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A B S T R A C T

A new numerical continuum one-domain approach (ODA) solver is presented for the simulation
of the transfer processes between a free fluid and a porous medium. The solver is developed
in the mesoscopic scale framework, where a continuous variation of the physical parameters of
the porous medium (e.g., porosity and permeability) is assumed. The Navier–Stokes–Brinkman
equations are solved along with the continuity equation, under the hypothesis of incompressible
fluid. The porous medium is assumed to be fully saturated and can potentially be anisotropic.
The domain is discretized with unstructured meshes allowing local refinements. A fractional
time step procedure is applied, where one predictor and two corrector steps are solved within
each time iteration. The predictor step is solved in the framework of a marching in space
and time procedure, with some important numerical advantages. The two corrector steps
require the solution of large linear systems, whose matrices are sparse, symmetric and positive
definite, with -matrix property over Delaunay-meshes. A fast and efficient solution is obtained
using a preconditioned conjugate gradient method. The discretization adopted for the two
corrector steps can be regarded as a Two-Point-Flux-Approximation (TPFA) scheme, which,
unlike the standard TPFA schemes, does not require the grid mesh to be 𝐊-orthogonal, (with
𝐊 the anisotropy tensor). As demonstrated with the provided test cases, the proposed scheme
correctly retains the anisotropy effects within the porous medium. Furthermore, it overcomes
the restrictions of existing mesoscopic scale one-domain approaches proposed in the literature.

1. Introduction

Momentum transfer at the interface between free fluid and porous media is of significance for various applications. Indeed,
interface transport processes are involved in different industrial, environmental and biological/biomedical applications, as for
example passive control devices using porous coating, heat exchangers, fuel cells, filtration and drying processes, groundwater
pollution, flows in fractured media, geothermal systems, flows in biological tissues and related medical drugs transport problems.
The study of fluid–porous interface momentum transfer is also crucial for the development of mathematical and numerical models
involving additional transfer processes, e.g., passive solute or heat and pollutant transport.

The study of the fluid–porous interface transfer can be performed at different scales [1]. At the microscopic pore scale, the flow
in the free fluid region and in the void spaces of the porous medium is governed by the classical (Navier)-Stokes equations along
with boundary conditions at the interface between the fluid phase and the solid phase within the permeable region (e.g., no-slip

∗ Corresponding author.
E-mail address: costanza.arico@unipa.it (C. Aricò).
vailable online 22 November 2023
045-7825/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cma.2023.116655
Received 23 May 2023; Received in revised form 17 November 2023; Accepted 19 November 2023

https://www.elsevier.com/locate/cma
http://www.elsevier.com/locate/cma
mailto:costanza.arico@unipa.it
https://doi.org/10.1016/j.cma.2023.116655
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2023.116655&domain=pdf
https://doi.org/10.1016/j.cma.2023.116655
http://creativecommons.org/licenses/by/4.0/


Computer Methods in Applied Mechanics and Engineering 419 (2024) 116655C. Aricò et al.
velocity condition). Such a pore scale approach has two limitations, (1) only small-scale problems can be simulated due to the
high computational effort, caused by the discretization of the microscopic void spaces, which requires a significant number of
mesh elements, and (2) often, detailed knowledge of the pore geometry in the entire domain is not known, even with advanced
image acquisition technologies. This is the reason why descriptions at the mesoscopic and macroscopic scales are usually introduced
according to two popular approaches, both derived from the volume averaging of pore-scale governing equations.

In the two-domain approach (TDA), at the macroscopic scale, the bulk fluid and porous regions are separated by a sharp interface.
Two different sets of governing equations are applied in each of the bulk regions, namely the Darcy equation in the porous domain
and the (Navier)-Stokes equations in the free fluid domain. Due to the different character of the corresponding partial differential
equations, specific boundary conditions have to be imposed at the common interface that guarantee conservation of the fluxes
together with appropriate slip conditions for tangential component of the free fluid velocity [2]. In the pioneering work of Beavers
and Joseph [3], such a slip boundary condition was experimentally derived for parallel flow conditions when coupling Stokes with
Darcy flow. Ochoa-Tapia and Whitaker [4,5] coupled the Stokes and Brinkman equations at the interface, assuming continuous
tangential velocity but discontinuous tangential shear stress. Other interface boundary conditions have been obtained by using
homogenization methods, see for example [6–8] and references therein. Several numerical techniques have been proposed in the
literature for TDA. In [9], the authors solve the Navier–Stokes and Darcy equations in the framework of a finite element scheme. They
decouple the problem and, at each time step, iteratively solve two subproblems via a suitable splitting of the interface condition.
In [10] the authors present a locally conservative method by coupling mixed finite element methods for the Darcy region with
Discontinuous Galerkin methods for the Stokes region. In [11] the authors couple mixed methods for the porous Darcy region
with finite elements methods for the fluid Stokes region. They also prove the existence of weak solutions and the coupled problem
is uncoupled into steps involving porous media and fluid flow subproblems. In [12], the Darcy–Stokes problem is solved via a
non-overlapping domain decomposition method. The computational domain is divided into multiple subdomains where coupled
local problems of lower complexity are solved. In [13,14] the authors present mortar multiscale numerical methods for coupling
Stokes and Darcy flows with the Beavers–Joseph–Saffman interface condition. In [15], discontinuous Galerkin methods and mixed
Finite Elements methods are applied in the Stokes and Darcy regions, respectively. Numerical challenges related to the coupling of
Galerkin approximations of both Stokes and Darcy problems with mixed Finite Element formulations are discussed in [15]. Indeed,
combining Raviart–Thomas Finite Element velocity spaces [16] with piecewise constant or linear pressure fields can satisfy the inf-sup
conditions [15]. In [17], such discretization allows us to obtain the correct solution for the Darcy equation, but is not suitable for
the Stokes problems. An alternative is to invoke the Darcy’s law in the mass conservation equation, leading to an elliptic pressure
Poisson problem, which can be easily approximated by Galerkin techniques. Unfortunately, this technique leads to a loss of accuracy
for the velocity solution, as well as to a weak enforcement of the mass conservation equation [17].

In the continuum one-domain approach (ODA), a ‘‘fictitious’’ equivalent single medium replaces the fluid and solid phases, and
one set of governing equations, valid everywhere in the domain, is used to model the transfer processes. At the mesoscopic scale,
the transition from the bulk fluid to the bulk porous region is modeled using a transition zone (or transition layer, TL) located in
between these two regions [1,18,19]. Within this transition layer the change of effective macroscopic properties of the permeable
medium, such as porosity 𝜖 and permeability K, is modeled with appropriate continuous transition functions. The set of governing
equations is often denoted as (Navier–)Stokes–Brinkman, (Navier–)Stokes–Darcy, Darcy–Brinkman or Brinkman equations [18,19].
These are derived by averaging the governing pore-scale equations over a Representative Elementary Volume (REV) [20,21]. The
REV characteristic size is much smaller than that of the investigated domain, but much larger than the characteristic pore-scale size.
In [22] the authors solve the transfer momentum problem in a three-layer 1D channel, including two external bulk homogeneous
porous and fluid regions, separated by a heterogeneous transition zone, with variable 𝜖 and K. They give analytical velocity
expressions in the three zones. In [23] the authors present an ODA based on the Stokes–Brinkman model. By using the method
of matched asymptotic expansion, the asymptotic solution for vanishing transition layer thickness is investigated. In [24,25], an
ODA is presented for 1D problems, where a macroscopic momentum equation, with Darcy form, applicable everywhere in the
system, is solved along a homogenization closure problem, to obtain the transition layer permeability profile. The porous medium
is assumed to be periodic and periodicity conditions are imposed for the closure problem. The ODA model is derived under the
assumptions of constant pressure gradient and a given convective fluid velocity in the inertial term of the momentum equation.
Most of the mesoscopic ODA models proposed in the recent literature are analytically solved under specific geometrical conditions
and by assuming simplified boundary conditions, e.g., 1D flow, periodicity of the flow and the porous medium, steady-state flow or
Stokes flow regime (low Reynolds number), (e.g., [22–25]).

Another macroscopic ODA approach uses penalization, such that the so-called penalized Navier–Stokes equations are applied,
with an extra penalizing Darcy term in the momentum equation, which accounts for the drag force of the solid particles of the
porous medium over the fluid [26–32]. The Darcy term is a function of the porosity and inverse of the permeability. This term is
applied only within the porous region, while in the clear fluid region it vanishes, such that the classical (Navier)-Stokes equations
are solved there. This implies that no continuous transition of porosity and permeability is assumed close to the free fluid–porous
medium interface, but instead a discontinuous change is considered. These discontinuities induce an interfacial stress jump, and an
additional stress arises within the porous medium due to the Darcy term in the governing momentum equations. Such penalized
approaches have been widely applied in the literature since they adopt well-consolidated numerical procedures for the classical
(Navier)-Stokes equations. Several numerical procedures have been proposed in the literature for the macroscopic ODA. Stabilized
Finite Element methods (e.g., Galerkin/Least-Squares methods, Streamline-Upwind/Petrov–Galerkin or Pressure-Stabilizing/Petrov–
Galerkin methods, Pressure Gradient Projection methods or Variational Multi-Scale methods) have been successfully applied either
2
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Fig. 1. Pore scale reference configuration (left) and different REV-scale approaches. Sharp interface approaches are depicted in the middle picture (TDA or
macroscopic ODA), whereas the ODA that uses a transition zone is shown in the right picture. There, some possible transition functions are plotted, where 𝑘0
and 𝜖0 denote the porosity and permeability values of the bulk porous medium.

These different approaches are schematically depicted in Fig. 1 together with the reference configuration on the pore scale.
Each of these approaches has advantages and drawbacks. If on the one hand the sets of governing equations in the TDA are

well-known and consolidated numerical tools can be applied, a good match of the results near the interface is obtained when
choosing appropriate interface coupling conditions [18]. Many applications present a gradual variation of the macroscopic properties
(porosity, permeability, etc.) of the porous medium, without any abrupt change between the two bulk fluids and permeable
regions [18], so the ODA should be more suitable. The principal limitation of the ODA is related to the difficulty in predicting
the spatial variation of 𝜖 and K in the transition layer.

In the present paper, we propose a new numerical ODA solver at the mesoscopic level, where we do not restrict the porous
medium to be isotropic, but also consider anisotropy. The proposed algorithm overcomes the restrictions of the mesoscopic ODA
recently proposed in the literature, previously mentioned. This scheme has some important numerical features, which are further
discussed in the following Sections. Another motivation is related to the significant discrepancies of the results provided by the
present model and the outputs of the widely applied ‘‘penalized’’ macroscopic ODA in some of the presented applications in Section 4.

We solve the continuity and the Navier–Stokes–Brinkman equations, applying a fractional time step procedure, where a prediction
and two correction problems are sequentially solved within each time iteration. The computational domain is discretized using
unstructured meshes, allowing mesh refinement at the transition layer. The solution of the prediction problem is performed by a
Marching in Space and Time (MAST) procedure. This is a Finite Volume algorithm, recently presented for the solution of shallow
water and groundwater problems, as well as Navier–Stokes flow applications (see for example [33–37] and references therein).
The two correction problems involve a fast and efficient solution of large linear systems since the associated matrices are sparse,
symmetric, positive definite and diagonally dominant. As discussed in the following Sections, the algorithm proposed for the
discretization of the correction problems can be regarded as a Two-Point-Flux Approximation (TPFA) scheme, which retains the
anisotropic properties of the porous medium, but, unlike the standard TPFA scheme, it does not require the computational grid to
be aligned with the principal anisotropy directions. The proposed method is strongly conservative, in the sense that the velocity
solution is divergence free pointwise inside each mesh cell, and local and global mass balance are always guaranteed. The method
is suitable for simulation of multi-dimensional unsteady flow problems.

The paper is organized as follows. The governing equations and the characteristics of the discretizing mesh are presented in
Section 2, in Section 3 we provide the algorithmic details of the new ODA solver, and in Section 4 some numerical applications,
including the analysis of the convergence order and the computational costs, as well as some ‘‘real-world’’ applications, are presented.

2. Governing equations

We assume a Newtonian incompressible fluid with density 𝜌𝑙 inside and around a saturated porous medium, which is assumed to
be rigid, with solid particles fixed in space. At the mesoscopic scale, the fluid and solid phases are described as a single continuous
medium, derived by averaging the micro-scale Navier–Stokes equations over a REV [20,21]. This yields the following governing
equations [1,19]

∇ ⋅
(

𝜌𝑙𝐮
)

= 0, (1a)

𝜌𝑙
𝜕𝐮
𝜕𝑡

+ 𝜌𝑙𝐮 ⋅ ∇
(𝐮
𝜖

)

= −𝜖
(

∇𝑝𝑙 − 𝜌𝑙𝐠
)

+ 𝜇∇2𝐮 − 𝜇𝜖K𝐮, (1b)

where t is time, 𝐱 is the spatial coordinate vector, 𝐮 is the surface average fluid velocity, with u and v its x and y components, 𝑝𝑙
is the intrinsic averaged fluid pressure [19], 𝐠 is the gravitational acceleration, downward oriented, with g the absolute value of its
vertical component, 𝜇 is the dynamic fluid viscosity, 𝜖 is the porosity of the porous medium, and K is the inverse of the permeability
tensor of the porous medium, 𝐊, symmetric and positive definite. The last term on the r.h.s. of Eq. (1b) represents a drag force due
to the microscopic momentum exchange of the fluid with the solid particles of the permeable matrix. According to [4,19], it is
related to 𝜇, to the relative velocity between the fluid and the solid grains and to the permeability of the porous medium. In Eq. (1)
3
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symbols ∇⋅ and ∇ mark the divergence of a vector or a tensor, and the gradient of a scalar quantity or a tensor, respectively, and
ymbol ∇2 is the Laplacian operator.

Dividing Eqs. (1a) and (1b) by 𝜌𝑙 and setting 𝛹 = 𝑝𝑙

𝜌𝑙
− 𝑔𝑦, we obtain

∇ ⋅ 𝐮 = 0, (2a)
𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅ ∇
(𝐮
𝜖

)

= −𝜖 (∇𝛹 ) + 𝜈∇2𝐮 − 𝜈𝜖K𝐮, (2b)

with the kinematic fluid viscosity 𝜈 = 𝜇∕𝜌𝑙. We solve the system (1) for the unknowns 𝐮 and 𝛹 , in the computational domain 𝛺, and
let 𝛤 be its boundary. Three types of boundary conditions (BCs) can be assigned over 𝛤 = 𝛤𝑒 ∪ 𝛤𝑛 ∪ 𝛤𝑓 . 𝛤𝑒 is the portion where we
assign essential BCs (i.e., Dirichlet BCs for the velocity), 𝛤𝑛 the portion where we assign natural BCs, (i.e., boundary stress vectors),
and 𝛤𝑓 the portion where we assign free-slip BCs, a combination of the previous ones. In Eq. (3a) we formulate the boundary and
initial conditions (ICs) needed for the solution of system (2) to be well-posed.

