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Abstract

This thesis presents a machine-checked constructive metatheory of computation
tree logic (CTL) and its sublogics K and K∗ based on results from the literature. We
consider models, Hilbert systems, and history-based Gentzen systems and show
that for every logic and every formula s the following statements are decidable
and equivalent: s is true in all models, s is provable in the Hilbert system, and
s is provable in the Gentzen system. We base our proofs on pruning systems
constructing finite models for satisfiable formulas and abstract refutations for
unsatisfiable formulas. The pruning systems are devised such that abstract
refutations can be translated to derivations in the Hilbert system and the Gentzen
system, thus establishing completeness of both systems with a single model
construction.

All results of this thesis are formalized and machine-checked with the Coq
interactive theorem prover. Given the level of detail involved and the informal
presentation in much of the original work, the gap between the original paper
proofs and constructive machine-checkable proofs is considerable. The mathe-
matical proofs presented in this thesis provide for elegant formalizations and
often differ significantly from the proofs in the literature.

iii





Kurzzusammenfassung

Diese Dissertation beschreibt eine maschinell verifizierte konstruktive Metatheorie
von computation tree logic (CTL) und deren Teillogiken K und K∗. Wir betrachten
Modelle, Hilbert-Kalküle und History-basierte Gentzen-Kalküle und zeigen, für
jede betrachtete Logik und jede Formel s, Entscheidbarkeit und Äquivalenz der
folgenden Aussagen: s gilt in allen Modellen, s ist im Hilbert-Kalkül ableitbar und
s ist im Gentzen-Kalkül ableitbar. Die Beweise bauen auf Pruningsystemen auf,
welche für erfüllbare Formeln endliche Modelle und für unerfüllbare Formeln
abstrakte Widerlegungen konstruieren. Die Pruningsysteme sind so konstruiert,
dass abstrakte Widerlegungen zu Widerlegungen sowohl im Hilbert- als auch
im Gentzen-Kalkül übersetzt werden können. Dadurch wird es möglich, die
Vollständigkeit beider Systeme mit nur einer Modellkonstruktion zu zeigen.

Alle Ergebnisse dieser Dissertation sind formalisiert und maschinell verifiziert
mit Hilfe des Beweisassistenten Coq. In Anbetracht der Fülle an Details und
der informellen Beweisführung in großen Teilen der Originalliteratur, erfordert
dies teilweise tiefgreifende Veränderungen an den Beweisen aus der Literatur.
Die Beweise in der vorliegenden Arbeit sind so aufgebaut, dass sie zu eleganten
Formalisierungen führen.
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1 Introduction

This thesis presents a machine-checked constructive metatheory of computation
tree logic (CTL) and its sublogics K and K∗ based on results from the literature.
We prove soundness and completeness of Hilbert systems and history-based
Gentzen systems, small-model theorems, and decidability results. All results
are formalized and machine-checked with the Coq interactive theorem prover.
Given the level of detail involved and the informal presentation in much of
the original work, the gap between the original paper proofs and constructive
machine-checkable proofs is considerable. The mathematical proofs presented in
this thesis provide for elegant formalizations and often differ significantly from
the proofs in the literature.

1.1 Related Work

This thesis builds on related work from two largely independent areas. We first
survey related work on basic modal logics and modal logics with eventualities
(e.g., PDL and CTL). Afterwards, we provide some background on constructive
type theory and interactive theorem proving in Coq.

1.1.1 Basic Modal Logic

The term “modal logic” refers to a broad family of logics ranging from logics for
reasoning about knowledge and beliefs to logics used for program verification.
According to Blackburn et al. [BdRV01], modal logic as a mathematical discipline
emerged 1918 with Lewis’s Survey of Symbolic Logic [Lew18]. Lewis axiomatized a
logic extending propositional logic with a single unary modality I (“it is impossible
that”). Viewed from todays perspective, the axiom systems of Lewis and Lang-
ford [Lew18, LL32] are strange in so far as there is no separation between modal
and propositional axioms. The nowadays standard modular Hilbert systems for
modal logics consisting of modus ponens, propositional axioms, and a collection
of dedicated modal axioms and rules appeared first with Gödel’s axiomatization
of the modal logic S4 [Göd33].

The initial work on modal logic was purely syntactic. This changed in the
late 1950s with the introduction of relational semantics. Relational semantics is
usually attributed to Kripke [Kri59, Kri63] and therefore also known as Kripke
semantics. See [Gol06] for a historical account. Relational models are transition
systems where the states are labeled with atomic propositions. Formulas are then
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1 Introduction

evaluated at individual states of a model. For instance, an atomic formula p holds
at a state w of some modelM (usually writtenM,w î p) if w is labeled with p.
Relational models allow for simple semantic characterizations of many modal
logics. The modalities � and ♦ of basic modal logic K extend propositional logic
with quantification over direct successor states. The formula �s holds at some
state w if s holds at at all immediate successors of w and ♦s holds at w if s
holds at some immediate successor of w.

With relational semantics come the notions of satisfiability and validity. A
formula is satisfiable if it holds at some state of some model and valid if it holds
at all states of all models. This naturally leads to the question of completeness,
i.e., the question whether a given proof system can prove all valid formulas
of a logic. Completeness results dominated the technical work on modal logic
for over a decade [Seg71, LS77]. One of the main techniques for establishing
completeness is the construction of canonical models, i.e., models whose states
consist of maximally consistent sets of formulas and where every state satisfies
all formulas it contains (cf. [Fit07]).

For many modal logics, satisfiability of formulas is decidable. One way of es-
tablishing decidability is by showing that the logic has the small-model property. A
logic has the small model property if every satisfiable formula has a model whose
size (in terms of the number of states) can be bounded by some function in the size
of the formula. This can often be established via filtration [LS77]. The filtration of
a modelM with respect to the subformulas of some formula s is a quotient ofM
where all states that agree on the finitely many subformulas of s are identified. The
size of such a quotient is at most exponential in the size of s and for many logics
(e.g., K) will satisfy s wheneverM satisfies s. Filtration, if applicable, also estab-
lishes a form of subformula property, i.e., that in order to determine satisfiability
of some formula s it suffices to consider finite syntactic models whose states are
sets of subformulas of s and where every state satisfies all formulas it contains.

While filtration yields decidability, it does not yield reasonable decision meth-
ods. One of the most successful methods both for theoretical analysis and prac-
tical decision procedures is the tableau method. In its original form, the tableau
method was developed by Beth [Bet55]. The first application to modal logic is
due to Kripke [Kri59]. In the case of modal logics with the subformula property,
tableau proofs can be seen as the search for a syntactic model. If this search fails,
the search tree can be seen as a proof that the starting formula is unsatisfiable.
That is, tableau systems are at the same time refutation calculi and devices for the
construction of models. Many tableau systems can also be formulated as Gentzen
systems. Fitting [Fit83] gives Gentzen systems for a variety of modal logics.

1.1.2 Modal logic with Eventualities

Modal logics for reasoning about programs like PDL [FL79, Pra79], UB [Pnu77,
BAPM83] and CTL [EC82, EH85, Eme90] extend basic modal logic with various
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1.1 Related Work

eventualities. The simplest logic with eventualities is the logic K∗ [KS10] (intro-
duced as “nexttime” logic in [MP79] and referred to as UB− in [EH85]). K∗ extends
K with quantification over transitively reachable states. The formula ♦∗s holds at
a state w if s holds at some state reachable from w. Following [Pnu77], we call
♦∗s an eventuality since after finitely many transitions s must eventually hold.
The state satisfying s is said to fulfill the eventuality. Dually, the formula �∗s
holds at a state if s holds at every reachable state. We call formulas of the form
�∗s invariants since �∗s must hold again after taking a transition.

K∗ is a subsystem of PDL and shares many of its metatheoretic properties.
While satisfiability for K is PSpace-complete [Lad77], the satisfiability problem for
K∗ is ExpTime-complete [FL79, Pra79, BdRV01]. Moreover, eventualities cause the
logic to be non-compact (consider the unsatisfiable set {♦∗¬p,�p,��p, . . .} of
which every strict subset is satisfiable). That is, although K∗ is decidable, it is
not subsumed by first-order logic. Segerberg [Seg77] gives a Hilbert system for
PDL that can easily be adapted to K∗. Due to the non-compactness of K∗/PDL,
the standard construction for canonical models does not apply. Completeness
of Segerberg’s axiomatization was shown independently by Gabbay [Gab77] and
Parikh [Par78](cf. [HKT00]). There are a number of alternative completeness
proofs for PDL in the literature. These proofs either construct non-standard
canonical models and use filtration to obtain finite counter-models for unprovable
formulas [Ber79, HKT00] or directly construct finite models [KP81].

CTL is a temporal logic used for model checking [CES83, EL86, Eme08, BK08].
The logic is interpreted over Kripke models where every state has at least one
successor. Syntactically, CTL extends K∗ in two directions. It generalizes the
eventuality ♦∗s to an eventuality E(s U t) (read exists s until t) which holds at some
state w if there is some (infinite) path starting at w where s holds at every state
until a state satisfying t is reached. In addition to these existential eventualities,
CTL also features universal eventualities A(s U t) that hold at some state w if for
every infinite path starting at w the formula s holds at every state until a state
satisfying t is reached.

While filtration preserves satisfaction for existential eventualities, this is not
the case for the universal eventualities of CTL. The quotient construction may
introduce cycles in the model along which the eventuality is never fulfilled. Never-
theless, filtration for CTL yields pseudo-models than can be unfolded into proper
finite models [EH85, Eme90]. That is, CTL has the small model property and also
a form of subformula property.

Arguably the simplest algorithm for deciding satisfiability in the presence of
eventualities is pruning [Pra79]. Originally developed to establish the ExpTime
upper bound for PDL, pruning has also been used to show ExpTime decidability for
CTL [EH85] and hybrid PDL [KSS11]. Given some input formula s, pruning starts
with the collection of all Hintikka sets built from subformulas of s. Here, Hintikka
sets are sets of formulas satisfying closure conditions ensuring propositional
consistency. Every Hintikka set can be seen as a potential state of a model. Pruning
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1 Introduction

then successively removes Hintikka sets containing ♦-formulas for which there
is no successor or eventualities that cannot be fulfilled. The process terminates
with exactly the satisfiable Hintikka sets over the subformulas of s.

Beyond showing decidability of satisfiability, pruning can also serve as a basis
for completeness proofs. Emerson and Halpern [EH85, Eme90] show completeness
of a Hilbert system for CTL by showing that every Hintikka set that is removed
during pruning can be refuted. This sidesteps the issues arising from the non-
compactness of the logic.

Other decision methods for logics with eventualities are based on tableau
methods [BAPM83, EH85, Wid10, Kam12]. Many of these methods can be seen
as optimized incremental versions of pruning, i.e., they combine local expansion
rules with global rules for eventuality checking. As a consequence, these methods
cannot easily be formulated as Gentzen systems. Brünnler and Lange [BL08]
present a Gentzen system for CTL based on a game-theoretic interpretation of
the logic [LS01]. The system is non-standard in that eventualities are annotated
with histories, which are sets of sets of formulas. Histories are needed to handle
eventualities with local rules.

1.1.3 Interactive Theorem Proving

Interactive theorem provers based on type theory are being used to establish
theorems with a degree of certainty well beyond paper proofs. This ranges from
machine-checked proofs for mathematical theories such as Landau’s Grundlagen
der Arithmetik [vBJ77], the Four-Color Theorem [Gon08], the Feit-Thompson Odd
Order Theorem [GAA+13] or the Kepler Conjecture [HAB+15] to certified software
such the CompCert C compiler [Ler06, BDL06] or the seL4 microkernel [KDE09].
Beyond these “landmark projects”, the last decades have produced a large body
of formalizations on a wide variety of topics.

While for long and complex proofs the attained degree of certainty is often the
most important reason for formalization, there are other motivations to formalize
mathematics. In particular for small and medium size developments, there is often
little doubt in the correctness of the formalized result. For these developments
the main motivation is usually the desire to obtain a deeper understanding of the
results and the techniques required to obtain elegant formalizations in a given
system. One example is the theory of regular languages, parts of which have been
formalized in a variety of proof assistants. This includes both purely mathematical
developments [CJNU00, WZU14, DKS13, Pau15] as well as executable certified
decision methods [BR09, CS11, BP12].

In this thesis, we use the proof assistant Coq [Coq15] with the Ssre-
flect [GMT08] extension. The Coq system is based on the propositions-as-types
principle which has its roots in the Brouwer, Heyting, Kolmogorov (BHK) interpre-
tation of intuitionistic logic (See [Wad15] for a historical overview). They key idea
of propositions-as-types is that propositions can be seen as the types of some
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1.2 Motivation

λ-calculus with terms of those types interpreted as proofs. The first implemented
system employing propositions-as-types was the Automath system [dB68].

Coq implements a type theory called the predicative Calculus of Inductive
Constructions (pCIC) [Coq15]. It combines dependent types and the impredicative
universe of propositions from the Calculus of Constructions [CH88] with an
infinite hierarchy of predicative type universes [ML84, Luo89, Luo94] as well as
primitive inductive [Wer94] and coinductive types [Gim94].

The logic of Coq is constructive by default and designed to be consistent
with classical assumptions such as excluded middle and various choice principles.
For constructive proofs, decidability properties are of great importance. While
case distinctions on arbitrary properties are not permitted in constructive proofs,
case distinctions on decidable properties are always permitted. Consequently,
constructive proofs often involve establishing decidability properties. Originally
developed for the formalization of the Four-Color Theorem, Ssreflect [GMT08]
extends Coq with a tactic language designed to simplify reasoning about decidable
properties. In addition to the tactic language, the Ssreflect extension comes with a
comprehensive library for reasoning about discrete structures [GMR+07, GGMR09,
BGBP08].

1.2 Motivation

The original proofs of the metatheoretic results for CTL are of considerable
complexity and presented in a fairly informal manner. This applies to the proofs of
the small-model property and the completeness of Hilbert axiomatizations [EH85,
Eme90, LS01] as well as the completeness proof for the Gentzen system given
by Brünnler and Lange [BL08]. Given the practical importance of CTL and the
complexity of the proofs of the metatheoretic results, CTL yields an interesting
and rewarding candidate for formalization.

We formalize our results using the Coq interactive theorem prover. The
expressive type theory implemented by Coq allows for natural representations of
all required concepts (e.g., formulas, models, and proof systems). In particular,
our representation of models makes use of the fact that Coq, unlike HOL-based
systems like Isabelle/HOL [NPW02], treats types as first-class objects.

The proof assistant Coq is constructive by default and there is a strong tra-
dition in the type theory community to not assume unnecessary axioms. Given
that CTL is decidable and has the small-model property, it is to be expected that
much of the metatheory of CTL and its sublogics can be obtained constructively.
In fact, some of the completeness proofs for temporal logics in the literature are
constructive. A constructive completeness proof for a Hilbert system for UB (a
subsystem of CTL) appears in the work of Ben-Ari et al. [BAPM83]. The proof is
based on a tableau procedure deciding satisfiability and a construction of Hilbert
refutations for the case where the tableau procedure fails to find a model. Also,
Brünnler and Lange [BL08] give a constructive completeness proof for a Gentzen
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1 Introduction

system for CTL using a variant of the Gentzen system itself as the underlying
decision method.

While most of our results can be established constructively, there are a few
results that are inherently classical. This mainly applies to results about infinite
models (e.g., soundness and certain formulations of the small-model theorem). In
a constructive setting, we can make the need for classical assumptions formal by
showing that the respective result not only follows from some classical axiom, but
is in fact equivalent to it. This allows us to provide a fine-grained analysis showing
which results can be obtained constructively and where classical assumptions are
essential.

For our constructive completeness results we establish a number of decidability
properties that are of independent interest (e.g., decidability of model checking
and satisfiability). Here we profit from the fact that constructive type theory
comes with a built-in notion of decidability. This allows us to establish decidability
results without first formalizing a model of computation.

1.3 Overview of this Thesis

Rather than heading directly to CTL and proving completeness of a Hilbert system
and a history-based Gentzen system in one monolithic development, we present
our results in stages. We start of with basic modal logic K and subsequently
extend this development to modal logic with transitive closure (K∗) and CTL.
The motivation for this is twofold. First, the presentation in stages allows us
to discuss each of the issues arising during the development in the simplest
possible context. Moreover, the accompanying formal developments share a lot
of structure, thus prompting the development of generic lemmas and reusable
libraries.

1.3.1 Informative Decision Methods

We prove our completeness results in the form of informative decision methods.
For each proof system, we define a function1 in Coq which for a given input
formula s either returns a finite model satisfying s or a proof of ¬s. Our proofs
extend and refine the proofs from [Eme90] where completeness of a Hilbert
system for CTL is shown based on a pruning procedure deciding satisfiability.

The central notion in the design of our informative decision methods is the
notion of a demo. Demos are finite pseudo-models built from finite sets of for-
mulas we call clauses. More precisely, demos are sets of clauses satisfying a
number of closure conditions. These closure conditions ensure the existence of a
model whose states are labeled with clauses from the demo such that every state
satisfies all formulas in its labeling clause.

1 While all functions one can construct in Coq are computable, the functions we construct will
not be practically executable.
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1.3 Overview of this Thesis

pruningpruning refutation demo

finite modelHilbert refutation Gentzen derivation

Figure 1.1: Structure of completeness proofs

Demos sit at the heart of our informative decision methods. The demo con-
ditions determine a system of pruning rules. Starting from the clauses built
over the subformulas of the input formula, pruning successively removes clauses
violating the demo conditions until what remains is a demo. Consequently, the
demo conditions also give rise to a refutation calculus that complements pruning,
i.e., that derives all clauses removed during pruning. To establish completeness
of some proof system based on pruning there are two subtasks:

. The construction of finite models from demos

. The translation of pruning refutations to derivations of the proof system.

In the case of K and K∗, demos are essentially models. Due to the failure of
filtration for CTL, demos for CTL are merely pseudo-models and need to be
unfolded into proper models [EH85, Eme90].

For each of the logics K, K∗, and CTL we translate pruning refutations to
Hilbert refutations and to derivations of a Gentzen system for the respective logic.
Since the construction of models from demos is independent from the translation
arguments, we obtain for each logic two completeness results with a single model
construction (cf. Figure 1.1).

For K we employ the standard Hilbert system from the literature [Fit07].
For K∗ and CTL we give Hilbert systems motivated by an inductive interpre-
tation of eventualities. We also establish completeness of other Hilbert systems
for CTL [Eme90, LS01] by proving them equivalent to our Hilbert system. The
Gentzen system for K is essentially a clausal presentation of Fitting’s destructive
tableaux [Fit07]. For K∗ and CTL, we employ variants of the history-based Gentzen
system for CTL developed by Brünnler and Lange [BL08].

In particular for CTL, the construction of models from demos and the transla-
tions to Hilbert and Gentzen proofs are of considerable complexity. We formulate
the closure conditions for demos to give a good compromise between the com-
plexity of the model construction and the translation arguments. For our demos
we use literal clauses and the notion of support [KS10, KS14] instead of the more
traditional notion of Hintikka sets [Pra79, EH85, KSS11]. (The term demo appears
first in [KSS11], but clausal demos for K∗ already appear in [KS10] as evident
branches.) While the Hintikka sets employed for modal logics are finite sets that
are downward saturated with respect to certain propositional decomposition
rules, the collection of formulas supported by a literal clause corresponds to an
infinite (but decidable) Hintikka set that is both downward and upward closed.
The notion of support can be defined using a simple recursive function which
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1 Introduction

is convenient for the formal proofs. Moreover, the notion of support provides
a natural fit for the destructive (i.e., non-cumulative) reading of the Gentzen
systems from [BL08].

The crucial part in the definition of demos is the treatment of eventualities.
We handle eventualities using inductively defined fulfillment predicates. In the
case of CTL, fulfillment predicates replace the test for fragments embedded in
the demo employed by Emerson and Halpern [EH85, Eme90]. Pruning refutations
employ inductive fulfillment in negated form and non-fulfillment has exactly the
closure properties required for the translation to Hilbert refutations. We give a
simple bottom-up construction of fragments from inductive fulfillment. For the
construction of models from fragments we adapt the declarative construction
from [Eme90] rather than the iterative construction from [EH85].

The translation from pruning refutations to Hilbert refutations turns out to be
fairly robust as it comes to minor variations of the pruning rules. In contrast, due
to the analyticity of the Gentzen systems, the precise formulation of the pruning
rules is crucial for the translation of pruning refutations to Gentzen derivations
to succeed. In the case of K, the connection between pruning refutations and
Gentzen derivations is immediate. In the presence of eventualities, the situation
becomes more complex. The history-based systems introduced by Brünnler and
Lange [BL08] employ rules allowing to put a focus on some eventuality. Once an
eventuality is put in focus, no other eventuality may be focused on. This conflicts
with pruning. Pruning constructs derivations in a bottom-up manner and the
Gentzen derivations for previously pruned clauses may employ the focusing rules
in conflicting ways.

We resolve this mismatch by relaxing the fulfillment conditions for even-
tualities. Relaxed fulfillment arises naturally from a detailed analysis of the
fragment-based model construction for CTL [Eme90]. By including in the defini-
tion of demo only those conditions that are required to verify the construction
of models from demos, we obtain a notion of relaxed demo. The pruning sys-
tem arising with relaxed demos generates refutations that can be translated in a
natural way to derivations in the history-based Gentzen system.

Relaxed fulfillment adapts naturally to K∗ and yields pruning refutations that
can be translated to derivations of the Gentzen system for K∗. We show that
pruning with respect to relaxed fulfillment yields the same demo as pruning
with respect to normal fulfillment. This allows us to prove completeness of the
Gentzen system for K∗ without resorting to a fragment-based model construction.

1.3.2 Classical Models

We are developing the metatheory of classical modal logics in the context of
constructive type theory. It should not come as a surprise that the mismatch
between the constructive metatheory (i.e., the theory we do our proofs in) and
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the classical object logics (i.e., the logics we prove results for) will cause some
complications.

Difficulties arise with soundness rather than completeness. Satisfaction of
formulas is usually defined with respect to the class of all Kripke structures.
This includes infinite structures for which it may not be decidable whether some
formula holds at a particular state or not. The semantics with respect to all
Kripke structures essentially corresponds to a shallow embedding of the object
theory into the metatheory. Consequently, it is impossible to show soundness
of classical proof systems with respect to this semantics. One way to sidestep
these soundness issues would be to only consider finite models. Instead, we
consider as models those Kripke structures for which the satisfaction relation
is logically decidable, i.e., models M where M,w î s ∨M,w 6î s holds for all
formulas s and states w ofM. We will refer to these models as classical models.
Classical models include all finite models as well as some infinite ones. For K, we
exhibit a (necessarily infinite) classical model satisfying all satisfiable formulas.
One motivation for working with classical models is that for a classically minded
reader the restriction to classical models is of no concern since every model is
a classical model in the presence of excluded middle. Moreover, using classical
models (rather than finite models) allows us to constructively prove small-model
theorems without a priori assuming the finite-model property.

For our completeness results, the restriction to classical models is irrelevant
since all the logics considered in this thesis have the small-model property.
Therefore, we only need to construct finite models for our completeness proofs.
However, this does not mean that completeness proofs for axiomatizations of
these logics are automatically constructive. Some of the proofs for PDL [Ber79,
HKT00] employ filtration which is not constructive. Also, the proofs of Kozen
and Parikh [KP81] and Emerson and Halpern [EH85, Eme90] are non-constructive
in that they assume logical decidability of Hilbert provability. While Hilbert
provability for PDL and CTL is computationally (and hence also logically) decidable,
the easiest way to show this is through completeness.

1.3.3 Inductive Interpretation of Eventualities

For CTL we employ an alternative semantics where eventualities are characterized
inductively and invariants are characterized coinductively following the embed-
ding [EC80, EL86] of CTL in the propositional µ-calculus [Koz83]. We favor the
inductive semantics over the usual path semantics [Eme90] since infinite paths
are difficult to work with in a constructive setting. We show that the inductive
semantics constructively agrees with the path semantics on finite models. For infi-
nite models, establishing the equivalence of the inductive and the path semantics
requires excluded middle and a weak form of choice.

The inductive interpretation of eventualities and invariants gives rise to a
natural Hilbert system for CTL. We characterize eventualities using axioms corre-
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sponding to the introduction rules of the inductive characterization and a rule
corresponding to the induction scheme. Dually, invariants are characterized using
axioms corresponding to inversion and a rule for coinduction.

The Hilbert system obtained this way allows for proofs that follow the math-
ematical intuitions fairly closely. This is convenient since we construct a fair
amount of Hilbert proofs. In addition to the translation from pruning refutations
to Hilbert refutations for the completeness proof, we also prove soundness of the
Gentzen system using a translation to Hilbert proofs. Together with the transla-
tion from pruning refutations to Gentzen derivations, this yields an alternative
completeness proof for the Hilbert system.

1.3.4 Formalization in Coq

All results presented in this thesis are formalized in the proof assistant
Coq [Coq15] with the Ssreflect extension [GMT08]. In the context of this the-
sis formal always means machine-checked.

The mathematical development presented in this document and the accom-
panying Coq formalization [ACF] complement each other. The mathematical
presentation is written using the language of type theory and with a particu-
lar emphasis on giving precise definitions. This allows us to maintain a close
correspondence between the definitions used in this thesis and the definitions
used in the formalization. This is important since the definitions underlying
the formalization need to be understandable for the formalization to provide
additional value. For the proofs themselves, we often just mention the main ideas
since additional detail can always be found in the formalization. In particular,
we largely ignore the technical details of the realization in Coq and only mention
important design decisions.

One of the most technical parts of the formal development is the construction
of models from demos for CTL. Based on the declarative model construction
in [Eme90], we give a model construction for CTL that can be formalized with
reasonable effort and is general enough to obtain the completeness results for
the Hilbert system and the history-based Gentzen system as well as the usual
upper-bound for the small-model property [EH85].

Another fairly technical part of the formal development is the generation of
Hilbert proofs. In the literature [Fit07, BAPM83, EH85, Eme90] this is handled
at a fairly informal level. For the formalization, we exploit that Hilbert systems
for modal logics are modular, i.e., the Hilbert system for K extends a Hilbert
system for propositional logic and is itself extended by the Hilbert systems for
K∗ and CTL. We build a hierarchical library of over 100 modal logic facts that
allows seamless reuse of facts established for subsystems (e.g., theorems of K in
the development for CTL). In order to build Hilbert proofs, we use Coq’s tactic
language to provide goal management, rewriting, and assumption management
for the construction of Hilbert derivations.
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The formal development also makes extensive use of finite sets of formulas
(e.g., clauses) and finite sets of finite sets of formulas (e.g., demos or histories).
We develop a library for finite sets over countable types (e.g., formulas) and use
it to formalize demos, pruning, and Gentzen systems. Beyond the usual opera-
tions (e.g., separation, powerset, and replacement) the library includes fixpoint
operators for bounded monotone functions which we use to show decidability
of inductive definitions over finite domains (e.g., fulfillment). Altogether the set
library contains well over 150 lemmas.

1.3.5 Chapter Breakdown

Chapter 2 gives an overview of the logic of Coq and some of the constructions
we use in our proofs.

Chapter 3 exemplifies the structure of our constructive completeness results
through basic modal logic K.

Chapter 4 introduces inductive fulfillment to treat eventualities and presents the
completeness proof for the Hilbert system for K∗.

Chapter 5 presents the construction of models from relaxed demos and the
completeness proof for the Hilbert system for CTL.

Chapter 6 presents completeness proofs for history-based Gentzen systems for
CTL and K∗ by translating the pruning refutations arising with relaxed demos.

