.8(b) it is easy to see that then 〈��〉 ∈ LrK∗

i and 〈��〉K∗
i = K∗

i+1, whence, with the

equalities K∗
i = 〈�i〉K∗

1 and �i+1 = 〈�i , ��〉 in mind, we have �i+1 ∈ LrK∗
1 and 〈�i+1〉K∗

1 = K∗
i+1.

Suppose now the ith iteration of LOOP deals with the case of one of the Rules B1 or B2. Then the adversary does
not move during this iteration. E makes a one single move � so that �i+1 = 〈�i , ⊥�〉. Again, analyzing what kind
of a move this � is and how Ei and fi are updated to Ei+1 and fi+1, in view of Lemma 7.8(a) we can easily see that
〈⊥�〉 ∈ LrK∗

i and 〈⊥�〉K∗
i = K∗

i+1, whence, with the equalities K∗
i = 〈�i〉K∗

1 and �i+1 = 〈�i , ⊥�〉 in mind, we

have �i+1 ∈ LrK∗
1 and 〈�i+1〉K∗

1 = K∗
i+1. �

Lemma 9.3.6. Suppose e is F-distinctive, and � is the run cospelled by B. Then, for any interpretation ∗ with

Wn
K∗

l
e 〈〉 = ⊥, we have WnF ∗

e 〈�〉 = ⊥.

Proof. Assume e is F-distinctive, B cospells � and Wn
K∗

l
e 〈〉 = ⊥. By Lemma 9.3.5, �l ∈ LrK∗

1 and 〈�l〉K∗
1 =

K∗
l . Since Wn

K∗
l

e 〈〉 = ⊥, we then have Wn
〈�l〉K∗

1
e 〈〉 = ⊥, whence Wn

K∗
1

e 〈�l〉 = ⊥, i.e. Wne[K∗
1 ]〈�l〉 = ⊥, i.e.

Wne[(f1E1)
∗]〈�l〉 = ⊥. Then, remembering from the description of the initialization stage that f1 agrees with e on all

free variables of F and E1 = F , Lemma 7.7 yields Wne[F ∗]〈�l〉 = ⊥, i.e.

WnF ∗
e 〈�l〉 = ⊥. (16)

Back to �. Obviously, �l is an initial segment of �. Since El is derived by Rule A (Lemma 9.3.2(e)), the lth iteration
of LOOP deals with Case of Rule A. So, E does not move during this iteration. If its adversary does not make moves
either, then �l = � and, by (16), WnF ∗

e 〈�〉 = ⊥. Suppose now the adversary makes a move � during the lth iteration. �
cannot be a move that satisfies the conditions of one of the Subcases (i)–(iii), for otherwise there would be an (l + 1)th
iteration of LOOP. But if none of those three conditions is satisfied, then it can be seen from Lemma 7.8(b) that we
must have 〈��〉 �∈ LrK∗

l . Consequently, by Lemma 9.3.5, 〈��〉 �∈ Lr〈�l〉K∗
1 , whence 〈�l , ��〉 �∈ LrK∗

1 , whence, in
view of Lemmas 7.1 and 7.2, 〈�l , ��〉 �∈ LrF ∗

. But 〈�l , ��〉 is an initial segment of �, which makes � a �-illegal
and hence ⊥-won run of e[F ∗]. �
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To proceed with our proof of Proposition 9.3, we need to agree on some additional terminology. In the following
convention, when using set-theoretic notation such as c ∈ 	c, we identify a tuple 	c of constants with the set of the
constants that appear in 	c.

Convention 9.3.7. Suppose 	a = (a1, . . . , ar ) and 	b = (b1, . . . , br ) are two r-tuples of pairwise distinct constants. Let
(a′

1, . . . , a
′
m) be the result of deleting in 	a all constants that are in 	b. Similarly, let (b′

1, . . . , b
′
m) be the result of deleting

in 	b all constants that are in 	a. We define the (	a, 	b)-permutation as the function h̄ : {constants} → {constants} such
that, for every constant c, we have:
• If c �∈ (	a ∪ 	b), then h̄c = c.

• If c = bi ∈ 	b (1� i�r), then h̄c = ai .

• If c = a′
j ∈ (	a − 	b) (1�j �m), then h̄c = b′

j .