𝐮 (𝐱) = 𝐮𝑏 ∀𝐱 ∈ 𝛤𝑒, 𝑡 ≥ 0, (3a)
(

𝛹 − 2𝜈
𝜕𝑢𝑛
𝜕𝑛

)

= 𝜎𝑛, −𝜈
(

𝜕𝑢𝑛
𝜕𝑠

+
𝜕𝑢𝑠
𝜕𝑛

)

= 𝜎𝑠 ∀𝐱 ∈ 𝛤𝑛, 𝑡 ≥ 0, (3b)

𝑢𝑛 = 0, −𝜈
(

𝜕𝑢𝑠
𝜕𝑛

)

= 0 ∀𝐱 ∈ 𝛤𝑓 , 𝑡 ≥ 0, (3c)

𝐮 = 𝐮0 with ∇ ⋅ 𝐮0 = 0, 𝛹 = 𝛹0 ∀𝐱 ∈ 𝛺, 𝑡 = 0, (3d)

where 𝐮𝑏 is the velocity vector imposed over 𝛤𝑒, the directions 𝐧 and 𝐬 are normal (outward oriented) and tangent to the boundary,
respectively, 𝜎𝑛 and 𝜎𝑠 are the normal and tangential components of the stress at the boundary, respectively, 𝑢𝑛 and 𝑢𝑠 are the
components of 𝐮 along 𝐧 and 𝐬, and sub-index 0 marks the initial values of 𝐮 and 𝛹 in 𝛺. The kinematic pressure is prescribed
indirectly via Eq. (3b). The viscous component of 𝜎𝑛 and 𝜎𝑠 in Eq. (3b) are set to zero.

3. Numerical algorithm

In Section 3.1 we present a general overview of the proposed algorithm, while we refer to Section 3.2 those readers interested
in the numerical details of the algorithm steps.

3.1. General algorithm overview

System (2) is solved by applying a fractional time step procedure, where one predictor and two corrector problems are solved
sequentially.

Using the splittings

∇𝛹 = ∇𝛹𝑘 + ∇𝛹 − ∇𝛹𝑘, (4)

𝜈∇2𝐮 = 𝜈∇2𝐮𝑘−1∕3 + 𝜈∇2𝐮 − 𝜈∇2𝐮𝑘−1∕3, (5)

after simple manipulations, setting 𝐦 = 𝜈𝜖K and 𝐌0 = 𝐈 +𝐦𝛥𝑡 (with 𝐈 the identity matrix), the time discretization form of Eq. (2b)
becomes

𝐌0

(

𝐮𝑘+1∕3 − 𝐮𝑘
)

𝛥𝑡
+ 𝐮𝑘+1∕3 ⋅ ∇

(

𝐮𝑘+1∕3
𝜖

)

+ 𝜖∇𝛹𝑘 − 𝜈∇2𝐮𝑘−1∕3 +𝐦𝐮𝑘 = 0, (6a)

𝐌0

(

𝐮𝑘+2∕3 − 𝐮𝑘+1∕3
)

𝛥𝑡
− 𝜈∇2𝐮𝑘+2∕3 + 𝜈∇2𝐮𝑘−1∕3 = 0, (6b)

𝐌0

(

𝐮𝑘+1 − 𝐮𝑘+2∕3
)

𝛥𝑡
+ 𝜖∇𝛹𝑘+1 − 𝜖∇𝛹𝑘 = 0. (6c)

where Eq. (6a) is the predictor problem (PP) and Eqs. (6b) and (6c) are the 1st and 2nd corrector problems (CP1 and CP2),
respectively. In the following Sections, the symbols 𝑡𝑘, 𝑡𝑘+1∕3, 𝑡𝑘+2∕3 and 𝑡𝑘+1 mark the beginning of the time step, as well as the
end of PP, CP1 and CP2, respectively. The symbol 𝑡𝑘−1∕3 marks the end of the CP2 of the previous time step. In this sense, 𝑡𝑘+1∕3
and 𝑡𝑘+2∕3 are the first and second approximations for the full time step of the current time iteration, respectively, and 𝑡𝑘−1∕3 is
the second approximation for the full time step of the previous time iteration. (⋅)𝑘 , (⋅)𝑘+1∕3 , (⋅)𝑘+2∕3 , (⋅)𝑘+1 , (⋅)𝑘−1∕3 are the values of
ariable (⋅), (with (⋅) = 𝐮 or 𝛹 ) at the corresponding time levels.

We discretize the domain 𝛺 using unstructured triangulations 𝛺𝑇 of 𝑁𝑇 non-overlapping triangles and 𝑁 nodes. The compu-
ational mesh satisfies the extended Delaunay property as defined in [37] (see Fig. 1 in the referred paper), which can always
e obtained in the 2D case (see [38] and literature therein). The reason why we use Delaunay meshes will be explained in the
ollowing Sections. A triangle 𝑒 is called the (computational) cell or (computational) element and the triangle side is called the
element) interface.

In the present paper, we specifically adapt the procedure proposed in [36,37] to account for the modified system (1)–(2) of
4

overning equations, compared to the classical Navier–Stokes equations.
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t

3

Inside each triangle e the velocity vector computed at the end of each time iteration 𝐮𝑘+1𝑒 (which is equal to the vector at the
eginning of the next time iteration) is assumed 𝐮𝑘+1𝑒 ∈ R𝑒, where R𝑒 is the lowest-order Raviart–Thomas (RT0) space function [16],

whose basic properties are briefly summarized in Appendix A. Thanks to the RT0 properties, the velocity components are piecewise
constant inside each triangle e if ∑3

𝑗=1 𝑄
𝑒
𝑗 = 0 (where 𝑄𝑒

𝑗 is the normal flux crossing side 𝑗 of 𝑒, positive outward, i.e., one of the
three DOFs of the R𝑒 space). If this condition is satisfied, ∇ ⋅ 𝐮𝑒 = 0 ∀𝐱 ∈ 𝑒, ∀𝑒 ∈ 𝛺𝑇 , and, if the normal fluxes of two neighboring
triangles are equal in value and opposite in sign along the common side, both local and global mass continuity are preserved.

The kinematic pressure 𝛹 is assumed to be piecewise linear inside each triangle e according to the nodal values, as explained
in [36,37].

Below we give the outline of the proposed algorithm, whose numerical details are reported in Section 3.2. In Fig. 2 we show the
sequence of the algorithm steps, along with the associated representation of the velocity field within any cell 𝑒 ∈ 𝛺𝑇 .

• Beginning of each time iteration (time level 𝑡𝑘). 𝐮𝑘𝑒 is the solution 𝐮𝑘+1𝑒 of the previous time iteration. 𝐮𝑘𝑒 ∈ R𝑒, the corresponding
normal fluxes are continuous along each element interface and ∇ ⋅ 𝐮𝑒 = 0, ∀𝐱 ∈ 𝑒, ∀𝑒 ∈ 𝛺𝑇 .

• Solution of the PP (from time level 𝑡𝑘 to time level 𝑡𝑘+1∕3). After integration in space over each mesh element of Eq. (6a),
PP is solved in its time integral form. A ‘‘local element update’’ of the velocity field is performed, by computing a piecewise
constant correction 𝛥𝐮̂ of 𝐮𝑒 within each 𝑒 (see Fig. 2). This disrupts the continuity of the normal fluxes (DOFs of R𝑒) at each
element interface. At the end of PP (time level 𝑡𝑘+1∕3) 𝐮𝑘+1∕3 is piecewise constant, but does not satisfy local and global mass
balance. Numerical details of this prediction problem are presented in Section 3.2.1.

• Solution of the CP1 (from time level 𝑡𝑘+1∕3 to time level 𝑡𝑘+2∕3). After integration in space over each mesh element, we solve
Eq. (6b) in its differential form. Starting from the solution 𝐮𝑘+1∕3𝑒 , we perform, ∀𝑒 ∈ 𝛺𝑇 , a ‘‘local element update’’ of the
velocity field by computing a second piecewise constant correction 𝛥𝐮̃ of 𝐮𝑒 within each 𝑒 (see Fig. 2). As for the PP, at the
end of CP1 (time level 𝑡𝑘+2∕3) 𝐮𝑘+2∕3 is piecewise constant, but does not satisfy local and global mass balance. After the solution
of CP1, before CP2, (time level 𝑡𝑘+1∕3) we re-establish the normal flux continuity at each element interface, by averaging the
fluxes computed according to the velocity field 𝐮𝑘+2∕3 in the two elements sharing the side. The averaged normal fluxes do not
satisfy the mass balance since 𝐮𝑘+2∕3 has been obtained by solving, during the PP and CP1, momentum equations only. The
𝐑𝐓𝟎 velocity vector, 𝐮𝑘+2∕3𝑅𝑇 0 , associated to the continuous normal fluxes is piecewise linear within each cell but not divergence
free (see Fig. 2). Numerical details of the CP1 are given in Section 3.2.2.

• Solution of the CP2 (from time level 𝑡𝑘+2∕3 to time level 𝑡𝑘+1). After integration in space over each mesh element, we solve
Eq. (6c) in its differential form. We re-establish local and global mass balance by adding corrective normal fluxes to those
computed at the end of CP1. These corrective fluxes are calculated to impose the divergence free condition of the final velocity
𝐮𝑘+1. After the solution of CP2, 𝐮𝑘+1𝑒 ∈ R𝑒 and it is piecewise constant within each cell 𝑒 (see Fig. 2). Numerical details of the
CP2 are presented in Section 3.2.3.

The prediction problem is solved by applying a Finite Volume MArching in Space and Time procedure (MAST). As mentioned in
the Introduction, this has already been applied in other contexts. One of the main advantages of this procedure is that it performs
a sequential solution of small Ordinary Differential Equations (ODEs) systems, one for each computational cell. This allows an
‘‘explicit handling’’ of the non-linear convective inertial momentum terms in Eq. (1b), (i.e., the convective inertial terms within
each cell are updated in the time interval

[

𝑡𝑘, 𝑡𝑘+1∕3
]

separately from the other cells) avoiding the solution of large systems with
non-symmetric matrices as in other numerical schemes, e.g., [33–37,39]. The MAST procedure has shown numerical stability for
Courant–Friedrichs–Levy (CFL) numbers greater than 1 (see [33–37] and references therein).

In both corrector problems, large linear systems of dimension 𝑁𝑇 are solved, with sparse, symmetric, and, if the Delaunay mesh
property holds, also positive definite matrices. This ensures that the system matrices are -matrices, which avoids nonphysical
oscillations in the numerical solution [40]. We apply a mass lumping procedure, similar to the one proposed in [41] for Mixed
Hybrid Finite Element, which is well-suited if the Delaunay mesh property holds [36,37]. The coefficients of the matrices of CP1
and CP2 are constant in time, which makes computations efficient, since their assembly and factorization are performed only once,
before the beginning of the time loop.

3.2. Numerical details of the algorithm steps

In the following Sections, 𝐴𝑒 marks the area of element 𝑒, 𝑒𝑝 is one of the neighboring elements of 𝑒, and the common side is
marked as 𝑗 and 𝑗𝑝 in the local numeration of 𝑒 and 𝑒𝑝, respectively (𝑗, 𝑗𝑝 = 1, 2, 3). The symbols ̄(⋅)𝑒 and ̄(⋅)𝑗 denote the spatial
verage of variable (⋅) inside each element 𝑒 and along side 𝑗, respectively, computed according to the nodal values of (⋅). If (⋅) is a
ensor, the symbols ̄(⋅)𝑒 and ̄(⋅)𝑗 denote the average values of the tensor coefficients, computed according to the coefficients in the

three nodes of triangle 𝑒 and the two nodes of side 𝑗, respectively.

.2.1. Predictor problem
Integrating in space Eq. (6a) over each element 𝑒 ∈ 𝛺𝑇 and left-multiplying by matrix 𝐌̄−1

0 , we obtain
(

𝐮𝑘+1∕3 − 𝐮𝑘
)

𝛥𝑡
𝐴𝑒 + 𝐌̄−1

0 ∫𝐴𝑒

(

𝐮𝑘+1∕3 ⋅ ∇
(

𝐮𝑘+1∕3
𝜖

))

d𝐴+

𝐌̄−1
0

(

𝜖∇𝛹𝑘 − 𝜈∇2𝐮𝑘−1∕3 +𝐦𝐮𝑘
)

d𝐴 = 0
. (7)
5

∫𝐴𝑒
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Fig. 2. 1D sketch of the velocity update within cell 𝑒 during the algorithm steps for the current time iteration.

According to the MAST approach, the scalar momentum equations along the 𝑥 and 𝑦 directions are solved inside each triangle
𝑒 separately from those of the other cells. This is possible if at the beginning of each time step (time level 𝑡𝑘) we perform a sorting
operation of all the cells in the domain according to the direction of the velocity vector 𝐮𝑘. This is a fast operation which always
allows the cell sorting, even if recirculations occur in the flow field (see details in Section 3.1 and Appendix 1 of [36]). At the end
of the sorting operation, a rank 𝑅𝑒 is assigned to each cell, such that 𝑅𝑒 > 𝑅𝑒𝑝, with 𝑅𝑒𝑝 the rank of any neighboring 𝑒𝑝 triangles,
whose common side shared with 𝑒 is crossed by a flux entering 𝑒 from 𝑒𝑝.

The solution of Eq. (7) depends on the pressure gradient and viscous and drag forces obtained from the previous time step, and,
thanks to the sorting operation, on the incoming momentum flux from neighboring cells 𝑒𝑝 with 𝑅𝑒 > 𝑅𝑒𝑝. These are the reasons
why Eq. (7) can be solved within the interval [0 − 𝛥𝑡] (e.g. from 𝑡𝑘 to 𝑡𝑘+1∕3), as a system of two Ordinary Differential Equations
(ODEs) for the 𝑢 and 𝑣 unknowns, ∀𝑒 ∈ 𝛺𝑇 [33–37].