Chapter 7 presents the finite set library and the infrastructure for generating
Hilbert refutations and gives an overview of the formalization.

Chapter 8 concludes the thesis with a discussion of the results and directions
for future work.

1.4 Contributions

The main contributions of this thesis are as follows:

1. We are the first to prove small-model theorems and completeness of Hilbert
systems for modal logics with eventualities in a proof assistant. Given the
level of detail involved and the informal presentation in much of the original
work [Pra79, BAPM83, EH85, Eme90], the gap between the original paper proofs
and our formal proofs is considerable.

2. For each logic considered in this thesis, we introduce a notion of pruning
refutation abstracting away the algorithmic details of pruning. Admissibility
of the refutation rules yields a sufficient criterion for completeness and allows
us to show completeness of Hilbert and Gentzen systems with one model
construction per logic instead of one model construction per calculus.

3. We provide a detailed analysis of history-based Gentzen systems as introduced
by Brünnler and Lange [BL08]. We handle the nondeterminism introduced by
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the focusing mechanism using relaxed fulfillment conditions for eventualities.
This allows us to give pruning-based completeness proofs for history-based
Gentzen systems that are, at least in terms of the required formalization effort,
simpler than the original completeness proof [BL08].

4. We prove all our results in the constructive logic of the proof assistant Coq
without assuming global axioms. We provide a fine-grained analysis showing
which results can be obtained constructively and where classical assumptions
are necessary. For CTL we introduce an inductive semantics that is classically
equivalent to the usual path semantics but avoids the need to reason about
infinite paths and therefore works better in a constructive setting.

5. For the formal development we identify reoccurring patterns and turn them
into reusable components where possible. This leads to the development of
two reusable libraries.

a) A library for finite sets over countable types featuring the usual set theoretic
operations as well as fixpoint operators for bounded monotone functions.

b) A hierarchical library for generating Hilbert derivations for propositional
and modal logics providing for natural-deduction style assumption man-
agement and rewriting.

1.4.1 Published Results

Parts of this thesis extend and revise material that has already been published.

• A precursor to the notion of classical model employed throughout this thesis
and a first constructive and formal decidability proof for K∗ appears in:

Christian Doczkal and Gert Smolka. Constructive formalization of hybrid
logic with eventualities. In Zhong Shao Jean-Pierre Jouannaud, editor, Certified
Programs and Proofs (CPP 2011), volume 7086 of LNCS, pages 5–20. Springer,
2011.

• A first formal and constructive completeness proof for a Hilbert system for K∗

(Chapter 4) and a “Gentzen system” whose rules are fairly close to the rules
for pruning refutations for K∗ appears in:

Christian Doczkal and Gert Smolka. Constructive completeness for modal
logic with transitive closure. In Chris Hawblitzel and Dale Miller, editors,
Certified Programs and Proofs (CPP 2012), volume 7679 of LNCS, pages 224–
239. Springer, 2012.

• The finite set library (Chapter 7) and first formal and constructive complete-
ness proofs for the Hilbert system and the history-based Gentzen system for
CTL (Chapter 6) appears in:

Christian Doczkal and Gert Smolka. Completeness and decidability results for
CTL in Coq. In G. Klein and R. Gamboa, editors, Interactive Theorem Proving
(ITP 2014), volume 8558 of LNCS (LNAI), pages 226–241. Springer, 2014.
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• A formal proof of the small-model property of CTL and a revised version of
the completeness result for the Hilbert system based on pruning (Chapter 5)
appear in:

Christian Doczkal and Gert Smolka. Completeness and decidability results for
CTL in constructive type theory, 2015. Accepted for publication in J. Autom.
Reason.
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2 Type Theory Preliminaries

All results in this thesis have been formalized in the Coq interactive theorem
prover Coq [Coq15] using the Ssreflect extension [GMT08]. In this chapter we
briefly describe the type theory underlying Coq and some of the standard con-
structions used in our formal development. For a high-level introduction to type
theory we refer to the fist chapter of the Homotopy Type Theory book [Uni13]. A
gentle introduction to constructive type theory and interactive theorem proving
with Coq can be found in [SB14].

2.1 The Type Theory of Coq

The proof assistant Coq implements a type theory called the predicative Calculus
of (Co)Inductive Constructions (pCIC) [Coq15]. The logic pCIC can be seen as a
combination of several extensions to the Calculus of Constructions [CH88]. It
combines the infinite hierarchy of predicative type universes from the Extended
Calculus of Constructions (ECC) [Luo89, Luo94] with the general inductive types
of the Calculus of Inductive Constructions [Wer94] and coinductive types [Gim94].

The core of pCIC is a type theory with a universe Prop of propositions and
an infinite hierarchy of type universes Typei for i ∈ N. The type theory is single
sorted, i.e., there is only one syntactic category for terms and types. The term
language can be defined roughly as follows:

M,N := x | Prop | Typei | ∀x : M.N | λx : M.N | MN

We write M : N to denote that M has type N. The type ∀x : M.N is a dependent
function type. A function f : (∀x : M.N) returns for every argument A : M some
result of type N[A/x], i.e., the result of substituting A for x in N. The usual
non-dependent function type M → N is accommodated as the type ∀x : M.N
where x does not occur in N .

Every object in pCIC has a type. The type of a function type is always a
universe. The universe Prop is to be seen as the universe of propositions or
logical statements. Terms whose types are propositions are called proofs. This is
often referred to as the propositions-as-types or Curry-Howard correspondence
(see [Wad15] for a historical account).

In Coq the base theory can be extended with new inductive definitions at any
time. Every inductive definition defines a type or a type constructor (e.g. list).
For each inductive definition, the syntax is extended with the type constructor,
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a number of value constructors, a new binder fixf (x : M). s, and a dependent
match-construct. Together, fix and match allow for the definition of functions by
(higher-order) primitive recursion.

Depending on the arity, we refer to inductively defined types in the universe
Prop as inductive propositions, predicates, or relations. Types defined inductively
in the universes Typei are referred to as inductively defined data types. Examples
are the type of boolean values B : Type0 and the type of natural numbers N : Type0.
We remark that most of the usual data types have type Type0.

The type theory of Coq can be seen both as a logic and as an effect-free
terminating programming language. That is, the calculus comes with a built-in
notion of β-reduction.1

There are three fundamental properties that are usually assumed about pCIC.
These are:

• Normalization: If N : M then one can compute some normal (i.e., irreducible)
term N′ such that N ⇒∗β N′.

• Preservation: If N : M and N ⇒β N′, then N′ : M .

• Canonical Values: If I is an inductive type and M : I is closed and irreducible,
then M is of the form CM0 . . .Mn where C is some constructor of I.

Taken together, normalization, preservation, and the canonical value property
establish consistency of the type theory, i.e., the existence of unprovable proposi-
tions. Consider the inductive proposition ⊥ (falsity) that has no constructor. The
type behaves as expected, i.e., a case analysis on an assumption of type ⊥ finishes
any proof since there are no cases to consider. More importantly, ⊥ has no closed
proof. To see this, assume p is some closed proof of ⊥. Then p has a normal
form that still has type ⊥ and starts with a constructor. This is clearly impossible.

We remark that the reasoning above only requires weak normalization, i.e. that
every term can be normalized, and not that every reduction sequence eventually
yields a normal form. Even though the reference manual [Coq15] claims that
pCIC is strongly normalizing the implementation at the time of writing is not. An
example is included in the formalization accompanying this thesis.

Normalization for terms with fix-expressions requires an elaborate guard
condition ensuring that recursive calls are only made on structurally smaller
arguments. Originally, this guard condition was justified by a translation to
recursion schemes [Gim94]. However, the guard condition has been altered several
times since then. Luo [Luo94] gives a normalization proof for ECC (essentially
pCIC without inductive definitions). While there are normalization proofs for
weaker type theories with guarded recursion [Nak00, AV14], there appears to be
no normalization proof for the full system implemented by Coq.

For the rest of this thesis, we take a somewhat idealized view on Coq and
assume that normalization, preservation and the canonical value property hold,

1 The presentation of pCIC in the reference manual [Coq15] also features let-bindings and defini-
tions which each come with their own β-like reduction rules.
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2.2 Independent Statements

XM := ∀P : Prop. P ∨¬P
IXM := ∀P : Prop. P +¬P
DC := ∀X : Type ∀R : X → X → Prop.

(∀x∃y. R xy)→ ∀x∃f : N→ X. (f 0 = x)∧ (∀n. R (f n) (f(n+ 1)))

Figure 2.1: Independent statements

even though this may not be true for the current implementation. We firmly
believe that we do not accidentally exploit any inconsistency of the type theory
or its implementation. Experience with previously discovered soundness bugs
in Coq and other systems shows that fixing these bugs usually affects very few
proofs.2

Besides the logical operations, which are all defined inductively in Coq, we
employ a number of standard inductive types throughout this thesis. We write
M +N for the sum type (i.e., tagged disjoint union) of the typesM and N . Its value
constructors are inlA for A : M and inrB for B : N. Further, we write Σx : M. N
for the type of dependent pairs 〈A,B〉 where A : M and B : N[A/x]. Coq also
features dependent record types which can be seen as a generalization of nested
Σ-types with primitive projections.

2.2 Independent Statements

There are a number of classical statements that are generally accepted as being
independent of pCIC, i.e., they are not provable but can consistently be assumed.
Since we are interested in constructive proofs, we do not assume any global
axioms. Nevertheless, we sometimes use local classical assumptions to establish
results that cannot be obtained constructively. Moreover, we will sometimes argue
that certain classically provable statements are not provable constructively by
showing that they entail some independent statement.

We will refer to the following independent statements: excluded middle (XM),
informative excluded middle (IXM), and dependent choice [Her12] (DC). The precise
statements are given in Figure 2.1.

The axiom of excluded middle is the defining feature of classical logic. Tech-
nically, it allows case distinctions on arbitrary propositions when constructing
proofs. Informative excluded middle extends this to the construction of objects
of arbitrary types. In particular, IXM allows arbitrary case distinctions in function
definitions and therefore the definition of non-computable functions. The axiom

2 The version of Coq employed here (i.e., version 8.4) is inconsistent with propositional extension-
ality (i.e., the assertion that equivalent propositions are equal). Coq 8.5 beta 2 reestablishes
consistency with propositional extensionality through a change in the guard condition. This
affects none of the proofs in our formalization.
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of dependent choice is a weak choice principle. Interpreting the relation R as
a graph without terminal nodes, the axiom DC provides for infinite paths start-
ing at every node. Dependent choice will play a role for the path semantics of
CTL (Chapter 5).

Consistency of all axioms relies on the assumption that pCIC has a proof-
irrelevant set-theoretic model. Such a model would validate all axioms in Fig-
ure 2.1. Lee and Werner [LW11] give such a model for a calculus that is very
similar to pCIC but uses judgmental equality instead of untyped conversion. It is
generally assumed that the type theories with conversion or judgmental equality
are equivalent, but so far this has only been proved for subsystems of pCIC [SH12].

2.3 Decidability

For constructive proofs, decidability plays an important role since decidable
propositions behave classically. More precisely, case distinctions on decidable
properties are always permitted.

We say that a property P : Prop is decidable, if there exists a boolean expres-
sion p : B such that p = true ↔ P . Following the Ssreflect [GMT08] terminology,
we call p a boolean reflection of P and say that p decides P . Similarly, we call a
predicate P : X → Prop decidable if there exists a predicate p : X → B such that
px decides P x for all x : X. We refer to boolean predicates (i.e., functions of
type X → B) as decidable predicates since they can be seen as their own boolean
reflection. If a boolean p appears in the place of a proposition it is to be read as
p = true and similarly for boolean predicates.

Calling functions into bool decision methods is justified by the three basic
assumptions about pCIC in Section 2.1. That is, if p is some closed boolean
reflection of some closed proposition P , then the normal form of p is computable
and one of the two constructors true or false. Hence, the internal notion of
decidability described above is a sufficient criterion for computational decidability.
We remark that this argument depends on the canonical value property of pCIC
which ceases to hold in the presence of axioms.

Many logical operations, e.g. the propositional logical operations and quantifi-
cation over lists, have boolean reflections. For the mathematical presentation we
will use the standard mathematical symbols, both for the respective proposition
and its boolean reflection (e.g., we will write ⊥ both for false and for the inductive
proposition without constructor).

We remark that the notion of decidability employed here is a very shallow
notion. In particular, it is not possible to prove any undecidability results. The
reason for this is that pCIC is consistent with IXM, and IXM can be used to provide
boolean reflections for arbitrary propositions. Hence, it is impossible to show
that some proposition has no boolean reflection.
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2.4 Type Classes and Canonical Structures

2.4 Type Classes and Canonical Structures

The type theory of Coq accommodates parametric polymorphism through func-
tions from types to values. In addition to parametric polymorphism, Coq also
implements overloading (i.e., ad-hoc polymorphism). Overloading allows certain
operators and lemmas to be applied uniformly to a variety of types.

There are two implementations of overloading in Coq: canonical struc-
tures [Saï99, MT13] and type classes [SO08]. Canonical structures have been
implemented in Coq long before type classes were added. However, they have
been poorly documented for a long time and have not seen widespread use
outside the Ssreflect libraries [GMR+07, GGMR09].

Regardless whether one works with type classes or canonical structures, classes
of types are represented as dependent record types that bundle types, operators
over these types, and correctness properties. For example the class of types where
equality is decidable corresponds to the following record type:

eqType := {sort : Type,eqb : sort→ sort→ B,eqP : ∀xy.eqbxy ↔ x = y}

The projection eqb : ∀X : eqType. sortX → sortX → B serves as a generic boolean
equality operator. Given some record N : eqType where sortN is N, the term
eqbN 2 2 is a boolean reflection of 2 = 2. The record N (and other eqType
records) can be registered with Coq and inferred automatically.

In the following we refer to types with a decidable equality (i.e, types with
an associated eqType record) as discrete types. In addition to discrete types,
the Ssreflect libraries define a number of other type classes. For our purposes,
countable types and finite types are the most important.

A countable type is a discrete type that can be enumerated (e.g., numbers or
formulas). For countable types, a choice function for decidable properties can be
constructed. That is, for every countable type X there is a function

chooseX : ∀p : X → B. (∃x. p x)→ X

such that for every proof E : (∃x. p x) we have p (chooseX p E). Moreover, the
result of chooseX p E does not depend on the proof E. In the mathematical
presentation, we will suppress the proof argument E and abbreviate chooseX p E
as ε p.

A finite type is a countable type whose elements can be given with a list. Many
properties that are not decidable in general are decidable over finite types. In
particular, quantification over finite types preserves decidability.

2.5 Finite Sets

For our completeness results, we make extensive use of finite sets over countable
base types. For our purposes, finite sets are data types. In particular, we only
consider finite sets with decidable membership.
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The Ssreflect libraries [GMR+07] provide finite sets but only over finite base
types. For some parts of our development this is to restrictive, since we will
work extensively with sets of formulas as well as sets of sets of formulas. For
this we require a library providing finite sets over countable types providing the
usual operations including separation {x ∈ A | px }, replacement {f x | x ∈ A },
powerset 2A, and a choice operator εA for non-empty sets. In the following, we
write setX for the type of finite sets over a countable or finite type X. Note that
we are working with a typed set theory. That is, if A has type setX, then 2A

has type set(setX). For this to be well-typed, setX has to be a countable type
whenever X is a countable type.

Since we could not find a library satisfying all our needs, we developed our
own. The type setX is realized as a constructive quotient of the type of lists
over X. This yields an extensional representation, i.e., we have

X ⊆ Y → Y ⊆ X → X = Y (2.1)

Extensionality ensures that set membership on all levels (sets, sets of sets, etc.)
is just membership in the list representing the set. We defer the details of the
construction to Chapter 7.

In addition to the standard set operations, we also define fixpoint operators
for functions from finite sets to finite sets. We will use these fixpoint operators to
show that certain inductive definitions over finite sets are decidable.

Let X be a countable type, let U : setX, and let F : setX → setX be a function.
We call F
• monotone if ∀AB. A ⊆ B → F A ⊆ F B
• and bounded by U if ∀A. A ⊆ U → F A ⊆ U
If F is monotone and bounded by U , its least fixpoint and its greatest fixpoint
contained in U can be computed as follows [Cou81]:

lfpF := F |U| �
gfpF := CU(lfp(CU ◦ F ◦ CU))

Here F |U| � is F iterated |U|-times on the empty set and CU is the complement
in U . We then have the usual fixpoint equations.

Lemma 2.5.1 Let F : setX → setX be monotone and bounded by U . Then
F(lfpF) = lfpF and F(gfpF) = gfpF

Moreover, the iterative construction of the fixpoint gives rise to the following
“induction” principles:

Lemma 2.5.2 Let P : setX → Prop and let F : setX → setX be bounded by U .

1. ∀P.P �→ (∀A.P A→ P (F A))→ P(lfpF)
2. ∀P.P U → (∀A.P A→ P (F A))→ P(gfpF)

We will make use of the fixpoint operators to show that certain inductive or
coinductive predicates are decidable over finite domains.
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In this chapter we develop a constructive metatheory of basic modal logic K. We
give soundness and completeness proofs for a Hilbert system and a Gentzen
system and construct a model satisfying all satisfiable formulas.

Our completeness results are based on a decision procedure for satisfiability.
The decision procedure employs pruning [Pra79, KSS11]. Pruning starts with
the finite collection of clauses (i.e., finite sets of formulas) over some finite
subformula universe and removes unsatisfiable clauses until only satisfiable
clauses remain. We complement pruning with a refutation calculus designed such
that it can derive all clauses removed during pruning. This yields a sufficient
criterion for completeness: a proof system is complete if pruning refutations
can be translated to refutations in the respective system. We give translations
from pruning refutations to Hilbert refutations and to derivations in the Gentzen
system. The completeness results for both systems then come in the form of
informative decision methods, i.e., functions returning for every input formula s
either a finite model satisfying s or a proof of ¬s. The usual completeness
result (i.e., provability of all valid formulas) follows as a corollary. Together
with soundness, we obtain the small-model property and the decidability of
satisfiability and provability as additional corollaries.

Soundness of the Hilbert system and the Gentzen system is shown with respect
to a class of models we call classical models. Classical models internalize the
instances of excluded middle needed to give constructive soundness proofs.
In the presence of excluded middle, classical models are equivalent to Kripke
models [Kri63]. Constructively, the internalized assumptions can always be
fulfilled for finite models. Moreover, we construct a (necessarily infinite) universal
classical model satisfying all satisfiable formulas.

Pruning [Pra79] was originally developed to establish the EXPTIME decidability
of the satisfiability problem for PDL [FL79]. The technique has been adapted
to a variety of other modal logics [EH85, KSS11]. By using pruning for K, we
obtain proofs that extend in a uniform way to modal logic with transitive closure
(Chapter 4) and CTL [EC82] (Chapter 5). For K all proofs are fairly simple. This
allows us to focus on the design decisions underlying the formalization in Coq.
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3 Basic Modal Logic

S ` (u→ s → t)→ (u→ s)→ u→ t
K ` s → t → s

DN ` ((s → ⊥)→ ⊥)→ s
N ` �(s → t)→ �s → �t

` s ` s → t
` t

MP
` s
` �s

Nec

Figure 3.1: Hilbert system for K

3.1 Hilbert System and Models

We fix a countably infinite alphabetA of atomic propositions p and define the
formulas of K as follows:

s, t := p | ⊥ | s → t | �s

We choose to work with a minimal set of logical operations for technical conve-
nience. We make use of the following abbreviations for formulas:

¬s := s → ⊥ s ↔ t := (s → t)∧ (t → s)
s ∨ t := ¬s → t ♦s := ¬�¬s
s ∧ t := ¬(s → ¬t)

We axiomatize provability of formulas with a Hilbert system. The rules and
axioms are given Figure 3.1. The system consists of a minimal Hilbert system
for classical propositional logic (S, K, DN, and MP) extended with the normality
scheme (N) and the necessitation rule (Nec). The Hilbert system in Figure 3.1
corresponds to the system in [Fit07] with an explicit choice for the propositional
axioms. If ` ¬s, we say that s is (Hilbert) refutable and call the proof of ¬s a
(Hilbert) refutation of s.

We now define models for K. Since we are working in a constructive setting we
have to be careful as to what is the right class of models to consider.

In classical mathematics (i.e., set theory), modal logic is interpreted over
transition systems, also called Kripke structures [Kri63], where the states are
labeled with atomic propositions. A model M for K consists of the following
components:

• A set |M| of states.

• A transition relation ⇒M ⊆ |M| × |M|.
• A labeling relation ΛM ⊆A× |M|.

LetM be a model. If w ⇒M v for states w and v ofM, we call v a successor
of w. The satisfaction relation w î s between states w ofM, and formulas s is
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defined by recursion on formulas:

w î p := ΛM pw
w î ⊥ := ⊥

w î s → t := w î s → w î t
w î �s := ∀v ∈M. (w ⇒M v)→ v î w

If the modelM cannot be determined from the state w, we also writeM,w î s
to disambiguate. A formula s is satisfied byM if w î s for some state w ofM.

A formula is satisfiable if it is satisfied by some model and valid if it
is satisfied at every state of every model. Some authors require |M| to be
nonempty (cf. [BdRV01]). Admitting the empty model does not change the notions
of satisfiability and validity. However, it allows us to drop some side conditions
and avoid certain corner cases.

In Coq, we represent models as dependent records comprised of a type of
states, a transition relation and a labeling:

{|M| : Type,⇒M : |M| → |M| → Prop,ΛM :A→ |M| → Prop}

We will use the letter M to refer both to the model as a whole as well as the
underlying type of states. Further, we write w ∈M if w is a state ofM.

3.2 Soundness and Classical Models

The satisfaction relation together with the representation of models essentially
yields a shallow embedding of K into Coq. Consequently, this representation does
not provide a reasonable semantics for classical modal logic in a constructive
setting. In fact, soundness of the Hilbert system for the class of all models is
equivalent to excluded middle. We introduce a class of classical models that inter-
nalizes enough instances of excluded middle to allow for constructive soundness
proofs. Classical models are designed such that all finite models are classical
models.

Fact 3.2.1 If ¬¬p → p is valid, then XM is provable.

Proof Assume ¬¬p → p is valid. To show XM, it suffices to show ¬¬P → P for
some arbitrary proposition P : Prop. We define a modelM with a single state w0

where Λpw0 := P . By assumption we have w0 î ¬¬p → p which is, by definition,
equal to ¬¬P → P . �

We clearly have ` ¬¬p → p. Since XM is not provable constructively, soundness
for the class of all models is also not provable constructively.

Since we cannot prove soundness with respect to all models, we refine the
class of general models to a class of models we call classical models.
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3 Basic Modal Logic

Definition 3.2.2 A classical model is a modelM for which the satisfaction rela-
tion is logically decidable, i.e., a modelM such that

∀w ∈M ∀s. w î s ∨w 6î s (3.1)

If one assumes XM, then every model can be turned into a classical model. Without
XM, having to prove (3.1) severely restricts our ability to construct infinite models.
Note that the notion of a classical model refers to the satisfaction relation and
therefore depends on the logic under consideration.

It is straightforward to show that the Hilbert system is sound for classical
models.

Theorem 3.2.3 (Soundness) Let ` s. Then M,w î s for all classical models M
and all states w ofM.

Proof By induction on ` s using (3.1) for the case corresponding to DN. �

Finite models are a particularly important class of classical models. For finite
models the satisfaction relation is computationally (and hence also logically)
decidable.

Definition 3.2.4 A finite model is a model where the type of states is a finite type
and the transition relation and the labeling relation are decidable.

Lemma 3.2.5 Every finite model is a classical model.

Proof It suffices to show that the satisfaction relation is decidable on finite mod-
els. This is the case since the labeling and the transition relation are decidable and
all operations in the definition of the satisfaction relation preserve decidability.�

Remark 3.2.6 The one-state model used in the proof of Fact 3.2.1 is not a finite
model according to our definition. The labeling ΛM pw := P employs the abstract
proposition P which is not decidable.

Classical models can be understood in two ways. On the one hand, classical
models internalize the classical assumptions required for soundness into the
model. This allows for constructive soundness and completeness proofs without
assuming any axioms. On the other hand, classical models can be seen as an
abstraction that allows establishing two soundness results with one proof. A
constructive soundness proof for classical models yields a constructive soundness
result for finite models and also establishes soundness for all models in contexts
with excluded middle.

All logics considered in this thesis have the small model property and we only
construct finite models for our completeness results. Hence, for the completeness
results a finite model semantics would be sufficient. The use of classical models
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ensures that all our remaining results (e.g., soundness) extend to infinite models if
excluded middle is assumed. Moreover, classical models are, even constructively,
strictly more general than finite models. We construct a (necessarily infinite)
classical model satisfying all satisfiable formulas of K at the end of this chapter.

We adopt the following convention:

Convention Unless stated otherwise, all semantic notions (model, satisfiability,
validity, soundness, etc.) will always refer to the class of classical models for the
respective logic. We will speak of general models if we explicitly do not assume
logical decidability of the satisfaction relation.

3.3 Demos

We now develop the pruning system underlying our completeness results. The
central notion underlying pruning is that of a demo [KSS11]. Demos are a class of
finite models.

3.3.1 Clauses and Support

For our demos we use literal clauses and the notion of support [KS10, KS14]
instead of the more traditional notion of Hintikka sets [Pra79, EH85]. We use
signed formulas [Smu68] to express top-level negations. Signs are a formal device
that leads to a simple definition of subformula universes (Section 3.4) based on
our minimal syntax.

A signed formula is either s+ or s− where s is a formula. Signs bind weaker
than formula constructors, so �s+ is to be read as (�s)+. We write σ for arbitrary
signs and σ for the sign opposite to σ . A state satisfies a signed formula sσ if it
satisfies bsσ c where bs+c = s and bs−c = ¬s. Hence, negative signs can be thought
of as top-level negations. In particular, we have the following equivalence:

b�s−c ↔ ♦bs−c

That is, negative boxes are treated as diamonds (with a negation applied to the
body).

A clause is a finite set of signed formulas. Capital letters C,D, . . . range over
clauses. A state satisfies a clause if it satisfies all its members. We abbreviate
C ∪ {sσ} as C, sσ. The letters S,T , . . . range over finite sets of clauses.

A signed formula is a literal if it is of the form pσ , ⊥σ , or �sσ . A literal
clause is a clause containing only literals. A literal clause is locally consistent if
it contains neither ⊥+ nor both p+ and p− for any p. We refer to locally consistent
literal clauses as base clauses.
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3 Basic Modal Logic

The support relation C . sσ between literal clauses C and signed formulas sσ

is defined recursively:

C . sσ := sσ ∈ C if sσ is a literal

C . (s → t)+ := C . s− ∨ C . t+

C . (s → t)− := C . s+ ∧ C . t−

The support relation can be seen as a restricted form of entailment, i.e., a state
satisfying a clause C also satisfies all formulas supported by C. We extend the
support relation to a relation between clauses by defining

C . D := ∀sσ ∈ D.C . sσ

Moreover, if S is a set of base clauses, we define

S . C := ∃D ∈ S.D . C

Note that all three variants of the support relation (i.e., C . sσ , C . D, and S . C)
are decidable since the definitions employ only structural recursion, membership
in finite sets, and bounded quantification.

Lemma 3.3.1 Let C and D be literal clauses. Then C . D iff D ⊆ C .

3.3.2 Model Existence

A demo will be a finite set of base clauses S that can be seen as a model where
the states are the clauses from S and every state satisfies all formulas it contains.

The request RC of a clause C is defined as follows:

RC := { s+ | �s+ ∈ C }

For a state w to satisfy the positive box formulas in a clause C, every successor
of w must satisfy the formulas in RC .