The following statement is obvious:

Lemma 9.3.8. For any tuples 	a = (a1, . . . , ar ) and 	b = (b1, . . . , br ) of pairwise distinct constants, the (	a, 	b)-
permutation is an effective, bijective function from {constants} to {constants}.

For the rest of this section we assume that:

Assumption 9.3.9.
• H1, . . . , Hk are all the instable proof formulas.
• G1(x

1
1 , . . . , x1

r1
), . . . , Gk(x

k
1 , . . . , xk

rk
)are the elementarizations ofH1, . . . , Hk , respectively, where, for each 1� i�k,

we assume that xi
1, . . . , x

i
ri

are all the (pairwise distinct) free variables of Gi(x
i
1, . . . , x

i
ri
).

By a �2-interpretation we mean an interpretation that interprets each predicate letter as a (finitary) predicate of
complexity �2.

By Gödel’s completeness theorem for classical predicate calculus—in particular, the version of the proof of that
theorem as given in Section 72 of [14]—for every formula G(w1, . . . , wr) of the classical language that is not (classi-
cally) valid and whose free variables are exactly w1, . . . , wr , there is a classical model with domain {0, 1, 2, . . .} and
an r-tuple a1, . . . , ar of pairwise distinct objects of the domain such that, in that model,
• every predicate letter is interpreted as a predicate of complexity �2;
• G(a1, . . . , ar ) is false.
Such a model is nothing but what we would call a perfect (see before Lemma 7.3) �2-interpretation. Based on the above
fact and taking into account that each of the Gi(x

i
1, . . . , x

i
ri
) (1� i�k) is a classically non-valid elementary formula,

we fix the following perfect �2-interpretations and tuples of constants:

Assumption 9.3.10. For each 1� i�k.
• �i is a perfect �2-interpretation and
• 	ai = (ai

1, . . . , a
i
ri
) are pairwise distinct constants such that Gi(a

i
1, . . . , a

i
ri
) is false in �i .

For each 1� i�k and each n-ary predicate letter p, let

A
p
i (u1, . . . , un) = p�i

(of course, it is legitimate to assume that the attached tuple of each p�i comes from the same pool u1, u2, . . . of
variables).

Let us fix an effective encoding of tuples of pairwise distinct constants. We assume that every such tuple has exactly
one code, and vice versa: every c0 ∈ {0, 1, . . .} is the code of exactly one tuple of pairwise distinct constants.

For each 1� i�k and each n-ary predicate letter p, we define the predicate

B
p
i (u0, u1, . . . , un)



G. Japaridze / Theoretical Computer Science 357 (2006) 100 –135 131

by stipulating that, for any c0, . . . , cn, B
p
i (c0, . . . , cn) is true iff c0 is the code of an ri-tuple 	b of pairwise distinct

constants and, where h̄ is the ( 	ai, 	b)-permutation, A
p
i (h̄c1, . . . , h̄cn) is true.

Since h̄ is an effective function and the complexity of A
p
i is �2, we obviously have:

Lemma 9.3.11. For any n-ary predicate letter p and any 1� i�k, the complexity of B
p
i (u0, u1, . . . , un) is �2.

Remember that x1, . . . , xq are all the free variables of F. We also select and fix an arbitrary variable s that does not
occur in F. And we fix a constant d0 such that no constant occurring in F is greater than d0.

For each constant c, we define the valuation ec by stipulating that:
• ec(s) = c;
• ec(x1) = d0 + 1; . . . ; ec(xq) = d0 + q;
• for any other variable z, ec(z) = 0.
Notice that:

Lemma 9.3.12.
(a) For any constant c, ec is an F-distinctive valuation.
(b) The function g defined by g(c, i) = ec(vi) is effective.

We fix the list H0, H1, H2, . . . of all HPMs arranged according to the lexicographic order of their (standardized)
descriptions.

According to Lemma 9.3.3, E is fair. Hence, for every HPM H and valuation f, the (E, f, H)-branch (see Lemma
3.3) is defined.

For each constant c, we define:
• Bc as the (E, ec, Hc)-branch, 17 and
• �c as the Hc vs. E run on ec, i.e. the run cospelled by Bc.
Note that, by Lemmas 9.3.12(a) and 9.3.2(d), LOOP is iterated a finite, non-zero number of times in Bc.

