2,766 research outputs found

    Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. I. Convergence to the optimal entropy solution

    Get PDF
    We consider an immiscible two-phase flow in a heterogeneous one-dimensional porous medium. We suppose particularly that the capillary pressure field is discontinuous with respect to the space variable. The dependence of the capillary pressure with respect to the oil saturation is supposed to be weak, at least for saturations which are not too close to 0 or 1. We study the asymptotic behavior when the capillary pressure tends to a function which does not depend on the saturation. In this paper, we show that if the capillary forces at the spacial discontinuities are oriented in the same direction that the gravity forces, or if the two phases move in the same direction, then the saturation profile with capillary diffusion converges toward the unique optimal entropy solution to the hyperbolic scalar conservation law with discontinuous flux functions

    A phase-by-phase upstream scheme that converges to the vanishing capillarity solution for countercurrent two-phase flow in two-rocks media

    Get PDF
    International audienceWe discuss the convergence of the upstream phase-by-phase scheme (or upstream mobility scheme) towards the vanishing capillarity solution for immiscible incompressible two-phase flows in porous media made of several rock types. Troubles in the convergence where recently pointed out in [S. Mishra & J. Jaffré, Comput. Geosci., 2010] and [S. Tveit & I. Aavatsmark, Comput. Geosci, 2012]. In this paper, we clarify the notion of vanishing capillarity solution, stressing the fact that the physically relevant notion of solution differs from the one inferred from the results of [E. F. Kaasschieter, Comput. Geosci., 1999]. In particular, we point out that the vanishing capillarity solution de- pends on the formally neglected capillary pressure curves, as it was recently proven in by the authors [B. Andreianov & C. Canc'es, Comput. Geosci., 2013]. Then, we propose a numerical procedure based on the hybridization of the interfaces that converges towards the vanishing capillarity solution. Numerical illustrations are provided

    Mini-Workshop: Numerical Upscaling for Flow Problems: Theory and Applications

    Get PDF
    The objective of this workshop was to bring together researchers working in multiscale simulations with emphasis on multigrid methods and multiscale finite element methods, aiming at chieving of better understanding and synergy between these methods. The goal of multiscale finite element methods, as upscaling methods, is to compute coarse scale solutions of the underlying equations as accurately as possible. On the other hand, multigrid methods attempt to solve fine-scale equations rapidly using a hierarchy of coarse spaces. Multigrid methods need “good” coarse scale spaces for their efficiency. The discussions of this workshop partly focused on approximation properties of coarse scale spaces and multigrid convergence. Some other presentations were on upscaling, domain decomposition methods and nonlinear multiscale methods. Some researchers discussed applications of these methods to reservoir simulations, as well as to simulations of filtration, insulating materials, and turbulence

    A new numerical mesoscopic scale one-domain approach solver for free fluid/porous medium interaction

    Get PDF
    A new numerical continuum one-domain approach (ODA) solver is presented for the simulation of the transfer processes between a free fluid and a porous medium. The solver is developed in the \textit{mesoscopic} scale framework, where a continuous variation of the physical parameters of the porous medium (e.g., porosity and permeability) is assumed. The Navier--Stokes--Brinkman equations are solved along with the continuity equation, under the hypothesis of incompressible fluid. The porous medium is assumed to be fully saturated and can potentially be anisotropic. The domain is discretized with unstructured meshes allowing local refinements. A fractional time step procedure is applied, where one predictor and two corrector steps are solved within each time iteration. The predictor step is solved in the framework of a marching in space and time procedure, with some important numerical advantages. The two corrector steps require the solution of large linear systems, whose matrices are sparse, symmetric and positive definite, with M\mathcal{M}-matrix property over Delaunay-meshes. A fast and efficient solution is obtained using a preconditioned conjugate gradient method. The discretization adopted for the two corrector steps can be regarded as a Two-Point-Flux-Approximation (TPFA) scheme, which, unlike the standard TPFA schemes, does not require the grid mesh to be K-orthogonal, (with {K the anisotropy tensor). As demonstrated with the provided test cases, the proposed scheme correctly retains the anisotropy effects within the porous medium. Furthermore, it overcomes the restrictions of existing mesoscopic scale one-domain approaches proposed in the literature

    Approximate solutions of the Riemann problem for a two-phase flow of immiscible liquids based on the Buckley–Leverett model

    Get PDF
    The article proposes an approximate method based on the "vanishing viscosity"method, which ensures the smoothness of the solution without taking into account the capillary pressure. We will consider the vanishing viscosity solution to the Riemann problem and to the boundary Riemann problem. It is not a weak solution, unless the system is conservative. One can prove that it is a viscosity solution actually meaning the extension of the semigroup of the vanishing viscosity solution to piecewise constant initial and boundary data. It is known that without taking into account the capillary pressure, the Buckley-Leverett model is the main one. Typically, from a computational point of view, approximate models are required for time slicing when creating computational algorithms. Analysis of the flow of a mixture of two immiscible liquids, the viscosity of which depends on pressure, leads to a further extension of the classical Buckley- Leverett model. Some two-phase flow models based on the expansion of Darcy’s law include the effect of capillary pressure. This is motivated by the fact that some fluids, e.g., crude oil, have a pressure-dependent viscosity and are noticeably sensitive to pressure fluctuations. Results confirm the insignificant influence of cross-coupling terms compared to the classical Darcy approach

    Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization

    Full text link
    We present modeling of the incompressible viscous flows in the domain containing an unconfined fluid and a porous medium. For such setting a rigorous derivation of the Beavers-Joseph-Saffman interface condition was undertaken by J\"ager and Mikeli\'c [SIAM J. Appl. Math. \rm 60 (2000), p. 1111-1127] using the homogenization method. So far the interface law for the pressure was conceived and confirmed only numerically. In this article we justify rigorously the pressure jump condition using the corresponding boundary layer

    On Integrability and Exact Solvability in Deterministic and Stochastic Laplacian Growth

    Full text link
    We review applications of theory of classical and quantum integrable systems to the free-boundary problems of fluid mechanics as well as to corresponding problems of statistical mechanics. We also review important exact results obtained in the theory of multi-fractal spectra of the stochastic models related to the Laplacian growth: Schramm-Loewner and Levy-Loewner evolutions
    corecore