Definition 3.3.2 A set of base clauses S is a demo if it satisfies:

(D�) If �s− ∈ C ∈ S, then S .RC, s−.

Every demo can be seen as a model. Let S be a demo. We define a finite
modelMS where1

|MS| := S
C ⇒MS D := D .RC
ΛMSpC := p+ ∈ C

1 When appearing as a type, the set S is to be read as the finite type (ΣC : clause. C ∈ S) whose
elements are in one-to-one correspondence to the elements of S.
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Lemma 3.3.3 (Model Existence) Let S be a demo and C ∈ S. Then MS, C î tσ
whenever C . tσ .

Proof By induction on t. Let C ∈ S. We consider the case where t = �s− ∈ C . We
need so show C î �s−. By induction hypothesis, it suffices to show D . s− for
some clause D ∈ S such that C ⇒MS D. Since S is a demo, such a clause must
exist. All other cases are straightforward. �

3.4 Pruning and Refutation Calculus

We now present the decision method for satisfiability underlying our complete-
ness proofs. The method relies on a finiteness property we call subformula
property. Given a clause C0, we consider the finite set S of clauses containing
only subformulas of formulas in C0.

We then construct the canonical demo D containing exactly the satisfiable
base clauses from S. We compute D using pruning [Pra79, KSS11]. Pruning starts
with the set of all base clauses in S and successively removes clauses violating the
demo condition. This process only removes unsatisfiable clauses and terminates
with the demo D.

We complement pruning with a refutation calculus that derives unsatisfiable
clauses. The calculus is designed such that it can derive all clauses from S that are
not supported byD. Since all clauses supported byD are satisfiable (Lemma 3.3.3),
the refutation calculus is complete in that it can refute all unsatisfiable clauses
from S. Consequently, we can show completeness of other deductive systems (e.g,
the Hilbert system) by translating derivations from the refutation calculus into
the given calculus.

3.4.1 Subformula Universes

Let U be a finite set of signed formulas (i.e., a clause). We refer to U as a
subformula universe, if it satisfies the following closure conditions:

S1. If (s → t)σ ∈ U , then {sσ , tσ} ⊆ U .

S2. If �sσ ∈ U , then sσ ∈ U .

If U is a subformula universe, we refer to 2U as as the clause universe over U . In
the following U will always denote a subformula universe.

For every clause C there exists a smallest subformula universe extending C.
We write sfcC for this clause and refer to it as the subformula closure of C . The
clause sfcC can easily be computed.

We write |s| for the size (i.e., the number of constructors) of the formula s.

Lemma 3.4.1 | sfc{sσ}| ≤ |s|.

27
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We fix some subformula universe U for the rest of this section. We write U for
the set of base clauses over U :

U := {C ⊆ U | C base clause }

The notions of subformula universe and support are designed such that the
satisfiability problem for the clauses in 2U reduces to the satisfiability problem
for the clauses in U :

Proposition 3.4.2 Let C ⊆ U . Then C is satisfiable iff there exists some satisfiable
clause D ∈ U such that D . C.

We do not make explicit use of this proposition and postpone its proof (cf.
Fact 3.5.12).

3.4.2 Pruning

It turns out that the set containing exactly the satisfiable clauses from U con-
stitutes a demo. We refer to this demo as the canonical demo for U . We use
pruning to construct the canonical demo. Starting from U we successively remove
clauses violating (D�) until we are left with a demo.

Since we employ pruning for several of our results, we develop pruning in an
abstract setting. Let T be a type with a choice operator. We define the pruning
function prune : (T → setT → B)→ setT → setT recursively2:

prunepX :=

X if pxX for all x ∈ X
prunep (X \ {ε{x ∈ X | ¬pxX }}) otherwise

Note that the set {x ∈ X | ¬pxX } is non-empty whenever the second branch is
chosen. Hence, we can use the ε-operator to pick some element from the set.

Let p : T → setT → B be a decidable predicate. We say that a set X is
p-consistent if pxX holds for all x ∈ X. Pruning with p always terminates with
a p-consistent subset of the input. Further, the recursive construction gives rise
to an induction principle:

Lemma 3.4.3 Let X : setT , p : T → setT → B, and let P : setT → Prop.

1. prunepX ⊆ X
2. prunepX is p-consistent.

3. P X → (∀yY. y ∈ Y ⊆ X → P Y → ¬py Y → P(Y \ {y}))→ P(prunepX).

Proof Claims (2) and (3) follow by induction on |X|. Claim (1) follows with (3). �

2 Coq’s Function command provides a facility to define functions by well-founded recursion. For
prune, we employ the termination measure λX.|X|.
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Remark 3.4.4 Since we do not require p to satisfy any monotonicity properties,
the result of pruning may depend on the choice function for T . We will only use
pruning to construct the demo of satisfiable base clauses for a given subformula
universe. In this case, the result does not depend on the choice function.

We compute the canonical demo for U as follows:

pC S := ∀�s− ∈ C. S .RC, s−

D(U) := prunepU

Lemma 3.4.5

1. D(U) ⊆ U
2. D(U) is a demo.

Proof Immediate with Lemma 3.4.3. �

3.4.3 Pruning Refutations

We have already established that D(U) supports only satisfiable formulas (Lem-
mas 3.4.5 and 3.3.3). In order to prove completeness of the Hilbert system it
remains to show that the Hilbert system can refute all formulas that are not
supported by D(U). We complement pruning with a refutation calculus that can
derive all clauses not supported by D(U). Completeness of the Hilbert system
then follows by translating these pruning refutations to Hilbert refutations.

We inductively define a refutation calculus for U using the rules:

C ⊆ U S 6. C corefS
refU C

supp
�s− ∈ C refU(RC, s−)

refU C
jump

where corefS := ∀C ∈ U. C ∉ S → refU C. We refer to the rules as support rule
and jump rule. The refutation calculus abstracts from the algorithmic details of
pruning. Consequently, we will refer to derivations of the refutation calculus as
pruning refutations.

Proposition 3.4.6 (Refutation Soundness) If refU C , then C is unsatisfiable.

We defer the proof of this proposition to the next section (cf. Lemma 3.5.6) where
we will translate pruning refutations to Hilbert refutations. Soundness of the
refutation calculus then follows with soundness of the Hilbert system.

Completeness of the refutation calculus follows since pruning can be seen as
a particular strategy for generating refutations for base clauses.

Lemma 3.4.7

1. corefD(U)
2. refU C whenever C ⊆ U and D(U) 6. C .
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Proof Claim 1. We show corefD(U) by induction on the construction of D(U)
(Lemma 3.4.3(3)). We clearly have corefU . Now let S ⊆ U such that corefS,
let C ∈ S, and assume ¬pC S. We need to show refU C. By assumption, there
exists some �s− ∈ C such that S 6. RC, s−. Thus, we have refU (RC, s−)
(supp-rule) and hence refU C (jump-rule) as required.

Claim 2. Immediate with Claim (1) and the supp-rule. �

Remark 3.4.8 An inspection of the proof of Lemma 3.4.7 shows that we can
restrict instances of S in the supp-rule to subsets of U and instances of C in the
jump-rule to elements of U without losing completeness.

Theorem 3.4.9 (Refutation Completeness) Let U be a subformula universe and
let C ⊆ U . Then either refU C or C is satisfied by a model with at most 2|U| states.

Proof If D(U) . C then MD(U) is a model with at most 2|U| states satisfying C
(Lemma 3.4.5 and Lemma 3.3.3). Otherwise, we have refU C by Lemma 3.4.7. �

3.5 Completeness of the Hilbert System

We now prove completeness of the Hilbert system in Figure 3.1. For this it suffices
to translate pruning refutations to Hilbert refutations (Theorem 3.4.9).

In addition to the abbreviations defined in Section 3.1, we define “big” conjunc-
tions and disjunctions indexed by lists. We use big conjunctions to reason about
clauses inside the Hilbert system. If C is a clause, we refer to

∧
sσ∈Cbsσ c as its

associated formula.3 When a clause occurs in the place of a formula, it is to be
read as its associated formula.

Fact 3.5.1 Let M be a classical model and let w ∈ M . Then w satisfies the
associated formula of a clause C iff w satisfies every signed formula in C .

We fix some subformula universe U . We call a set of clauses S Hilbert
corefutable if we have ` ¬C for all C ∈ U \ S. We now translate derivations
of refU C to Hilbert refutations of C. The translation to Hilbert refutations is
compositional, i.e., we can show that the rules of refU are admissible for the
predicate λC.` ¬C .

We start by showing admissibility of the support rule. For this, we show that
if S is Hilbert corefutable, then every clause C ⊆ U implies the disjunction of all
clauses in S that support C . We define the base of C in S as

BS C := {D ∈ S | D . C }

If A is a set of clauses, we abbreviate
∨
C∈A C as

∨
A.

3 We convert finite sets to lists as required.
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Lemma 3.5.2 Let S be Hilbert corefutable and let C ⊆ U . Then ` C →
∨
BS C .

Proof Let T := {D ⊆ U | D literal }. By propositional reasoning, it suffices to
show ` C → BT C. We proceed by induction on the sum of the sizes of the
non-literal formulas in C . If C contains only literals, the claim is trivial. So assume
there exists some non-literal signed formula u ∈ C . We consider the case where
u = s → t+. We have

` C → (C \ {u}), s− ∨ (C \ {u}), t+

by propositional reasoning. By induction hypothesis this yields

` C →
∨
BT ((C \ {u}), s−)∨

∨
BT ((C \ {u}), t+)

The claim then follows since BT ((C \ {u}), s−)∪BT ((C \ {u}), t+) ⊆ BT C . The
case for u = s → t− is similar. �

Lemma 3.5.3 (Admissibility of Support Rule) Let S be Hilbert corefutable and
let C ⊆ U . Then ` ¬C whenever S 6. C .

Proof Follows immediately with Lemma 3.5.2. �

To show admissibility of the jump rule, we need a number of facts about the
Hilbert system.

Lemma 3.5.4

1. ` �s → �t and ` ♦s → ♦t whenever ` s → t.
2. ` �(s ∧ t)↔ �s ∧�t
3. ` C → �(RC)
4. ` ¬♦⊥
5. ` �s → ♦t → ♦(s ∧ t)
Proof Claim (1) follows with N and Nec. Claims (2), (4), and (5) follow with (1)
and propositional reasoning. For Claim (3) let D := {�s+ | s+ ∈ RC }. The claim
follows since ` D ↔ �(RC) by (2) and ` C → D since D ⊆ C . �

Lemma 3.5.5 (Admissibility of Jump Rule) Let C be a clause and let �s− ∈ C.
Then ` ¬C if ` ¬RC, s−.

Proof Assume ` ¬RC, s−. It suffices to show ` ¬C,�s−.

` C,�s− → ⊥ def. ¬
⇐ ` C,�s− → ♦(RC, s−) Lemma 3.5.4(4), assumption.
⇐ ` C ∧♦¬s → ♦(RC ∧¬s) prop. reasoning.
⇐ ` �(RC)∧♦¬s → ♦(RC ∧¬s) Lemma 3.5.4(3)

The last claim follows with Lemma 3.5.4(5). �
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Lemma 3.5.6 ` ¬C whenever refU C .

Proof By induction on refU C using the lemmas above. �

Together with soundness of the Hilbert system, Lemma 3.5.6 establishes the
soundness of pruning refutations (Proposition 3.4.6). Moreover, we obtain com-
pleteness of the Hilbert system.

Theorem 3.5.7 (Informative Completeness) Let s be a formula. Then either
` ¬s or s is satisfied by a model with at most 2|s| states.

Proof Let U := sfc{s+}. By Theorem 3.4.9 we either have refU {s+} and hence` ¬s
by Lemma 3.5.6 or s is satisfied by a model with at most 2|s| states (Lemma 3.4.1).�

Remark 3.5.8 In Coq, Theorem 3.5.7 is represented as a function of type

∀s.(` ¬s)+ (ΣM.Σw :M. |M| ≤ 2|s| ∧w î s)

Here, |M| is the size of the type underlying M. This is only defined for finite
models which is sufficient for our purposes.

Corollary 3.5.9 (Completeness) If s is valid, then ` s.

Corollary 3.5.10 (Decidability) Satisfiability, validity, and Hilbert provability of
formulas are decidable.

Proof Follows since by soundness (Theorem 3.2.3) the two alternatives of Theo-
rem 3.5.7 are mutually exclusive. �

Corollary 3.5.11 (Small Models) If s is satisfiable, then s is satisfied by a model
with at most 2|s| states.

Fact 3.5.12 Let U be a subformula universe and let C ⊆ U be a clause. Then

1. D(U) . C iff C is satisfiable.

2. C ∈ D(U) iff C is a satisfiable base clause.

This establishes Proposition 3.4.2 and the fact that D(U) is indeed the canonical
demo for U .

3.6 Gentzen System

Building on the proofs developed in the previous sections, we now prove sound-
ness and completeness of a Gentzen system for K. The Gentzen system is essen-
tially a clausal presentation of Fitting’s “destructive tableau” for K [Fit07]. We will
later extend this system to Gentzen systems for K∗ and CTL (Chapter 6).

The rules of the calculus are given in Figure 3.2. The system derives unsatisfi-
able clauses.
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ð C,p−, p+
A

ð C,⊥+
F+

ð C, s− C, t+

ð C, s → t+
I+

ð C, s+, t−

ð C, s → t−
I−

ð RC, s−

ð C,�s−
X

Figure 3.2: Gentzen system for K

Theorem 3.6.1 (Soundness) If ð C , then C is unsatisfiable.

To show completeness of the Gentzen system, it suffices to show that the rules
of the refutation calculus are admissible for ð. For the support rule, we need the
following lemma.

Lemma 3.6.2 Let U be a subformula universe and let S such that ð D for all
D ∈ U \ S. Then ð C whenever C ⊆ U and ð D for all D ∈ BSC .

Proof Similar to the proof of Lemma 3.5.2. �

Lemma 3.6.3 ð C whenever refU C for some subformula universe U .

Proof Admissibility of the support rule follows with Lemma 3.6.2. Admissibility
of the jump rule is obvious. �

Theorem 3.6.4 (Completeness) Let C be a clause. Then either ð C or C is satis-
fied by a finite model.

Proof Follows with Lemma 3.6.3 and Theorem 3.4.9. �

Corollary 3.6.5 Gentzen derivability is decidable.

Proof Similar to the proof of Corollary 3.5.10 �

Remark 3.6.6 Theorem 3.6.1 can easily be strengthened to show ` ¬C whenever
ð C for some clause C . Together with Theorem 3.6.4, this provides an alternative
completeness proof for the Hilbert system.

Remark 3.6.7 Normally, one would argue decidability of Gentzen derivability
based on analyticity of the rules. In Coq, we represent the Gentzen system as an
inductively defined predicate with one constructor per rule. This representation
works very well for our proofs. However, it leaves the notion of rule implicit.
Consequently, it is difficult to state the analyticity property in such a way that
decidability of derivability follows from analyticity. One can obtain a direct
decidability proof by expressing one-step derivability within some clause universe
as a monotone and bounded function from sets of clauses to sets of clauses and
showing that a clause C is derivable iff it is contained in the fixpoint of one-step
derivability in 2sfcC .
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Remark 3.6.8 Our interpretation of clauses as conjunctions of signed formulas
naturally lends itself to tableau-style interpretation of the Gentzen system. Alter-
natively, one can interpret clauses of the form {s+1 , . . . , s+n , t−1 , . . . , t−m} as sequents
s1, . . . , sn ⇒ t1, . . . , tm. This would correspond to associating to a clause C the
formula

(
∧
s+∈C

s)→
∨
t−∈C

t

It is easy to see that a clause C is unsatisfiable with respect to the conjunctive in-
terpretation iff it corresponds to a valid sequent. Hence, the calculus in Figure 3.2
is also sound and complete for the sequent interpretation. Signed formulas thus
allow for a uniform notation for tableau and sequent calculi. In this thesis we will
only consider the tableau-style interpretation. We speak of Gentzen systems to
emphasize the fact that, in contrast to many tableau methods, derivability is a
simple inductive definition based on a collection of analytic rules.

3.7 Universal Model

We now construct a universal model for K, i.e., a classical model that satisfies all
satisfiable formulas. Such a model must necessarily be infinite.

In a classical setting, one can obtain a universal model by constructing the
canonical model for the Hilbert system using the Lindenbaum construction [Fit07].
For the Lindenbaum construction one takes the maximally consistent sets of
formulas as states. Here, a set is maximally consistent if no subset is Hilbert
refutable and every proper extension has a Hilbert refutable subset. The transition
relation is defined such that there is a transition from a state A to a state B iff
{ s | �s ∈ A } ⊆ B. Every state of this model satisfies all formulas it contains.

In our constructive setting, the Lindenbaum construction is problematic for
several reasons. The main problem is that the transition relation is infinitely
branching. Infinite branching makes it impossible to prove that the resulting
model is a classical model. We give an alternative construction using the satisfiable
clauses as states together with a suitable finitely branching transition relation.

We call a model M a decidable model if equality of states, the transition
relation and the labeling relation are decidable. That is, decidable models have
the same decidability assumptions as finite models, but allow for an infinite
number of states. Decidable models need not be classical models. However,
finitely branching decidable models are classical models.

Lemma 3.7.1 LetM be a decidable model and let f :M→ setM a function such
that v ∈ fw whenever w ⇒M v . ThenM is a classical model.

Proof Similar to the proof of Lemma 3.2.5 using the fact that for w î �s we only
need to check v î s for the finitely many successors v of w contained in fw. �
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3.7 Universal Model

Our universal model for K will come in the form of a finitely branching decidable
model. For the construction we exploit that Gentzen derivability is decidable.

Lemma 3.7.2 Let C such that 6ð C . Then D . C and 6ð D for some clause D.

Proof Immediate with Lemma 3.6.2 and decidability of derivability. �

We now define a universal modelMK as follows:

|MK| := ΣC. 6ð C
C ⇒MK D := ∃�s− ∈ C. D = ε(λE ∈ |MK|.E .RC, s−)
ΛMK pC := p+ ∈ C

The type |MK| is the type of dependent pairs of clauses C and proofs of 6ð C.
Since Gentzen derivability is decidable, 6ð C can be represented such that it has at
most one proof. Hence, equality on the states ofMK is decidable since two states
ofMK are equal iff the underlying clauses are the same.

For the transition relation and the labeling we suppress the proofs paired with
the clauses. By Lemma 3.7.2 and the rule X, the predicate λE ∈ |MK|.E .RC, s−
in the definition of ⇒MK is nonempty whenever �s− ∈ C . Therefore, the ε-expres-
sion is well-defined. While the construction ofMK is inspired by the Lindenbaum
construction,MK is not a “canonical” model since the transition relation depends
on the choice operator for formulas.

Lemma 3.7.3 MK is a classical model.

Proof It is easy to see thatMK is a decidable model. Moreover, every state C has
at most as many successors as there are formulas of the form �s− in C. Hence,
MK is a classical model by Lemma 3.7.1. �

It remains to show thatMK satisfies all satisfiable formulas.

Lemma 3.7.4 Let C ∈MK such that C . sσ . ThenMK , C î sσ .

Proof The clause C is locally consistent since 6ð C. The claim then follows by
induction on s similar to the proof of Lemma 3.3.3. �

Note that we do not require that the states of MK are literal clauses. Since
non-literals are ignored by the support relations, this makes no difference.

Theorem 3.7.5 Let s be satisfiable. ThenMK ,D î s for some D ∈MK .

Proof Since s is satisfiable, we have 6ð {s+}. The claim follows with Lemma 3.7.4
and Lemma 3.7.2. �
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3 Basic Modal Logic

Theorem 3.7.5 shows that there are relevant infinite classical models that can be
obtained and reasoned about constructively.

We remark that the universal model based on underivable clauses essentially
yields an alternative completeness proof for the Gentzen system. The construction
relies on decidability of derivability in the Gentzen system, but this can be shown
independently of completeness (cf. Remark 3.6.7). For the Hilbert system, the
easiest way to establish decidability is through completeness. That is, while the
construction can be used to provide an alternative completeness proof for the
Gentzen system, it is not useful for giving a direct completeness proof for the
Hilbert system. Also, the construction does not establish compactness since we
only consider finite sets of formulas as states.

3.8 Remarks

The formalization of the results presented in this chapter [ACF] follows the
mathematical presentation fairly closely. This is possible since we have carefully
designed the proofs with the formalization in mind. Of course, the formalization
includes a fair amount of additional detail that is omitted in the mathematical
presentation. In particular, we have consistently ignored all side conditions that
certain clauses must only contain formulas from a given subformula universe.

We remark that the notion of demo employed in the formalization is slightly
more permissive than Definition 3.3.2. Instead of requiring demos to be comprised
of base clauses, we only require local consistency. This does not affect the proof
of Lemma 3.3.3 since non-literals are ignored by the support relation, but it means
that technically only the literal clauses in a demo are guaranteed to be satisfiable.

Some of the constructions in this Chapter can be generalized in such a way that
they can be reused in the developments for modal logic with transitive closure
(Chapter 4) and CTL (Chapter 5). This includes some infrastructure for signed
formulas and the support relation. We develop a library which for a given type
of formulas, a definition of literal, and a support relation provides for instance
the extensions of the support relation to clauses and sets of clauses as well as
associated lemmas. Moreover, we construct Hilbert derivations in an abstract
setting in such a way that the results apply to any Hilbert system extending the
one in Figure 3.1. This is described in detail in Chapter 7.
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4 Modal Logic with Transitive Closure

In this chapter we prove decidability of satisfiability as well as soundness and
completeness of a Hilbert system for K∗. The logic K∗ [KS10] (also called UB−

in [EH85]) extends K with a modality �∗ for transitive reachability. Intuitively, a
formula �∗s holds at a state w if s holds at all states that are reachable from w.
By duality, this yields an eventuality ♦∗s which holds at a state if s holds at some
reachable state.

K∗ is a sublogic of PDL [FL79] and the simplest representative of a class of non-
compact modal logics with an EXPTIME-complete satisfiability problem [BdRV01].
Other representatives of this class are PDL, CTL [CE82, EH85], and the proposi-
tional µ-calculus [Koz83]. We are interested in K∗ because it allows us to focus
on the treatment of eventualities without the added complexity caused by the
programs of PDL or CTL’s “always until” modality.

The �∗-modality can be characterized coinductively following the embedding
of K∗ into the µ-calculus (i.e., �∗s ≡ νX.s ∧ �X). We give a Hilbert system
whose rules and axioms directly correspond to the coinductive interpretation.
A variant of this system can be obtained by adapting Segerberg’s axiomatiza-
tion [Seg77, Seg82] of PDL. We give a direct completeness proof for the first
system. Completeness of the second system follows since the equivalence of the
two Hilbert systems can easily be established syntactically.

Similar to Chapter 3, we base the completeness proof for the Hilbert system
on a pruning system constructing demos and refutations. The crucial part in
the definition of demos is the treatment of transitive closure. We handle the
fixpoint conditions for �∗s and ♦∗s by adapting the notion of support. The well-
foundedness condition for the eventuality ♦∗s are treated using an inductively
defined fulfillment predicate. Pruning refutations then employ inductive fulfill-
ment in negated form providing exactly the invariants required for the translation
to Hilbert refutations.

4.1 Formulas and Models

We define the formulas of K∗ as follows:

s, t := p | ⊥ | s → t | �s | �∗s

We continue to use the abbreviations from Section 3.1 and use the following
additional abbreviation: ♦∗s := ¬�∗¬s.
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4 Modal Logic with Transitive Closure

As for basic modal logic K (Section 3.1), the class of models for K∗ is the
class of all labeled transition systems. LetM= (|M|,⇒M,ΛM) be a model. The
satisfaction relation for K extends to K∗ as follows:

w î p := ΛM pw
w î ⊥ := ⊥

w î s → t := w î s → w î t
w î �s := ∀v ∈M.(w ⇒M v)→ v î s
w î �∗s := ∀v ∈M.(w ⇒∗M v)→ v î s

It is often useful to think of �∗s in terms of its encoding in the propositional
µ-calculus [Koz83], i.e., �∗s ≡ νX. s ∧�X. That is, �∗s can be seen as a greatest
fixpoint. In type theory, this corresponds to a coinductive definition. LetM be a
general model. We define a coinductive predicate AG (“always globally”) of type
(M→ Prop)→M→ Prop with the following rule:

P w ∀v.w ⇒M v → AGP w

AGP w
================================

The predicate AG yields an alternative characterization of w î �∗s. We define
w îc �∗s := AG(λv.v î s)w.

Lemma 4.1.1 LetM be a model and let w ∈M. Then w î �∗s iff w îc �∗s.

For our proofs we mostly work with the coinductive characterization because it
leads to slightly more direct proofs.

As we have done for K (Section 3.2), we restrict our attention to classical
models. A classical model is a model M where î is logically decidable (i.e.,
w î s ∨ w 6î s for all formulas s and states w ∈ M). In the following, the
semantic notions (satisfiability, validity, etc.) refer to the class of classical models
unless stated otherwise.

4.2 Hilbert System

The valid formulas of K∗ can be axiomatized with a Hilbert system. The rules
and axioms are given in Figure 4.1. The system extends the axiomatization of K
(Figure 3.1) with two axioms (G1 and G2) and an additional rule (GI). The axioms
and rules for �∗ are inspired by the coinductive interpretation of �∗. The axioms
G1 and G2 correspond to inversion of the predicate AG, and GI corresponds to
coinduction. Similar axioms and rules appear in the Hilbert system for CTL [EH85].

To distinguish different Hilbert systems, we write A ` s if the Hilbert system A
can prove s. We refer to the Hilbert system in Figure 3.1 as K and to the Hilbert
system in Figure 4.1 as K∗. Note that the Hilbert system K∗ extends the Hilbert
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4.2 Hilbert System

S ` (u→ s → t)→ (u→ s)→ u→ t
K ` s → t → s

DN ` ((s → ⊥)→ ⊥)→ s
N ` �(s → t)→ �s → �t

G1 ` �∗s → s
G2 ` �∗s → ��∗s

` s ` s → t
` t

MP
` s
` �s

Nec
` u→ �u ` u→ s

` u→ �∗s
GI

Figure 4.1: Hilbert system K∗

system K. In particular, Lemma 3.5.4 also applies to K∗. In this chapter, we
take ` s to mean K∗ ` s.

The Hilbert system K∗ is sound for classical models.

Theorem 4.2.1 (Soundness) If ` s, then s is valid.

Proof By induction on ` s. We consider the case for GI. By induction hypothesis,
we know (a) that u→ �u is valid and (b) that u→ s is valid.

Now letM be model. By Lemma 4.1.1, it suffices to show

∀w ∈M.w î u→ w îc �∗s

by coinduction. That is, we obtain ∀w ∈M.w î u → w îc �∗s as coinduction
hypothesis. Assume w î u. After applying the introduction rule for AG it suffices
to show v î s and v îc �∗s for all v such that w ⇒M v . The first claim follows
with (b). The second claim follows with (a) and the coinduction hypothesis. �

Remark 4.2.2 Note that, in the proof above, the coinduction hypothesis is exactly
the statement we are trying to prove. However, the coinduction hypothesis may
only by used after the introduction rule of AG has been applied. When doing
coinductive proofs in Coq, this constraint is enforced using a guardedness check
at the end of the proof.

The GI-rule matches the coinductive characterization of �∗ very closely. This
leads to a very direct soundness proof. Further, the GI-rule allows for Hilbert
proofs which are fairly close to the mathematical intuition.