Next, where 1� i�k, we define the predicate Lasti (x, x′) by stipulating that, for any constants c, c′,
• Lasti (c, c′) is true iff we have:

◦ The value of record E in the last iteration of LOOP in Bc is Hi ;
◦ c′ is the code of 	b, where 	b = b1, . . . , bri are the constants assigned to the variables xi

1, . . . , x
i
ri

by the value
of record f in the last iteration of LOOP in Bc. Note that, in view of Lemma 9.3.2(b), b1, . . . , bri are pairwise
distinct.

Lemma 9.3.13. For each 1� i�k, the predicate Lasti (x, x′) has complexity �2.

Proof. Updates of records E and f generally may take several computation steps. Let us call such steps (configurations
of E)—together with the steps within the preinitialization and initialization stages—transitional, and call all other
steps non-transitional. Thus, it is the non-transitional configurations in which records E and f have definite values,
with the former being a proof formula and the latter being a finite valuation. For each 1� i�k, let Ki(y, x, x′) be
the predicate such that Ki(n, c, c′) is true iff the nth configuration of Bc is non-transitional, the value of record E
in that configuration is Hi , and c′ is the code of 	b, where 	b = b1, . . . , bri are the constants assigned to the vari-
ables xi

1, . . . , x
i
ri

by the value of record f in the nth configuration. In view of Lemmas 3.3(b) and 9.3.12(b), it is
not hard to see that Ki is a decidable predicate. We know that the values of records E and f should stabilize at
some computation step m of Bc and never change afterwards. In particular, such an m is the first configuration of
the last iteration of LOOP in Bc. With this fact in mind and some little thought, we can find that Lasti (x, x′) =
∃z ∀y(y�z → Ki(y, x, x′)) and ¬Lasti (x, x′) = ∃z ∀y(y�z → ¬Ki(y, x, x′)). This means that Lasti (x, x′) has
complexity �2. �

17 Not to confuse with the predicates B
p
i

.
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For any n-ary predicate letter p and any 1� i�k, we now define the predicate C
p
i (s, u1, . . . , un) by

C
p
i (s, u1, . . . , un) = ∃u0(Lasti (s, u0) ∧ B

p
i (u0, u1, . . . , un)).

For each n-ary predicate letter p, we define the predicate Dp(u1, . . . , un) by

Dp(u1, . . . , un) = C
p

1 (s, u1, . . . , un) ∨ · · · ∨ C
p
k (s, u1, . . . , un).

(Notice that Dp(u1, . . . , un) is generally n+1-ary rather than n-ary, with s being a hidden variable on which it depends.)

Lemma 9.3.14. The predicate Dp(u1, . . . , un) has complexity �2 (any n-ary predicate letter p).

Proof. Disjunction preserves �2-complexity. So, in order to show that the predicate Dp(u1, . . . , un) is of complexity
�2, it would be sufficient to verify that each disjunct Cp

i (s, u1, . . . , un) (1� i�k) of it has complexity �2. From Lemmas
9.3.11 and 9.3.13, together with the fact that ∧ and ∃ preserve �2-complexity, it is obvious that C

p
i (s, u1, . . . , un) is

of complexity �2. Thus, what remains to show is that ¬C
p
i (s, u1, . . . , un) is also of complexity �2. We claim that

¬C
p
i (s, u1, . . . , un) = ∃u0(∨{Lastj (s, u0) | j �= i, j ∈ {1, . . . , k}} ∨ (Lasti (s, u0) ∧ ¬B

p
i (u0, u1, . . . , un)))

(17)

(∨S means the ∨-disjunction of the elements of S, understood as ⊥ when S is empty). This claim can be verified based
on the meanings of the predicates C

p
i and Lasti , and the observation that, for every (value of) s, there is exactly one

j ∈ {1, . . . , k} and exactly one (value of) u0 such that Lastj (s, u0) is true. Details of this verification are left to the
reader.

Now, from Lemmas 9.3.11 and 9.3.13, together with the fact that ∧, ∨ and ∃ preserve �2-complexity, (17) allows
us to conclude that ¬C

p
i (s, u1, . . . , un) is indeed of complexity �2. �

Now we define the interpretation ∗ by stipulating that, for each n-ary predicate letter p,

p∗ = Dp(u1, . . . , un).

Lemma 9.3.14 then means that ∗ is a �2-interpretation. The fact that variable s does not occur in F guarantees that this
interpretation is F-admissible. What remains to show is that no HPM wins F ∗. We are going to do this by proving that
each Hc loses F ∗ against E on ec.