As specified in Section 3.1, at time level 𝑡𝑘 velocity 𝐮𝑘𝑒 ∈ R𝑒 is divergence free. ∀𝑒 ∈ 𝛺𝑇 we define a piecewise constant velocity
vector correction 𝛥𝐮̂𝑒, such that

𝐮𝑒(𝑡) = 𝐮𝑘𝑒 + 𝛥𝐮̂𝑒(𝑡) 0 ≤ 𝑡 ≤ 𝛥𝑡 with 𝛥𝐮̂𝑒(0) = 0. (8)

Applying the divergence theorem to the second term on the l.h.s. of Eq. (7),

∫𝐴𝑒

(

𝐮𝑘+1∕3 ⋅ ∇
(

𝐮𝑘+1∕3
𝜖

))

d𝐴 = ∮𝐿𝑒

𝐮𝑘+1∕3
𝜖

(

𝐮𝑘+1∕3 ⋅ 𝐧
)

d𝑙, (9)

where ∮𝐿𝑒
represents the integral over the three sides of triangle e, we rewrite the momentum equilibrium equation as

𝑑
(

𝛥𝐮̂𝑒
)

𝑑𝑡
𝐴𝑒 +

3
∑

𝑗=1
𝜙𝑗𝐌̄−1

0,𝑗M
𝑒,𝑜𝑢𝑡
𝑗 (𝑡) +

3
∑

𝑗=1

(

1 − 𝜙𝑗
)

𝐌̄−1
0,𝑗M̄

𝑒,𝑖𝑛
0,𝑗 (𝑡) +

𝐌̄−1
0,𝑒

(

S𝑘
𝛹,𝑒 +V𝑘−1∕3

𝑒 + 𝐦̄𝑒𝐮𝑘𝑒
)

𝐴𝑒 = 0

, (10)

where M𝑒,𝑜𝑢𝑡
𝑗 is the leaving momentum flux from side 𝑗 of 𝑒 to 𝑒𝑝 with 𝑅𝑒𝑝 > 𝑅𝑒,

M𝑒,𝑜𝑢𝑡
𝑗 (𝑡) = 𝑙𝑒𝑗

𝐮𝑒 (𝑡)
𝜖𝑗

max
(

0,𝐮𝑒 (𝑡) ⋅ 𝐧𝑗
)

, (11)

and 𝑙𝑒𝑗 is the length of side 𝑗. M̄𝑒,𝑖𝑛
𝑗 in Eq. (10) is the mean in time value of the incoming momentum flux crossing side 𝑗, oriented

from 𝑒𝑝 to 𝑒, with 𝑅𝑒𝑝 < 𝑅𝑒, known from the solution of the previously solved cells and computed as specified in Section 3.1 in [36],
𝜙𝑗 = 1 if 𝑒 shares its side 𝑗 with triangles 𝑒𝑝 with 𝑅𝑒𝑝 > 𝑅𝑒, or if it is a boundary side with leaving momentum flux, in the opposite
case 𝜙𝑗 = 0. V𝑘−1∕3

𝑒 and S𝑘
𝛹,𝑒 are the sum of viscous and kinematic pressure forces, respectively, computed in cell 𝑒 during the

previous time step, as better specified in Sections 3.2.2 and 3.2.3.
Eq. (10) is called MAST forward step. The ODEs systems (10) are sequentially solved, one for each cell. We apply a Runge–Kutta

method with adjustable time-step size within the interval [0, 𝛥𝑡] [42]. We proceed, in the sequential solution, from the triangles
with the smallest rank to the triangles with the highest rank. The direction of 𝐮 could change within 0 − 𝛥𝑡 during the solution
6

𝑒 [ ]
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d
p
t

of system (10), and we could compute momentum fluxes going from 𝑒 to 𝑒𝑝 with 𝑅𝑒𝑝 < 𝑅𝑒. These momentum fluxes are neglected
uring the MAST forward step. To restore the momentum balance, after the MAST forward step, we perform a MAST backward step
roceeding from the cells with the highest rank to the cells with the lowest rank. During the MAST backward step only the inertial
erms are retained,

𝑑
(

𝛥𝐮̂𝑒
)

𝑑𝑡
𝐴𝑒 +

3
∑

𝑗=1

(

1 − 𝜙𝑗
)

𝐌̄−1
0,𝑗M

𝑒,𝑜𝑢𝑡
𝑗 (𝑡) +

3
∑

𝑗=1
𝜙𝑗𝐌̄−1

0,𝑗M̄
𝑒,𝑖𝑛
𝑗 (𝑡) = 0. (12)

The initial solution of the MAST backward step is the final solution computed at the end of the MAST forward step. The boundary
conditions of the predictor problem are assigned as specified in [36]. As mentioned in Section 3.1, the ‘‘local element update’’ by
the computation of 𝛥𝐮̂𝑒 ∀𝑒 ∈ 𝛺𝑇 disrupts the continuity of the normal fluxes at each element interface, and velocity 𝐮𝑘+1∕3 is not
divergence free.

3.2.2. 1st corrector problem
Integrating Eq. (6b) in space over each element 𝑒 ∈ 𝛺𝑇 we get

𝐌̄𝑒
(

𝐮𝑘+2∕3 − 𝐮𝑘+1∕3
)

𝐴𝑒 = 𝜈 ∫𝐴𝑒

∇2𝐮𝑘+2∕3d𝐴𝑒 − 𝜈 ∫𝐴𝑒

∇2𝐮𝑘−1∕3d𝐴𝑒, (13)

where matrix 𝐌 = 𝐌0∕𝛥𝑡, with matrix 𝐌0 defined in Section 3.1. Applying the divergence theorem to the integrals on the r.h.s.
of Eq. (13), we get Eq. (14), which forms a system to solve from 𝑡𝑘+1∕3 to 𝑡𝑘+2∕3 for the 𝑢 and 𝑣 unknowns ∀𝑒 ∈ 𝛺𝑇 ,

𝐌̄𝑒
(

𝐮𝑘+2∕3 − 𝐮𝑘+1∕3
)

𝐴𝑒 = 𝜈 ∮𝐿𝑒

𝜕𝐮𝑘+2∕3𝑒
𝜕𝑛

𝑑𝑙 − 𝜈 ∮𝐿𝑒

𝜕𝐮𝑘−1∕3𝑒
𝜕𝑛

𝑑𝑙. (14)

𝜕𝐮
𝜕𝑛 is the derivative of the velocity vector along the orthogonal direction to the boundary 𝐿𝑒 of triangle 𝑒 and the other symbols
have been already specified. As mentioned at the end of Section 3.1, inside each triangle 𝑒, we apply a mass-lumping Mixed Hybrid
Finite Element procedure to solve system (14), setting (see [36,37] and literature therein and [41])

𝜈 ∮𝐿𝑒

𝜕𝐮∗𝑒
𝜕𝑛

𝑑𝑙 = 𝜈
3
∑

𝑗=1

(

𝐮∗𝑒 − 𝐮∗𝑒𝑝
)

𝑑𝑒,𝑒𝑝
𝑙𝑒𝑗 ∗=

{

𝑘 + 2∕3
𝑘 − 1∕3,

(15)

where 𝑑𝑒,𝑒𝑝 =
|

|

|

𝐱𝑒 − 𝐱𝑒𝑝
|

|

|

𝑠𝑖𝑔𝑛, ||
|

𝐱𝑒 − 𝐱𝑒𝑝
|

|

|

is the distance between the circumcenters of triangles 𝑒 and 𝑒𝑝 and 𝑠𝑖𝑔𝑛 = 1 or −1 depending
on whether or not the mesh satisfies the Delaunay property [36,37]. The other symbols have been previously specified. ∀𝑒 ∈ 𝛺𝑇 we
introduce two new piecewise constant vectors 𝛥𝐮̃𝑒 and 𝛥𝐮̆𝑒, such that

𝐮𝑘+2∕3𝑒 − 𝐮𝑘+1∕3𝑒 = 𝛥𝐮̃𝑒, 𝐮𝑘+1∕3𝑒 − 𝐮𝑘−1∕3𝑒 = 𝛥𝐮̆𝑒, (16)

where 𝛥𝐮̆𝑒 = 𝛥𝐮̂𝑒 + 𝛥𝐮̌𝑒, with 𝛥𝐮̌𝑒 = 𝐮𝑘𝑒 − 𝐮𝑘−1∕3𝑒 is known. After some manipulations, system (14) can be written as

𝐌̄𝑒𝛥𝐮̃𝑒 𝐴𝑒 = 𝜈
3
∑

𝑗=1

𝛥𝐮̃𝑒 − 𝛥𝐮̃𝑒𝑝
𝑑𝑒,𝑒𝑝

𝑙𝑒𝑗 − 𝜈
3
∑

𝑗=1

𝛥𝐮̆𝑒 − 𝛥𝐮̆𝑒𝑝
𝑑𝑒,𝑒𝑝

𝑙𝑒𝑗 . (17)

We solve one system (17) for each component of 𝛥𝐮̃𝑒 unknown, 𝛥𝑢̃𝑒 and 𝛥𝑣̃𝑒, respectively,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐌̄𝑥,𝑒

(

𝛥𝑢̃𝑒
𝛥𝑣̃𝑒

)

𝐴𝑒 = 𝜈
∑3

𝑗=1
𝛥𝑢̃𝑒−𝛥𝑢̃𝑒𝑝

𝑑𝑒,𝑒𝑝
𝑙𝑒𝑗 − 𝜈

∑3
𝑗=1

𝛥𝑢̆𝑒−𝛥𝑢̆𝑒𝑝
𝑑𝑒,𝑒𝑝

𝑙𝑒𝑗

𝐌̄𝑦,𝑒

(

𝛥𝑢̃𝑒
𝛥𝑣̃𝑒

)

𝐴𝑒 = 𝜈
∑3

𝑗=1
𝛥𝑣̃𝑒−𝛥𝑣̃𝑒𝑝

𝑑𝑒,𝑒𝑝
𝑙𝑒𝑗 − 𝜈

∑3
𝑗=1

𝛥𝑣̆𝑒−𝛥𝑣̆𝑒𝑝
𝑑𝑒,𝑒𝑝

𝑙𝑒𝑗 ,
(18a)

with 𝐌̄𝑥,𝑒 =

(

𝑀̄𝑒
1,1

𝑀̄𝑒
1,2

)𝑇

𝐌̄𝑦,𝑒 =

(

𝑀̄𝑒
2,1

𝑀̄𝑒
2,2

)𝑇

, (18b)

where 𝑀̄𝑒
𝑖,𝑗 , i, j = 1, 2, is the (𝑖, 𝑗)𝑡ℎ coefficient of matrix 𝐌̄𝑒. We apply the iterative procedure described in Appendix B. Typically

three/four iterations are enough to satisfy the convergence of the iterative procedure and the computational effort required for
solving the CP1 step is very small compared to the other algorithm steps, as shown in Section 4.1. BCs of CP1 are set as in [36].
After solving the systems (18), we update the velocity at time level 𝑡𝑘+2∕3 according to the first relationship in Eq. (16). Due to the
‘‘local element update’’ operation performed during the CP1, normal flux continuity at each element interface is not yet recovered
and 𝐮𝑘+2∕3𝑒 is not divergence free.

The sum of the viscous forces V𝑘−1∕3
𝑒 for the next time iteration in Eq. (10) is computed as

V𝑘−1∕3
𝑒 = 𝜈

3
∑

(

𝐮𝑘+2∕3𝑒 − 𝐮𝑘+2∕3𝑒𝑝

)

𝑑
𝑙𝑒𝑗 . (19)
7

𝑗=1 𝑒,𝑒𝑝
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At the end of CP1, (time level 𝑡𝑘+2∕3) we compute ∀𝑒 ∈ 𝛺𝑇 the velocity vector 𝐮𝑘+2∕3𝑅𝑇 0,𝑒 ∈ R𝑒 according to Eq. (A.1), with the normal
flux 𝑄𝑒

𝑗 given in Eq. (20)

𝑄𝑒
𝑗 = 𝐹 𝑙𝑒𝑗 =

(

𝐮𝑘+2∕3𝑒 ⋅ 𝐧𝑒𝑗
)

𝐴𝑒𝑝 −
(

𝐮𝑘+2∕3𝑒𝑝 ⋅ 𝐧𝑒𝑝𝑗𝑝
)

𝐴𝑒
(

𝐴𝑒 + 𝐴𝑒𝑝
) 𝑙𝑒𝑗 𝑗, 𝑗𝑝 = 1, 2, 3, (20)

nd 𝐹 𝑙𝑒𝑗 is the weighted mean flux crossing side 𝑗 of 𝑒 computed according to the fluxes 𝐮𝑘+2∕3𝑒 ⋅𝐧𝑒𝑗 𝑙
𝑒
𝑗 and 𝐮𝑘+2∕3𝑒𝑝 ⋅𝐧𝑘+2∕3𝑒𝑝 𝑙𝑒𝑗 crossing the

ommon side shared by 𝑒 and 𝑒𝑝 at time level 𝑡𝑘+2∕3. According to Eq. (20), the fluxes 𝐹 𝑙𝑒𝑗 are continuous, i.e, 𝐹 𝑙𝑒𝑗 = −𝐹 𝑙𝑒𝑝𝑗𝑝, but do
ot satisfy mass balance, i.e., ∑3

𝑗=1 𝐹 𝑙𝑒𝑗 ≠ 0. This is because so far, the velocity field has been updated from the initial state 𝐮𝑘𝑒 , by
olving, in the PP and CP1, momentum equilibrium equations only. This implies that ∇ ⋅ 𝐮𝑘+2∕3𝑅𝑇 0,𝑒 ≠ 0 and velocity 𝐮𝑘+2∕3𝑅𝑇 0,𝑒 is piecewise
inear inside 𝑒. The velocity 𝐮𝑘+2∕3𝑅𝑇 0,𝑒 , as well as the continuous fluxes 𝐹 𝑙𝑒𝑗 are used for the solution of the 2nd correction problem, as
xplained in the following Section.

The systems (18) can be written in vector–matrix form as

𝑥,𝐶𝑃1𝛥𝐮̃𝑥 = 𝑥,𝐶𝑃 1, (21a)

𝑦,𝐶𝑃1𝛥𝐯̃𝑦 = 𝑦,𝐶𝑃 1, (21b)

here the coefficients of vectors 𝛥𝐮̃𝑥 and 𝛥𝐯̃𝑦 are the x and y components of 𝛥𝐮̃ in each cell e, and the coefficients of matrices
𝑥,𝐶𝑃 1 and 𝑦,𝐶𝑃 1, as well as of the source term vectors 𝑥,𝐶𝑃1 and 𝑦,𝐶𝑃 1, are given in Appendix B. The matrices of systems (18)

re sparse and symmetric. If the mesh satisfies the Delaunay property, the matrices are also positive-definite, so that the -matrix
roperty is guaranteed [40] (see also Appendix B). The systems (18) are solved by a fast and efficient Preconditioned Conjugate
radient (PCG) method [43,44] with an incomplete Cholesky factorization [45,46]. The matrix coefficients only depend on 𝜈, 𝑀𝑒

𝑖,𝑗
nd geometrical quantities, so that the matrices of systems (18) are only factorized once, before the beginning of the time loop,
aving a lot of computational effort.