The semantics of �∗s corresponds to a greatest fixpoint (Lemma 4.1.1). Hence,
its dual ♦∗s corresponds to a least fixpoint and behaves as if defined inductively.
In particular, we have the following lemma:

Lemma 4.2.3

1. ` �∗s ↔ s ∧��∗s.
2. ` ♦∗s ↔ s ∨♦♦∗s.
3. ` ♦∗u→ s whenever ` ♦u→ u and ` u→ s.

39



4 Modal Logic with Transitive Closure

4.3 Demos

We now extend the completeness and decidability results from K to K∗. As before,
we base our proofs on a pruning system computing demos or refutations.

We begin by adapting the notion of demo. As before, a demo will be a finite
set of clauses that can be interpreted as a model where the states are the clauses
from the demo and every state satisfies all formulas it supports. In fact, the
model construction for K∗ is exactly the same as for K (cf. Section 3.3).

We continue to work with signed formulas sσ (cf. Section 3.3.1). Recall that,
semantically, negative signs correspond to top-level negations. The notion of
literal remains unchanged, i.e., formulas of the form ⊥σ , pσ , and �sσ are literals.
In particular, �∗sσ is not a literal. A clause is locally consistent if it contains
neither ⊥+ nor p+ and p− for any p. As before, we refer to locally consistent
literal clauses as base clauses. The request of a clause is defined as before (i.e.,
RC := { s+ | �s+ ∈ C }).

We extend the definitions of demo and support from Section 3.3 to the for-
mulas of K∗. Following the equivalences in Lemma 4.2.3, the support relation
between clauses C and signed formulas sσ extends to K∗ as follows:

C . sσ := sσ ∈ C if sσ is a literal

C . (s → t)+ := C . s− ∨ C . t+

C . (s → t)− := C . s+ ∧ C . t−

C . �∗s+ := C . s+ ∧ ��∗s+ ∈ C
C . �∗s− := C . s− ∨ ��∗s− ∈ C

We continue to use the abbreviations from before:

C . D := ∀s ∈ D. C . s S . C := ∃D ∈ S. D . C

Adapting the notion of support is all that is required for formulas of the form
�∗s+. For a formula of the form �∗s− to be satisfied at a state w of some finite
model M, there must exist a path through M from w to some state v of M
that satisfies s−, i.e., s must be dissatisfied eventually. Following [Pnu77], we
call formulas of the form �∗s− eventualities and formulas of the form ��∗s−

eventuality literals.
Let C be a clause. If C . s−, we say that the eventuality �∗s− is fulfilled

locally by C. Conversely, if C . �∗s− but C 6. s− we say �∗s− is deferred in C.
To satisfy an eventuality, we need to ensure that the eventuality is fulfilled at
some point and not deferred forever. For this purpose, we inductively define the
fulfillment relation S, C . ��∗s− between sets of clauses S, clauses C ∈ S and
eventuality literals ��∗s−.

D ∈ S D .RC, s−

S, C . ��∗s−
D ∈ S D .RC S,D . ��∗s−

S, C . ��∗s−
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4.4 Pruning and Refutation Calculus

Definition 4.3.1 (Demo for K∗) A set of base clauses S is a demo if the following
conditions are satisfied

(D�) If �s− ∈ C ∈ S, then S .RC, s−.
(D�∗) If ��∗s− ∈ C ∈ S, then S, C . ��∗s−.

Just like demos for K, every demo S can be interpreted as a modelMS where
|MS| := S, C ⇒MS D := D .RC , and ΛMS pC := p+ ∈ C (cf. Section 3.3).

Lemma 4.3.2 Let S be a demo and C ∈ S. ThenMS, C î tσ if C . tσ .

Proof By induction on t. We consider the cases for �∗s. The remaining cases are
handled exactly as in the proof of Lemma 3.3.3.

Case t = �∗s+. By Lemma 4.1.1, it suffices to show∀C ∈ S.C . �∗s+ →MS, C îc
�∗s by coinduction. Let C ∈ S and C . �∗s+. Then C . s+ and assume
RC . �∗s+. After applying the introduction rule for AG we need to prove
C î s and D îc �∗s for all D ∈ S such that D .RC. The first claim follows
by induction hypothesis, the second with the coinduction hypothesis.

Case t = �∗s−. Let C ∈ S and C . �∗s−. If �∗s− is fulfilled locally by C , the claim
follows by induction hypothesis. Otherwise, we have ��∗s− ∈ C and therefore
also S, C . ��∗s−. The claim then follows by induction on S, C . ��∗s−. �

Remark 4.3.3 Instead of using a direct inductive definition, fulfillment of eventu-
alities can also be expressed in terms of the transitive closure of the following
relation: C ⇒S D := D ∈ S ∧D .RC. We employ the direct inductive definition
because it leads to slightly more direct proofs and extends smoothly to CTL.

4.4 Pruning and Refutation Calculus

We now extend the pruning system and the associated refutation calculus to K∗.
As before, pruning removes clauses violating the demo conditions. The demo
condition for eventualities gives rise to an additional refutation rule.

4.4.1 Subformula Universes

We call a finite set of signed formulas U a subformula universe, if it satisfies the
following closure conditions:

U1. If s → tσ ∈ U then {sσ , tσ} ⊆ U .

U2. If �sσ ∈ U then sσ ∈ U .

U3. If �∗sσ ∈ U then {sσ ,��∗sσ} ⊆ U .

Given a clause C, we write sfcC for the smallest subformula universe extend-
ing C . Note that the subformula closure of �∗sσ contains ��∗sσ which is larger
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4 Modal Logic with Transitive Closure

than �∗sσ . Nevertheless, the clause sfcC can be computed by structural recur-
sion:

sub (s → tσ ) := sub sσ ∪ sub tσ ∪ {s → tσ}
sub (�sσ ) := sub sσ ∪ {�sσ}

sub (�∗sσ ) := sub sσ ∪ {�∗sσ ,��∗sσ}
subp := {p}
sub⊥ := {⊥}
sfcC :=

⋃
sσ∈C

sub sσ

Note that while the formula ��∗sσ on the right hand side of sub (�∗sσ ) is larger
than �∗sσ , it does not require a recursive call.

Lemma 4.4.1 Let sσ be a signed formula and let C be a clause. Then

1. |sub sσ | ≤ 2 · |s|
2. sub sσ is a subformula universe and sσ ∈ sub sσ .

3. sfcC is a subformula universe and C ⊆ sfcC .

4.4.2 Pruning

We fix some subformula universe U . As before, we construct the demo of satisfi-
able base clauses over U by using the demo conditions as pruning rules.

To use (D�∗) as a pruning rule, we need to show that the fulfillment relation
is decidable. For this we make use of the fact that inductive predicates over finite
sets that only employ decidable side conditions can be decided using fixpoint
iteration.

Lemma 4.4.2 Let C ∈ S ⊆ U and let ��∗s− ∈ U . Then S, C . ��∗s− is decidable.

Proof We construct a boolean reflection of S, C . ��∗s− using fixpoint iteration.
For this we express the constructors of the inductive definition as a monotone
and bounded function from sets of clauses to sets of clauses:

F := λT .{C ∈ S | ∃D ∈ S.D .RC ∧ (D . s− ∨D ∈ T ) }

It then suffices to show S, C . ��∗s− ↔ C ∈ lfpF . The direction from left to right
follows by induction on S, C . ��∗s− using Lemma 2.5.1. The converse direction
follows by induction on the fixpoint (Lemma 2.5.2(1)). �

We then compute the canonical demo for U as follows:

pC S := (∀�s− ∈ C. S .RC, s−)∧ (∀��∗s− ∈ C. S, C . ��∗s−)

D(U) := prunepU
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4.5 Completeness of the Hilbert System

Lemma 4.4.3

1. D(U) ⊆ U
2. D(U) is a demo.

Proof Immediate with Lemma 3.4.3. �

4.4.3 Refutation Calculus

We characterize the unsatisfiable clauses over U using an inductively defined
refutation calculus. For this, we extend the refutation calculus for K with an
additional rule refuting those base clauses that can be pruned because they
violate the demo condition (D�∗). The rules of the refutation calculus are given
in Figure 4.2. Save for the changed notion of support, the first two rules are
unchanged from the refutation calculus for K (Section 3.4.3).

It is straightforward to show that the refutation calculus refutes all clauses
over U that are not supported by D(U).

Lemma 4.4.4 (Refutation Completeness)

1. corefUD(U).
2. refU C whenever C ⊆ U and D 6. C .

Proof Similar to the proof of Lemma 3.4.7 �

While the refutation calculus is essentially complete by construction, showing
soundness is more involved.

Proposition 4.4.5 (Refutation Soundness) If refU C , then C is unsatisfiable.

Instead of giving a detailed proof of Proposition 4.4.5, we will show the stronger
claim that refU C implies ` ¬C (cf. Lemma 4.5.5).

Combining model existence and refutation completeness, we obtain the fol-
lowing theorem.

Theorem 4.4.6 Let U be a subformula universe and let C ⊆ U . Then either refU C
or C is satisfied by a model with at most 2|U| states.

4.5 Completeness of the Hilbert System

We now translate derivations from the refutation calculus to Hilbert refutations.
We fix some subformula universe U . We call a set of clauses S Hilbert corefutable
if we have ` ¬C for all C ∈ U \ S.

Given that the Hilbert system for K∗ extends the Hilbert system for K, the
translation of the jump rule carries over without changes. For the translation of
the support rule, it suffices to adapt the proof of Lemma 3.5.2 to take care of the
additional non-literals.
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4 Modal Logic with Transitive Closure

C ⊆ U S 6. C corefU S
refU C

supp
�s− ∈ C refU(RC, s−)

refU C
jump

��∗s− ∈ C ∈ S ⊆ U S, C 6. ��∗s− corefU S
refU C

loop

corefU S := ∀C ∈ U. C ∉ S → refC

Figure 4.2: Refutation calculus for K∗

Lemma 4.5.1 Let S be Hilbert corefutable and let C ⊆ U . Then ` C →
∨
BS C .

Proof Essentially the same as the proof of Lemma 3.5.2. The cases for formulas
of the form �∗sσ follow with Lemma 4.2.3. �

Lemma 4.5.2 (Admissibility of Support rule) Let S be Hilbert corefutable and let
C ⊆ U . Then ` ¬C whenever S 6. C .

The translation of the loop rule employs the induction rule GI with an elaborate
invariant. Similar invariants appear in the completeness proofs of the Hilbert
systems for UB [BAPM83] and CTL [EH85, Eme90]. Instead of using the GI-rule
directly, we use a derived coinduction principle for ��∗s.

Lemma 4.5.3 If ` u→ �(u∧ s), then ` u→ ��∗s.

Proof Assume (a) ` u→ �(u∧ s). We reason as follows:

` u→ ��∗s
⇐ ` �(u∧ s)→ ��∗s (a)
⇐ ` u∧ s → �∗s Lemma 3.5.4(1)
⇐ ` u∧ s → �(u∧ s) GI

The last claim follows with (a). �

Lemma 4.5.4 (Admissibility of Loop Rule) Let S ⊆ U be Hilbert corefutable and
let ��∗s− ∈ C ∈ S. Then ` ¬C whenever S, C 6. ��∗s−.

Proof Assume S, C 6. ��∗s−. To refute C it suffices to show ` C → ��∗s. By
Lemma 4.5.3, it suffices to find an invariant u for which we can prove:

` C → u (4.1)

` u→ �(u∧ s) (4.2)

We define

I := {D ∈ S | S,D 6. ��∗s− } u :=
∨
I
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4.5 Completeness of the Hilbert System

Claim (4.1) follows since C ∈ I. For Claim (4.2) note that for all clauses D ∈ I we
have

S 6.RD, s− (4.3)

BS (RD) ⊆ I (4.4)

since violating either property would allow us to prove S,D . ��∗s−. We then
reason as follows

` u→ �(u∧ s)
⇐ ` D → �(u∧ s) for D ∈ I
⇐ ` �(RD)→ �(u∧ s) Lemma 3.5.4(3)
⇐ ` RD → u∧ s Lemma 3.5.4(1)
⇐ `

∨
BS(RD)→

∨
I and ` ¬(RD, s−) Lemma 4.5.1

The left claim follows with (4.4) and the right claim follows with (4.3). �

Lemma 4.5.5 ` ¬C whenever refU C .

Proof By induction on refU C using Lemmas 3.5.5, 4.5.2, and 4.5.4 �

Note that Proposition 4.4.5 follows immediately with the lemma above and sound-
ness of the Hilbert system. Moreover, we have that D(U) is the canonical demo
for U .

Theorem 4.5.6 Let C ∈ U . Then C ∈ D(U) iff C is satisfiable.

Proof If C ∈ D(U), then C . C. Hence, C is satisfiable by Lemma 4.3.2. If C ∉
D(U), then refU C (Lemma 4.4.4(1)). Hence, C is unsatisfiable (Proposition 4.4.5).�

We now obtain the informative completeness result for the Hilbert system.

Theorem 4.5.7 (Informative Completeness) Let s be a formula. Then either
` ¬s or s is satisfied by a model with at most 22·|s| states.

Proof Let U := sfc{s+}. By Theorem 4.4.6, we either have refU {s+} and hence
` ¬s by Lemma 4.5.5 or s is satisfied by a model of the right size (Lemma 4.4.1).�

Together with soundness we obtain the following corollaries.

Corollary 4.5.8 (Completeness) If s is valid, then ` s.

Corollary 4.5.9 (Decidability) Satisfiability, validity, and Hilbert provability of
formulas are decidable.

Corollary 4.5.10 (Small Models) If s is satisfiable, then s is satisfied by a model
with at most 22·|s| states.

Recall that every general model is a classical model if one assumes XM. In that
case, Corollary 4.5.10 yields the small-model property with respect to arbitrary
Kripke structures.
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4 Modal Logic with Transitive Closure

4.6 Hilbert System in Segerberg Style

Segerberg [Seg77] gives a Hilbert system for PDL. Adapting this axiomatization to
K∗ yields a Hilbert system where the GI-rule is replaced with the following axioms
and rules:

N∗ ` �∗(s → t)→ �∗s → �∗t
Seg ` �∗(s → �s)→ s → �∗s

` s
` �∗s

Nec∗

We call the resulting Hilbert system S. We show that the Hilbert systems K∗

and S are equivalent by showing that the rules and axioms of each system are
admissible in the other. Note that both systems are extensions of K and include
the G1 and G2. In particular, all theorems of K are also theorems of K∗ and S.

Theorem 4.6.1 Let s be a formula. Then S ` s iff K∗ ` s.

Proof It suffices to show that the GI-rule is admissible for S and that N∗, Seg, and
Nec∗ are admissible for K∗. We show the cases for the GI-rule and the axiom Seg.
The cases for Nec∗ and N∗ are similar to the case for Seg.

• GI-rule. Assume (a) S ` u → �u and (b) S ` u → s. We need to show
S ` u→ �∗s. We reason as follows:

1. S ` �∗(u→ �u) Nec∗ on (a)
2. S ` u→ �∗u Seg, 1
3. S ` �∗(u→ s) Nec∗ on (b)
4. S ` u→ �∗s N∗, 2, 3

• Seg-axiom. We show K∗ ` �∗(s → �s)→ s → �∗s. Let u := s∧�∗(s → �s). By
propositional reasoning, it suffices to show K∗ ` u→ �∗s for all formulas s.
We clearly have K∗ ` u → s. By the GI-rule, it suffices to show K∗ ` u → �u.
This follows with Lemma 4.2.3(1) and Lemma 3.5.4(2). �

Together with Theorem 4.5.7 we obtain completeness of the Hilbert system S.

4.7 Remarks

The notion of demo (Definition 4.3.1) is based on inductive fulfillment for even-
tuality literals rather than the eventualities themselves. This interacts smoothly
with the support relation. Moreover, defining fulfillment for eventuality liter-
als avoids the need for maximality conditions. Recall that S, C 6. �+s− implies
S 6.RC, s−. For corefutable S, this yields ` ¬(RC, s−). For the natural definition
of S, C . �∗s−, the negation S, C 6. �∗s− would only yield C 6. s−. This only
implies ` ¬(C, s−) when C is maximal in S.

The refutation calculus arising with the demo conditions (Figure 4.2) is a
variation of the “analytic tableau system” employed in preliminary work [DS12].
The system in [DS12] employs a monolithic compound rule similar to the loop-rule
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that, when read in the backward direction, requires guessing a collection of clauses
from the subformula universe satisfying certain closure conditions. The design
goal for both systems was to obtain an inductive definition of unsatisfiability that
can be translated to Hilbert refutations.

Kashima [Kas10] gives an alternative completeness proof for modal logic
with transitive closure based on ideas from [BL08]. The proof is arguably more
complicated than the proof presented here.
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We now extend the results from the previous chapter to Computation Tree Logic
(CTL) [EC82]. We prove decidability of satisfiability, the small-model property,
and soundness and completeness of a Hilbert system.

CTL extends basic modal logic K with modalities A(s R t) and A(s U t). Intu-
itively, A(s U t) holds at some state w if for every infinite path starting at w the
formula s holds at every state until the path eventually reaches a state where t
holds. The modality A(s R t) holds at some state w if for every infinite path
starting at w either t holds at every state along the path or s holds at some
state on the path and t holds at every state up to (and including) that state. The
logic has the small model property and the satisfiability problem for formulas is
EXPTIME-complete [EH85, Eme90].

Similar to before, we base our completeness results on a pruning system
constructing for a given input formula either a finite pseudo-model we call demo
or a pruning refutation. Completeness of the Hilbert system is obtained by
translating pruning refutations to Hilbert refutations. Together with soundness
of the Hilbert system, the small model property and decidability of satisfiability,
validity, and Hilbert provability follow as corollaries.

The central notion underlying the completeness and decidability results is
the notion of demo. Our demos play the role of the pseudo-Hintikka structures
employed by Emerson and Halpern [EH85, Eme90]. As before, demos will be finite
sets of clauses with closure conditions ensuring that all clauses in a demo are
satisfiable. The demo conditions determine the rules of a pruning system and
the corresponding notion of pruning refutations. Similar to the demos for K∗

(Section 4.3), we employ inductive fulfillment relations to handle the eventualities
of CTL. Unlike for K and K∗, demos for CTL will not be models themselves, but
will need to be unfolded into proper models. This is necessary since demos can be
seen as possible results of filtration and filtration fails to preserve satisfaction of
A(s U t) [EH85]. For the construction of models from demos, we employ a variant
of the fragment-based model construction in [Eme90].

We design our demos such that pruning refutations can not only be translated
to Hilbert refutations but also to derivations of an analytic sequent system for
CTL [BL08] (cf. Chapter 6). For this purpose, we introduce relaxed demos based
on a relaxed version of fulfillment. The model construction in [Eme90] provides a
natural fit for relaxed demos.

In the literature, the semantics of CTL is usually defined in terms of infinite
paths [Eme90, BK08]. Since infinite objects are difficult to work with in a construc-
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tive setting, we interpret path formulas inductively (for A(s U t)) or coinductively
(for A(s R t)) according to the following equivalences [EC80, Eme08]:

A(s R t) ≡ t ∧ (s ∨�A(s R t))

A(s U t) ≡ t ∨ (s ∧�A(s R t))

We show that some formulations of the path semantics agree constructively with
the inductive semantics on finite models. We also show that for other, classically
equivalent, formulations this is not the case. For general models, establishing the
equivalence between the inductive semantics and the path semantics requires
excluded middle and dependent choice (cf. Section 2.2).

The axioms and rules of the Hilbert system employed in the completeness
proof correspond very closely to the (co)inductive interpretation of CTL. We
establish the equivalence between our Hilbert system and Hilbert systems from
the literature [Eme90, LS01] by giving translations to and from our system.

5.1 Inductive Semantics for CTL

We start by defining syntax and semantics of CTL as we use it for our develop-
ment. We employ an inductive semantics for CTL that is inspired by the fixpoint
characterization of path formulas used for model checking [EL86, Eme08].

5.1.1 Syntax and Intuitive Semantics

We fix a countable alphabetA of atomic propositions p and define the formulas
of CTL as follows:

s, t := p | ⊥ | s → t | �s | A(s U t) | A(s R t)

As before, we choose to work with a minimal set of operations for technical
convenience. We continue to use the abbreviations defined for K (Section 3.1) and
introduce the following additional abbreviations:

E(s U t) := ¬A(¬s R¬t) E(s R t) := ¬A(¬s U¬t)

The modalities A(s U t) and A(s R t) are to be read as “always s until t” (always
until) and “always s releases t” (always release). Intuitively, A(s U t) holds at some
state w if for every infinite path emanating from w the formula s holds at every
state until the path eventually reaches a state where t holds. The modality A(s R t)
holds at some state w if for every infinite path emanating from w either t holds
at every state along the path or s holds at at some state on the path and t holds
at every state up to (and including) that state. The defined modalities E(s U t) and
E(s R t) are read as exists until and exists release respectively.

As is standard for CTL [EH85, Eme90] we only consider models where every
state has at least one successor. This has the effect hat A(s U t) is never “vacuously”
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5.1 Inductive Semantics for CTL

satisfied due to the absence of outgoing paths. In the following, we refer to
formulas of the form A(s U t) as universal eventualities and to formulas of the
form E(s U t) as existential eventualities. Further, we refer to formulas of the
form A(s R t) and E(s R t) as invariants.

5.1.2 Inductive Semantics

We now define the inductive semantics underlying our proofs. We call a relation
R : X → X → Prop over some type X serial if every x : X has some R-successor.
A model is then a tupleM= (|M|,⇒M,ΛM) where

• |M| is a type of states

• ⇒M : |M| → |M| → Prop is a serial transition relation.

• ΛM :A→ |M| → Prop is a labeling function.

For the following definitions, we fix some model M. As before, we use M to
denote the model as well as the underlying type of states. We interpret path
formulas inductively (for A(s U t)) or coinductively (for A(s R t)) according to the
embedding [EL86] of CTL in the propositional µ-calculus [Koz83].

A(s U t) ≡ µX. t ∨ (s ∧�X) (5.1)

A(s R t) ≡ νX. t ∧ (s ∨�X) (5.2)

We define an inductive predicate AU of type

(M→ Prop)→ (M→ Prop)→M→ Prop

and a coinductive predicate AR of the same type with the following rules:

Qw
AUP Qw

P w ∀v.(w ⇒M v)→ AUP Qv
AUP Qw

P w Qw

ARP Qw
============

Qw ∀v.(w ⇒M v)→ ARP Qv

ARP Qw
====================================

Based on the predicates AU and AR, we define the satisfaction relation w î s
between states w ofM and formulas s by recursion on formulas:

w î ⊥ := ⊥
w î p := ΛM pw

w î s → t := w î s → w î t
w î �s := ∀v ∈M. (w ⇒M v)→ v î s

w î A(s U t) := AU (λv.v î s) (λv.v î t)w
w î A(s R t) := AR (λv.v î s) (λv.v î t)w
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5 Computation Tree Logic

We writeMî s if w î s for all states w ofM.
It is straightforward to show that the satisfaction relation is decidable on finite

models.

Lemma 5.1.1 LetM be a finite model. Then w î s is decidable for every state w
ofM and every formula s.

Proof By Induction on s. Since M is a finite model, LM pw and w ⇒M v are
decidable for all w, v , and p. Implication and the finite quantification in the
definition of w î �s preserve decidability. Hence, it suffices to show that for
decidable predicates P,Q :M→ B the predicates AUP Q and ARP Q are decidable.
We construct boolean reflections for AUP Q and ARP Q using fixpoint iteration (cf.
proof of Lemma 4.4.2) �

As we have done in previous chapters, we restrict our attention to classical
models. In the case of CTL, a classical model is a modelM where î is logically
decidable (i.e., w î s∨w 6î s for all formulas s and all statesw ∈M). For the rest
of this chapter, all semantic notions (satisfiability, validity, etc.) refer to classical
models unless stated otherwise.

5.2 Hilbert System

Validity of formulas can be axiomatized with a Hilbert system [EH85, Eme90,
Gol91, LS01]. We will show soundness and completeness of the Hilbert system
IC given in Figure 5.1. The name IC stands for “induction and coinduction”. The
rules of the Hilbert system are motivated by the (co)inductive characterization
of eventualities and invariants. The axioms U1 and U2 correspond to the intro-
duction rules of AU and the rule UI corresponds to the induction principle for AU.
Dually, the axioms R1 and R2 correspond to inversion of the rules for AR and RI
corresponds to coinduction. The axioms and rules are designed such that they
make minimal use of defined logical operations.

Given the close correspondence between the inductive semantics and the
Hilbert system, it is straightforward to show that the Hilbert system is sound for
classical models.

Theorem 5.2.1 (Soundness) If ` s thenMî s for all classical modelsM.

Proof By induction on ` s. The case for DN follows since î is logically decidable.
The remaining cases are obvious. �

5.3 Relaxed Demos

We now design the decision procedure underlying our completeness and de-
cidability results for CTL. As before, we base the proofs on a pruning system
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5.3 Relaxed Demos

K ` s → t → s
S ` ((u→ s → t)→ (u→ s)→ u→ t)

DN ` ¬¬s → s
N ` �(s → t)→ �s → �t

Ser ` ¬�⊥
U1 ` t → A(s U t)
U2 ` s → �A(s U t)→ A(s U t)
R1 ` A(s R t)→ t
R2 ` A(s R t)→ ¬s → �A(s R t)

` s ` s → t
` t

MP
` s
` �s

Nec

` t → u ` s → �u→ u
` A(s U t)→ u

UI
` u→ t ` u→ ¬s → �u

` u→ A(s R t)
RI

Figure 5.1: Hilbert system IC

constructing demos and refutations. Similar to the demos for K∗ (Section 4.3),
we handle the well-foundedness conditions for eventualities using inductively
defined fulfillment relations. The pruning system employs the demo conditions
as pruning rules. Consequently, the demo conditions determine the rules for
pruning refutations. We design the notion of demos such that the resulting prun-
ing refutations can be translated to Hilbert refutations as well as derivations of a
Gentzen system for CTL [BL08](cf. Chapter 6). To allow for the translation to the
Gentzen system, the fulfillment conditions for eventualities need to be relaxed.
Relaxed fulfillment arises naturally from a detailed analysis of the fragment-based
model construction given by Emerson [Eme90].

5.3.1 Support, Request, and Demand

We continue to use signed formulas and clauses (cf. Section 3.3.1). Recall that
negative signs can be thought of as top-level negations. In particular, we have the
following equivalences:

b�s−c ↔ ♦¬s
bA(s U t)−c ↔ E(¬s R¬t)
bA(s R t)−c ↔ E(¬s U¬t)

That is, universal eventualities appear as positive always-until formulas whereas
existential eventualities (exists-until formulas) appear as negative always-release
formulas.
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5 Computation Tree Logic

As before, we call formulas of the form ⊥σ , pσ , and �sσ literals and refer
to locally consistent literal clauses as base clauses. The support relation C . s
between base clauses C and signed formulas sσ is defined recursively as follows:

C . sσ := sσ ∈ C if sσ is a literal

C . (s → t)+ := C . s− ∨ C . t+

C . (s → t)− := C . s+ ∧ C . t−

C . A(s U t)+ := C . t+ ∨ (C . s+ ∧ �A(s U t)+ ∈ C)
C . A(s U t)− := C . t− ∧ (C . s− ∨ �A(s U t)− ∈ C)
C . A(s R t)+ := C . t+ ∧ (C . s+ ∨ �A(s R t)+ ∈ C)
C . A(s R t)− := C . t− ∨ (C . s− ∧ �A(s R t)− ∈ C)

The cases for path formulas follow the equivalences (5.1) and (5.2). We continue
to use the abbreviations from before:

C . D := ∀s ∈ D. C . s S . C := ∃D ∈ S. D . C

Let C be a clause. The request of C is defined as before, i.e.,

RC := { s+ | �s+ ∈ C }

The demands of C are defined to be the following set of clauses.