Lemma 9.3.15. Assume the following:
(1) c, c′ ∈ {constants} and i ∈ {1, . . . , k} are such that Lasti (c, c′) is true;
(2) 	b = (b1, . . . , bri ) is the tuple of pairwise distinct constants encoded by c′;
(3) h̄ is the ( 	ai, 	b)-permutation.
Then, for any elementary formula J (z1, . . . , zn) whose free variables are exactly z1, . . . , zn and any constants
c1, . . . , cn, ec[(J (c1, . . . , cn))

∗] = (J (h̄c1, . . . , h̄cn))
�i .

Proof. Assume the conditions of the lemma are satisfied, and J (z1, . . . , zn) is an elementary formula whose free
variables are exactly z1, . . . , zn. We prove the lemma by induction on the complexity of J (z1, . . . , zn).

For the basis of induction, we need to consider the case when J (z1, . . . , zn) is atomic. The cases when it is ⊥ or
� are trivial, so suppose J (z1, . . . , zn) is a non-logical atom. For simplicity of representation and obviously without
loss of generality, we may assume that J (z1, . . . , zn) = p(z1, . . . , zn), where p is an n-ary predicate letter. Then
(J (c1, . . . , cn))

∗ = Dp(c1, . . . , cn). In turn, Dp(c1, . . . , cn) = C
p

1 (s, c1, . . . , cn) ∨ · · · ∨ C
p
k (s, c1, . . . , cn). Thus,

ec[(J (c1, . . . , cn))
∗] = ec[Cp

1 (s, c1, . . . , cn) ∨ · · · ∨ C
p
k (s, c1, . . . , cn)]. (18)

We obviously have

ec[Cp

1 (s, c1, . . . , cn) ∨ · · · ∨ C
p
k (s, c1, . . . , cn)] = C

p

1 (c, c1, . . . , cn) ∨ · · · ∨ C
p
k (c, c1, . . . , cn).

According to assumption (1) of the lemma, Lasti (c, c′) is true. As noted earlier in the proof of Lemma 9.3.14, i and c′
are unique values for which Lasti (c, c′) is true. Each component C

p
j (c, c1, . . . , cn) in the above disjunction contains
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(under ∃u0) the conjunct Lastj (c, u0) which is thus false when j �= i, and hence each such disjunct C
p
j (c, c1, . . . , cn)

can be deleted. So,

C
p

1 (c, c1, . . . , cn) ∨ · · · ∨ C
p
k (c, c1, . . . , cn) = C

p
i (c, c1, . . . , cn) = ∃u0(Lasti (c, u0) ∧ B

p
i (u0, c1, . . . , cn)).

Since c′ is the only constant for which Lasti (c, c′) is true, ∃u0(Lasti (c, u0) ∧ B
p
i (u0, c1, . . . , cn)) can be equivalently

rewritten as B
p
i (c′, c1, . . . , cn). Thus,

∃u0(Lasti (c, u0) ∧ B
p
i (u0, c1, . . . , cn)) = B

p
i (c′, c1, . . . , cn).

In turn, based on assumptions (2) and (3) of the lemma,

B
p
i (c′, c1, . . . , cn) = A

p
i (h̄c1 . . . , h̄cn).

Finally, notice that

A
p
i (h̄c1 . . . , h̄cn) = (p(h̄c1 . . . , h̄cn))

�i = (J (h̄c1 . . . , h̄cn))
�i . (19)

From the chain of equations from (18) to (19) we get ec[(J (c1, . . . , cn))
∗] = (J (h̄c1 . . . , h̄cn))

�i , which completes
our proof of the basis case of induction.

For the inductive step, we will only consider the case when the main operator of J (z1, . . . , zn) is ∃. The case with
∀ is similar, and the cases with ¬, ∧, ∨, → are simpler or straightforward.