.2.3. 2nd corrector problem
Eq. (6c) is rewritten as

𝐌
(

𝐮𝑘+1 − 𝐮𝑘+2∕3
)

+ 𝜖
(

∇𝛹𝑘+1 − ∇𝛹𝑘) = 0, (22)

ith matrix 𝐌 defined in Section 3.2.2. Introducing the scalar variable 𝜂 such that

𝐌
(

𝐮𝑘+1 − 𝐮𝑘+2∕3𝑅𝑇 0

)

= 𝜖∇𝜂, (23)

nd left-multiplying both sides of Eq. (23) by 𝐌−1, we obtain
(

𝐮𝑘+1 − 𝐮𝑘+2∕3𝑅𝑇 0

)

= 𝜖𝐌−1∇𝜂, (24)

ith 𝐮𝑘+2∕3𝑅𝑇 0 defined as in Section 3.2.2. Since 𝐮𝑘+2∕3𝑅𝑇 0 is piecewise linear within each triangle e (see end of Section 3.2.2), we see
rom Eq. (23) that 𝜂 is piecewise quadratic within triangle e, while, from Eq. (22), 𝛹 is piecewise linear within e. Taking the
ivergence of Eq. (24) we get

∇ ⋅
(

𝐮𝑘+1 − 𝐮𝑘+2∕3𝑅𝑇 0

)

= ∇ ⋅ (𝚵∇𝜂) with 𝚵 = 𝜖𝐌−1. (25)

Setting ∇ ⋅ 𝐮𝑘+1 = 0, integrating in space over each element 𝑒 and applying the divergence theorem, we obtain from Eq. (25)
3
∑

𝑗=1

(

𝐹 𝑙𝑒𝑗
)

+ ∮𝐿𝑒

(

𝚵̄∇𝜂
)

⋅ 𝐧 d𝑙 = 0 with ∮𝐿𝑒

(

𝚵̄∇𝜂
)

⋅ 𝐧 d𝑙 =
3
∑

𝑗=1

(

𝚵̄𝑗∇𝜂
)

⋅ 𝐧𝑗 𝑙𝑒𝑗 , (26)

here the average normal flux 𝐹 𝑙𝑒𝑗 crossing side 𝑗 of cell 𝑒 has been defined in Eq. (20). Since matrix 𝚵̄𝑗 is symmetric and positive
efinite, we have

(

𝚵̄𝑗∇𝜂
)

⋅𝐧𝑗 =
(

𝚵̄𝑗𝐧𝑗
)

⋅∇𝜂, and we set 𝚵̄𝑗𝐧𝑗 = 𝐝𝑗 . Decomposing vector 𝐝𝑗 along the normal and tangential directions
o side 𝑗 (𝐧𝑗 and 𝝉𝑗 in Fig. 3), 𝐝𝑗 = 𝐝𝑗,𝑛 + 𝐝𝑗,𝜏 , and applying a co-normal decomposition of vector 𝐝𝑗,𝜏 along the normal directions

to the other two sides of cell 𝑒 (𝐧1 and 𝐧2 in Fig. 3), after some manipulations whose details are given in Appendix C, Eq. (26) is
iscretized as

3
∑

𝑗=1

(

𝐹 𝑙𝑒𝑗
)

=
3
∑

𝑗=1

( 𝜂𝑒 − 𝜂𝑒𝑝
𝑑𝑒,𝑒𝑝

𝑑𝑗,𝑛

)

𝑙𝑒𝑗+

1
2

3
∑

𝑗=1

(

∑

𝑙=1,2

𝜂𝑒 − 𝜂𝑒𝑝𝑙
𝑑𝑒,𝑒𝑝𝑙

𝑑𝜏𝑛𝑙 𝛼𝑙 +
∑

𝑚=3,4

𝜂𝑒𝑝𝑚 − 𝜂𝑒𝑝
𝑑𝑒𝑝,𝑒𝑝𝑚

𝑑𝜏𝑛𝑚 𝛼𝑚

)

𝑙𝑒𝑗

, (27)

which forms a system to be solved for the 𝜂 unknowns. With the help of Appendix C and Fig. 3, 𝑑𝑗,𝑛 = 𝐝𝑗 ⋅ 𝐧𝑗 , 𝑑𝜏𝑛𝑙(𝑚) = 𝐝𝑗,𝜏 ⋅ 𝐧𝑙(𝑚)
l = 1,2, m = 3,4), 𝜂𝑒, 𝜂𝑒𝑝, 𝜂𝑒𝑝𝑙(𝑚) are the 𝜂 unknowns in the circumcenters of cells 𝑒, 𝑒𝑝, and 𝑒𝑝𝑙(𝑚), respectively, and 𝑑𝑒,𝑒𝑝, 𝑑𝑒,𝑒𝑝𝑙 and
𝑒,𝑒𝑝𝑚 are the distances of the circumcenters of cells 𝑒 and 𝑒𝑝, 𝑒 and 𝑒𝑝𝑙, 𝑒𝑝 and 𝑒𝑝𝑚 respectively, times +1 or −1, depending on
hether the mesh satisfies or not the Delaunay property (see also Section 3.2.2). 𝛼 = 1 if 𝐝 ⋅ 𝐧 > 0 otherwise 𝛼 = −1.
8
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Fig. 3. CP2, calculation of
(

𝚵𝑗𝐧𝑗
)

⋅ ∇𝜂.

Instead of solving system (27), we solve an approximation of it, according to the following strategy. We first compute an
approximate solution of 𝜂, denoted as 𝜂̃, by solving system (28),

3
∑

𝑗=1

( 𝜂̃𝑒 − 𝜂̃𝑒𝑝
𝑑𝑒,𝑒𝑝

𝑑𝑗,𝑛

)

𝑙𝑒𝑗 =
3
∑

𝑗=1

(

𝐹 𝑙𝑒𝑗
)

. (28)

With this, the 𝜂 solution can be obtained by solving system (29a),
3
∑

𝑗=1

(

𝐹 𝑙𝜂,𝑒𝑗

)

=
3
∑

𝑗=1

(

𝐹 𝑙𝑒𝑗
)

, (29a)

with
𝐹 𝑙𝜂,𝑒𝑗 = ∫𝑙𝑗,𝑒

(𝚵∇𝜂) ⋅ 𝐧𝑗𝑑𝑙𝑗 =
𝜂𝑒 − 𝜂𝑒𝑝
𝑑𝑒,𝑒𝑝

𝑑𝑛𝑙
𝑒
𝑗 +

1
2

(

∑

𝑙=1,2

𝜂̃𝑒 − 𝜂̃𝑒𝑝𝑙
𝑑𝑒,𝑒𝑝𝑙

𝑑𝜏𝑛𝑙 𝛼𝑙 +
∑

𝑚=3,4

𝜂̃𝑒𝑝 − 𝜂̃𝑒𝑝𝑚
𝑑𝑒𝑝,𝑒𝑝𝑚

𝑑𝜏𝑛𝑚 𝛼𝑚

)

𝑙𝑒𝑗
, (29b)

where 𝐹 𝑙𝜂,𝑒𝑗 is the flux crossing side 𝑗 of 𝑒 due to 𝚵∇𝜂. Systems (28)–(29) are an approximation of system (27). The advantage of
solving the approximation systems instead of system (27), will be explained at the end of this subsection.

The same spatial discretization as in Eq. (15) has been applied. Eq. (29b) implies that fluxes 𝐹 𝑙𝜂,𝑒𝑗 , as well as ̄𝐹𝐿𝑒
𝑗 , are continuous

for the two neighbor cells 𝑒 and 𝑒𝑝, and Eq. (26) implies that ∑3
𝑗=1

(

𝐹 𝑙𝜂,𝑒𝑗 + ̄𝐹𝐿𝑒
𝑗

)

= 0, ∀𝑒 ∈ 𝛺𝑇 . Mass conservation along the three
sides and inside each cell 𝑒, ∀𝑒 ∈ 𝛺𝑇 is finally recovered at time level 𝑡𝑘+1.

Observe in Eq. (29b) that flux 𝐹 𝑙𝜂,𝑒𝑗 depends on the six values of 𝜂 in cells 𝑒, 𝑒𝑝 and 𝑒𝑝𝑙(𝑚) (l = 1,2, m = 3,4). Since the 𝜂 values
in cells 𝑒𝑝𝑙(𝑚) are assumed to be known in the solution of system (28), 𝐹 𝑙𝜂,𝑒𝑗 depends only on the two unknowns 𝜂𝑒 and 𝜂𝑒𝑝. For this
reason, due to the splitting strategy operated in Eqs. (28) and (29a), the flux discretization scheme in Eq. (29b) can be regarded,
de facto, as a Two-Point-Flux-Approximation scheme (TPFA).

After the solution of systems (28)–(29), we obtain the velocity vector at the end of the time step ∀𝑒 ∈ 𝛺𝑇 , 𝐮𝑘+1𝑒 , as in Eq. (24),
where 𝚵∇𝜂, as well as 𝐮𝑘+2∕3𝑅𝑇 0 , is a 𝐑𝐓𝟎 function,

𝐮𝑘+2∕3𝑅𝑇 0 =
3
∑

𝑗=1

(

𝐰𝑒
𝑗
̄𝐹𝐿𝑒

𝑗

)

, 𝚵∇𝜂 =
3
∑

𝑗=1

(

𝐰𝑒
𝑗𝐹 𝑙𝜂𝑗

)

, (30)

and we get

𝐮𝑘+1𝑒 =
3
∑

𝑗=1
𝐰𝑒
𝑗

(

𝐹 𝑙𝑒𝑗 + 𝐹 𝑙𝜂𝑗
)

. (31)

According to the properties of the 𝐑𝐓𝟎 functions (see Eqs. (A.1) and (A.2a)), ∇ ⋅ 𝐮𝑘+1𝑒 = 0 ∀𝐱 ∈ 𝑒, ∀𝑒 ∈ 𝛺𝑇 , and the method is
strongly conservative (see Section 1). Once 𝐮𝑘+1𝑒 is known, we get from Eq. (22), term 𝜖𝑒∇𝛹𝑘+1, ∀𝑒 ∈ 𝛺𝑇 , as,

𝜖 ∇𝛹𝑘+1 = 𝜖 ∇𝛹𝑘 + 𝐌̄
(

𝐮𝑘+1 − 𝐮𝑘+2∕3
)

, (32)
9

𝑒 𝑒 𝑒 𝑒 𝑒 𝑒 𝑒
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Fig. 4. Test 1. Computational domain.

where the symbols have been specified before. Since the kinematic pressure is not needed to update the solution at each time step,
we compute the nodal values of 𝛹 at target simulation times only, as explained in Section 5 in [36] and in Eqs. (36) in [37]. In the
framework of a linear Galerkin Finite element scheme, we set the kinematic pressure distribution 𝛹 =

∑𝑁𝑇
𝑒=1 𝜔𝑖 𝛹̃𝑖, with 𝜔𝑖 and 𝛹̃𝑖 the

shape function and the nodal unknown kinematic pressure values, respectively. We minimize the difference between the gradients
computed by Eq. (32) and the gradient of the unknown 𝛹̃ distribution. More details in the referred papers.

We set in Eq. (10) of the PP of the next time iteration

G𝑘
𝜂,𝑒 = 𝜖𝑒∇𝛹𝑘+1 𝐴𝑒. (33)

The boundary conditions of the CP2 are assigned as specified in [36]. For sides 𝑗 ∈ 𝛤𝑛 we wet

𝜂 = 𝛹𝑘+1
𝑏 − 𝛹𝑘

𝑏 (34)

with 𝛹𝑘
𝑏 and 𝛹𝑘+1

𝑏 the values of the kinematic pressure assigned at the boundary (the values of the normal stress component 𝜎𝑛
in Eq. (3b) at time levels k and k+1). Eq. (34) is consistent with the BCs in Eq. (3b). The corrective fluxes at the same boundary
ides are computed a-posteriori via Eqs. (28) and (29b). See details in [36].

The systems (28)–(29a) can be written in vector–matrix form as

𝐶𝑃 2 𝜼̃ = 𝐶𝑃 2
1 , (35a)

𝐶𝑃 2 𝜼 = 𝐶𝑃 2
2 , (35b)

here the coefficients of vectors 𝜼̃ and 𝜼 are the value of 𝜂̃ and 𝜂 in each cell e and the coefficients of matrix 𝐶𝑃 2 and of the source
erm vectors 𝐶𝑃2

1(2) are given in Appendix C. Matrix 𝐶𝑃 2 is sparse and symmetric (see Appendix C), yielding the same beneficial
atrix properties as for the CP1 problem if the mesh satisfies the Delaunay property. Therefore, systems (28)–(29a) are solved by

pplying the same procedure as in Section 3.2.2. Moreover, this again allows to perform factorization of matrix 𝐶𝑃2 only once.
The matrix associated with the original system (27) is not symmetric, and the advantage of splitting system (27) into systems

28)–(29a) is twofold: (1) numerical stability is achieved, since matrix 𝐶𝑃 2 is a -matrix and (2) there is a fast and efficient
olution of the PCG method, compared to the standard GMRES, BiCG, CGSquared, or BiCGStab methods, usually applied for the
olution of non-symmetric matrix systems.

. Numerical tests and analysis of the results

We present five numerical tests. In the first test we analyze the convergence order of the proposed algorithm and the required
omputational (CPU) times. In the second test, we compare the solution of the presented algorithm with an analytical one provided
n the literature for Stokes flow regime and different geometrical domain configurations. The third, fourth and fifth test are related
o ‘‘real-world’’ applications. In the third and fourth test we compare our numerical solution with averaged pore-scale results for
he Stokes and Navier–Stokes flow regimes. In the last test, we provide a showcase with different anisotropy tensors, for different
eynolds numbers and a comparison with the solution provided by a TDA code developed in the framework of the open-source
oftware package DuMux [47] which applies a Multi-Point-Flux-Approximation (MPFA) scheme for calculating the solution in the
orous region.

As ICs for all the presented test cases, we adopt zero velocity and zero kinematic pressure in the domain.
A very fast off-line in-house procedure is adopted to generate the computational mesh and the input data, and assign the ICs and

Cs [37]. The output model results are processed with Paraview [48]. In the presented tests, we neglect gravitational effects.
In the following Sections, 𝛿0 and 𝛿𝑇𝐿 mark the mesh sizes adopted to discretize the bulk free fluid and porous regions, as well
10

s the transition layer, respectively, while 𝑑𝑇𝐿 is the width of the transition layer.
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Table 1
Test 1. Parameter values in Eq. (37).