DemC := {RC, s− | �s− ∈ C } ∪ {RC}

The request of C and the demands of C complement each other. If a state
satisfies C , then every successor must satisfy the request of C and every demand
of C must be satisfied by some successor. The singleton {RC} ensures that
Dem C is nonempty and captures the fact that we are only interested in serial
models.

Let C and D be clauses. If D .RC , we say that there is a possible transition
from C to D or that D is a possible successor of C . A demo will be a set of base
clauses S that can be turned into a finite model where the states are clauses from S,
possibly appearing multiple times, and the transition relation is a selection of
possible transitions. The model will be constructed such that every state satisfies
all formulas it supports.

For S to be a demo, we require that every demand of a clause in S is again sup-
ported by S. This ensures that every clause in S has enough possible successors
in S to satisfy all literals of the form �s−. Together with the definition of support,
this also takes care of the fixpoint conditions for path formulas. It remains to
take care of the well-foundedness conditions for eventualities.

Similar to demos for K∗ (Definition 4.3.1) we handle the well-foundedness
conditions for eventualities using inductively defined fulfillment relations. We
consider two variants of inductive fulfillment. We first present the notion of
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5.3 Relaxed Demos

inductive fulfillment arising naturally with the inductive interpretation of eventu-
alities. This yields a notion of demo. We then obtain relaxed demos by relaxing
the fulfillment conditions while retaining the property that demos contain only
satisfiable clauses.

5.3.2 Standard Fulfillment

We inductively define fulfillment relations S,C . e between sets of clauses S,
clauses C and eventuality literals e.

A clause C fulfills �A(s R t)− in S if either S . RC, t− (i.e., the eventuality
can be fulfilled in one step) or there exists a possible successor D of C such
that D . RC, t− and D fulfills �A(s R t)−. The rules defining S,C . �A(s R t)−

inductively are:

S .RC, t−

S, C . �A(s R t)−
D ∈ S D .RC, s− S,D . �A(s R t)−

S, C . �A(s R t)−

To fulfill the eventuality literal �A(s U t)+, every successor needs to fulfill
A(s U t)+. For the model construction, we therefore want to introduce as few
successors as possible. However, we need to introduce at least one successor for
every demand of the clause containing �A(s U t)+. Thus, we need to ensure that
one of the possible successors for every demand fulfills the eventuality.

A clause C fulfills �A(s R t)− in S if for every demand E of C either S . E, t+
(i.e., the eventuality can be fulfilled in one step) or there exists some clause D ∈ S
which supports E, s+ and fulfills the eventuality. This leads to the following
inductive definition:

∀E ∈ DemC. S . E, t+ ∨ (∃D ∈ S. D . E, s+ ∧ S, C . �A(s U t)+)
S, C . �A(s U t)+

Based on the inductive fulfillment relations, we define the following notion of
demo.

Definition 5.3.1 A set of base clauses S is a demo if the following conditions are
satisfied:

D1. If C ∈ S and D ∈ DemC , then S . D.

D2. If e ∈ C ∈ S for some eventuality literal e, then S, C . e.

Note that for clauses containing multiple eventualities, the derivations for fulfill-
ment may employ a different selection of possible successors for each eventuality.
Consequently, the construction of models from demos treats each combination of
a clause and an eventuality on its own, thus requiring the duplication of clauses.
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�A(s R t)−

s−• •

s−•• •

t−• •

�A(s U t)+

s+ s+

s+s+

t+t+ t+

Figure 5.2: Fragments for �A(s R t)− and �A(s U t)+

5.3.3 Relaxed Fulfillment

Let S be a demo. Derivations of S, C . e (with sharing of common subderivations)
can be thought of as rooted directed acyclic graphs whose nodes are labeled with
clauses from S and where the root satisfies the eventuality literal e. These rooted
dags correspond to the fragments employed by Emerson and Halpern [EH85,
Eme90]. Depending on the type of eventuality, fragments take one of two shapes
as depicted in Figure 5.2. A fragment for �A(s R t)− is a path fulfilling the
eventuality enriched with sufficiently many successors (depicted as •) to satisfy
the demands of all internal nodes. A fragment for �A(s U t)+ is a dag where every
leaf supports t+ and the internal nodes (except possibly the root) support s+.

Following Emerson [Eme90], fragments can be assembled into a model where
every state satisfies its labeling clause. It turns out that the construction of
models from fragments does not make use of the fact that the internal nodes of
a fragment are labeled with clauses from the demo. It suffices to know that the
internal nodes of a fragment are labeled with base clauses. This allows us to relax
the notion of fulfillment.

We distinguish between clauses that may serve as leaves of fragments (S) and
a sufficiently large set of base clauses that may serve as intermediate states (T ).
We inductively define relaxed fulfillment relations between pairs of sets of base
clauses (S,T ), clauses C , and eventuality literals. The rules are given in Figure 5.3.
Relaxed fulfillment differs from normal fulfillment in the quantification over T
for the case where the eventuality is deferred. Moreover, we need to internalize
the demo condition (D1) into the rules for A(s R t)− to ensure that the demands
of all internal clauses are met (cf. Figure 5.2).

Relaxed fulfillment yields a notion of relaxed demo.

Definition 5.3.2 A pair of finite sets of base clauses (S,T ) is a called a relaxed
demo, if the following conditions hold:

R1. S ⊆ T .

R2. If C ∈ S, and D ∈ DemC then S . D.

R3. If e ∈ C is an eventuality literal and C ∈ S, then (S,T ), C 3 e.
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5.4 Model Construction

∀D ∈ DemC.S . D
S .RC, t−

(S,T ), C 3 �A(s R t)−

∀D ∈ DemC.S . D
E ∈ T E .RC, s− (S,T ), E 3 �A(s R t)−

(S,T ), C 3 �A(s R t)−

∀D ∈ DemC.S . D, t+ ∨ (∃E ∈ T .E . D, s+ ∧ (S,T ), E 3 �A(s U t)+)
(S,T ), C 3 �A(s U t)+

Figure 5.3: Relaxed fulfillment

Let (S,T ) be a relaxed demo. Note that the set T may contain unsatisfiable
clauses since the only requirement on the clauses in T is local consistency.
Consequently, the construction of models from relaxed demos will only establish
satisfiability of the clauses in S. Hence, the set S is to be seen as the demo proper
whereas T is a sufficiently large set of auxiliary clauses. The reason for including
T in the definition is that the upper-bound on the size of the model for (S,T )
will depend on the size of T . When instantiating the model construction, we will
take T to be the set of all base clauses over a given subformula universe.

Relaxed demos subsume demos in the sense that (S,S) is a relaxed demo
whenever S is a demo. We remark that the change from normal demos to relaxed
demos does not complicate the construction of models. The only real differ-
ence between the model construction for relaxed demos (next section) and a
model construction for normal demos is the need to distinguish between the two
components of relaxed demos.

5.4 Model Construction

We now construct models for relaxed demos. The construction consists of two
parts. Fist we unwind the demo into a collection of graphs called fragments such
that each fragment fulfills one eventuality in one clause. Following [Eme90], we
then assemble the fragments into a finite model such that every state satisfies its
labeling clause.

5.4.1 Demos to Fragments

We fix a relaxed demo (S,T ) for the rest of this section and define V :=
⋃
C∈S C

to be the clause containing all formulas appearing in the clauses of S.
A fragment is a finite, rooted, and acyclic directed graph labeled with clauses.

If G is a fragment, we write x ∈ G if x is a node of G and x ⇒G y if there is a
G-edge from x to y . A node x ∈ G is internal if it has some successor and a leaf
otherwise. If x ∈ G, we write l(x) for the clause labeling x. We also write xroot

for the root of a graph if the graph can be inferred from the context. A fragment
is nontrival if its root is not a leaf.
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Let C ∈ S be a clause. A fragment G is a fragment for C if:

F1. If x ∈ G is a leaf, then l(x) ∈ S and l(x) ∈ T otherwise.

F2. The root of G is labeled with C .

F3. If x ⇒G y , then l(y) .R(l(x)).
F4. If x ∈ G is internal and D ∈ Dem (l(x)), then there exists some y ∈ G such

that x ⇒G y and l(y) . D.

Let u be a signed formula. A fragment G for C is a fragment for C and u if:

E1. If u = �A(s U t)+ ∈ C and C . s+, then l(x) . s+ for every internal x ∈ G
and l(y) . t+ for all leaves y ∈ G.

E2. If u = �A(s R t)− ∈ C and C . s−, then l(x) . s− for every internal x ∈ G
and l(y) . t− for some y ∈ G.

Fragments are designed such that whenever u ∈ C is an eventuality literal, then
the root of every fragment for C and u satisfies the corresponding eventuality if
it is supported. Note that if u is not an eventuality literal, then every fragment
for C is also a fragment for C and u.

Definition 5.4.1 A fragment demo (for (S,T )) is an indexed collection of non-
trivial fragments (G(u,C))u∈V,C∈S where each G(u,C) is a fragment for C and u.

We now show how to unfold (S,T ) into a fragment demo. For the construction
we separate the clauses of T that can be used to show fulfillment into levels. Let
C ∈ T such that (S,T ), C 3 �A(s U t)+. The level of C is the minimum depth
of derivations of (S,T ), C 3 �A(s U t)+. For �A(s R t)− the notion of level is
defined analogously.

Lemma 5.4.2 There exists a fragment demo (for (S,T )) such that every fragment
has most 2 · |T | nodes.

Proof We obtain a fragment for C ∈ S and u ∈ V as follows. We distinguish three
cases.

1. u = �A(s U t)+ ∈ C and C . s+. We define:

Al := {D ∈ T | (S,T ),D 3 �A(s U t)+ }
Ar := {D ∈ S | D . t+ }

We then define a terminating relation ⇀ on the disjoint (tagged) union Al +Ar
such that

inl(D) ⇀ inl(E) ↔ E .RD ∧ E . s+ ∧ levelE < levelD

inl(D) ⇀ inr(E) ↔ E .RD

There are no transitions within Ar or from Ar to Al. Since (S,T ) is a relaxed
demo, we have (S,T ), C 3 �A(s U t)+ and thus C ∈ Al. The subgraph reach-
able from inl(C) yields a fragment for C and u of the required size. It is
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immediate that the fragment satisfies (F1–3). Conditions (F4) and (E1) follow
with the definition of fulfillment.

2. u = �A(s R t)− ∈ C and C . s−. We define:

Al := {D ∈ T | (S,T ),D 3 �A(s R t)− }

Similar to the case above, we define a terminating relation ⇀ on the disjoint
union Al + S such that

inl(D) ⇀ inl(E) ↔ E .RD ∧ E . s− ∧ levelE < levelD

inl(D) ⇀ inr(E) ↔ E .RD

Again, the subgraph reachable from inl(C) yields a fragment for C and u of
the required size. Conditions (F1–4) are easy to verify. Condition (E2) follows
by induction on the level of C using the definition of fulfillment.

3. In all other cases it suffices to construct a fragment for C. The fragment
consists of a root node labeled with C and a a number of leafs. For every
clause D ∈ DemC we add a leaf xD such that l(xD) ∈ S and l(xD) . D. �

Remark 5.4.3 The levels employed in the proof of Lemma 5.4.2 are similar to the
ranks employed by Ben-Ari et al. [BAPM83] to define the fulfillment conditions for
eventualities. Their model construction, however, follows a different approach.

5.4.2 Fragments to Models

We now show how to assemble a fragment demo into a model. The construction
is adapted from Emerson’s handbook article [Eme90].

We fix some fragment demo (G(u,C))u∈V,C∈S for (S,T ). We construct a finite
model M satisfying all clauses in the fragment demo. If V is empty, there is
nothing to show, so we assume that V is nonempty.

The states ofM are the nodes of all the fragments in the demo, i.e., every state
ofM is a dependent triple (u,C,x) with u ∈ V , C ∈ S, and x ∈ G(u,C). A state
(u,C,x) is labeled with atomic proposition p iff p+ ∈ l(x).

To define the transitions of M, we fix an ordering u0, . . . , un of the signed
formulas in V . We write ui+1 for the successor of ui in this ordering. The
successor of un is taken to be u0. The transitions of M are of two types. First,
we lift all the internal edges of the various fragments to transitions inM. Second,
if x is a leaf in G(ui, Cj), we add transitions from (ui, Cj , x) to all successors of
the root of G(ui+1, l(x)) (cf. Figure 5.4). This leads to the following definition:

|M| := { (u,C,x) | u ∈ V,C ∈ S, x ∈ G(u,C) }
ΛM p (u,C,x) := p+ ∈ l(x)

(ui, C, x)⇒M (v,D,y) := (v = ui ∧D = C ∧ x ⇒G(v,D) y) ∨
(leafx ∧ v = ui+1 ∧D = l(x)∧yroot ⇒G(v,D) y)
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G(ui, C)

G(ui+i, l(x))

x

Figure 5.4: Connections between fragments

G(u0, C0) G(u0, C1) · · · G(u0, Cn)

G(u1, C0) G(u1, C1) · · · G(u1, Cn)
...

...
...

G(un, C0) G(un, C1) · · · G(un, Cn)

Figure 5.5: Matrix of fragments (adapted from [Eme90])

The fragments in the demo can be thought of as arranged in a matrix as shown
in Figure 5.5 where the Ci are the clauses in S. Since fragment demos consist of
nontrivial fragments only, the resulting transition system is serial and therefore a
model. It remains to show that every state ofM satisfies all formulas supported
by its labeling clause:

Lemma 5.4.4 If (u,C,x) ∈M and l(x) . sσ , thenM, (u,C,x) î sσ .

We will prove Lemma 5.4.4 by induction on s. To handle the cases for eventualities,
we need a number of auxiliary notions. Analogous to the predicates AU and AR
(Section 5.1.2) we define an inductive predicate EU as follows:

Qw
EUP Qw

P w w ⇒M v EUP Qw
EUP Qw

We then introduce the following abbreviations:

AUM s t w := AU (λv.l(v) . s+) (λv.l(v) . t+)w

EUM s t w := EU (λv.l(v) . s−) (λv.l(v) . t−)w
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5.4 Model Construction

Here, l(v) is to be read as the label of the underlying node. After applying the
induction hypothesis, the cases of Lemma 5.4.4 for the two eventualities will boil
down to showing AUM s t w whenever l(w) . A(s U t)+ and EUM s t w whenever
l(w) . A(s R t)−.

For each type of eventuality, we need two lemmas. We first show that every
eventuality is satisfied whenever it is supported by the root of a fragment indexed
with the corresponding eventuality literal. We then show that we can lift satis-
faction of eventualities from the roots of one row ofM to the states of the row
above.

Lemma 5.4.5 Let �A(s U t)+ ∈ V and C ∈ S. Then AUM s t (�A(s U t)+, C, xroot)
whenever l(xroot) . A(s U t)+.

Proof If l(xroot) . t+, then the claim is trivial. Otherwise we have �A(s U t)+ ∈
l(xroot) and l(xroot) . s+. Hence all internal nodes of G(�A(s U t)+, C) support s+

and all leaves support t+ (E1). The claim then follows by induction on the
termination of the edge relation of G(�A(s U t)+, C). �

Lemma 5.4.6 Let �A(s R t)− ∈ V and C ∈ S. Then EUM s t (�A(s R t)−, C, xroot)
whenever l(xroot) . A(s R t)−.

Proof Without loss of generality, we can assume �A(s R t)− ∈ l(xroot) and
l(xroot) . s−. With (E2), we obtain a G(�A(s R t)−, C)-path from xroot to some
state y such that l(y) . t−. The claim then follows by induction on this path. �

It remains to lift satisfaction of eventualities from one row to the row above.

Lemma 5.4.7 Let (ui, C, x) ∈ M. Then AUM s t (ui, C, x) if l(x) . A(s U t)+ and
AUM s t (ui+1,D,yroot) for all D ∈ S such that D . A(s U t)+.

Proof By induction on the termination of the edge relation of G(ui, C). If x
is a leaf, the claim follows since (ui+1, l(x),yroot) has the same label and the
same successors as x (cf. Figure 5.4). Otherwise, either l(x) . t+ (and the claim
follows trivially) or l(x) . {s+,�A(s U t)+}. Hence, every successor of x supports
A(s U t)+ (F3) and the claim follows by induction hypothesis. �

Lemma 5.4.8 Let (ui, C, x) ∈ M. Then EUM s t (ui, C, x) if l(x) . A(s R t)− and
EUM s t (ui+1,D,yroot) for all D ∈ S such that D . A(s R t)−.

Proof Similar to the proof of Lemma 5.4.7 using (F4) instead of (F3). �

Putting everything together, we can show correctness of the model construction.

Proof (of Lemma 5.4.4) By induction on s. We consider the cases for the eventu-
alities. The reasoning for the remaining cases follows the proof of Lemma 3.3.3.
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sσ = A(s U t)+. Let w = (ui, Cj , x) ∈ M and assume l(x) . A(s U t)+. By induc-
tion hypothesis, it suffices to show AUM s t w. By Lemma 5.4.7, it suffices to
consider the case where x is the root of G(ui, Cj). Also, we can assume without
loss of generality that �A(s U t)+ ∈ V . We prove AUM s t w by induction on
the distance from ui to �A(s U t)+ in the ordering of V . If ui = �A(s U t) the
claim follows with Lemma 5.4.5. Otherwise the claim follows with Lemma 5.4.7
and the (inner) induction hypothesis.

sσ = A(s R t)−. Let w ∈ M . We need to show w î A(s R t)−. It suffices to show
EUM s t w. This follows, similar to the case for A(s U t)+, with Lemma 5.4.8
and Lemma 5.4.6. �

Putting the two parts of the model construction together, we obtain the following
theorem:

Theorem 5.4.9 (Model Existence) Let (S,T ) be a relaxed demo such that
V :=

⋃
C∈S C is nonempty. Then there exists a modelM with at most 2 · |V | · |T |2

states such that:

∀C ∈ S∃w ∈M∀sσ . C . sσ → w î sσ

Proof Follows with Lemma 5.4.2 and Lemma 5.4.4. �

5.4.3 Remarks on the Formalization

The formalization of the model construction presented in this section is one of
the most technical parts of the development accompanying this thesis [ACF]. We
briefly mention some of the techniques used in the formalization.

Levels For the proof of Lemma 5.4.2 we employed the notion of levels. In
order to obtain a decidable transition relation, these levels need to be computed.
We make use of the fact that, over a given collection of clauses, the fulfillment
relations correspond to the fixpoint of some monotone and bounded function F .
Recall, that we construct the fixpoint of F by iterating F sufficiently often on the
empty set (cf. Section 7.1). Hence, the level of a clause C can be defined as the
least n such that C ∈ Fn+1�.1 Note that this is only defined if x ∈ lfpF . For the
formalization we use a total function that takes a proof of membership in lfpF as
an extra argument.

Let {x,y} ⊆ lfpF . To formalize the proof of Lemma 5.4.2, we only need two
facts to characterize levels:

x ∈ F levelx+1�

y ∈ F levelx�→ levely < levelx

We remark that, although the fulfillment relations are conceptually inductive defi-
nitions, the formal proofs only employ the fixpoint characterization of fulfillment.

1 To be precise, the level is one less than the minimum derivation depth to avoid an empty level 0.
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5.5 Pruning and Refutation Calculus

Matrix Construction We base our representation of fragments on finite types.
We represent finite labeled graphs as relations over some finite type together with
a labeling function. We then represent fragments using clause labeled graphs
with a distinguished root element.

For the construction ofM, we turn the finite set V × S into a finite type I. The
constructed fragment demo then corresponds to a function G from I to the type
of finite graphs. The states ofM are then obtained as the type Σi : I. G i (i.e, as a
tagged disjoint union of the graphs indexed by I).

We lift the internal edges of the graphs G i by defining a predicate

liftEdge : (Σi:I.G i)→ (Σi:I.G i)→ B

on the dependent pairs of an index and a node of the respective graph satisfying

liftEdge (i, x) (i,y)↔ x ⇒G i y
i ≠ j → ¬liftEdge (i, x) (j,y)

The definition of liftEdge uses dependent types in a form that is well supported
by Ssreflect.

The proof of Lemma 5.4.4 contains a nested induction on the distance from ui
to �A(s U t) according to the ordering of the nonempty set V . We formalize this
distance using two functions dist : V → V → N and next : V → V satisfying

distxy = 0→ x = y
distxy = n+ 1→ dist(nextx)y = n

Note that the notion of distance defined this way is asymmetric. The definitions
of dist and next employ an enumeration of V and arithmetic modulo |V |. The
notation ui+1 is formalized as nextui.

Fragment Connections In [Eme90] every leaf of a fragment is replaced by the
root with the same label on the next level. Thus, only the internal nodes of
every fragment become states of the model. This would amount to using another
Σ-type on the vertex type of every dag. In our model construction, we connect the
leaves of one row to the successors of the equally labeled root of the next row (cf.
Figure 5.4). This way, we avoid the Σ-type construction at the cost of obtaining a
slightly weaker bound on the size of the constructed model. The construction
makes use of the fact that CTL formulas cannot distinguish different states that
are labeled with the same atomic propositions and have the same successors.

5.5 Pruning and Refutation Calculus

We now define subformula universes for CTL and show how to construct canonical
relaxed demos using pruning. As before, we complement pruning with a refutation
calculus whose derivations can be translated to Hilbert refutations.

63



5 Computation Tree Logic

We call a clause U a subformula universe, if it satisfies the following closure
conditions:

S1. If (s → t)σ ∈ U , then {sσ , tσ} ⊆ U .

S2. If �sσ ∈ U , then sσ ∈ U .

S3. If A(s U t)σ ∈ U , then {sσ , tσ ,�A(s U t)σ} ⊆ U .

S4. If A(s R t)σ ∈ U , then {sσ , tσ ,�A(s R t)σ} ⊆ U .

If C is a clause, we write sfcC for the smallest subformula universe extending
C and refer to it as subformula closure of C. The clause sfcC can be computed
using a simple structural recursion (cf. Section 4.4.1).

Lemma 5.5.1 | sfc{sσ}| ≤ 2 · |s|.

We fix some subformula universe U for the rest of this section. As before, we
write U for the set of base clauses over U . The canonical (relaxed) demo for U is
the relaxed demo (D, U) where D contains exactly the satisfiable clauses from U .
We use pruning to construct the canonical demo for U :

pC S := (∀D ∈ Dem C. S . D)∧
(∀�A(s U t)+ ∈ C. (S, U), C 3 �A(s U t)+)∧
(∀�A(s R t)− ∈ C. (S, U), C 3 �A(s R t)−)

D :=prunepU

Lemma 5.5.2 (D, U) is a relaxed demo.

Proof Follows with Lemma 3.4.3. �

We complement pruning with a refutation calculus. The rules of the calculus
are given in Figure 5.6. The support rule is (save for the changed notion of
support) identical to the rule for K (Section 3.4.3). For the jump rule, we need to
take care of the seriality condition for CTL models. In addition, we need one loop
rule per eventuality.

Lemma 5.5.3 (Refutation Completeness)

1. corefUD
2. refU C whenever whenever C ⊆ U and D 6. C .

Proof Analogous to the proof of Lemma 4.4.4 �

Generalizing over U , we obtain the theorem below.

Theorem 5.5.4 Let U be a non-empty subformula universe and let C ⊆ U . Then
either refU C or C is satisfied by a model of size at most |U| · 22|U|+1.

Proof Let (D, U) be the canonical demo over U . If D 6. C we obtain a refutation
of C with Lemma 5.5.3. Otherwise, we obtain a model of the required size with
Theorem 5.4.9. �
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C ⊆ U S 6. C corefU S
refU C

supp
D ∈ DemC refU D

refU C
jump

�A(s U t)+ ∈ C ∈ S ⊆ U (S, U), C 63 �A(s U t)+ corefU S
refU C

loop+

�A(s R t)− ∈ C ∈ S ⊆ U (S, U), C 63 �A(s R t)− corefU S
refU C

loop−

corefU S := ∀C ∈ U. C ∉ S → refU C

Figure 5.6: Refutation calculus for CTL

5.6 Completeness of the Hilbert System

We now show that the refutation rules (Figure 5.6) are admissible for the Hilbert
system. We fix some subformula universe U . As before, we call a set of clauses S
Hilbert corefutable if ` ¬C whenever C ∈ U and C ∉ S.

To show admissibility of the rules, we need a few simple facts about the Hilbert
system.

Lemma 5.6.1

1. ` A(s U t)↔ t ∨ (s ∧�A(s U t))
2. ` A(s R t)↔ t ∧ (s ∨�A(s R t))
3. If D ∈ Dem C , then ` C → ♦D.

Admissibility of the jump-rule is an immediate consequence of Lemma 5.6.1(3).

Lemma 5.6.2 (Admissibility of Jump Rule) Let D ∈ DemC . Then ` ¬C if ` ¬D.

For the support rule, we show that every clause implies the disjunction over its
base in S.

Lemma 5.6.3 Let S be Hilbert corefutable. Then ` C →
∨
BS C .

Proof Similar to the proof of Lemma 3.5.2 using Lemma 5.6.1. �

Lemma 5.6.4 (Admissibility of Support Rule) Let S ⊆ U be Hilbert corefutable
and let C ⊆ U . Then ` ¬C whenever S 6. C .

Proof Immediate with Lemma 5.6.3. �

It remains to show admissibility of the loop rules. The proofs employ the
induction rules of the Hilbert system. We do not use the rules UI and RI directly.
Instead, we use derived rules tailored for the refutation of eventuality literals.
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Lemma 5.6.5

1. If ` u→ �(t ∧ (¬s → u)), then ` u→ �A(s R t).
2. If ` u→ ♦(¬t ∧ (s → u)), then ` u→ ¬�A(s U t).

Proof We prove (2), the proof for (1) is similar but simpler. Assume ` u →
♦(¬t ∧ (s → u)). Let u′ := ¬(¬t ∧ (s → u)). We reason as follows:

` u→ ¬�A(s U t)
⇐ ` ¬�u′ → ¬�A(s U t) assumption, def-♦
⇐ ` A(s U t)→ u′ prop., Reg
⇐ ` t → u′ and ` s → �u′ → u′ UI

The left claim follows by propositional reasoning. The right claim is equivalent to
` s → (¬t ∧ s → u)→ ♦(¬t ∧ s → u) and hence to ` s → (¬t ∧ s → u)→ u. �

Note that Lemma 5.6.5(2) turns the induction rule for A(s U t) into a coinduc-
tive refutation rule. We instantiate the coinduction rules established above with
elaborate invariants to refute clauses with unsupported eventuality literals. Sim-
ilar invariants appear in the completeness proofs of the Hilbert systems for
UB [BAPM83] and CTL [EH85, Eme90].

Lemma 5.6.6 (Admissibility of loop−) Let S ⊆ U be Hilbert corefutable and let
�A(s R t)− ∈ C ∈ S. Then ` ¬C whenever (S, U), C 63 �A(s R t)−

Proof Assume (S, U), C 63 �A(s R t)−. We define

I := {D ∈ S | (S, U),D 63 �A(s R t)− } u :=
∨
I

We clearly have ` C → u and ` C → ¬�A(s R t). Hence, it suffices to show
` u→ �A(s R t). We start to reason as follows:

` u→ �A(s R t)
⇐ ` u→ �(t ∧ (¬s → u)) Lemma 5.6.5(1)
⇐ ` D → �(t ∧ (¬s → u)) D ∈ I

SinceD ∈ I we have (S, U),D 63 �A(s R t)−. By the definition of relaxed fulfillment,
there are two possibilities. It is possible that there exists some clause E such
that E ∈ Dem D and S 6. E. In this case the claim follows since D is refutable
(Lemma 5.6.1(3)). Otherwise we have:

S 6.RD, t− (5.3)

BS (RD, s−) ⊆ I (5.4)

We continue as follows: Since �A(s R t)− ∈ C ∈ I, it suffices to show:

` D → �(t ∧ (¬s → u))
⇐ ` �(RD)→ �(t ∧ (¬s → u)) Lemma 3.5.4(3)
⇐ ` RD → t and ` RD ∧¬s → u Lemma 3.5.4(1)
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The left claim is equivalent to ` ¬RD, t− and follows with (5.3) and Lemma 5.6.4.
Similarly, the right claim is equivalent to ` RD, s− → u and follows with (5.4)
and Lemma 5.6.3. �

Lemma 5.6.7 (Admissibility of loop+) Let S ⊆ U be Hilbert corefutable and
�A(s U t)+ ∈ C ∈ S. Then ` ¬C whenever (S, U), C 63 �A(s U t)+.