So, assume J (z1, . . . , zn) = ∃z0I (z0, z1, . . . , zn). Then (J (c1, . . . , cn))
∗ = ( ∃z0I (z0, c1, . . . , cn))

∗ = ∃z0
((I (z0, c1, . . . , cn))

∗) and (J (h̄c1, . . . , h̄cn))
�i = ( ∃z0I (z0, h̄c1, . . . , h̄cn))

�i = ∃z0((I (z0, h̄c1, . . . , h̄cn))
�i). Thus,

we need to show that ec[ ∃z0((I (z0, c1, . . . , cn))
∗)] = ∃z0((I (z0, h̄c1, . . . , h̄cn))

�i). In other words, show that
ec[ ∃z0((I (z0, c1, . . . , cn))

∗)] is true iff ∃z0((I (z0, h̄c1, . . . , h̄cn))
�i) is so. In what follows we implicitly rely on

Lemma 7.2. Suppose ec[ ∃z0((I (z0, c1, . . . , cn))
∗)] is true. This means that there is a constant c0 such that ec[(I (c0, c1,

. . . , cn))
∗] is true. Then, by the induction hypothesis, (I (h̄c0, h̄c1, . . . , h̄cn))

�i is true. In turn, this implies that
∃z0((I (z0, h̄c1, . . . , h̄cn))

�i) is true. Now suppose ∃z0((I (z0, h̄c1, . . . , h̄cn))
�i) is true. This means that for some

constant d, (I (d, h̄c1, . . . , h̄cn))
�i is true. Since h̄ is a bijection (Lemma 9.3.8), there is a constant c0 with h̄c0 =

d. Then, by the induction hypothesis, ec[(I (c0, c1, . . . , cn))
∗] is true. Consequently, ec[ ∃z0((I (z0, c1, . . . , cn))

∗)]
is true. �

Lemma 9.3.16. Hc does not win F ∗ against E on ec (any constant c).

Proof. Fix an arbitrary c. In what follows we rely on our Convention 9.3.1 with ec and Bc in the roles of e and
B, respectively. That is, in the present context ec and Bc should be understood as synonyms of to what the earlier
parts of the present section referred as e and B. The fact that ec is F-distinctive (Lemma 9.3.12) allows us to use
the notation established in Convention 9.3.4. According to Lemma 9.3.2(d), LOOP is iterated a finite (and non-zero)
number of times—in particular, l times in Bc. Then, by clauses (a) and (e) of Lemma 9.3.2, El is an instable proof
formula. Hence El = Hi for one (and exactly one as we assume that the CL3′-proof of F has no repetitions) of the i
with 1� i�k. Fix this i. Consider fl—the value of record f at the beginning of the last iteration of LOOP in Bc. Let
	b = (b1, . . . , bri ) be the values returned for x1, . . . , xri by fl , and let c′ be the code of 	b. So, Lasti (c, c′) is true. Let h̄

be the ( 	ai, 	b)-permutation. Thus, the three conditions of Lemma 9.3.15 are satisfied. Then, according to that lemma,
ec[(Gi(b1, . . . , bri ))

∗] = (Gi(h̄b1, . . . , h̄bri ))
�i . But remembering the meaning of h̄, we have h̄b1 = ai

1, . . . , h̄bri =
ai
ri
. Thus, ec[(Gi(b1, . . . , bri ))

∗] has the same truth value as (Gi(a
i
1, . . . , a

i
ri
))�i . According to Assumption 9.3.10, the

latter is false. Then so is the former, which can be expressed by writing

Wn
(Gi(b1,...,bri

))∗
ec

〈〉 = ⊥. (20)

We have El = Hi and hence Kl = flHi . This obviously implies that ‖Kl‖ = fl‖Hi‖. In turn, by Assumption 9.3.9,
‖Hi‖ = Gi(x

i
1, . . . , x

i
ri
). And we also have flGi(x

i
1, . . . , x

i
ri
) = Gi(b

i
1, . . . , b

i
ri
). Thus, ‖Kl‖ = Gi(b

i
1, . . . , b

i
ri
).

By (20), we then get Wn‖Kl‖∗
ec

〈〉 = ⊥. This, by Lemma 7.5, implies Wn
K∗

l
ec

〈〉 = ⊥. Then, by Lemma 9.3.6, we get
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WnF ∗
ec

〈�c〉 = ⊥. Thus �c, which is the Hc vs. E run on ec, is a lost (by Hc) run of F ∗ with respect to ec, which means

that Hc does not win F ∗ against E on ec. �

Lemma 9.3.16 essentially completes our proof of Proposition 9.3: that Hc does not win F ∗ against E on ec clearly
means that it simply does not win F ∗. But every HPM is Hc for some c. Hence, no HPM wins F ∗, and F is
not valid. �

10. Decidability of the ∀,∃-free fragment of CL3

This section is devoted to a proof of Theorem 5.7. Let F be an arbitrary formula that does not contain blind quantifiers.
The decidability of the question CL3 � F can be shown by induction on the complexity of F.