𝑎1 𝑎2 𝑏1 𝑏2 𝑐1 𝑐2

5 × 10−4 1.5 × 10−3 −3.2 × 10−3 −8 × 10−4 −1.95 × 10−3 4 × 10−3

4.1. Test 1. Convergence test

We assume a 2D domain 𝛺 = [0, 2]2 m2 with an internal square porous region 𝛺𝑝𝑚 [0.5, 1.5]2 m2 (see Fig. 4). In the bulk porous
egion, the porosity is 𝜖 = 𝜖0 = 0.4, and the anisotropy tensor K is given by Eq. (36)

𝐊 = 𝐑𝐀𝐑−1, 𝐀 =

(

𝑘
𝛽 0
0 𝑘

)

, 𝐑 =
(

cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼

)

, (36)

with 𝛽 = 100, 𝛼 = −𝜋∕4, such that 𝑘 = 1.0 × 10−6 m2. Matrix K is symmetric and positive definite. Kinematic fluid viscosity is
𝜈 = 1.5 × 10−5 m2∕s. The pressure field is given by

𝛹 = 𝑎1 + 𝑏1𝑥 + 𝑐1𝑥
2 + 𝑎2 + 𝑏2𝑦 + 𝑐2𝑦

2, (37)

where the values of the coefficients 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 (𝑖 = 1, 2) are listed in Table 1. The analytical velocity solution is constructed to be
divergence free and continuous at the interface between free fluid and porous regions, with velocity components

𝑢 = −(𝐾1,1
𝜕𝛹
𝜕𝑥

+𝐾1,2
𝜕𝛹
𝜕𝑦

),

𝑣 = −(𝐾2,1
𝜕𝛹
𝜕𝑥

+𝐾2,2
𝜕𝛹
𝜕𝑦

).
(38)

The Reynolds number is computed as 𝑅𝑒 = ‖u‖𝑚𝑎𝑥𝐻𝑝𝑚
𝜈 , where ‖u‖𝑚𝑎𝑥 is the maximum value of the velocity vector magnitude and

𝑝𝑚 is the side of the porous domain, such that 𝑅𝑒 ≃ 267. We assume 𝛤𝑛 = 𝛤 , except in the upper right corner, where we assign
he Dirichlet condition for 𝛹 equal to the value given by Eq. (37).

In our scheme, the outer boundary of the transition zone overlaps the outer contour of 𝛺𝑝𝑚. A continuous variation of the porosity
𝜖 and the coefficients K𝑖,𝑗 of the inverse permeability tensor is assumed within the transition layer as in Eq. (39)

𝜖(𝐱) = 1
2
(

1 − 𝜖0
)

tanh((𝑑 + 𝑑𝜖)𝜃𝜖) +
1
2
(

1 + 𝜖0
)

, (39a)

K𝑖,𝑗 (𝐱) = K0
𝑖,𝑗
1
2
(

1 − tanh((𝑑 + 𝑑𝑘)𝜃𝐾 )
)

, (39b)

here K0
𝑖,𝑗 are the coefficients of the inverse of the permeability tensor within the bulk 𝛺𝑝𝑚, computed according to Eq. (36) and

= |

|

𝐱𝑃 − 𝐱𝑇𝐿,𝑚𝑖𝑑 || 𝑠𝑖𝑔𝑛, where |

|

𝐱𝑃 − 𝐱𝑇𝐿,𝑚𝑖𝑑 || is the distance of any point P within TL from the center-line of TL and 𝑠𝑖𝑔𝑛 = 1 or −1
epending on whether point P is located in the half-region of TL on the side of the porous medium or the free fluid region. 𝑑𝜖 and
𝐾 are scalar values which control the symmetry of the profiles of 𝜖 and 1

𝐾𝑖,𝑗
with respect to the center-line of TL. Depending on

hether they assume positive or negative values, the profiles are shifted towards the free fluid region or to the porous medium
egion. 𝜃𝜖 and 𝜃𝐾 are positive scalar values which control the slope of the profiles (the larger they are, the steeper the profiles).
ig. 5(a) shows a porosity profile computed setting a negative value of 𝑑𝜖 , while in Fig. 5(b) we plot two dimensionless permeability

profiles corresponding to a negative 𝑑𝐾 value.
Generally, the solution of the model is affected by both position and size of the transition zone. This is because the extension of

the portion of the computational domain where the term 𝜇𝜖K𝐮 in the momentum equation (see Eqs. (1) and (2)) is active, depends
on the position and size of the transition layer.

We initially assumed the width of TL to be 𝑑𝑇𝐿 = 𝐻𝑝𝑚∕25, and the domain is discretize with a coarse mesh (𝑁𝑇 = 16260
triangles and 𝑁 = 8292), whose maximum values of mesh sizes are 𝛿0 = 0.025 m and 𝛿𝑇𝐿 = 0.02 m, respectively. Starting from this
coarse mesh, we progressively performed four refinement operations by halving 𝛿0 =, leaving 𝑑𝑇𝐿 unchanged and setting 𝛿0 = 𝛿𝑇𝐿.
The adopted time step size is 𝛥𝑡 = 2.25 × 10−1 s. The maximum 𝐶𝐹𝐿 value, 𝐶𝐹𝐿𝑚𝑎𝑥 = ‖u‖𝑚𝑎𝑥𝛥𝑡∕

√

𝐴𝑒 was computed in TL, and
𝐹𝐿𝑚𝑎𝑥 ≃ 1.387. At each mesh refinement, we halved 𝛥𝑡, to avoid increases of 𝐶𝐹𝐿𝑚𝑎𝑥. We set both 𝑑𝜖 and 𝑑𝐾 to zero, and
𝜖 = 𝜃𝐾 = 200 in Eq. (39). The 𝐿2 norm of the errors of the computed solutions for 𝑢, 𝑣 and 𝛹 with respect to the exact solutions
iven in Eqs. (37) and (38) is computed as

𝐿2 (𝑒𝑟𝑟 (𝑞)) =

√

√

√

√

𝑁𝑇
∑

𝑒=1
𝐴𝑒

(

𝑞𝑛𝑒 − 𝑞𝑒𝑥𝑒
)2,

𝐿2 (𝑒𝑟𝑟 (𝛹 )) =

√

√

√

√

𝑁
∑

𝑖=1
𝐴𝑖

(

𝛹 𝑛
𝑖 − 𝛹 𝑒𝑥

𝑖
)2,

(40)

here 𝑞 = 𝑢 or 𝑣, 𝐴𝑖 is the area of the Voronoi polygon associated with node 𝑖 and superscripts 𝑛 and 𝑒𝑥 mark the numerical and
𝑛 𝑒𝑥 𝑛 𝑒𝑥
11

xact solutions, respectively. 𝑞𝑒 and 𝑞𝑒 are computed in the circumcenter of each cell, while 𝛹𝑖 and 𝛹𝑖 are computed in the mesh
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Fig. 5. Porosity and permeability profiles.

nodes. If we call ℎ𝑙 the mesh size associated with the 𝑙th refinement, and assume that the error associated with the 𝑙th refinement
is proportional to a power 𝑟𝑐 of ℎ𝑙, we compute the spatial rate of convergence 𝑟𝑐 by comparing the errors obtained for the two
meshes with the two consecutive linear sizes ℎ𝑙 and ℎ𝑙+1,

𝑟𝑐 = ln

[

𝐿2
(

𝑒𝑟𝑟𝑙
)

𝐿2
(

𝑒𝑟𝑟𝑙+1
)

]

∕ ln
[

ℎ𝑙
ℎ𝑙+1

]

. (41)

In Table 2 we list the 𝐿2 norms of the errors and the convergence order 𝑟𝑐 of the velocity components is close to 1, due to the
piecewise constant approximation of the velocity inside each triangle. 𝑟𝑐 of 𝛹 is smaller than 2. The reason could be that, due to the
lack of a specific equation for 𝛹 in the governing equations, this is indirectly computed from the pressure gradients, as described
at the end of Section 3.2.3.

We also investigate how the size of TL, 𝑑𝑇𝐿, affects the computed results compared to the exact ones. Starting from the 2nd
mesh refinement level, we progressively halved 𝑑𝑇𝐿 as well as its mesh size 𝛿𝑇𝐿, without changing 𝛿0 in the free fluid and the bulk
porous regions. At each refinement of 𝑑𝑇𝐿, we also halved 𝛥𝑡 for the aforementioned reasons. Since the assigned analytical solution
of the velocity vector depends on the values of the permeability coefficients in the bulk porous region, without any transition of
their values close to the interface with the fluid region (see Eq. (39)), we expect the numerical solution to get closer and closer to
the exact one by refining 𝑑𝑇𝐿. This is confirmed by the results in Table 3.

We also investigated the computational (CPU) times required by the algorithm steps, PP, CP1, CP2 and sorting cell operation,
𝐶𝑃𝑈𝑃𝑃 , 𝐶𝑃𝑈𝐶𝑃1, 𝐶𝑃𝑈𝐶𝑃2, 𝐶𝑃𝑈𝛹 and 𝐶𝑃𝑈𝑠𝑟𝑡, respectively. Given two real scalar numbers 𝑐 and 𝜔, we express the mean value of
𝐶𝑃𝑈 𝑠𝑡𝑒𝑝 per time iteration as

𝐶𝑃𝑈 𝑠𝑡𝑒𝑝 = exp (𝑐)𝑁𝜔
𝑇 or 𝐶𝑃𝑈 𝑠𝑡𝑒𝑝 = exp (𝑐)𝑁𝜔. (42)

where ‘‘step’’ in Eq. (42) corresponds to PP, or CP1, or CP2, or 𝛹 , or srt. A single Intel(R) Core(TM) i7-9700K processor at 3.40 GHz
was used for the simulation runs. In Fig. 6 we show the computational times in bi-logarithmic scales. Due to the explicit nature
of the predictor step (i.e., the sequential solution of the ODEs systems during the MAST forward and backward steps), its growth
with 𝑁𝑇 is almost linear (the 𝛾 exponent is slightly smaller than 1). Since the two corrector steps, as well as the computation of
the kinematic pressure require the solution of linear systems, their growth with 𝑁𝑇 (or 𝑁) is more than linearly proportional (the
associated exponents 𝛾 are slightly higher than 1, ranging from 1.1307 to 1.1533). 𝐶𝑃𝑈𝐶𝑃 1 and 𝐶𝑃𝑈 𝑠𝑟𝑡 are approximately 1 and
2–3 magnitude orders smaller than 𝐶𝑃𝑈𝑃𝑃 and 𝐶𝑃𝑈𝐶𝑃2. The difference between 𝐶𝑃𝑈𝐶𝑃1 and 𝐶𝑃𝑈𝐶𝑃2 is because the storage
term is missing in Eqs. (28) and (29) of the CP2. This implies that the condition of strict diagonal dominance is obtained for each
row of the matrices of the systems of CP1. On the contrary, this condition only applies to the rows associated with the Dirichlet BCs
for 𝜂 for the CP2 system matrix.

4.2. Test 2. Comparison with analytical solution for Stokes flow regime in a three-layer channel

We deal with a 1D Stokes flow regime along the 𝑥 direction in a three-layer channel with total depth 𝐻 , where the transition layer,
TL, is in between a bulk porous and a clear fluid region (see Fig. 7(a)). This problem is proposed in [49]. The spatial distribution
of the isotropic permeability 𝐾 is given in Eq. (43a)

1 = 0 in clear fluid region, layer 1, 0 ≤ 𝑦 ≤ 𝜁𝐻, (43a)
12
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Table 2
Test1. 𝐿2 norms of errors and 𝑟𝑐 for mesh refinement.

Mesh details 𝑢 𝑣 𝛹

𝑁 𝑁𝑇 𝐿2 𝑟𝑐 𝐿2 𝑟𝑐 𝐿2 𝑟𝑐

8292 16 260 1.20 × 10−3 – 1.21 × 10−3 – 3.45 × 10−2 –
29069 57 512 6.06 × 10−4 9.88 × 10−1 6.06 × 10−4 9.98 × 10−1 1.3 × 10−2 1.41

115110 228 970 3 × 10−4 1.01 3.01 × 10−4 1.01 4.6 × 10−3 1.5

423918 845 398 1.45 × 10−4 1.05 1.44 × 10−4 1.06 1.5 × 10−3 1.62

1647132 3 289 420 6.88 × 10−5 1.07 6.86 × 10−5 1.07 4.56 × 10−4 1.72

Table 3
Test1. 𝐿2 norms of errors for 𝑑𝑇𝐿 refinement.

𝑁 𝑁𝑇 𝜃𝜖 = 𝜃𝐾 𝐿2,𝑢 𝐿2,𝑣 𝐿𝛹

115110 228 970 800 3 × 10−4 3.01 × 10−4 4.6 × 10−3

160753 329 773 1600 1.98 × 10−4 1.97 × 10−4 3.01 × 10−3

218507 435 746 3200 1.178 × 10−4 1.177 × 10−4 1.7 × 10−3

323158 645 032 6400 6.01 × 10−5 5.97 × 10−5 7.6 × 10−4

Fig. 6. Study of the CPU times of the algorithm steps.

1
𝐾 (𝑦)

= 1
𝐾0

𝑦 − 𝜁𝐻
𝜉𝐻 − 𝜁𝐻

in transition zone, layer 2 𝜁𝐻 ≤ 𝑦 ≤ 𝜉𝐻, (43b)

𝐾 (𝑦) = 𝐾0 in bulk porous region, layer 3, 𝑦 > 𝜉𝐻. (43c)

The flow is driven by a uniform negative pressure gradient 𝐺 in the three layers, yielding the following Stokes–Brinkman
Equations

𝜇 𝜕2𝑢
𝜕𝑦2

+ 𝐺 = 0 0 ≤ 𝑦 ≤ 𝜁𝐻, (44a)

𝜇 𝜕2𝑢
𝜕𝑦2

−
𝜇𝑢

𝐾 (𝑦)
+ 𝐺 = 0 𝜁𝐻 ≤ 𝑦 ≤ 𝜉𝐻, (44b)

𝜇 𝜕2𝑢
𝜕𝑦2

−
𝜇𝑢

𝐾 (𝑦)
+ 𝐺 = 0 𝑦 > 𝜉𝐻. (44c)

The analytical solution of the dimensionless form of system (44a) is given by Eqq. (10) in [49]. This has been obtained by
solving the system in Eqq.(15)–(18) of the same paper. In the present work, we solved the system in Eqq. (15)–(18) in [49] using
the software package Mathematica [50]. We consider both thin and fat TL scenarios (‘‘ttl’’ and ‘‘ftl’’, respectively), and we present
simulations for small and large Darcy numbers 𝐷𝑎 values (𝐷𝑎 = 𝐾0∕𝐻2). We set 𝐻 = 0.5 m and an equal value of the channel
length. The ‘‘ftl’’ and ‘‘ttl’’ configurations are obtained by setting 𝜁 = 1∕3𝐻 = and 𝜉 = 2∕3𝐻 , and 𝜁 = 1∕3𝐻 and 𝜉 = 1.006∕3𝐻 ,
respectively.
13
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Table 4
Test 2. Parameters for the computational meshes 𝑚𝑖.

𝛿0 [m] 𝛿𝑇𝐿 [m] N 𝑁𝑇

ftl 𝑚0 5 × 10−3 5 × 10−3 19 478 37 752
ftl 𝑚1 2.5 × 10−3 2.5 × 10−3 51 841 102 287
ftl 𝑚2 1.25 × 10−3 1.25 × 10−3 195 556 389 356
ttl 𝑚0 5 × 10−3 7 × 10−5 242 750 484 234
ttl 𝑚1 2.5 × 10−3 7 × 10−5 273 272 545 112
ttl 𝑚2 1.25 × 10−3 7 × 10−5 402 484 803 165

Table 5
Test 2. 𝐿2 norms of relative error of u.