Proof Assume (S, U), C 63 �A(s U t)+. We define

I := {D ∈ S | (S, U),D 63 �A(s U t)+ } u :=
∨
I

Similar to proof of Lemma 5.6.6, it suffices to show ` u→ ¬�A(s U t). For every
D ∈ I there must exist some clause E ∈ Dem D such that

S 6. E, t+ (5.5)

BS (E, s+) ⊆ I (5.6)

since otherwise we would have (S, U),D 3 �A(s U t)+. We reason as follows:

` u→ ¬�A(s U t)
⇐ ` u→ ♦(¬t ∧ (s → u)) Lemma 5.6.5
⇐ ` D → ♦(t ∧ (s → u)) D ∈ I
⇐ ` ♦E → ♦(¬t ∧ (s → u)) Lemma 5.6.1(3), E ∈ DemD as above
⇐ ` ¬E, t+ and ` E, s+ → u Lemma 3.5.4(1), prop.

The left claim follows with (5.5) and Lemma 5.6.4, the right claim follows with
(5.4) and Lemma 5.6.3. �

Lemma 5.6.8 ` ¬C whenever refU C .

Proof By induction on refU C using the lemmas above. �

Theorem 5.6.9 (Informative Completeness) Let s be a formula. Then either` ¬s
or s is satisfied by a model with at most |s| · 24·|s|+2 states.

Proof Let U := sfc{s+}. By Theorem 5.5.4, we either have refU {s+} and therefore
` ¬s (Lemma 5.6.8) or we obtain a model of the required size (Lemma 5.5.1). �

Together with soundness of the Hilbert system, we obtain the following corollaries:

Corollary 5.6.10 (Completeness) If s is valid, then ` s.

Corollary 5.6.11 (Decidability) Satisfiability, validity, and Hilbert provability of
formulas are decidable.

Corollary 5.6.12 (Small Models) Let s be satisfied by a classical model. Then s is
satisfied by a finite model with at most |s| · 24·|s|+2 states.
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5.7 Remarks on the Completeness Proof

Demos serve as the interface connecting the construction of models with the
construction of refutations. Our demos are designed to give a good compromise
between minimizing the effort for the model construction and minimizing the
effort of constructing Hilbert refutations. As it turns out, the definition of fulfill-
ment for eventualities has a large impact on the complexity of the proofs. For the
model construction one needs to construct fragments for fulfilled eventualities,
and for the construction of Hilbert refutations one needs to establish closure
properties for the collection of clauses that do not fulfill a given eventuality.

The proof of Lemma 5.4.2 employs a “bottom-up” fragment construction
using levels. This is mainly motivated by the desire to obtain “small” fragments,
i.e., fragments without duplicate labels among internal nodes. As a result, we
obtain (up to constants) the same upper bound for the small-model property
(Corollary 5.6.12) that has been established by Emerson and Halpern [EH85].

In Emerson’s handbook article [Eme90] the fulfillment condition for eventu-
alities requires the existence of fragments embedded in the demo (there called
pseudo-Hintikka structure). Thus, the existence of small fragments for the model
construction is immediate. However, the closure conditions for clauses with unful-
filled eventualities are more difficult to obtain. For �A(s U t)+ ∈ C one needs to
show that if there were embedded fragments fulfilling A(s U t)+ for every demand
of C, then there would also exist an embedded fragment for C and �A(s U t)+.
While it is easy to see that the fragments for the successors can be combined
into a fragment for C and �A(s U t)+, showing that the resulting fragment can be
embedded into the demo requires nodes with identical labels to be merged.

For our definition of demos, the closure properties required to refute unful-
filled eventualities are easy to obtain. On the other hand, we have to spend
some effort to obtain fragments for fulfilled eventualities. We believe that the
declarative fragment construction described in the proof of Lemma 5.4.2 is easier
to formalize than the iterative process of merging nodes with identical labels
used by Emerson [Eme90].

Another difference between our fulfillment predicates and the fragment test
by Emerson is that we define fulfillment for eventuality literals. This is technically
convenient because it ensures that all arising fragments are nontrivial. It also
allows us to avoid the problem of eventualities that are not fulfilled but could
be fulfilled locally in a consistent extension of the clause under consideration.
Emerson and Halpern [EH85, Eme90] solve this problem by defining demos only
for maximal clauses. This requires subformula universes that are closed under
adding or removing top-level negations and requires demos to be defined relative
to a given subformula universe. Neither is the case for our definition of demo.

We remark that for the purpose of this discussion, the difference between
standard demos and relaxed demos is insignificant since the effects on the
proofs presented in this chapter are marginal. Relaxed demos and the associated
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refutation calculus are designed with the completeness proof for the Gentzen
system [BL08] in mind (cf. Chapter 6). The translation to Hilbert refutations does
not profit from relaxed demos. One can obtain a marginally simpler translation
to Hilbert refutations when starting from the refutation calculus arising with
standard demos (Definition 5.3.1) [DS15]. Since the rules for S, C . �A(s R t)− do
not require the premise for Dem C present in the rules for (S,T ), C 3 �A(s R t)−,
the corresponding case distinction in the proof of Lemma 5.6.6 disappears.

5.8 Alternative Hilbert Systems

There are several different Hilbert systems for CTL in the literature. The first
system was given by Emerson and Halpern [EH82, EH85] and later simplified
in [Eme90]. Goldblatt [Gol91] gives a Hilbert system with induction rules similar
to the rules UI and RI (cf. Figure 5.1). The main difference between Goldblatt’s
axiomatization and IC is that in [Gol91] the fixpoint properties of path formulas
are axiomatized using equivalences while we axiomatize only one direction and es-
tablish the converse direction using the induction rules (Lemma 5.6.1). Lange and
Stirling [LS01] derive another Hilbert system from a game-theoretic interpretation
of CTL.

We show that the systems given in [Eme90] and [LS01] are equivalent to the
system IC. We continue to work with the minimal syntax and the abbreviations de-
fined in Section 5.1. Moreover, we introduce the following additional abbreviation:
�∗s := A(⊥R s).

5.8.1 Hilbert system of Emerson

We adapt the system from [Eme90] to our syntax and refer to the resulting system
as E. The rules and axioms are given in Figure 5.7. We omit axioms that correspond
to definitions in our setting (e.g., AF s ↔ A(>U s) and EF s ↔ E(>U s)). Moreover,
we omit the induction axioms for AF and EF since these are merely specializations
of Axioms 6 and 7. Further, we need to add Axiom 10 since the remaining axioms
only characterize the abbreviation E(s U t). (Axiom 9 is also present in [Eme90].)

Besides the fact that E axiomatizes E(s U t) rather than A(s R t), there are a
number of other differences between the Hilbert systems E and IC (cf. Figure 5.1):

• The system E features neither the normality scheme (N) nor the necessitation
rule (Nec), i.e., it does not extend an axiomatization of K.

• The system E employs induction axioms rather than rules.

• Axiom 6 is weaker than the corresponding rule UI in the sense that the premises
of Axiom 6 do not mention the formula s.

Theorem 5.8.1 E ` s whenever IC ` s.
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1. Sufficiently many propositional tautologies (i.e., K, S, and DN)
2. ♦(s ∨ t)↔ ♦s ∨♦t
3. E(s U t)↔ t ∨ (s ∧♦ E(s U t))
4. A(s U t)↔ t ∨ (s ∧�A(s U t))
5. ♦>∧�>
6. �∗(u→ ¬t ∧♦u)→ u→ ¬A(s U t)
7. �∗(u→ ¬t ∧ (s → �u))→ u→ ¬ E(s U t)
8. �∗(s → t)→ ♦s → ♦t
9. �s ↔ ¬♦¬s

10. A(s R t)↔ ¬ E(¬s U¬t)

` s ` s → t
` t

MP
` s
` �∗s

Gen

Figure 5.7: Hilbert system E

Proof It suffices to show that the rules and axioms of IC are derivable in E. In
the following we write rules using =⇒ (e.g., ` s,` s → t =⇒ ` t for MP). We
first show that the axioms and rules of the Hilbert system for K (Figure 3.1) are
derivable in E.

a. ` s → t =⇒ ` �s → �t 8,9,Gen
b. ` s =⇒ ` �s 5, a
c. ` �s → �t → �(s ∧ t) 2,9,8,Gen
d. ` �(s → t)→ �s → �t c, a

It remains to establish the induction rules (UI and RI), admissibility of all other
axioms is straightforward. We show the case for UI, the case for RI is similar but
simpler. We first obtain a weaker version of the rule UI corresponding to Axiom 6:

UI′ ` t → u,` �u→ u =⇒ ` A(s U t)→ u 6,Gen

It remains to add the assumption s to the second premise of UI′. Assume ` t → u
and ` s → �u→ u. It suffices to show ` A(s U t)→ A(s U t)→ u. After applying
the rule UI′, it remains to show ` �(A(s U t)→ u)→ A(s U t)→ u (the other case
is straightforward). After unfolding the second occurrence of A(s U t) (Axiom 4),
the claim follows with Fact d and the two assumptions. �

Theorem 5.8.2 IC ` s whenever E ` s.

Proof As above, it suffices to show admissibility of all rules and axioms. Most
of these have been established before (Lemma 3.5.4 and Lemma 5.6.1). We show
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1. Sufficiently many propositional tautologies (i.e., K, S, and DN)
2. E(s R t)→ t ∧ (s ∨♦ E(s R t))
3. A(s R t)→ t ∧ (s ∨�A(s R t))
4. �¬s → ¬�s
5. �(s → t)→ �s → �t
6. A(s U t)↔ ¬ E(¬s R¬t)

` s ` s → t
` t

MP
` u→ t ∧ (s ∨♦ E((s ∨u)R(t ∨u)))

` u→ E(s R t)
ERel

` s
` �s

Nec
` u→ t ∧ (s ∨�A((s ∨u)R(t ∨u)))

` u→ A(s R t)
ARel

Figure 5.8: Hilbert system LS

the case for Axiom 6, the remaining cases are straightforward. By propositional
reasoning, it suffices to show ` A(s U t)→ u→ X where X := ¬�∗(u→ ¬t ∧♦u).
By the rule UI, it suffices to show ` �(u → X) → u → X. By unfolding �∗ in
second occurrence of X (Lemma 5.6.1(2)), this is equivalent to ` �(u→ X)→ u→
(u→ ¬t ∧♦u)→ ♦X) which is a theorem of K. �

This establishes the equivalence of IC and E and therefore the soundness and
completeness of E.

5.8.2 Hilbert system of Lange and Stirling

As with the Hilbert system in [Eme90], we adapt the Hilbert system of Lange
and Stirling [LS01] to the syntax employed here. The rules and axioms are given
in Figure 5.8. As before, we omit axioms corresponding to abbreviations. Also,
Axiom 6 is stated in slightly different form. In addition to the axioms and
rules presented in Figure 5.8, the Hilbert system in [LS01] contains the following
additional axioms.

` E(s U t)→ t ∧ (s ∨♦ E(s U t))

` A(s U t)→ t ∧ (s ∨� E(s U t))

` �s ∧�t → �(s ∧ t)

We show that the system LS is complete without these axioms.
The main difference between the Hilbert systems LS and IC is the form of

the “induction” rules. The rules ARel and ERel to not treat the formula u as an
invariant (i.e., the premises of the rules to not involve proving �u or ♦u). Instead,
the rules allow the “weakening” of a release formula with the “current context” u
whenever the release formula is unfolded. Successive applications of the rules
allow weakening a given release formula to the point where it becomes trivial.

71



5 Computation Tree Logic

Theorem 5.8.3 LS ` s whenever IC ` s.
Proof We show admissibility of the rule RI. The case for the UI is similar and all
other cases are straightforward. Assume (a) ` u→ t and (b) ` u→ ¬s → �u. We
reason as follows:

` u→ A(s R t)
⇐ ` u→ t ∧ (s ∨�A((s ∨u)R(t ∨u)) ARel
⇐ ` �u→ �A((s ∨u)R(t ∨u)) (a),(b)
⇐ ` u→ A((s ∨u)R(t ∨u)) 5, Nec

The last claim follows by applying ARel a second time. �

This establishes the completeness of the Hilbert system LS. Since the system
LS is sound [LS01], the converse of Theorem 5.8.3 also holds. We will give a direct
syntactic argument. Given the close connection between the Hilbert system LS
and the history-based Gentzen system for CTL [BL08] we defer the proof to the
next chapter (cf. Theorem 6.2.7).

5.9 Path Semantics vs. Inductive Semantics

We now show that the inductive semantics we employ in our proofs agrees with
the usual semantics for CTL defined using infinite paths [Eme90, BK08]. In fact,
there are several classically equivalent but intuitionistically different formulations
of the path semantics. We show that the inductive semantics agrees constructively
with one formulation of the path semantics on finite models. The equivalence
extends to general models if one assumes excluded middle and a weak form of
choice. For other formulations of the path semantics one can show that even the
equivalence on finite models requires classical assumptions.

5.9.1 Path Semantics

We define a version of the path semantics for CTL that constructively agrees with
the inductive semantics on finite models. LetM be a general model. A path is a
function π : N→M such hat π n⇒M π(n+1) for all n. The letter π ranges over
paths. The path satisfaction relation w îp s for states w of M and formulas s
is then defined by recursion on formulas:

w îp ⊥ := ⊥
w îp p := ΛM pw

w îp s → t := w îp s → w îp t
w îp �s := ∀v. (w ⇒M v)→ v îp s

w îp A(s U t) := ∀π. π 0 = w → ∃n. π n îp t ∧∀m < n. π m îp s
w îp A(s R t) := ∀π. π 0 = w → ∀n. π n îp t ∨ ∃m < n. π m îp s

We writeMîp s if w îp s for all states w ofM.
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5.9.2 Agreement

We now show that the path semantics agrees with the inductive semantics on
finite models. We fix some finite modelM for the rest of this section.

Lemma 5.9.1 Let P,Q :M→ B be decidable predicates and let w ∈M. Then

AUP Qw ↔ ∀π.π 0 = w → ∃n.Q(π n)∧∀m < n.P (π m)

Proof The direction from left to right follows by induction on AUP Qw. Since
AUP Qw is decidable, we can show the direction from right to left by showing its
contrapositive. Assume ¬AUP Qw. We construct a path contradicting the right
hand side. Consider the following decidable subrelation of ⇒M:

u⇒ v := u⇒M v ∧ (¬AUP Qu→ P u→ ¬AUP Qv)

Since ⇒M is serial, the relation ⇒ is serial as well. Using constructive choice we
construct a function f :M→M selecting for every state ofM a ⇒-successor. We
define π n := fnw and show

∀n.¬AUP Q(π n)∨ ∃m < n.¬P (π m)

by induction on n. This yields ¬Q(π n) ∨ ∃m < n.¬P (π m) for all n, contra-
dicting the right hand side as required. �

Lemma 5.9.2 Let P,Q :M→ B be decidable predicates and let w ∈M. Then

ARP Qw ↔ ∀π.π 0 = w → ∀n.Q(π n)∨ ∃m < n.P (π m)

Proof For the direction from left to right,assume ARP Qw and let π be a path
such that π 0 = w. We prove

∀n. ARP Q(π n)∨ ∃m < n.P (π m)

by induction on n. The base case follows by assumption, the induction step
by inversion on ARP Q(π n). The claim then follows since ARP Q(π n) implies
Q(π n).

For the converse direction, we abbreviate the right hand side as AR′w . We first
show that the path characterization satisfies the inversion properties of AR:

∀v. AR′v → Qv (5.7)

∀uv. AR′u→ ¬P u→ (u⇒M v)→ AR′v (5.8)

For (5.7), we use constructive choice to obtain some path through the model.
Property (5.8) is easy to verify. The claim then follows by coinduction using (5.7)
and (5.8). �
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Theorem 5.9.3 (Finite Agreement) Let w be a state ofM. Thenw îp s iff w î s.

Proof By induction on s using Lemma 5.9.1 and Lemma 5.9.2. �

Together with the soundness of the Hilbert system for classical models (Theo-
rem 5.2.1, we obtain soundness of the Hilbert system for the path semantics and
finite models.

Corollary 5.9.4 (Finite Soundness) If ` s, thenMîp s for all finite modelsM.

Lemma 5.9.1 and Lemma 5.9.2 extend to infinite models if we use XM instead of
decidability to justify case distinctions and DC (Section 2.2) instead of constructive
choice to obtain infinite paths. This yields the theorem below.

Theorem 5.9.5 (General Agreement) Assume XM and DC and let w ∈ M for
some general modelM. ThenM,w îp s iffM,w î s.

Corollary 5.9.6 (Path Soundness) Assume XM and DC. ThenMîp s for all gen-
eral modelsM whenever ` s.

Proof By Theorem 5.9.5 it suffices to show w î s for all states w of M. This
follows with Theorem 5.2.1. �

Recall that the semantics with respect to all models is essentially a shallow
embedding into the type theory of Coq. As it turns out, this allows us to show that
XM and DC are not only sufficient but also necessary to prove path-soundness for
general models.

Fact 5.9.7 Assume ` s implies Mîp s for all general models M. Then XM and
DC are provable.

Proof XM follows with soundness of DN (see the proof of Fact 3.2.1). For DC, let X
be a type and let R : X → X → Prop be a serial relation. The relation R defines a
model (the labeling is irrelevant). It is straightforward to show ` E(⊥R>). In the
presence of XM, soundness yields an infinite path as required. �

Note that in the proof of Corollary 5.9.6, DC is only used to satisfy the premise of
Theorem 5.9.5. Hence, DC is necessary to show Theorem 5.9.5.

5.9.3 Remark on Release

The path semantics of the release modality can be defined in a number of classi-
cally equivalent but intuitionistically different ways [BK08, p. 256]. The definition
in Section 5.9.1 was chosen because one can show constructively, as we have
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done, that it coincides with the coinductive characterization on finite models. We
now show that for other formulations, such as the commonly found

w îp A(s R t)

↔ ∀π.π 0 = w → (∀n.π n îp t)∨ (∃n.π n îp s ∧∀m ≤ n.π m îp t) (5.9)

this is not the case. We construct a finite model such that if the equivalence
above were to hold in this model, we could prove a constructively non-provable
proposition called “limited principle of omniscience” [Esc13].

LPO := ∀f : N→ B. (∀n.f n = ⊥)∨ (∃n.f n = >)

Intuitively, LPO cannot be provable constructively since a constructive proof of
LPO would correspond to a procedure that decides whether a given function f
returns > for some argument. This would allow us to solve the halting problem
(take f to be the function that checks whether a given Turing machine halts
within n steps).

We construct a finite modelM3 as follows:

a
q

b
p,q

c

Theorem 5.9.8 Assume (5.9) holds inM3. Then LPO is provable.

Proof It is easy to verify a î A(p Rq). Hence, we have a îp A(p Rq) by Theo-
rem 5.9.3. We fix some function f : N→ B and show

(∀n.f n = ⊥)∨ (∃n.f n = >)

We define a path π that starts at a and evaluates f n before the n-th transition.
The path leaves for b if f n = > and otherwise stays at a. The claim then follows
with the assumed equivalence (5.9). �

Since the inductive semantics coincides with the path semantics on finite models,
Theorem 5.9.8 shows that the inductive semantics and a path semantics using (5.9)
as definition for always release do not coincide constructively on finite models.
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In this chapter we prove soundness and completeness of Gentzen systems for K∗

and CTL. Both systems are obtained as variants of the Gentzen system for CTL
given by Brünnler and Lange [BL08]. In order to treat eventualities with local rules,
the Gentzen systems employ a focusing mechanism. The focusing mechanism
works by annotating eventualities with finite sets of clauses called histories.
Histories record the contexts in which an eventuality has been unfolded. If the
same context appears further up in the derivation, that branch of the derivation
can be closed.

The original completeness proof in [BL08] works by constructing models from
unsuccessful derivations. We provide an alternative completeness proof that
works by translating pruning refutations to derivations of the Gentzen system.
Due to the analyticity of the Gentzen systems, the precise formulation of the
refutation rules is crucial for the translation to succeed. The notion of relaxed
demo introduced in the previous chapter was designed with the completeness
proof for the Gentzen system in mind. We show that the pruning refutations
arising with relaxed demos provide exactly the structure required for a translation
to the Gentzen system for CTL. This allows us to reuse the model construction
used to prove the small-model property and completeness of the Hilbert system.
Given the complexity of the model construction, this significantly simplifies the
proof, in particular as it comes to the formalization in Coq.

To prove completeness of the Gentzen system for K∗, we adapt the notion of
relaxed fulfillment. We then show that, in the case of K∗, pruning with respect
to relaxed fulfillment still constructs canonical demos. This allows us to obtain
a translation-based completeness proof for the Gentzen system without having
to resort to a fragment-based model construction. In fact, no additional model
construction is required to prove the completeness of either Gentzen system.

6.1 Gentzen System for K∗

The main problem in designing Gentzen systems for K∗ and CTL is the treatment
of eventualities. As argued in [BL08], a naive treatment using only the fixpoint
properties of eventualities yields a sound but incomplete system. We recall this
argument and explain how the history mechanism introduced in [BL08] is used to
obtain complete Gentzen systems.

As with the Gentzen system for K (Section 3.6), we employ a tableau-style
semantics, i.e, we treat Gentzen systems as systems deriving unsatisfiable clauses.
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Recall rules of the Gentzen system for K (Figure 3.2). We extend this system to
the eventualities of K∗ (Chapter 4). A naive approach for extending the calculus
to �∗sσ might be to add rules following the characteristic equivalence for �∗s
(i.e., �∗s ↔ s ∧��∗s):

ð C, s− ð C,��∗s−

ð C,�∗s−
G−

ð C, s+,��∗s+

ð C,�∗s+
G+

The rules are clearly sound, but the resulting system is far from complete.

Example 6.1.1 A Gentzen proof of the “Segerberg axiom” for K∗ (Section 4.6)
corresponds to a derivation of the clause {�∗(p → �p) → p → �∗p−}. The
Gentzen system for K extended with the rules above fails to derive this clause.
After some initial steps, it would suffice to derive the clause {�p+,��∗(p →
�p)+, p+,��∗p−}. Consider the following derivation attempt. (We suppress ð
to improve readability.)

p−, p+, . . .

p−, p+, . . .

�∗(p → �p)+, p+,�∗p−

��∗(p → �p)+,�p+, p+,��∗p−

��∗(p → �p)+,�p+, p+,�∗p−

��∗(p → �p)+, p → �p+, p+,�∗p−

�∗(p → �p)+, p+,�∗p−

Note that the open branch of the derivation is exactly the clause we started with.
Moreover, there is nothing else one can do aside from a few trivial permutations.

The problem with the rules given above is that the rules fail to account for the
inductive character of �∗s−, i.e., the fact that in order to satisfy �∗s− one must
eventually reach a state satisfying s−.

6.1.1 Histories

Intuitively, we should be able to close the last open branch in the example above
since we know that the derivation can only continue to run in cycles and will
never reach a satisfiable clause containing p−. This is the purpose of the history
mechanism. It allows setting a focus on some eventuality and remembering all
the contexts in which the rule G− has been applied to that eventuality. If a context
reappears further up in the derivation, the branch can be closed.

A history is a finite set of clauses. The letter H ranges over histories. An
annotated eventuality is a formula of the form �∗Hs− or ��∗Hs−. The Gentzen
system for K∗ employs annotated clauses C|a where C is a clause and a is
either an annotated eventuality or ε, signaling the absence of any annotated
eventualities.

The rules of the calculus are given in Figure 6.1. We refer to the rules foc
and rep as focusing and repetition rule respectively. Most rules treat annotated
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ð C,p+, p−|a
A

ð C,⊥+|a
F+

ð C, s−|a ð C, t+|a
ð C, s → t+|a

I+
ð C, s+, t−|a
ð C, s → t−|a

I−

ð C, s−|a ð C,��∗s−|a
ð C,�∗s−|a

G−
ð C, s+,��∗s+|a
ð C,�∗s+|a

G+

ð RC, s−|ε
ð C,�s−|a

X
ð RC|�∗Hs−

ð C|��∗Hs−
XH

ð C|��∗� s−

ð C,��∗s−|ε
foc

ð C, s−|ε ð C|��∗H,Cs−

ð C|�∗Hs−
G−H ð C|�∗H,Cs−

rep

Figure 6.1: Gentzen system GK∗

p−, p+, . . .

p−, p+, . . .

rep
�∗(p → �p)+, p+|�∗{{�∗(p→�p)+,p+}}p−

XH
�p+,��∗(p → �p)+, p+|��∗{{�∗(p→�p)+,p+}}p−

I+
p → �p+,��∗(p → �p)+, p+|��∗{{�∗(p→�p)+,p+}}p−

G+
�∗(p → �p)+, p+|��∗{{�∗(p→�p)+,p+}}p−

G−H
�∗(p → �p)+, p+|�∗�p−

XH
�p+,��∗(p → �p)+, p+|��∗�p−

foc
�p+,��∗(p → �p)+, p+,��∗p−|ε

Figure 6.2: Example derivation

eventualities just like regular eventualities. The history rules (bottom row) allow
setting a focus on some eventuality (focusing rule). Whenever the focused eventu-
ality is unfolded, the context is stored in the history (rule G−H ). If the same context
is repeated further up in the derivation, the branch can be closed (repetition rule).

Example 6.1.2 The history rules allow us to prove the “Segerberg axiom”. After
some initial steps (cf. Example 6.1.1), it suffices to refute the annotated clause
{�p+,��∗(p → �p)+, p+,��∗p−}|ε. A derivation for this clause is given in
Figure 6.2. (As before, we suppress ð to increase readability.)

The Gentzen system in Figure 6.1 is sound and complete for history-free
clauses. We show soundness immediately and defer the completeness proof to
Section 6.4. Even though we are mostly interested in the case of history-free
clauses, we need a semantics for annotated eventualities in oder to obtain a
compositional (i.e., rule by rule) soundness proof. We adapt the semantics given
in [BL08].
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Intuitively, a state satisfies �∗Hs− if a state satisfying s− can be reached without
satisfying any clause from H along the way. For the sake of simplicity, we only
consider finite models. This allows us to define satisfaction for �∗Hs− using
an inductive predicate instead of defining it as the negation of a coinductive
predicate.

LetM be a finite model. We define

w 6î H := ∀C ∈ H.w 6î C

The satisfaction relation between states w of M and annotated eventualities
�∗Hs− is defined by induction:

w 6î H w î s−

w î �∗Hs
−

w 6î H w ⇒M v v î �∗Hs
−

w î �∗Hs
−

Satisfaction for ��∗Hs− is defined as one would expect:

w î ��∗Hs
− := ∃v.w ⇒M v ∧ v î �∗Hs

−

For all rules except X, XH, and G−H a local soundness argument suffices. That is,
if a state satisfies the conclusion of a rule it also satisfies one of the premises of
the rule. For the rules X and XH, the premise is satisfied at a neighboring state. It
turns out that the G−H-rule, even though it looks similar to the G−-rule, does not
have this locality property.