F is provable iff it is derivable from some provable formulas by one of the Rules A, B1, or B2. We define a procedure
that tests, as described below, each of these three possibilities. If one of those three tests succeeds, the procedure returns
“yes’’, otherwise returns “no’’.

Testing Rule A: This routine has the following three steps. The whole test is considered to have succeeded iff each
of those three steps succeed.

Step 1: Check whether F is stable, i.e. whether ‖F‖ is classically valid. Note that the latter does not contain any
quantifiers. The question of classical validity of a quantifier-free formula is, of course, decidable. Thus, this step takes
only a finite amount of time. If F is stable, the step has succeeded. Otherwise it has failed.

Step 2: For each positive (resp. negative) surface occurrence of a subformula G1 � · · · � Gn (resp. G1 � · · · � Gn)
in F and each 1� i�n, see if H is provable, where H the result of replacing in F the above occurrence by Gi . Just like
F, H does not contain blind quantifiers, and its complexity is lower than that of F. Hence, by the induction hypothesis,
testing whether CL3 � H takes a finite amount of time. Obviously there is only a finite number of such Hs to test, so
the whole Step 2 takes a finite amount of time. If all of such Hs turn out to be provable, then the step has succeeded.
Otherwise it has failed.

Step 3: For each positive (resp. negative) surface occurrence of a subformula �xG(x) (resp. �xG(x)) in F, see
if H is provable, where H the result of replacing in F the above occurrence by G(y), where y is the smallest (in the
lexicographic order) variable not occurring in F. As in the previous step, H is ∀,∃-free and its complexity is lower
than that of F, whence, by the induction hypothesis, testing whether CL3 � H takes a finite amount of time. Also, again
there is only a finite number of such Hs to test, so the whole Step 3 takes a finite amount of time. If all of such Hs turn
out to be provable, then the step has succeeded. Otherwise it has failed.

Before we describe how the other rules are tested, let us verify that F is derivable by Rule A iff each of the above
three steps (and hence the whole test) succeeds.

Assume all three steps succeed. Success of Step 1 means that F is stable. And success of Steps 2 and 3 obviously
means that there is 	H that satisfies conditions (i) and (ii) of Rule A. Hence F is derivable from that 	H by Rule A.

Now assume one of the three steps fails. We want to show that then one of the conditions of Rule A is violated for
F as a possible conclusion of that rule. Indeed: failure of Step 1 means that the condition of stability of F is violated.
Failure of Step 2 obviously means that there is no set 	H of formulas that would satisfy condition (i) of Rule A. Suppose
now Step 3 fails. In particular, there is a positive (resp. negative) occurrence of a subformula�xG(x) (resp.�xG(x))
in F such that CL3 � � H , where H is the result of replacing in F the above occurrence by G(y), with y being the smallest
variable not occurring in F. Let us write H as H(y). In view of Lemma 9.1, for any variable y′ not occurring in F, we
would also have CL3 � � H(y′). This obviously means that no set 	H of formulas satisfies condition (ii) of Rule A.

Each of the following two routines takes a finite amount of time for the same reasons as the routines of the above-
described Steps 2 and 3 did.

Testing Rule B1: For each negative (resp. positive) surface occurrence of a subformula G1 � · · · � Gn (resp. G1 �
· · · �Gn) in F and each 1� i�n, see if H is provable, where H the result of replacing in F the above occurrence by Gi .
If one of such Hs turns out to be provable, then the test has succeeded. Otherwise it has failed. Clearly F is derivable
by Rule B1 iff this test succeeds.

Testing Rule B2: For each negative (resp. positive) surface occurrence of a subformula �xG(x) (resp. �xG(x)) in
F, do the following:

Step 1: See if H is provable, where H the result of replacing in F the above occurrence of �xG(x) (resp. �xG(x))
by G(y), where y is the smallest variable not occurring in F.
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Step 2: For each free term t of F, see if H is provable, where H the result of replacing in F the above occurrence of�xG(x) (resp. �xG(x)) by G(t).
If one of the above Hs turns out to be provable, then the test has succeeded. Otherwise it has failed.
With Lemma 9.1 in mind, a little thought can convince us that F is derivable by Rule B2 iff this test succeeds.
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