Mesh ftl ttl

𝐷𝑎 = 2 × 10−4 𝐷𝑎 = 1 × 10−2 𝐷𝑎 = 2 × 10−4 𝐷𝑎 = 1 × 10−2

𝑚0 3.4 × 10−4 3.51 × 10−4 4.7 × 10−4 4.85 × 10−4

𝑚1 1.71 × 10−4 1.74 × 10−4 2.23 × 10−4 2.4 × 10−4

𝑚2 8.5 × 10−4 8.7 × 10−4 1.1 × 10−4 1.2 × 10−4

We set a pressure drop 𝛥𝛹 = 5 × 10−7 m2∕s2 between the left and right end sides of the channel, while a no-slip velocity
ondition is assigned along the horizontal bottom and top walls. The kinematic fluid viscosity is 𝜈 = 1.5 × 10−5 m2∕s. In Table 4
e list the mesh sizes 𝛿0 and 𝛿𝑇𝐿 adopted for the different simulated scenarios, as well as the number of nodes 𝑁 and triangles 𝑁𝑇

of the corresponding meshes. The time step size 𝛥𝑡 = 10 s for all the simulated scenarios. We set 𝐾0 such that 𝐷𝑎 = 2 × 10−4 and
𝑎 = 1 × 10−2, and CFL𝑚𝑎𝑥 ranges from 1.42 (‘‘ttl’’ case and small 𝐷𝑎) to 2.45 (‘‘ftl’’ case and large Da).

In Table 5 we list the 𝐿2 norms of the relative errors of the horizontal velocity component for the computational meshes 𝑚𝑖,
omputed as in Eq. (40). In Fig. 7(b) we compare the numerical ODA solution against the analytical solution. The numerical solution
f the presented solver fits very well the analytical one. For brevity, we show only the solutions for ‘‘ftl’’ with small 𝐷𝑎 and ‘‘ttl’’
ith large 𝐷𝑎 cases, but the matching is satisfactory also for the other investigated scenarios. The numerical solution in Fig. 7(b)

s related to mesh 𝑚1 (see Table 4), but the solutions obtained for the meshes 𝑚0 and 𝑚2 are indistinguishable at the graphic scale,
nd for brevity are not shown.

.3. Test 3. Comparison with pore-scale results for Stokes flow regime

Test 3 is related to filtration/exfiltration processes in microfluidics, which presents several industrial, environmental or
iomedical applications (e.g., membrane filtration processes, wastewater treatment, water purification, hemodialysis, . . . ). The test
ase considered in this Section has been proposed in [51]. The computational domain 𝛺 = (0, 𝐿) × (0,𝐻) has a free fluid region
𝑓𝑓 = (0, 𝐿)×(𝛾,𝐻) and a porous region 𝛺𝑝𝑚 = (0, 𝐿)×(0, 𝛾) with 𝐿 = 10.25 mm and 𝐻 = 6 mm. The porous region is isotropic, made
p of 20 × 10 square solid inclusions of size 𝑑𝑠𝑖 = 250 μm, such that the porosity 𝜖 is 0.75. 𝛾 = 5 mm is the distance between the
ottom boundary and the tangential line located on top of the uppermost row of solid inclusions. This is shown in Fig. 8(a), where
he geometrical setup and the assigned boundary conditions are depicted. An inflow velocity profile 𝐯 = (0, 𝑉𝑚𝑎𝑥 𝑠𝑖𝑛( 10003 𝜋𝑥)) is

assigned on 𝛤𝑒 = 1.5( mm, 4.5 mm)×𝐻 , with 𝑉𝑚𝑎𝑥 = 1 × 10−3 m∕s, and 𝛹 = 0 on 𝛤𝑛 = 𝐿×(5.5 mm,𝐻). The remaining portions of the
boundaries are assumed to be impervious walls with no-slip velocity condition. The considered fluid is water (𝜈 = 1 × 10−6 m2∕s)
and the bulk permeability is 𝐾0 = 3.45 × 10−9 m2, computed according to the geometry of the solid inclusions [52]. The Reynolds
umber associated with the free fluid zone, 𝑅𝑒 =

(

𝑉𝑚𝑎𝑥 (𝐻 − 𝛾)
)

∕𝜈, is equal to 1.
To obtain a reference solution, we averaged the results of a pore-scale simulation (PSS) obtained by solving the present test case

using the open-source simulator DuMux [47]. At the pore scale, the flow is governed by the Stokes equations in the entire domain,
with no-slip BCs assigned on the boundaries of the solid inclusions. A uniform structured mesh was used for the PSS, with side
𝛿𝑃𝑆𝑆 = 1.5625 × 10−5 m. The ODA solution is compared with the ‘‘surface average’’ [20,21] results of the PSS over square-shaped
REVs, the size of which, 𝑙𝑅𝐸𝑉 , depend on whether the REV is located in the porous or the fluid region (see Fig. 8(b)). Within 𝛺𝑝𝑚,
𝑙𝑅𝐸𝑉 = 2𝑑𝑠𝑖 and REVs centroids coincide with those of the solid inclusions (yellow squares in Fig. 8(b)). Within 𝛺𝑓𝑓 , 𝑙𝑅𝐸𝑉 = 8𝛿𝑃𝑆𝑆
(red squares in Fig. 8(b)).

Both bottom and middle TL positions were assumed. Bottom and middle positions mean that the center-line of the TL is at
𝑦 = 𝛾 − 𝑑𝑠𝑖∕2 or 𝑦 = 𝛾, respectively. The spatial variations of 𝜖 and 1∕𝐾 within TL are given by Eq. (39).

The TL width, 𝑑𝑇𝐿, as well as the parameters needed for modeling porosity and permeability variation given by Eq. (39) were
selected according to preliminary simulations performed on a fine mesh (uniform linear size of 0.0085 mm, 𝑁 = 895064 and
𝑁𝑇 = 1786418), and were adopted for TL positions. Therefore we assumed: 𝑑𝑇𝐿 ∈

[

𝑑𝑠𝑖, 3𝑑𝑠𝑖
]

, 𝑑𝜖 = 0, 𝑑𝐾 ∈
[

0, 1 × 10−4m
]

and
𝜃𝜖 = 𝜃𝐾 ∈

[

7 × 103, 5 × 104
]

. For each simulation we compared, along the horizontal line at 𝑦 = 0.004875 m (the vertical coordinate
of the centers of mass of the solid inclusions of the uppermost row), the distributions of 𝑢, 𝑣 and 𝛹 computed by the ODA solver
14
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Fig. 7. Test 2. Considered domain with three layers (a). Numerical and analytical results for two considered cases (b).

Fig. 8. Test 3. Pore-scale setup (a). Considered REVs for averaging (b).

The ODA solutions obtained for the middle TL position seemed not to be sensitive to the size 𝛿𝑇𝐿, and, compared to the bottom
position configuration, we observed (1) an overestimation of the velocity vector magnitude ‖𝐮‖, up to twice in the bulk region
𝛺𝑝𝑚 and up to 20% in the 𝛺𝑓𝑓 region, and (2) an underestimation of ‖𝐮‖ close to the interface between 𝛺𝑝𝑚 and 𝛺𝑓𝑓 , up to one
magnitude order. This is why the results are not further discussed here. The best match with the averaged PSS results was obtained
for the middle TL configuration with 𝑑𝐾 = 3 × 10−5 and 𝜃𝜖 = 𝜃𝐾 = 4.7 × 104.

The adopted mesh sizes are 𝛿0 = 2.5 × 10−5 m and 𝛿𝑇𝐿 = 1 × 10−5 m. These sizes guarantee a good compromise between the
accuracy of the results (maximum relative error values of the velocity components and kinematic pressure not greater than 1%
15
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Fig. 9. Test3. Comparison between the velocity and kinematic pressure fields computed by the ODA solver (left column) and the PSS results [47] (right column).
Top row: velocity (in m/s), bottom row: kinematic pressure (in m2∕s2).

compared to the results obtained over the fine mesh above mentioned) and the computational effort. The time step size is 2.5 × 10−3

s and 𝐶𝐹𝐿𝑚𝑎𝑥 ≃ 1.98.
In Fig. 9 we compare the velocity and kinematic pressure fields provided by the present ODA solver and the corresponding PSS

results. The porous medium is an obstacle to the incoming flow from 𝛤𝑒, which largely deviates in the upper free fluid region, to
the right, forming a channelized flow. Part of the incoming flow infiltrates the left portion of 𝛺𝑝𝑚 and exfiltrates through the right
side, towards the outlet of the domain. The absolute value of the velocity vector in the bulk 𝛺𝑝𝑚 is approximately 1.5–2 orders of
magnitude smaller than in 𝛺𝑓𝑓 . The ODA solver well reproduces the overall flow and pressure fields predicted by the PSS, with a
small overestimation of 𝛹 close to the inflow region.

Velocity and kinematic pressure profiles are compared in Figs. 10 and 11. There, excellent agreement between the ODA and the
averaged PSS solutions is observed within 𝛺𝑝𝑚 (𝑦 = 0.001875 m and 𝑦 = 0.003375 m) and close to the interface (𝑦 = 0.004875 m).
According to the computed 𝑣 component and 𝛹 at 𝑦 = 0.001875 m, 𝑦 = 0.003375 m and 𝑦 = 0.004875 m, as well as at 𝑥 = 0.00225
m and 𝑥 = 0.00825, the proposed solver correctly predicts the infiltration processes into and exfiltration processes from the porous
domain. The ODA solver slightly underestimates the peak value of the 𝑢 component in the 𝛺𝑓𝑓 region compared to the averaged
PSS (positions 𝑥 = 0.00225 m, 𝑥 = 0.00525 m and 𝑥 = 0.00825 m).

In Figs. 10 and 11, we also plot the solution of a penalized ODA solver, (see Section 1 and [26–32] for further details). This
solver is obtained by assuming, in the present algorithm, a discontinuous function for 𝜖 and 1∕𝐾 at the transition between 𝛺𝑝𝑚 and
𝛺𝑓𝑓 , i.e., at 𝑦 = 𝛾 (the associated results are marked with ‘‘p ODA’’). This strongly affects the infiltration/exfiltration processes, as
observed in these figures. The absolute value of the 𝑣 component is underestimated close to the interface and along the three vertical
profiles at 𝑥 = 0.00225 m, 𝑥 = 0.00525 m and 𝑥 = 0.00825 m. Furthermore, nonphysical oscillations in the 𝑣 profile at 𝑥 = 0.00525 m
are observed due to the interfacial stress jump. Significant underestimation of the 𝑢 component within the porous medium, in the
free fluid region and close to the interface, are also observed. The kinematic pressure is overestimated throughout the computational
domain. This analysis shows that the ‘‘penalized’’ approach provides a poor estimation of the results, not only close to the interface
but also within the bulk 𝛺𝑝𝑚 and 𝛺𝑓𝑓 regions, since the overall infiltration/exfiltration processes are not properly recovered, due
to the choice of the discontinuous profiles of 𝜖 and 1∕𝐾.

4.4. Test 4. Comparison with pore-scale results for Navier–Stokes flow regime

In test 4, we deal with a lid-driven cavity flow over a fibrous porous medium. The lid-driven cavity flow is an idealized paradigm
of internal flows of industrial or natural processes, for example industrial microelectronics, metal casting, flows over slots on the
walls of heat exchangers, dynamics of lakes,. . . The vortical flow structure and the related momentum transport process can be
modulated by porous medium, which can be used as a passive flow control tool. The present test case has been proposed in [6].
Here we deal with a square domain 𝛺 = (0, 𝐿)2, consisting of an upper free fluid region 𝛺𝑓𝑓 = (0, 𝐿) × (𝛾, 𝐿) and a bottom porous
region 𝛺𝑝𝑚 = (0, 𝐿)× (0, 𝛾), made of vertical fibers, with porosity 𝜖 = 0.8, and orthotropic tensor. The setup is shown in Fig. 12, with
𝐿 = 1 m and 𝛾 = 𝐿∕3. The upper boundary moves to the right with assigned horizontal velocity 𝑈 = 1 m/s; the other boundaries
16
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Fig. 10. Test3. Velocity components computed by the averaged PSS, the ODA solver and the penalized ODA solver (p ODA) at different positions. (a) 𝑦 = 0.001875
m; (b) 𝑦 = 0.003375 m; (c) 𝑦 = 0.004875 m; (d) 𝑥 = 0.00225 m; (e) 𝑥 = 0.00525 m; (f) 𝑥 = 0.00825 m.

are impervious. We ran simulations for 𝑅𝑒 = 100 and 1000, where 𝑅𝑒 = 𝑈∞𝐿
𝜈 . The associated pore-scale Reynolds number within

𝛺𝑝𝑚 ranged between 1.75 × 10−2 and 5.125 × 10−3 [6].
The authors of [6] performed Direct Numerical Simulations (DNS) at the pore scale, where the Navier–Stokes equations with

no-slip BCs on the fibers boundaries are solved, and the results have been then averaged over cubic REV volumes with side length
𝑙𝑅𝐸𝑉 = 0.02 m. From the averaged DNS results, they also computed the bulk permeability tensor coefficients 𝐾0

𝑖,𝑗 , 𝑖, 𝑗 = 1, 2, as well
as the extensions 𝑑𝑇𝐿𝑖

, measured from the top of 𝛺𝑝𝑚, where 1
/

𝐾𝑖,𝑗 decreases, almost linearly, from the bulk value to zero. More
details can be found in the aforementioned paper. In Table 6 we list the values of 𝐾0

𝑖,𝑗 and 𝑑𝑇𝐿𝑖
. Due to the orthotropy of the porous

region, 𝐾0
𝑖,𝑗 = 0 with 𝑖 ≠ 𝑗. The averaged DNS simulations are the reference solutions for the comparison with the proposed ODA

solver.
We simulated different scenarios, where the position and the size of the transition layer 𝑑𝑇𝐿 is changed (see Table 7). As before,

with the nomenclature bottom and middle we refer to the position of the TL, whose top level is at 𝑦 = 𝛾 and 𝑦 = 𝛾 + 𝑑𝑇𝐿∕2,
respectively. We assumed linear variation of the porosity along 𝑑𝑇𝐿, and if 𝑑𝑇𝐿1

≠ 𝑑𝑇𝐿2
, we assumed linear variation of 𝜖 along the

average distance
(

𝑑𝑇𝐿1
+ 𝑑𝑇𝐿2

)

∕2. We performed a sensitivity analysis to the mesh size, where the reference solution was obtained
over a fine mesh (uniform mesh size 0.001 m in the entire domain, 𝑁𝑇 = 2241989, 𝑁 = 1122965). The sizes 𝛿0 and 𝛿𝑇𝐿 m listed
in Table 7 provided a good compromise between the accuracy of the results (maximum value of the relative errors of the velocity
17
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Fig. 11. Test3. Kinematic pressure computed by the averaged PSS, the ODA solver and the penalized ODA solver (p ODA) at different positions. (a) 𝑦 = 0.001875
m; (b) 𝑦 = 0.003375 m; (c) 𝑦 = 0.004875 m; (d) 𝑥 = 0.00225 m; (e) 𝑥 = 0.00525 m; (f) 𝑥 = 0.00825 m.

components and kinematic pressure compared to the results of the fine mesh smaller than 1%) and the computational costs. The
time step size of the numerical simulation is 𝛥𝑡 = 0.02 s and 𝐶𝐹𝐿𝑚𝑎𝑥 ranges from 3.15 (𝑅𝑒 = 1000) to 3.24 (𝑅𝑒 = 100).