Soundness of the rule G−H hinges on the fact that whenever we unfold an
eventuality (a least fixpoint) we can strengthen it with the current context. This
observation goes back to Kozen’s work on the propositional µ-calculus [Koz83].
It also underlies the focus-games for temporal logics [LS01] which lead to the
development of history-based Gentzen systems [BL08].

Intuitively, soundness of the rule G−H can be argued as follows. Assume
w î C|�∗Hs− for some state w of some modelM and assume that C, s−|ε is not
satisfied by any state ofM. Then there exists a path throughM from w to some
state v such that v î s− and no state on this path satisfies any clause from H.
Since C, s−|ε is not satisfied anywhere the state v cannot satisfy C . In particular,
the path must be nontrivial. Let u be the last state on the path that satisfies C.
The situation can be depicted as follows (adapted from [BL08]):

w
C

u
C

◦
¬C

v
¬C ∧ s−

H

It is easy to see that u satisfies C|��∗H,Cs−. Note that the soundness argument
is non-local in the sense that we used the fact that C, s−|ε is not satisfied at any
state to construct a state u that may be arbitrarily far away from the state w
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satisfying the conclusion of the rule. For the formal soundness proof below we
transform the intuitive argument above into an inductive argument that avoids
reasoning about paths.

Theorem 6.1.3 (Soundness) Let M be a finite model. If ð C|a, then C|a is not
satisfied by any state ofM.

Proof By induction on ð C|a. Soundness of all rules except the G−H-rule is
straightforward. For the G−H-rule, we obtain two induction hypotheses:

∀w ∈M. w 6î C, s−|ε (6.1)

∀w ∈M. w 6î C|��∗H,Cs− (6.2)

Now assume w î C and w î �∗Hs− for some state w of M. We derive a contra-
diction. By (6.1), we have w 6î s−. By inversion on w î �∗Hs−, there exists some
state v such that w ⇒M v and v î �∗Hs−. By (6.2), it suffices to show v î �∗H,Cs−

to obtain a contradiction. We prove v î �∗H,Cs− by induction on v î �∗Hs−.

Case 1. We have v 6î H and v î s−. The claim follows since v 6î C by (6.1).

Case 2. We have v 6î H, v ⇒M u and u î �∗H,Cs− for some state u of M. By
induction hypothesis, it suffices to show v 6î C . This follows with (6.2). �

Remark 6.1.4 The proof of Theorem 6.1.3 is one of several examples in this
thesis, where the desire to obtain a concise formalization leads to proofs that
differ significantly from the informal proofs.

Recall that satisfiability with respect to classical models and finite models
coincides for history-free clauses (Corollary 4.5.10 and Fact 3.5.1). Hence, the
restriction to finite models only concerns “auxiliary” clauses with annotated
eventualities. Also note that, just like the original system for CTL [BL08], the
Gentzen system for K∗ is sound but not complete for arbitrary annotated clauses.

Example 6.1.5 (Incompleteness) The annotated clause �|�∗{{p−}}p− is clearly un-
satisfiable. The only rule that applies to �|�∗{{p−}}p− is G−H . This yields {p−}|ε as
left premise which is clearly satisfiable and therefore underivable (Theorem 6.1.3).

Before we argue completeness of the Gentzen system for K∗, we first extend the
system to CTL.

6.2 Gentzen System for CTL

We now consider a history-based Gentzen system for CTL (Chapter 5). The system
is obtained as a variant of the sequent calculus CT [BL08] adapted to our use of
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signed formulas and clauses. We continue to use annotated clauses. In the case
of CTL, annotated eventualities take one of the following four forms.

A(s UH t)+ | �A(s UH t)+ | A(s RH t)− | �A(s RH t)−

As for GK∗, an annotated eventuality is satisfied if the eventuality can be satisfied
without satisfying any clause in the history along the way.

The request of a clause C is defined as before (i.e., RC := { s+ | �s+ ∈ C }).
Since annotations for CTL may contain positive boxes, we need to extend the
notion of request to annotations. The request of an annotation a, written r a, is
defined analogously to the request for clauses, i.e. r (�A(s UH t)+) = A(s UH t)+

and r a = ε for all other annotations.
The Gentzen system GCT derives unsatisfiable annotated clauses. The rules of

the system are given in Figure 6.3. As before, we write ð C|a if C|a is derivable
using the tableau rules. Compared to GK∗ (Figure 6.1) the system GCT features
one set of history rules for each of the two eventualities of CTL. Moreover, the
system features a jump rule for clauses without diamonds (rule Xs) to capture the
fact that we only consider serial models for CTL. We will show the system GCT
sound for all clauses and complete for annotation-free clauses.

Remark 6.2.1 The presentation of CT [BL08] employs sequents comprised of
annotated and non-annotated formulas. This simplifies the presentation of rules,
in particular for those rules that do not change the annotation. In order to obtain
an analytic system, every rule of CT carries the proviso that sequents may contain
at most one annotated eventuality. Our use of annotated clauses enforces this
condition without an explicit side condition at the cost of a more verbose notation.
Aside from these syntactic changes, the main differences between CT and GCT
are that in CT the X-rules may only be applied to literal clauses and that all the
rules carry the proviso that the active formula in the conclusion does not appear
in the context. We impose no such restrictions. The reason for this is simply
convenience. Our completeness proof will not make use of this added flexibility.

Recall that an annotated eventuality is satisfied if the eventuality can be
satisfied without satisfying any clause in the history along the way. In the
case of CTL, this can be expressed using formulas [BL08]. As a consequence
we can translate derivations of GCT to refutations in the Hilbert System for
CTL (Section 5.2). This yields a purely syntactic soundness argument and, once
we have established completeness of GCT, an alternative completeness proof for
the Hilbert system.

We define the associated formula of a history H to be the formula
∧
C∈H ¬C .

In unsigned formulas, we let s UH t abbreviate (s ∧H)U(t ∧H). The associated
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C,p+, p−|a
A

C,⊥+|a
F+

C, s−|a C, t+|a
C, s → t+|a

I+
C, s+, t−|a
C, s → t−|a

I−

C, t+|a C, s+,�A(s U t)+|a
C,A(s U t)+|a

U+
C, t−, s−|a C, t−,�A(s U t)−|a

C,A(s U t)−|a
U−

C, s+, t+|a C, t+,�A(s R t)+|a
C,A(s R t)+|a

R+
C, t−|a C, s−,�A(s R t)−|a

C,A(s R t)−|a
R−

RC|r a
C|a

Xs

RC,u−|r a
C,�u−|a

X
RC|A(s RH t)−

C|�A(s RH t)−
R−H

C|A(s U� t)+

C,A(s U t)+|ε
U�

C, t+|ε C, s+|�A(s UH,C t)+

C|A(s UH t)+
UH C|A(s UH,C t)+

U

C|A(s R� t)−

C,A(s R t)−|ε
R�

C, t−|ε C, s−|�A(s RH,C t)−

C|A(s RH t)−
RH C|A(s RH,C t)−

R

Figure 6.3: Gentzen system GCT

formula of an annotation is then defined as follows:

af(ε) := >
af(A(s UH t)+) := A(s UH t)

af(�A(s UH t)+) := �A(s UH t)

af(A(s RH t)−) := E(¬s UH ¬t)
af(�A(s RH t)−) := ♦ E(¬s UH ¬t)

The admissibility proofs for all rules except UH and RH are straightforward. We
prove admissibility UH and RH as separate lemmas.

Lemma 6.2.2 (Admissibility of UH) If ` ¬(C ∧ t) and ` ¬(C ∧ s ∧�A(s UH,C t)),
then ` ¬(C ∧ A(s UH t)).

Proof Assume (a) ` ¬(C ∧ t) and (b) ` ¬(C ∧ s ∧�A(s UH,C t)). We first argue
that it suffices to show

` A(s UH t)→ A(s UH,C t) (6.3)

Assume C and A(s UH t). We obtain ¬t with (a) and therefore s, H, and �A(s UH t)
(Lemma 5.6.1(1)). We then obtain �A(s UH,C t) with (6.3). Together with (b), this
yields the required contradiction.
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It remains to show (6.3). After applying the rule UI, it remains to show

` t ∧H → A(s UH,C t) (6.4)

` s ∧H → �A(s UH,C t)→ A(s UH,C t) (6.5)

Claim (6.4) follows with (a) and U1. For (6.5), assume s, H and �A(s UH,C t). By
U2, it suffices to show ¬C . This follows with (b). �

For the admissibility proof for the rule RH, we employ the rules and axioms for
A(s R t) in their dualized form.

Lemma 6.2.3

1. ` E(s U t)↔ t ∨ (s ∧♦ E(s U t))
2. If ` t → u and ` s → ♦u→ u, then ` E(s U t)→ u

The structure of the proof then follows that of Lemma 6.2.2.

Lemma 6.2.4 (Admissibility of RH) If ` ¬(C ∧ t) and ` ¬(C ∧ s ∧♦ E(s UH,C t)),
then ` ¬(C ∧ E(s UH t)).

Proof Assume (a) ` ¬(C ∧ t) and (b) ` ¬(C ∧ s ∧ ♦ E(s UH,C t)). We first argue
that it suffices to show

` E(s UH t)→ E(s UH,C t) (6.6)

Assume C and E(s UH t). We obtain ¬t with (a) and therefore s, H, and ♦ E(s UH t)
(Lemma 6.2.3(1)). With (6.6), we also obtain ♦ E(s UH,C t). Together with (b), this
yields the required contradiction.

We now show (6.6). After applying Lemma 6.2.3(2), we need to show:

` t ∧H → E(s UH,C t) (6.7)

` s ∧H → ♦ E(s UH,C t)→ E(s UH,C t) (6.8)

Claim (6.7) follows with (a) and Lemma 6.2.3(1) For (6.8), assume s, H, and
♦ E(s UH,C t). With (b) we also obtain ¬C. Finally, we obtain E(s UH,C t) with
Lemma 6.2.3(1). �

Theorem 6.2.5 ` ¬(C ∧ af(a)) whenever ð C|a.

Proof By induction on ð C|a. The cases for the rules UH and RH follow with the
lemmas above. All other cases are straightforward. �

One immediate consequence is that the soundness result from Section 5.2 trans-
fers to the tableau system in the case of annotation free clauses.

Corollary 6.2.6 If ð C|ε, then C is unsatisfiable.
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Note that the proofs of Lemma 6.2.2 and Lemma 6.2.4 follow the inductive
argument from the proof of Theorem 6.1.3. For a proof at the level of Hilbert
derivations, it is essential that the proof does not mention paths.

Also note that neither the proof of Lemma 6.2.2 nor the proof of Lemma 6.2.4
makes essential use of the fact that H is the associated formula of a history or
that C is the associated formula of a clause. That is, if one replaces s UH t with
(s∧H)U(t∧H) and s UH,C t with (s∧H∧¬C)U(t∧H∧¬C) one can treat H and C
as formulas. The resulting lemmas correspond, up to propositional reasoning, to
the rules ERel and ARel of the Hilbert system LS (cf. Figure 5.8). Hence, we obtain:

Theorem 6.2.7 LS ` s iff IC ` s.

Proof The direction from right to left was established as Theorem 5.8.3. The
direction from left to right follows with the argument above. �

6.3 Completeness of Gentzen System for CTL

We now show that the system GCT is complete for history-free clauses. The
proof works by showing the rules of the refutation calculus from Figure 5.6
admissible for the Gentzen system. This is the place where we profit from the
model construction for relaxed demos (Sections 5.3 and 5.4).

We fix some subformula universe U . We call a clause C Gentzen refutable if
ð C|ε. Further, we call a set of clauses S Gentzen corefutable if every clause in
U \ S is Gentzen refutable.

Lemma 6.3.1 (Admissibility of Support Rule) Let C ⊆ U .

1. ð C|a whenever ð D|a for all D ∈ BU C .

2. ð C|ε whenever S is Gentzen corefutable and S 6. C .

Proof Claim (1) follows by induction on the total size of the non-literal formulas
in C using the rules in the first three rows of Figure 6.3. Claim (2) is an immediate
consequence of Claim (1). �

Lemma 6.3.2 (Admissibility of Jump Rule) Let D ∈ Dem C. Then ð C|a when-
ever ð D|r a.

Proof Follows immediately with the rules X and Xs. �

Note that showing admissibility of the jump rule only requires the case where a
(and hence r a) is ε. The added generality is required to prove admissibility of
the loop rules.
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Lemma 6.3.3 (Admissibility of loop+) Let S ⊆ U be Gentzen corefutable and let
�A(s U t)+ ∈ C ∈ S. Then ð C|ε whenever (S, U), C 63 �A(s U t)+.

Proof We define I := {D ∈ U | (S, U),D 63 �A(s U t)+ }. It suffices to show ð C|ε
for C ∈ I. Since C ∈ I, there exists some clause D ∈ Dem C such that S 6. D, t+
and BU (D, s+) ⊆ I. By Lemma 6.3.2, it suffices to show D|ε. Since A(s U t)+ ∈ D
we can apply the rule U�. It then remains to prove ð D|A(s U� t)+. We prove the
following generalization

∀HD. H ⊆ 2U ∧D ⊆ U ∧ S 6. D, t+ ∧BU (D, s+) ⊆ I → ð D|A(s UH t)+

by induction on the size of 2U \H. Let D and H as in the statement above. We can
assume D ∉ H since otherwise the claim follows with the rule U. After applying
the rule UH, there are two cases:

ð D, t+|ε. Follows with Lemma 6.3.1(2)

ð D, s+|�A(s UH,D t)+. By Lemma 6.3.1(1) it suffices to show ð E|�A(s UH,D t)+

for E ∈ BU (D, s+). By assumption we have E ∈ I. Hence, there exists some
clause F ∈ Dem E such that S 6. F, t+ and BU (F, s+) ⊆ I. The claim then
follows with Lemma 6.3.2 and the induction hypothesis. �

The admissibility proof of the rule loop− follows a similar pattern.

Lemma 6.3.4 (Admissibility of loop−) Let S ⊆ U be Gentzen corefutable and let
�A(s R t)− ∈ C ∈ S. Then ð C|ε whenever (S, U), C 63 �A(s R t)−.

Proof We define I := {D ∈ U | (S, U),D 63 �A(s R t)− }. It suffices to show ð C|ε
for C ∈ I. We can assume that there is no clause D ∈ DemC such that S 6. D since
otherwise we have ð C|ε by Lemma 6.3.2. Hence, S 6.RC, t− and BU(RC, s−) ⊆ I.
After applying the rules X and R�, we need to show ð RC|A(s R� t)−. Similar to
above, we prove the generalization

∀HD. H ⊆ 2U ∧D ⊆ U ∧ S 6. (D, t−)∧BU(D, s−) ⊆ I → ð D|A(s RH t)−

by induction on the size of 2U \H. Let H and D as in the statement above. As
above, we can assume D ∉ H. After applying the rule RH, there are two cases:

ð D, t−|ε. Follows with Lemma 6.3.1(2).

ð D, s−|�A(s RH,D t)−. Let E ∈ BU(D, s−). It suffices to show ð E|�A(s RH,D t)−

(Lemma 6.3.1(1)). Since E ∈ I, we can reason as for C above and obtain
S 6.RE, t− and BU(RE, s−) ⊆ I. The claim then follows with the rule XH and
the induction hypothesis. �

Putting everything together, we obtain (ref refers to the rules in Figure 5.6):

Lemma 6.3.5 ð C|ε whenever refU C .
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6.3 Completeness of Gentzen System for CTL

The admissibility proofs for the loop rules start by setting a focus on the eventual-
ity under consideration and then proceed by induction on the number of clauses
that can still be added to the history. In both cases, the induction establishes that
all clauses from U where the eventuality under consideration is not inductively
fulfilled are refutable. This is slightly more general than needed since we only
need to refute clauses from the corefutable set S. The generalization to U has
the effect that we do not have to rely on the existing refutations for clauses in
U \S. Instead we can continue to build up the history for the eventuality currently
in focus. This is important since in the presence of a focused eventuality the
refutations for clauses in U \ S would be of little use. The reason for this is that a
refutation of C|ε does not necessarily provide a refutation of C|a when a is an
annotated eventuality (consider the case where the derivation of C|ε ends with
one of the focusing rules). The refutation calculus arising with relaxed demos
provides exactly the right invariants for the inductive proofs to go through. Hence,
the notion of relaxed fulfillment allows us to handle the fact that the Gentzen
system does not allow re-focusing, i.e., dropping an annotated eventuality and
focusing on another eventuality.

Theorem 6.3.6 (Informative Completeness) Let C be clause. Then either ð C|ε
or C is satisfied by a finite model.

Proof If C is empty, it is satisfied by any nonempty model. If C is nonempty, so is
sfcC . With Theorem 5.5.4, we either obtain refsfcC C or a finite model satisfying C .
The claim then follows with Lemma 6.3.5. �

Together with soundness, we obtain that GCT derives exactly the unsatisfiable
history-free clauses.

Corollary 6.3.7 ð C|ε iff C is unsatisfiable.

Since the Gentzen system is only complete for history-free clauses, soundness and
completeness only establish decidability of derivability for history-free clauses.
The decidability result for arbitrary annotated clauses can be established using
fixpoint iteration. For this one shows that every annotated clause is contained in a
finite universe of annotated clauses that is closed under backward application of
the rules. Decidability then follows by expressing one-step derivability as a mono-
tone function bounded by the clause universe (cf. Remark 3.6.7). The construction
is fairly technical and the details are spelled out in the formalization [ACF].

Theorem 6.3.8 Derivability of annotated clauses is decidable.

We remark that while the completeness proof given here does not depend on
decidability of derivability, it does rely on the fact that the calculus is analytic.
Analyticity ensures that histories cannot grow indefinitely and provides for the
inductions in the admissibility proofs for the loop rules.
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6.4 Completeness of Gentzen System for K∗

We now return to the completeness proof for the Gentzen system for K∗ (Fig-
ure 6.1). For the rest of this section, we take ð to mean derivability in GK∗. As we
have seen in the previous section, relaxed fulfillment is crucial for the translation
to the Gentzen system to succeed. In order to obtain pruning refutations that can
be translated to derivations in GK∗, we adapt the notion of relaxed fulfillment
(Section 5.3) to K∗.

We fix some subformula universe U for the rest of this section. As before, we
call a set of clauses S ⊆ U Gentzen corefutable if ð C|ε for all clauses C ∈ U \ S.

Let C be a clause. Similar to CTL, we define the demands of C to be the
following set of clauses.

DemC := {RC, s− | �s− ∈ C }

Since models for K∗ may include terminal states, RC is not a demand of C. We
inductively define the relaxed fulfillment relation S, C 3 ��∗s− between sets of
clauses S, clauses C and eventuality literals ��∗s−.

∀E ∈ DemC.S . E
D ∈ S D .RC, s−

S, C 3 ��∗s−

∀E ∈ DemC.S . E
D ∈ U D .RC S,D 3 ��∗s−

S, C 3 ��∗s−

We will show that replacing S, C . ��∗s− with S, C 3 ��∗s− for the purpose
of pruning still yields the canonical demo for U . Moreover, we complement this
relaxed version of pruning with a refutation calculus whose rules are admissible
for GK∗. We define:

pC S := (∀D ∈ DemC.S . C)∧ (∀��∗s− ∈ C.S, C 3 ��∗s−)

Dr := prunepU

The clauses over U that are not supported by Dr can be characterized using a
refutation calculus. The rules of the refutation calculus are given in Figure 6.4. The
only difference between the refutation calculus employed here and the refutation
calculus in Figure 4.2 is the use of S, C 63 ��∗s− in the wloop-rule. Using (the
negation of) relaxed fulfillment for the loop rule yields an a priori weaker rule.
This is exactly what allows us to show the wloop-rule admissible for the Gentzen
system.

Lemma 6.4.1

1. wcorefDr .
2. wrefC whenever C ⊆ U and Dr 6. C .
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6.4 Completeness of Gentzen System for K∗

C ⊆ U S 6. C wcorefS
wrefC

supp
�s− ∈ C wref(RC, s−)

wrefC
jump

��∗s− ∈ C ∈ S ⊆ U S, C 63 ��∗s− wcorefS
wrefC

wloop

wcorefS := ∀C ∈ U \ S.wrefC

Figure 6.4: Refutation calculus for relaxed pruning

Lemma 6.4.2 Let C be a clause. Then ð C|ε whenever C ⊆ U and wrefC .

Proof The reasoning for the support rule and the jump rule is essentially the
same as for GCT. In particular, we have an analog to Lemma 6.3.1:

∀C ⊆ U.(∀D. ∈ BU C → ð D|a)→ ð C|a (6.9)

∀S∀C ⊆ U. wcorefS → S 6. C → ð C|ε (6.10)

For the wloop-rule, let S ⊆ U and let ��∗s− ∈ C ∈ S such that wcorefS and
S, C 63 ��∗s−. We show ð C|ε. Since ��∗s− ∈ C, we can apply the foc-rule. It
then suffices to show

∀H ⊆ 2U∀C ∈ U. S, C 63 ��∗s− → ð C|��∗Hs−

by induction on the size of 2U \ H. Let H ⊆ 2U and C ∈ U and assume S, C 63
��∗s−. We consider two cases:

Case 1. S 6. D for some D ∈ ReqC. After applying the X-rule, it suffices to show
ð D|ε. This follows with (6.10).

Case 2. Otherwise, we have

S 6.RC, s− (6.11)

∀D ∈ U.D .RC → S,D 63 ��∗s− (6.12)

After applying the XH-rule it suffices to show ð RC|�∗Hs−. Without loss of
generality RC ∉ H. Applying the G−H-rule leaves us with two claims. The
first claim, ð RC, s−|ε, follows with (6.10) and (6.11). It remains to prove
ð RC|��∗H,RCs−. By (6.9) it suffices to show ð D|��∗H,RCs− for D ∈ BU(RC).
This follows with (6.12) and the induction hypothesis. �

Remark 6.4.3 In the proofs of Lemma 6.3.3 and Lemma 6.3.4 the non-fulfillment
assumption needs to be inverted twice, once during the induction and once before
starting the inductive part. This is required due to a slight mismatch between the
refutation calculus, which works with eventuality literals, and the Gentzen system
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6 History-Based Gentzen Systems

where a focus can only be set on a non-literal eventuality. For K∗, we avoided this
duplication by using a focusing rule for eventuality literals (cf. Section 6.1). For
CTL, we choose to stay closer to the system CT [BL08].

We have established that GK∗ can refute all clauses over U that are not
supported by Dr (Lemmas 6.4.1(2) and 6.4.2). In order to prove completeness for
GK∗, it remains to show that all clauses supported by Dr are satisfiable. For this,
we show that Dr can be extended to a demo over U . Note that Dr is corefutable
(Lemma 6.4.1(1)) and, by soundness of GK∗, must contain all satisfiable clauses
from U . Hence, the extension cannot add satisfiable clauses to Dr . It is merely a
technical device to show that Dr contains only satisfiable clauses. We define

E := {C ∈ U | ∀D ∈ DemC.Dr . D }

We show that Dr ∪E is a demo according to Definition 4.3.1.

Lemma 6.4.4 Let �s− ∈ C ∈ Dr ∪E. Then Dr .RC, s−.

Proof We clearly have RC, s− ∈ Dem C. If C ∈ Dr , the claim follows with the
correctness of pruning (Lemma 3.4.3). Otherwise the claim is trivial. �

Note that the lemma above is stronger than the demo property for �s− which
only requires Dr ∪E .RC, s−. The stronger lemma is needed to establish the
demo condition for eventuality literals.

Lemma 6.4.5 Let ��∗s− ∈ C ∈ Dr . Then Dr ∪E, C . ��∗s−.

Proof We haveDr , C 3 ��∗s− since C ∈ Dr (Lemma 3.4.3). We proceed to prove
Dr ∪E, C . ��∗s− by induction on Dr , C 3 ��∗s−.

Case 1. We have D .RC, s− for some D ∈ Dr . Hence, Dr ∪E, C . ��∗s−.

Case 2. By induction hypothesis, there exists some clause D ∈ U such that
D . RC and both Dr ,D 3 ��∗s− and Dr ∪ E,D . ��∗s−. Inversion on
Dr ,D 3 ��∗s− yields D ∈ E and therefore Dr ∪E, C . ��∗s− as required. �

Lemma 6.4.6 Let ��∗s− ∈ C ∈ E. Then Dr ∪E, C . ��∗s−.

Proof By Lemma 6.4.4, there exists some clause D ∈ Dr such that D .RC,�∗s−.
Hence, either D . s− and the claim follows immediately with definition of fulfill-
ment or ��∗s− ∈ D and the claim follows with Lemma 6.4.5. �

Lemma 6.4.7 Dr ∪E is a demo.

Proof Immediate with the lemmas above. �

Together with the demo properties from Chapter 4, we obtain completeness of
GK∗ for history-free clauses.
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Theorem 6.4.8 Let C be a clause. Then either ð C|ε or C finitely satisfiable.

Proof Let U := sfcC. If Dr . C, then C is finitely satisfiable (Lemma 6.4.7 and
Lemma 4.3.2). Otherwise, we have ð C|ε by Lemma 6.4.1(2) and Lemma 6.4.2. �

Corollary 6.4.9 ð C|ε iff C is unsatisfiable.

Proof Follows with Theorem 6.1.3 and Corollary 4.5.10. �

Fact 6.4.10 Dr = D(U).

Proof Follows since bothDr andD(U) (Section 4.4) contain exactly the satisfiable
clauses from U . �

The demo construction above is inspired by the model construction for the
relaxed demos for CTL (cf. Chapter 5). The key insight is that one does not need
to know a priori that the inductive fulfillment holds for every eventuality at every
state. It suffices if from every state with an eventuality one can reach a state
where this eventuality is fulfilled. This is possible since eventualities “propagate”
to successor states until they are fulfilled. For CTL, this is used to fulfill universal
eventualities (i.e., “always until” formulas) one after the other. In the proof of
Lemma 6.4.6 we need a single extra transition to get from E back to Dr .

6.5 Remarks

Our completeness proof for the Gentzen system for CTL differs considerably from
the corresponding completeness proof given by Brünnler and Lange [BL08]. Their
proof works by constructing models from unsuccessful derivations of a more
restrictive sequent calculus called CT’. The calculus CT’ is designed such that
backward derivations are finite. This requires a rule whose applicability is only de-
fined for backward proof search. Further, derivations in CT’ carry along a rotating
list of eventualities to ensure that during unsuccessful backward derivations every
eventuality is focused at some point. This ensures that, after being collapsed
to Hintikka sets, maximal unsuccessful derivations exhibit a structure similar
to the model constructed in Section 5.4. More precisely, the model constructed
in [BL08] roughly corresponds to a “top-down” construction of a model where
one obtains neither sharing within fragments nor sharing of fragments. While
the model constructed this way is finite, it may be exponentially larger than the
fragment-based construction underlying our proofs. Our development for CTL
is designed such that we obtain the small-model property and the completeness
of the Hilbert system and the Gentzen system with a single model construction.
With the results from Chapter 5 in place, soundness and completeness of the
Gentzen system can be formalized in about 150 lines each. Compared to the
effort for the model construction, this is almost for free.
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In preliminary work [DS14], we employed a direct construction of fragments
for annotated clauses that are not Gentzen derivable. The construction relies on
the closure properties of underivable clauses and, similar to the proof in [BL08],
uses the fact that histories cannot grow indefinitely to ensure termination. The
“top-down” construction of fragments introduces sharing of fragments but no
sharing within fragments. Consequently, the construction also does not provide a
reasonable small-model property as corollary.

We prove soundness for GCT by showing the individual rules admissible for
the Hilbert system IC. This is possible since CTL can express the until operator
underlying the semantics of histories. Together with completeness of the Gentzen
system, this yields an alternative completeness proof for the Hilbert system.
That is, for CTL the Gentzen system can serve as decision method underlying a
constructive completeness proof for the Hilbert system. This approach was taken
in [DS14].

For K∗, the situation is different. The Hilbert system for K∗ cannot express the
until operator [EH85, Theorem 8.3] and therefore cannot express the semantics of
histories. Consequently, the Gentzen system for K∗ cannot be used as underlying
decision method to prove completeness of the Hilbert system. Pruning, on the
other hand, is flexible enough to underpin constructive completeness proofs for
Gentzen and Hilbert systems for K, K∗, and CTL.

Kashima [Kas10] gives an alternative completeness proof for a Hilbert system
for K∗. Similar to the arguments in [BL08] and [GHL+07], the proof exploits that
every satisfiable eventuality can be fulfilled using a cycle-free path of bounded
length. Since K∗ cannot enforce cycle-freeness using histories, this requires an
explicit enumeration of all possible paths. The proof is arguably not as simple as
the one given in Chapter 4.
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7 Overview of the Formalization in Coq

All results in this thesis have been formalized in the proof assistant Coq [Coq15]
using the Ssreflect [GMT08] extension. Altogether, the formalization accompany-
ing this thesis [ACF] consists of about 6800 lines split about half and half between
specifications (e.g., definitions and lemma statements) and proofs. The relatively
small size of the formal development is achieved through careful engineering. In
particular, we build reusable components whenever possible.

The mathematical development in the previous chapters makes extensive use
of finite sets (e.g., clauses, demos, and histories). Further, the completeness
proofs for the Hilbert systems require the construction of a fair amount of Hilbert
derivations. Both issues are handled informally in the mathematical presentation,
but require a certain amount of engineering before one can do proofs in Coq at a
level that is close to the mathematical presentation.

In this chapter we describe the finite set library and the infrastructure for
the generation of Hilbert proofs underlying our development. We conclude the
chapter by outlining the structure of the formal development and by describing
how the formalization effort distributes over the different parts of this thesis.

7.1 Finite Set Library

For our development we make extensive use of typed finite sets over countable
types. Recall that for our purposes finite sets are data types. In particular, we
are only interested in the case where the elements are “data” (e.g., formulas or
finite sets of formulas). We use finite sets to implement decision procedures
such as pruning (Section 3.4.2) or to show decidability of inductive definitions
using fixpoint iteration (cf. Lemma 4.4.2). These decision procedures serve as the
basis for our constructive proofs. Since we are not interested in executing these
procedures on concrete instances, we implement finite sets and their operations
without regard for computational costs.

7.1.1 Quotient Construction

Let T be a countable type. We realize the type setT of finite sets over T as a
constructive quotient on the type of lists over T . That is, every finite set over is T
represented using some canonical duplicate free list with the same elements. The
construction makes use of the choice operator for countable types.
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Let p,q : T → B be decidable predicates. Using the function xchooseT (Sec-
tion 2.4) one can define a function chooseT : (T → B) → T → T satisfying the
following properties:

px → p(chooseT px) (7.1)

(∀x.p x = qx)→ px → py → chooseT px = chooseT qy (7.2)

That is, if x satisfies p, then the result of chooseT px also satisfies p and depends
neither on x nor on any intensional properties of p. Hence, if e : T → T → B is a
decidable equivalence relation and x : T , then chooseT (ex)x yields some canoni-
cal representative for the equivalence class containing x. Now let uniq : listT → B
be a predicate that checks that a list does not contain duplicates and let
perm : listT → listT → B be a binary predicate that checks whether one list
is a permutation of the other.1 The type setT is then defined as:

setT := Σl : listT . uniq l∧ l = chooselistT (perm l) l

Here, we exploit that since T is countable, the type listT is countable as well. Set
membership is defined as membership in the list representing the set. The type
setT is extensional in the sense that for X,Y : setT we have:

(∀x.x ∈ X ↔ x ∈ Y)↔ X = Y

Extensionality ensures that set membership on all levels (sets, sets of sets, etc.) is
just membership in the list representing the set. Moreover, it simplifies proofs
since one never has to show that a function respects set equivalence.

The proof of extensionality relies on two facts. First, for every finite collection
of elements, there is exactly one duplicate-free list l with the same elements
satisfying l = chooselistT (perm l) l. Moreover, uniq l ∧ l = chooselistT (perm l) l
is a decidable property and can be represented such that it is proof irrelevant,
i.e., has at most one proof. Hence, there is exactly one object of type setT
representing a given collection of elements.

We define the cardinality of a set to be the length of the list representing the
set. This is correct since we only allow duplicate-free representatives.

Remark 7.1.1 While Ssreflect provides a generic quotient construction for de-
cidable equivalence relations [Coh13], we construct the quotient manually. This
allows us to restrict to duplicate-free representatives.

It is straightforward to define functions set_of : listT → setT and elements :
setT → listT that preserve elements. Hence, subset and operations like union,
separation {x ∈ X | px }, replacement {fx | x ∈ X } and powerset 2A can be
obtained by lifting the corresponding predicates and operations on lists. Moreover,
we instantiate Ssreflect’s big-operator library [BGBP08] which provides indexed
unions

⋃
x∈X fx. Altogether, the finite set library includes about 170 lemmas.

1 The functions chooseT , uniq and perm are all part of the Ssreflect libraries.
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7.2 Modular Library for Hilbert Derivations

7.1.2 Related Libraries

There are a number of libraries for Coq that provide finite sets in one form
or the other. The standard library for Coq features two implementations of
finite sets (FSet and the more recent MSet). These libraries are designed for
the extraction of executable programs and therefore do not use an extensional
representation. Moreover, Fset and MSet are implemented as functors and need to
be instantiated separately for every type which is cumbersome. There is also an
MSet-like library implemented using type classes [Les11], which avoids the need
for manual instantiation but also does not employ an extensional representation.

The Mathematical Components Library [GMR+07, GGMR09] distributed with
Ssreflect [GMT08] provides extensional finite sets, but only over finite base types.
Regarding the case of finite sets over countable base types, there is a small “proof
of concept” library developed by Strub [Str14]. Moreover, there is a draft library
by Cohen [Coh15] incorporating many of the ideas of the library developed for
this thesis.

Remark 7.1.2 Many of the results presented in this thesis could also be obtained
using Ssreflect’s finite sets over finite types. When working with finite base types,
pruning, demos, and Gentzen systems need to be defined relative to some “input”
formula. This approach was taken in some of our preliminary work [DS11, DS12].
While relative definitions are fairly natural for pruning and demos, indexed
collections of Gentzen systems appear ad-hoc. The main problem when working
with a finite type of subformulas, however, is the fact that elements of this type
are dependent pairs of formulas and proofs of membership in the subformula
universe. These proof terms also appear in lemma statements. Consequently,
side conditions regarding membership in the subformula universe may need to
be established while stating lemmas. While this is doable, it is cumbersome and
leads to cluttered lemma statements.

7.2 Modular Library for Hilbert Derivations

In order to formalize the completeness results for the Hilbert systems presented
in this thesis, we need to construct a fair amount of derivations in a number of
different Hilbert systems. Given that Hilbert systems are fairly low-level, this
requires some engineering. The problem of constructing Hilbert derivations is
in many respects similar to the construction of proof terms. We use Coq’s tactic
language to provide goal management, rewriting, and assumption management
for the construction of Hilbert derivations. Moreover, we develop a modular
library of Hilbert systems for propositional logic, basic modal logic and temporal
logics that allows seamless reuse of facts established for subsystems.
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7.2.1 Rewriting

We use setoid rewriting [Soz09] to rewrite with provable equivalences (e.g., De
Morgan laws) inside formulas. While rewriting with equivalences is convenient,
it is often too restrictive for our purposes because several important lemmas
(e.g., Lemma 3.5.4(3)) are implications. Therefore, we also use setoid rewriting to
rewrite with provable implications using compatibility rules such as

` s′ → s ` t → t′

` (s → t)→ (s′ → t′)
C→

` s → s′ ` t → t′

` s ∧ t → s′ ∧ t′
C∧

` s → s′

` �s → �s′
C�

Setoid rewriting helps significantly in obtaining shorter and more linear proof
scripts. For example, assume we know ` t → t′. This allows reducing the claim
` s ∧ t → u to ` s ∧ t′ → u with a single setoid rewrite. Performing the same
reduction manually requires a non-linear derivation:

` s → s
Id ` t → t′

` s ∧ t → s ∧ t′
C∧ ` s ∧ t′ → u

` s ∧ t → u
Trans

The linearization achieved with setoid rewriting leads to proof scripts that are
easier to follow when interactively stepping through the proofs. Moreover, mul-
tiple rewrites can be chained together allowing for larger and more meaningful
proof steps.

7.2.2 Assumption Management

In addition to rewriting, we use big conjunctions [BGBP08] to provide for an
ND-style assumption management. Let A be a list of formulas. We abbreviate∧
s∈A s as

∧
A and define an entailment relation as follows:

A ` s := `
∧
A→ s

For the entailment relation, we use the derived rules shown in Figure 7.1. The
rules in the upper row are realized with lemmas, whereas the rules in the lower
row are realized as tactics using the Ltac [Coq15] tactic language. Besides the
fact that the rules App and AppH are difficult to state as lemmas, applying the
rules would be cumbersome. With Ltac we can use Coq’s unification mechanism
to find instances where n is minimal. The rule AppH is used to apply previously
established facts, and we use unification to instantiate universally quantified
variables in the leftmost premise. Using these derived rules we define a collection
of tactics corresponding to the Coq tactics intro, apply, and assert.

The infrastructure for assumption management is used extensively to establish
basic (e.g., propositional) facts. For the more high-level proofs, setoid rewriting is
often the main source of automation.
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s ∈ A
A ` s

Asm
A, s ` t
A ` s → t

Intro
A ` t A, t ` s

A ` s
Cut

s,A ` t
A, s ` t

Rot

A ` s1 . . . A ` sn
A, s1 → . . .→ sn → t ` t

App
` s1 → . . .→ sn → t A ` s1 . . . A ` sn

A ` t
AppH

Figure 7.1: Assumption management

We remark that in order to establish the lemmas underlying the rules in
Figure 7.1, we need to prove about a handful of simple propositional facts without
infrastructure support. These facts have simple proofs in the form of λ-terms. We
use a simple Haskell script to translate these lambda terms first to SK-combinator
terms and then to proof scripts.

7.2.3 Modular Hierarchy

The rules for assumption management shown in Figure 7.1 are not specific to
a particular Hilbert system. The construction works for all Hilbert systems
extending classical propositional logic.

Let F be some type of formulas. We call a predicate ` : F → Prop a P-system
if it can prove all theorems of classical propositional logic, i.e., if it satisfies the
following conditions:

P1. There exist formulas ⊥ : F and → : F → F → F .

P2. If ` s → t and ` s, then ` t.
P3. ` s → t → s
P4. ` ((u→ s → t)→ (u→ s)→ u→ t)
P5. ` ((s → ⊥)→ ⊥)→ s

The rules in Figure 7.1 are available for every P-system.
In addition to P-systems, we also define K-systems to be P-systems that feature

a �-operator and can prove N and Nec (Figure 3.1). All Hilbert systems considered
in this thesis are K-systems. Hence, we can reuse the facts established for the
Hilbert system for K also for our developments for modal logic with transitive
closure (Chapter 4) and CTL (Chapter 5).

Technically, the modular hierarchy is realized using canonical structures. P-
systems are realized as records comprised of a type of formulas, a predicate on
formulas (i.e., the Hilbert system) and the conditions mentioned above:2

pSystem := {form :> countType; ` : form→ Prop; . . .}

2 The actual implementation also distinguishes between propositional and minimal logic.
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The definition abstracts both form the concrete Hilbert system and from the
type of formulas. This is important since we are considering different types of
formulas, each with multiple Hilbert systems. The notation :> turns form into a
coercion from pSystem to the underlying countable type of formulas. This allows
stating generic lemmas like

∀(s t : pSystem). ` (¬t → ¬s)→ s → t

These lemmas then apply to every type of formulas and every Hilbert system for
which a corresponding pSystem record has been constructed.

The record for K-systems is defined as follows.

kSystem := {pform :> pSystem; � : pform→ pform; Nec s : ` s → ` �s; . . .}

The coercion to pSystem is required to state the type of Nec which involves
the provability relation (i.e., `) from the underlying pSystem record. Moreover,
the coercion ensures that propositional reasoning is available when reasoning
abstractly about K-systems.

We also define abstract K∗-systems and CTL-systems based on the Hilbert
systems K∗ (Figure 4.1) and IC (Figure 5.1). Both extend extend K-systems in the
same manner as K-Systems extend P-systems. The style of defining substructures
by including a record for the superstructure and coercing to it is sometimes
referred to as telescoping [GGMR09]. Telescoping is simple to implement but
may cause performance problems for deeply nested structures. In our case, the
hierarchy is only four levels deep, so telescoping is sufficient.

We establish most of the basic facts needed for our completeness and trans-
lation results for abstract systems. Altogether the library for Hilbert systems
contains more than 100 lemmas. We remark that, since we do not consider ex-
tensions of CTL and K∗, abstracting over their axiomatizations does not provide
any immediate benefits. However, both logics have natural extensions in the
literature: the axiomatization of K∗ can be extended to an axiomatization of
UB [BAPM83] and the axiomatization CTL can be extended to an axiomatization
of ECTL [Kas14].

7.3 Structure of the Formalization

Altogether the formal development [ACF] consists of about 6800 lines of code.
This includes the three developments on K (800 lines), K∗ (1200 lines), and CTL
(2900 lines) as well as shared libraries totaling about 1800 lines (e.g., finite sets
and infrastructure for Hilbert proofs). The formal proof of Theorem 5.5.4 (i.e., the
shared part of the completeness proofs for the Hilbert system and the Gentzen
system for CTL) needs about 800 lines with the construction of models from
relaxed demos requiring most of the effort (670 lines). This is significantly more
than the formalization effort required for the translation to Hilbert refutations
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(230 lines, not counting the library for Hilbert proofs) and Gentzen derivations
(150 lines).

The structure of the formal development differs significantly from the struc-
ture of the mathematical development presented in the preceding chapters. While
the mathematical development necessarily follows a linear structure, the formal-
ization consists of a collection of modules with a non-linear dependency structure.
The correspondence between the individual sections of this thesis and the mod-
ules of the formalization is given in Figure 7.2. The table also lists the number of
lines of specification (e.g., definitions and lemma statements) and proof script3

for each module in order to give some indication of the formalization effort for
the various parts of the development.

The dependencies between the individual modules of the development are
given in Figure 7.3. For each logic, we include a module named “results” where we
restate the main results for that logic. The fine-grained structure, in particular for
the development on CTL serves two purposes. It helps visualizing the dependency
structure between the individual parts of the development. Moreover, it allows
for faster proof checking on multi-core machines since the current version of Coq
(i.e, version 8.4) uses at most one CPU core to check a given module. The checking
time is mainly relevant for the construction of Hilbert proofs. The combination
of setoid rewriting and the modular library for Hilbert facts leads to proofs that
take significantly longer to check than the remaining parts of the development.

3 Generated with coqwc and corrected for the known issue of counting proofs starting with “Proof
with” as specification. The total includes some small unlisted files.

99



7 Overview of the Formalization in Coq

Fo
ld

er
File(s)

C
o
n

ten
t

Sectio
n

(s)
Sp

ec.
P
ro

o
f

lib
s

ed
o
n

e,b
case,b

ase
b

asic
in

frastru
ctu

re
N

/A
1
3
3

1
4
3

fset
fi

n
ite

set
lib

rary
7
.1

4
1
6

3
8
4

m
o
d

u
lar_h

ilb
ert

lib
rary

fo
r

H
ilb

ert
p

ro
o
fs

7
.2

3
4
0

2
3
2

K
K

_d
ef

fo
rm

u
las,m

o
d

els,H
ilb

ert
system

,so
u

n
d

n
ess

3
.1

,3
.2

2
0
3

1
1
3

d
em

o
d

em
o
s,m

o
d

el
existen

ce,p
ru

n
in

g
3
.3

,3
.4

5
3

4
4

h
ilb

ert_ref
co

m
p

leten
ess

o
f

H
ilb

ert
system

3
.5

7
3

6
8

g
en

tz
en

so
u

n
d

n
ess

an
d

co
m

p
leten

ess
o
f

G
en

tz
en

system
3
.6

5
2

5
5

u
n

iversal_m
o
d

el
co

n
stru

ctio
n

o
f

u
n

iversal
m

o
d

el
3
.7

6
0

7
2

K
star

K
star_d

ef
fo

rm
u

las,m
o
d

els,H
ilb

ert
system

,so
u

n
d

n
ess

4
.1

,4
.2

,4
.6

2
6
3

1
7
9

d
em

o
d

em
o
s,m

o
d

el
existen

ce,p
ru

n
in

g
4
.3

,4
.4

7
4

8
9

h
ilb

ert_ref
co

m
p

leten
ess

o
f

H
ilb

ert
system

4
.5

6
4

9
0

g
en

_d
ef

G
en

tz
en

system
an

d
so

u
n

d
n

ess
6
.1

8
7

5
9

g
en

_ref
relaxed

p
ru

n
in

g
,co

m
p

leten
ess

o
f

G
en

tz
en

system
6
.4

9
2

1
7
0

C
T

L
C

LT
_d

ef
fo

rm
u

las,m
o
d

els
5
.1

3
0
7

2
0
6

h
ilb

ert
h

ilb
ert

system
IC

,so
u

n
d

n
ess

5
.2

3
4

2
0

d
ag

s,d
em

o
frag

m
en

t-b
ased

m
o
d

el
co

n
stru

ctio
n

5
.3

,5
.4

2
6
6

4
1
5

relaxed
_p

ru
n

in
g

p
ru

n
in

g
an

d
refu

tatio
n

calcu
lu

s
fo

r
relaxed

d
em

o
s

5
.5

5
4

7
2

h
ilb

ert_ref
p

ru
n

in
g

refu
tatio

n
s

to
H

ilb
ert

refu
tatio

n
s

5
.6

7
4

1
5
4

ag
reem

en
t

A
g
reem

en
t

b
etw

een
in

d
u

ctive
an

d
p

ath
sem

an
tics

5
.9

9
0

2
2
7

h
ilb

ert_Em
e9

0
,h

ilb
ert_LS

h
ilb

ert
system

s
fro

m
[Em

e9
0
]

an
d

[LS0
1
]

5
.8

1
4
4

1
4
7

g
en

_d
ef

d
efi

n
itio

n
o
f

G
en

tz
en

system
fo

r
C

T
L

6
.2

7
9

2
h

ilb
ert_h

ist,g
en

_h
so

u
n

d
H

ilb
ert

so
u

n
d

n
ess

fo
r

G
en

tz
en

system
6
.2

4
1

1
0
7

g
en

_ref
p

ru
n

in
g

refu
tatio

n
s

to
G

en
tz

en
d

erivatio
n

s
6
.3

4
3

1
1
9

g
en

_d
ec

d
ecid

ab
ility

o
f

G
en

tz
en

d
erivab

ility
6
.3

1
0
9

1
7
4

T
o
tal:

3
3
4
9

3
4
2
3

Fig
u

re
7

.2
:

M
o
d

u
les

o
f

th
e

fo
rm

aliz
atio

n

100



7.3 Structure of the Formalization

d
em

o

u
n

iversal_m
o
d

el

resu
lts

g
en

tz
en

K
_d

ef h
ilb

ert_ref

d
em

o
g
en

_d
ef

K
star_d

ef

resu
lts

g
en

_ref

h
ilb

ert_ref

d
em

o

h
ilb

ert_LS
g
en

_d
ec

h
ilb

ert_h
ist

d
ag

s
C

T
L_d

ef

resu
lts

ag
reem

en
t

relaxed
_p

ru
n

in
g

g
en

_h
so

u
n

d
g
en

_ref

g
en

_d
ef

h
ilb

ert

h
ilb

ert_Em
e9

0

h
ilb

ert_ref

Fig
u

re
7

.3
:

Stru
ctu

re
o
f

th
e

d
evelo

p
m

en
ts

o
n

K
,K
∗

,an
d

C
T

L

101





8 Conclusion

In this thesis we have given formal and constructive proofs of metatheoretic prop-
erties of CTL and subsystems. In this chapter we review the main contributions
of this thesis and mention some possibilities for future research.

8.1 Summary of Results

We have seen that a number of interesting metatheoretic results for classical
modal and temporal logics can be established completely constructively. We have
given formal and constructive soundness and completeness proofs for Hilbert
and Gentzen systems with respect to a class of models we call classical models.
For CTL, the class of classical models was based on an inductive interpretation of
the path modalities allowing us to avoid reasoning about infinite paths.

Our completeness results were established as informative decision methods
constructing for a given formula either a finite model or a refutation in some
inference system. The central notions underlying our completeness results were
demos and pruning. Demos were designed such that all clauses of a demo can be
jointly satisfied by a finite model. We used pruning to partition the clauses over
a given subformula universe into clauses supported by the canonical demo and
pruning refutable clauses. We then obtained completeness of Hilbert and Gentzen
systems by translating pruning refutations to derivations in the respective system.

For our demos, we employed inductive fulfillment relations to handle eventuali-
ties. This allowed for a uniform treatment of the eventualities of K∗ and CTL. In
the case of CTL, the fulfillment relations replace the test for embedded fragments
employed by Emerson and Halpern [EH85, Eme90]. For us, inductive fulfillment
provided a better compromise between the complexity of the model construction
and the construction of Hilbert refutations. We have shown that non-fulfillment
has the inversion properties required for the translation to Hilbert refutations.
For the construction of fragments from inductive fulfillment we have given a
simple bottom-up construction.

For the translation of pruning refutations to Gentzen derivations the precise
formulation of the pruning rules turned out to be crucial. In order to obtain prun-
ing refutations that can be translated to derivations in the history-based Gentzen
system for CTL [BL08], we introduced the notion of relaxed demo. The pruning
rules arising with relaxed demos allowed us to handle the nondeterminism arising
with the focusing rules of the Gentzen system. Consequently, we obtained the
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small-model theorem for CTL as well as completeness of Hilbert and Gentzen
system with a single model construction.

Relaxed fulfillment for CTL can be seen as arising naturally from a close inspec-
tion of the fragment-based model construction given by Emerson [Eme90]. The
development of relaxed fulfillment happened in two stages. In [DS14] we proved
completeness of the Hilbert system for CTL by translating Gentzen derivations
to Hilbert refutations and by giving a direct construction of fragments for the
collection of (Gentzen-) underivable clauses over a given subformula universe.
This required a relaxation of the fragment conditions in order to handle clauses
with histories. The direct construction of fragments from underivable clauses
turned out to be difficult to formalize. One of our reviewers described the proof
as a “formal verification tour de force”. For the following invited journal ver-
sion [DS15], we focused on the completeness result for the Hilbert system and on
the small-model property (which was not treated in the conference paper). For
this, we employed a pruning system based on inductive fulfillment as the decision
method underlying the completeness result. Combining the relaxed fragment
conditions employed in [DS14] with the inductive fulfillment relations introduced
in [DS15] yields relaxed demos.

We have formalized all our results in the proof assistant Coq using the Ssreflect
extension. Altogether the formalization consists of roughly 6800 lines. We believe
that, at least for someone familiar with Coq, the formalization is accessible
enough to provide additional insights into the proofs presented in this thesis. In
fact, one of the reviewers for [DS15] remarked that she was “impressed by the
quality of the formalization”. For the formalization, we profit greatly from the
Ssreflect [GMT08] tactic language and from the libraries distributed with Ssreflect.

In retrospect, coming up with proofs that lead to an elegant and concise
formalization was far more challenging than the subsequent work of carrying out
the formalization. This is particularly true for the completeness proof for the
Gentzen system for CTL. The translation from pruning refutations to Gentzen
derivations takes a mere 150 lines to formalize. Everything else required to show
completeness of the Gentzen system is shared with the completeness proof for
the Hilbert system.

8.2 Future Work

The results presented in this thesis can be extended in a number of different
directions. We briefly mention some directions we deem particularly interesting.

One possible direction would be to extend our results for K∗ to PDL [FL79,
Pra79]. K∗ can be seen as a fragment of PDL where a and a∗ (for some primi-
tive program a) are the only programs. Adding the full language of programs
significantly complicates the definition of subformula universes and the support
relation. While the alpha-beta decomposition of formulas given by Fischer and
Ladner [FL79] stays within a finite subformula universe, a naive recursive defini-
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tion does not terminate (cf. [AGW09, Wid10, Kam12]). Hence, for PDL it may be
easier to work with Hintikka sets rather than the recursive definition of support
employed in this thesis. Alternatively, a terminating decomposition for PDL can be
found in [Kam12]. Either approach should provide for constructive completeness
proofs for Hilbert systems (e.g, the Hilbert system given by Segerberg [Seg77]).
As suggested by Brünnler and Lange [BL08], it should also be possible to give a
history-based Gentzen system for PDL.

Another interesting direction might be the extension of our results to hybrid
logics. In the presence of nominals, using pruning as the basis for constructive
completeness proofs becomes problematic. In earlier work [DS11], we have
given a formal and constructive proof of decidability for H∗ (i.e., K∗ extended
with nominals) based on pruning. The proof follows [KSS11] and establishes
nominal consistency through a guessing stage prior to pruning. While pruning
is incremental enough to construct refutations for clauses as they are removed,
it appears unlikely that the guessing stage can be used to construct refutations.
Therefore, incremental methods, such as the methods described in [Kam12],
appear more promising as a means of obtaining constructive completeness proofs
for hybrid logics.

More ambitious projects would be to obtain formal completeness proofs for
the axiomatizations of the propositional µ-calculus [Koz83] or CTL∗ [EH86]. Both
logics are decidable and have the small-model property. Consequently, both
should be amenable to a constructive treatment. For the µ-calculus, a simple
axiomatization was suggested in the original work [Koz83]. However, it took over
a decade before completeness of this axiomatization was established [Wal95] and
the proof is fairly involved. A simpler, but still involved, proof is suggested by
Tamura [Tam14]. For CTL∗, Reynolds gives a complete axiomatization [Rey01]
and tableau-based decision methods [Rey11]. The axiomatization of CTL∗ is
nonstandard in that it includes a rule that quantifies over sets of atomic proposi-
tions. As for the µ-calculus, the completeness proofs are fairly involved. A first
step towards obtaining formal completeness proofs for either the µ-calculus or
CTL∗ could be to obtain a formal completeness proof for ECTL [Kas14] (called
B(F,X,U, F∞,∧,¬) in [EH86]). ECTL has a fairly standard axiomatization and the
completeness proof [Kas14] is relatively simple even though the embedding of
ECTL in the µ-calculus involves nested alternating fixpoints [EL86].

Satisfiability of CTL∗ can also been characterized using games [FLL13]. These
games are similar to the focus-games [LS01] for CTL. Given that focus-games
for CTL can be used to “extract” [LS01] a complete Hilbert system, it might be
worthwhile to investigate whether a simpler axiomatization for CTL∗ can be
derived from the games for CTL∗.

Beyond completeness and decidability, it would also be interesting to obtain
formal proofs for some of the complexity results for modal and temporal logics.
For this, one would need a formal model of computation that allows both program-
ming and reasoning about programs with reasonable effort. One promising can-
didate for such a model is the weak call-by-value lambda calculus [LM08, For14].
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