In Figs. 13 and 14 we compare the velocity streamlines and the pressure contours computed by the presented ODA solver with the
averaged reference DNS results of [6]. Excellent agreement can be found for both 𝑅𝑒 values. As 𝑅𝑒 increases, the large vortex within
𝛺𝑓𝑓 moves downwards to the center of the domain, and the size of the corner vortices increases. According to the streamlines, we
argue that the porous region represents an obstacle for the flow, and only a small amount of the fluid penetrates 𝛺𝑝𝑚, with a velocity
magnitude approximately three orders of magnitude smaller than in 𝛺𝑓𝑓 . The separation between the two major recirculation zones
within 𝛺𝑝𝑚 moves to the right as 𝑅𝑒 increases from 100 to 1000. The local pressure minima are associated with the centers of the
vortices, both within 𝛺𝑓𝑓 and 𝛺𝑝𝑚.

Overall good agreement between the present model and the reference solution can be observed for the velocity components
computed along the vertical center-vertical-line of the domain (𝑥 = 0.5 m) (see Figs. 15 and 16). The most accurate results are
obtained by setting a middle position of the transition layer and the distance 𝑑𝑇𝐿1

and 𝑑𝑇𝐿2
to be equal to the characteristic size

of the REV used for the averaging process of the DNS results (scenario 4 in Table 7). In the same Figs. 15 and 16, the solutions
marked as ‘‘p ODA’’ are obtained in the framework of a penalized approach, with a discontinuity of 𝜖 and 1∕𝐾𝑖,𝑖, 𝑖 = 1, 2 across the
interface placed at 𝑦 = 𝛾. Due to the interfacial stress jump, 𝑢 and 𝑣 profiles close to interface between 𝛺𝑝𝑚 and 𝛺𝑓𝑓 are shifted.
Poor estimation of the peak values is also observed in 𝛺 , and both velocity components are underestimated within 𝛺 .
18
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Fig. 12. Test4. Computational domain and assigned boundary conditions, with 𝐿 = 1 m and 𝛾 = 𝐿∕3.

Table 6
Test 4. Permeability coefficients (from [6]).

𝐾0
1,1 [m2] 𝐾0

2,2 [m2] 𝑑𝑇𝐿1
[m] 𝑑𝑇𝐿2

[m]

𝑅𝑒 100 1.05 × 10−5 2.196 × 10−2 0.05 0.03
𝑅𝑒 1000 1.06 × 10−5 2.25 × 10−5 0.05 0.03

Table 7
Test 4. Mesh parameters for different scenarios.

Scenario Position TL 𝑑𝑇𝐿1
[m] 𝑑𝑇𝐿2

[m] 𝛿𝑇𝐿 [m] 𝑁 𝑁𝑇

1 bottom 2.5 l 1.5 l 0.0015 241 187 480 781
2 bottom 1.5 l 1.5 l 0.0015 235 282 468 978
3 bottom l l 0.0015 233 128 464 673
4 middle l l 0.0015 233 948 466 351
5 bottom 0.5 l 0.5 l 0.00075 210 725 419 851
6 middle 0.5 l 0.5 l 0.00075 210 839 419 941
7 bottom 0.1 l 0.1 l 0.00015 359 986 718 352
8 bottom 0.05 l 0.05 l 0.000075 496 636 991 647
9 bottom 0.025 l 0.025 l 0.000035 793 656 1585690

4.5. Test 5. Analysis of free fluid flow over an anisotropic porous obstacle for different 𝑅𝑒 values

A porous obstacle invested by a fluid finds several applications (e.g., oil filters, porous coating acting as passive flow control
device, porous regulating flow devices, . . . ). The test case proposed in this Section has been proposed in [53]. Here a free fluid
flows around and within an anisotropic porous obstacle 𝛺𝑝𝑚 with bulk porosity 0.4 (see Fig. 17). Flow is driven by a pressure drop
𝛥𝛹 = 𝛹1 − 𝛹2 between the upstream and downstream sides of the domain, while no-slip velocity BC is imposed on the bottom
and top sides. This test is proposed in [53]. The kinematic viscosity of the fluid is 𝜈 = 1.5 × 10−5 m2∕s. The Reynolds number is
calculated as 𝑅𝑒 = ‖u‖𝑚𝑎𝑥ℎ𝑓𝑓

𝜈 , where ‖u‖𝑚𝑎𝑥 is the maximum value of the velocity vector magnitude in the free fluid region above
the porous obstacle and ℎ𝑓𝑓 is the fluid depth above the obstacle. We simulate two cases of 𝑅𝑒 ≪ 1 and 𝑅𝑒 ≃ 160.

The anisotropic tensor 𝐊 is computed as in Eq. (36), with coefficients 𝑘 = 1 × 10−6 m2, 𝛽 = 100 and 𝛼 ∈
[

−𝜋∕4, 𝜋∕4
]

. We
assume a bottom TL position, where the outer boundary of the TL overlaps the outer contour of the porous block (see Fig. 17) and
𝑑𝑇𝐿 = 1 × 10−3 m. We again assume that the spatial variation of the porosity and the coefficients of the inverse of the permeability
tensor within TL are given by Eq. (39), with 𝑑𝜖 = 𝑑𝐾 = 0 and 𝜃𝜖 = 𝜃𝐾 = 8000.

The aim of this showcase test is to compare the solution of the presented ODA solver, in terms of velocity and pressure fields, as
well as fluxes crossing the boundary of the porous obstacle, with the numerical solution of a TDA solver proposed in [53], which
couples the Navier–Stokes equations (for compressible fluids) in 𝛺𝑓𝑓 to Darcy flow equation in 𝛺𝑝𝑚, enforcing conservation of mass
and momentum across the by interface and by applying the Beavers and Joseph slip condition at the interface [3]. A staggered-grid
finite volume method is applied to discretize the Navier–Stokes equations and a MPFA finite volume method, for the discretization
of the Darcy equation. The MPFA scheme is suitable to simulating anisotropic problems in porous media and does not require the
computational mesh to be 𝐊-orthogonal to the principal anisotropy directions (i.e., no specific mesh alignment along the principal
direction of the permeability tensor is required). The numerical TDA-MPFA procedure is implemented in the open-source software
DuMux. More details can be found in [53].
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Fig. 13. Test4. Comparison between the velocity streamlines computed by the ODA solver and the averaged DNS results [6]. Left column: averaged DNS results,
right column: ODA results. Top row: 𝑅𝑒 = 100, bottom row: 𝑅𝑒 = 1000 (velocity of the proposed model in m/s).

The computational domain in the case of 𝑅𝑒 ≪ 1 is 𝛺 = [0, 0.75]× [0, 0.25] m2, the porous obstacle 𝛺𝑝𝑚 = [0.25, 0.5]× [0, 0.2] m2

with pressure drop 𝛥𝛹 = 1 × 10−6 m2∕s2 (see Fig. 17). The TDA-MPFA solver uses a structured grid with a uniform mesh size
equal to 5 × 10−4 m. The adopted mesh sizes of the ODA solver runs are 𝛿0 = 5 × 10−3 m and 𝛿𝑇𝐿 = 1 × 10−4 m, 𝑁 = 235859 and
𝑁𝑇 = 468685, 𝛥𝑡 = 4 s and the 𝐶𝐹𝐿𝑚𝑎𝑥 ranges from 1.13 (𝛼 = −𝜋∕6) to 1.19 (𝛼 = 𝜋∕4).

In Fig. 18 we show the velocity and pressure fields provided by the presented ODA for 𝛼 = −𝜋∕4 and 𝛼 = 𝜋∕4, in the case of
𝑅𝑒 ≪ 1. Overall good agreement is observed with the results provided by the TDA-MPFA scheme in [53] (see Fig. 5 of the referred
paper). Due to the obstacle, a channelized flow is established above it, where the highest velocity values are observed, while the
velocity in the porous block is approximately 2–4 orders of magnitude smaller. The effect of anisotropy is clearly visible within 𝛺𝑝𝑚,
where the flow follows the principal direction of the permeability tensor, exiting (𝛼 = −𝜋∕4) or entering (𝛼 = 𝜋∕4) at the top side.
The recirculation zones simulated by the TDA-MPFA scheme within 𝛺𝑝𝑚 close to the bottom right corner (𝛼 = −𝜋∕4) and left corner
(𝛼 = 𝜋∕4) are slightly shifted outside 𝛺𝑝𝑚 in the presented ODA solutions. This could be caused by the different velocity distribution
inside the TL.

For anisotropic problems, the TPFA scheme requires the computational grid to satisfy the 𝐊-orthogonality (see Fig. 6 in [53]).
Otherwise the anisotropy is not correctly captured and the fluid flows almost horizontally in the porous block.

In the case of 𝑅𝑒 ≃ 160, we adopt a similar setting to the previous one, with a longer domain along the 𝑥 direction.
𝛺 = [0, 2.5] × [0, 0.25] m2, the porous obstacle 𝛺𝑝𝑚 = [0.4, 0.6] × [0, 0.2] m2 and pressure drop 𝛥𝛹 = 2 × 10−3 m2∕s2. We investigate
the case of 𝛼 = 𝜋∕4. We use the same mesh sizes as before (𝑁 = 344705 and 𝑁𝑇 = 680476), the time step size is 2.5 × 10−2 s and
𝐶𝐹𝐿𝑚𝑎𝑥 ≃ 9.15. We analyzed the case of 𝛼 = 𝜋∕4. Again, the fluid is forced to flow mainly in the narrow channel over the porous
obstacle, and vortex structures within 𝛺𝑓𝑓 are detected after approximately 20 s. The stationary solution is achieved after a longer
time (∼ 200 s, in Fig. 19), compared to the case of 𝑅𝑒 ≪ 1, with two stable countercurrent, large vortices downstream the porous
block and a smaller one in front of the obstacle. Some discrepancies arise in the fluid region compared to the results provided in [53]
(see Fig. 8 in the referred paper). The reason could be the different assumption of compressible fluid made in the reference study.

It is interesting to compare the fluxes across the boundaries of the porous block computed by the three numerical solvers. The
case of 𝑅𝑒 ≪ 1 is plotted in Fig. 20(a), where negative (positive) values are associated with fluxes leaving (incoming) the block.
ODA and TDA-MPFA schemes provide similar results, and the discrepancies are due to the different treatment of the interface. The
TDA-TPFA scheme computes correct results only for the 𝐊-orthogonal case, i.e. when 𝛼 = 0. Since the off-diagonal coefficients of
the tensor 𝐊 are not considered in the TDA-TPFA scheme, the associated results are independent of the direction of rotation. In
20
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Fig. 14. Test4. Comparison between the contours of the (kinematic) pressure computed by the ODA solver and the averaged DNS results [6]. Left column:
averaged DNS results, right column: ODA results. Top row: 𝑅𝑒 = 100, bottom row: 𝑅𝑒 = 1000 (kinematic pressure of the proposed model in m2∕s2).

Fig. 20(b) we compare the time evolution of the fluxes crossing the boundary of the block for the case of 𝑅𝑒 ≃ 160. Again, ODA
and TDA-MPFA solvers predict similar trends, with significant inflow crossing the top side of the obstacle, coming from the channel
above the porous block, and a smaller amount of inflow through the downstream side of the block, due to the anisotropic effects.
The results of the TDA-TPFA scheme do not match those of the two previous solvers, since again the anisotropic effects within 𝛺𝑝𝑚
are not properly captured.

5. Conclusions

A mesoscale ODA solver has been presented for the simulation of transfer processes between a free fluid and an anisotropic porous
media. The governing equations are given by the Navier–Stokes–Brinkman equations together the continuity equation, assuming
incompressible fluids. A fractional time step procedure is applied, by solving a prediction and two corrector steps within each
time step. The numerical features and the associated advantages of the algorithm steps are presented and discussed. The numerical
flux discretization strategy adopted in the corrector steps can be regarded as a Two-Point-Flux-Approximation (TPFA) scheme, but,
unlike the standard TPFA schemes, the presented model correctly retains the anisotropy effects of the porous medium without the
𝐊-orthogonality grid condition. This is proved by means of several tests. Very good agreement is obtained with both reference
analytical and averaged pore-scale solutions. The proposed solver overcomes the restrictions of most other ODA solvers at the
mesoscale that were recently presented in the literature, such as low Reynolds numbers, 1D flow or linearization of the convective
inertial terms. In some of the numerical applications we discuss the discrepancies between the solutions provided by the present
solver and a macroscopic-scale ODA algorithm, where a set of penalized Navier–Stokes equations is solved. Compared with the
reference solutions, the results of this penalized algorithm show significant differences throughout the whole domain, not only close
to the 𝛺𝑝𝑚∕𝛺𝑓𝑓 interface.

There is a current research activity aimed at the extension of the proposed numerical methodology to 3D domains discretized
in space by unstructured meshes.
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Fig. 15. Test4. Velocity components computed by the ODA solver and the averaged DNS results [6] at 𝑥 = 0.5 m, 𝑅𝑒 = 100. (a) 𝑢; (b) 𝑣; (c) 𝑢, zoom in the
peak value region; (d) 𝑣, zoom in the peak value region; (e) 𝑢, zoom in the transition layer region; (f) 𝑣, zoom in the transition layer region.
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Fig. 16. Test4. Velocity components computed by the ODA solver and the averaged DNS results [6] at 𝑥 = 0.5 m, 𝑅𝑒 = 1000. (a) 𝑢; (b) 𝑣; (c) 𝑢, zoom in the
peak value region; (d) 𝑣, zoom in the peak value region; (e) 𝑢, zoom in the transition layer region; (f) 𝑣, zoom in the transition layer region; (g) 𝑢, zoom in the
bulk 𝛺𝑝𝑚 region; (h) 𝑣, zoom in the bulk 𝛺𝑝𝑚 region.
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Fig. 17. Test 5. Definition sketch (𝑅𝑒 ≪ 1 case) and assigned BCs.

Fig. 18. Test 5. Velocity and kinematic pressure fields computed by the ODA solver for the case of 𝑅𝑒 ≪ 1. Left column: 𝛼 = −𝜋∕4, right column: 𝛼 = 𝜋∕4. Top
row: 𝐮, bottom row: 𝛹 (velocity in m/s, kinematic pressure in m2∕s2).

Fig. 19. Test 5. Velocity and kinematic pressure fields computed by the ODA solver, case 𝑅𝑒 ≃ 160, 𝛼 = 𝜋∕4. To improve visualization, the domain is scaled by
a factor of 2 along the vertical direction (velocity in m/s, kinematic pressure in m2∕s2).
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Fig. 20. Test 5. Computed fluxes crossing the boundary of 𝛺𝑝𝑚. Comparison between the ODA, TDA-MPFA and TDA-TPFA solvers (results of TDA-MPFA and
TDA-TPFA from [53])

Appendix A. Properties of the RT0 space functions

Any function 𝐮𝑒 ∈ R𝑒, where R𝑒 is the lowest-order Raviart–Thomas (𝐑𝐓𝟎) space function [16], is written as

𝐮𝑒 (𝐱) =
3
∑

𝑗=1
𝑄𝑒

𝑗 𝐰𝑒
𝑗 with 𝐰𝑒

𝑗 =

(

𝐱 − 𝐱𝑗
)

2𝐴𝑒
𝑒 = 1,… , 𝑁𝑇 , (A.1)

where 𝐰𝑒
𝑗 is the 𝑗th space function of R𝑒, 𝐱𝑗 is the coordinate vector of node 𝑗 in triangle 𝑒, opposite to side 𝑗, 𝐴𝑒 is the area of

triangle 𝑒 and 𝑄𝑒
𝑗 is the flux crossing side 𝑗, positive outward. The properties of R𝑒 are

∇ ⋅ 𝐮𝑒 is constant inside each triangle 𝑒 (A.2a)

𝐮𝑒 ⋅ 𝐧𝑗 is constant for each side 𝑗 ∈ 𝑒, (A.2b)

and 𝐧𝑗 is the unit vector orthogonal to side 𝑗, pointing outward. According to Eq. (A.1), the velocity components are piecewise
linear inside each triangle 𝑒, and due to Eq. (A.2a), 𝐮𝑒 is piecewise constant within 𝑒 if ∑3

𝑗=1 𝑄
𝑒
𝑗 = 0. If this condition is satisfied,

∇ ⋅𝐮𝑒 = 0 ∀𝐱 ∈ 𝑒, ∀𝑒 ∈ 𝛺𝑇 , and, if the fluxes of two neighboring triangles are equal in value and opposite in sign along the common
side, both local and global mass continuity are preserved.
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o

Appendix B. Details of the numerical procedure applied for the CP1

We iteratively solve the two systems (18) for the components of 𝛥𝐮̃𝑒 unknowns, 𝛥𝑢̃𝑒 and 𝛥𝑣̃𝑒, respectively, as described in Eq. (B.1)
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑖 = 0 ! initialize the loop counter
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐌̄𝑥,𝑒

(

𝛥𝑢̃𝑖𝑒
0

)

𝐴𝑒 = 𝜈
∑3

𝑗=1
𝛥𝑢̃𝑖𝑒−𝛥𝑢̃

𝑖
𝑒𝑝

𝑑𝑒,𝑒𝑝
𝑙𝑒𝑗 − 𝜈

∑3
𝑗=1

𝛥𝑢̆𝑒−𝛥𝑢̆𝑒𝑝
𝑑𝑒,𝑒𝑝

𝑙𝑒𝑗

𝐌̄𝑦,𝑒

(

0
𝛥𝑣̃𝑖𝑒

)

𝐴𝑒 = 𝜈
∑3

𝑗=1
𝛥𝑣̃𝑖𝑒−𝛥𝑣̃

𝑖
𝑒𝑝

𝑑𝑒,𝑒𝑝
𝑙𝑒𝑗 − 𝜈

∑3
𝑗=1

𝛥𝑣̆𝑒−𝛥𝑣̆𝑒𝑝
𝑑𝑒,𝑒𝑝

𝑙𝑒𝑗

⎧

⎪
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⎪

⎪

⎪

⎪

⎨

⎪

⎪
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⎪
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do while (𝑒𝑟𝑟 > 𝑡𝑜𝑙𝑙)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐌̄𝑥,𝑒

(

𝛥𝑢̃𝑖+1𝑒

𝛥𝑣̃𝑖𝑒

)

𝐴𝑒 = 𝜈
∑3

𝑗=1
𝛥𝑢̃𝑖+1𝑒 −𝛥𝑢̃𝑖+1𝑒𝑝

𝑑𝑒,𝑒𝑝
𝑙𝑒𝑗 − 𝜈

∑3
𝑗=1

𝛥𝑢̆𝑒−𝛥𝑢̆𝑒𝑝
𝑑𝑒,𝑒𝑝

𝑙𝑒𝑗

𝐌̄𝑦,𝑒

(

𝛥𝑢̃𝑖𝑒
𝛥𝑣̃𝑖+1𝑒

)

𝐴𝑒 = 𝜈
∑3

𝑗=1
𝛥𝑣̃𝑖+1𝑒 −𝛥𝑣̃𝑖+1𝑒𝑝

𝑑𝑒,𝑒𝑝
𝑙𝑒𝑗 − 𝜈

∑3
𝑗=1

𝛥𝑣̆𝑒−𝛥𝑣̆𝑒𝑝
𝑑𝑒,𝑒𝑝

𝑙𝑒𝑗

𝑖 = 𝑖 + 1 ! update the loop counter
end do

,

(B.1a)

with 𝐌̄𝑥,𝑒 =

(

𝑀̄𝑒
1,1

𝑀̄𝑒
1,2

)𝑇

𝐌̄𝑦,𝑒 =

(

𝑀̄𝑒
2,1

𝑀̄𝑒
2,2

)𝑇

, (B.1b)

𝑒𝑟𝑟 = min(𝑒𝑟𝑟𝑥, 𝑒𝑟𝑟𝑦) with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑒𝑟𝑟𝑥 =

√

(

‖𝛥𝑢̃𝑖+1𝑒 −𝛥𝑢̃𝑖𝑒‖
)

√

‖𝛥𝑢̃𝑖𝑒‖

𝑒𝑟𝑟𝑦 =

√

(

‖𝛥𝑣̃𝑖+1𝑒 −𝛥𝑣̃𝑖𝑒‖
)

√

‖𝛥𝑣̃𝑖𝑒‖
,

(B.1c)

where 𝑖 is the counter of the iterations in the iterative procedure and 1d − 04 ≤ 𝑡𝑜𝑙𝑙 ≤ 1d − 03.
The diagonal and off-diagonal matrix coefficients of system (21), denoted as 𝑥(𝑦),𝐶𝑃 1

𝑒,𝑒 and 𝑥(𝑦),𝐶𝑃1
𝑒,𝑒𝑝 , as well as the coefficients

f the source term vectors, denoted as 𝑥(𝑦),𝐶𝑃 1
𝑒 , are given in Eq. (B.2)

𝑥,𝐶𝑃1
𝑒,𝑒 = 𝑀̄𝑒

1,1𝐴𝑒 + 𝜈
3
∑

𝑗=1

𝑙𝑒𝑗
𝑑𝑒,𝑒𝑝

, 𝑦,𝐶𝑃 1
𝑒,𝑒 = 𝑀̄𝑒

2,2𝐴𝑒 + 𝜈
3
∑

𝑗=1

𝑙𝑒𝑗
𝑑𝑒,𝑒𝑝

,

𝑥(𝑦),𝐶𝑃 1
𝑒,𝑒𝑝 = −𝜈

𝑙𝑒𝑗
𝑑𝑒,𝑒𝑝

,

𝑥,𝐶𝑃 1
𝑒 = 𝜈

3
∑

𝑗=1

𝛥𝑢̆𝑒 − 𝛥𝑢̆𝑒𝑝
𝑑𝑒,𝑒𝑝

𝑙𝑒𝑗 − 𝑀̄𝑒
1,2𝐴𝑒𝛥𝑣̃

𝑖
𝑒,

𝑦,𝐶𝑃 1
𝑒 = 𝜈

3
∑

𝑗=1

𝛥𝑣̆𝑒 − 𝛥𝑣̆𝑒𝑝
𝑑𝑒,𝑒𝑝

𝑙𝑒𝑗 − 𝑀̄𝑒
2,1𝐴𝑒𝛥𝑢̃

𝑖
𝑒,

(B.2)

If the mesh satisfies the Delaunay property, 𝑑𝑒,𝑒𝑝 are positive (see its definition after Eq. (15)), and the matrices are also
positive-definite, so that the -matrix property is guaranteed [40].

Appendix C. Details of the numerical procedure applied for the CP2

Starting from Eq. (C.1),
(

𝚵𝑗∇𝜂
)

⋅ 𝐧𝑗 =
(

𝚵𝑗𝐧𝑗
)

⋅ ∇𝜂, (C.1)

applying a co-normal decomposition, we obtain (see also Fig. 3)

𝚵𝑗𝐧𝑗 = 𝐝𝑗 with 𝐝𝑗 = 𝐝𝑗,𝑛 + 𝐝𝑗,𝜏 and 𝐝𝑗,𝜏 = 𝐝𝑗,𝜏𝑛1 + 𝐝𝑗,𝜏𝑛2 , (C.2)

where the vectors 𝐝𝑗,𝑛 and 𝐝𝑗,𝜏 are parallel to the directions 𝐧𝑗 and 𝝉𝑗 , respectively, with 𝝉𝑗 the unit vector tangential to side 𝑙𝑒𝑗 .
26

Let 𝐧𝑙 and 𝐧𝑚 (with l = 1, 2 and m = 3, 4), be the unit vector orthogonal to the sides shared by cells 𝑒 and 𝑒𝑝𝑙, and by cells 𝑒𝑝 and
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a
𝑒

𝑒𝑝𝑚, respectively, pointing outwards from 𝑒 and 𝑒𝑝, respectively (see Fig. 3). According to the last relation in Eq. (C.2), vector 𝐝𝑗,𝜏
is decomposed along the 𝐧1 and 𝐧2 directions.

Starting from Eq. (C.2), we discretize the dot product 𝐝𝑗 ⋅ ∇𝜂 in Eq. (26) as

𝐝𝑗 ⋅ ∇𝜂 =
(

𝐝𝑗,𝑛 + 𝐝𝑗,𝜏
)

⋅ ∇𝜂 with (C.3a)

𝐝𝑗,𝑛 ⋅ ∇𝜂 = 1
2

( 𝜂𝑒𝑝 − 𝜂𝑒
𝑑𝑒,𝑒𝑝

−
𝜂𝑒 − 𝜂𝑒𝑝
𝑑𝑒,𝑒𝑝

)

𝑑𝑗,𝑛 and (C.3b)

𝐝𝑗,𝜏 ⋅ ∇𝜂 = 1
2

(

𝜂𝑒𝑝1 − 𝜂𝑒
𝑑𝑒,𝑒𝑝1

𝑑𝜏𝑛1 𝛼1 +
𝜂𝑒𝑝2 − 𝜂𝑒
𝑑𝑒,𝑒𝑝2

𝑑𝜏𝑛2 𝛼2

)

−

1
2

(

𝜂𝑒𝑝3 − 𝜂𝑒𝑝
𝑑𝑒𝑝,𝑒𝑝3

𝑑𝜏𝑛3 𝛼3 +
𝜂𝑒𝑝4 − 𝜂𝑒𝑝
𝑑𝑒𝑝,𝑒𝑝4

𝑑𝜏𝑛4 𝛼4

) , (C.3c)

where, with the help of Fig. 3, 𝑑𝑗,𝑛 = 𝐝𝑗 ⋅ 𝐧𝑗 , 𝑑𝜏𝑛𝑙(𝑚) = 𝐝𝑗,𝜏 ⋅ 𝐧𝑙(𝑚), 𝜂𝑒, 𝜂𝑒𝑝, 𝜂𝑒𝑝𝑙(𝑚) are the values of 𝜂 in the circumcenters of cells 𝑒, 𝑒𝑝,
nd 𝑒𝑝𝑙(𝑚), respectively, 𝑑𝑒,𝑒𝑝, 𝑑𝑒,𝑒𝑝𝑙 and 𝑑𝑒,𝑒𝑝𝑚 are the distances with a sign of the circumcenters of cells 𝑒 and 𝑒𝑝, 𝑒 and 𝑒𝑝𝑙, 𝑒𝑝 and
𝑝𝑚 respectively, and coefficient 𝛼𝑙(𝑚) = 1 if 𝐝𝑗,𝜏 ⋅ 𝐧𝑙(𝑚) > 0 otherwise 𝛼𝑙(𝑚) = −1.

According to Eqs.(C.1) to (C.3), Eq. (26) becomes
3
∑

𝑗=1

(

𝐹 𝑙
𝑒
𝑗

)

=
3
∑

𝑗=1

( 𝜂𝑒 − 𝜂𝑒𝑝
𝑑𝑒,𝑒𝑝

𝑑𝑗,𝑛

)

𝑙𝑒𝑗+

1
2

3
∑

𝑗=1

(

∑

𝑙=1,2

𝜂𝑒 − 𝜂𝑒𝑝𝑙
𝑑𝑒,𝑒𝑝𝑙

𝑑𝜏𝑛𝑙 𝛼𝑙 +
1
2

∑

𝑚=3,4

𝜂𝑒𝑝𝑚 − 𝜂𝑒𝑝
𝑑𝑒𝑝,𝑒𝑝𝑚

𝑑𝜏𝑛𝑚 𝛼𝑚

)

𝑙𝑒𝑗

, (C.4)

and Eq. (C.4) form a system to be solved for the 𝜂 unknowns.
The diagonal and off-diagonal matrix coefficients of the systems (28)–(29a), denoted as 𝐶𝑃2

𝑒,𝑒 and 𝐶𝑃 2
𝑒,𝑒𝑝 , are

𝐶𝑃2
𝑒,𝑒 =

3
∑

𝑗=1

𝑙𝑒𝑗
𝑑𝑒,𝑒𝑝

𝑑𝑗,𝑛 𝐶𝑃2
𝑒,𝑒𝑝 = −

𝑙𝑒𝑗
𝑑𝑒,𝑒𝑝

𝑑𝑗,𝑛, (C.5)

and the coefficients of the source term vectors of systems (28)–(29a), denoted as 𝐶𝑆𝑃
1,𝑒 and 𝐶𝑃 2

2,𝑒 , respectively, are

𝐶𝑃 2
1,𝑒 =

3
∑

𝑗=1

(

𝐹 𝑙𝑒𝑗
)

,

𝐶𝑃2
2,𝑒 =

3
∑

𝑗=1

(

𝐹 𝑙𝑒𝑗
)

−

1
2

3
∑

𝑗=1

(

∑

𝑙=1,2

𝜂̃𝑒 − 𝜂̃𝑒𝑝𝑙
𝑑𝑒,𝑒𝑝𝑙

𝑑𝜏𝑛𝑙 𝛼𝑙 +
∑

𝑚=3,4

𝜂̃𝑒𝑝 − 𝜂̃𝑒𝑝𝑚
𝑑𝑒𝑝,𝑒𝑝𝑚

𝑑𝜏𝑛𝑚 𝛼𝑚

)

𝑙𝑒𝑗 .

(C.6)
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