24,374 research outputs found

    The Structure of logarithmic advice complexity classes

    Get PDF
    A nonuniform class called here Full-P/log, due to Ko, is studied. It corresponds to polynomial time with logarithmically long advice. Its importance lies in the structural properties it enjoys, more interesting than those of the alternative class P/log; specifically, its introduction was motivated by the need of a logarithmic advice class closed under polynomial-time deterministic reductions. Several characterizations of Full-P/log are shown, formulated in terms of various sorts of tally sets with very small information content. A study of its inner structure is presented, by considering the most usual reducibilities and looking for the relationships among the corresponding reduction and equivalence classes defined from these special tally sets.Postprint (published version

    The structure of a logarithmic advice class

    Get PDF
    The complexity class Full-P / log, corresponding to a form of logarithmic advice for polynomial time, is studied. In order to understand the inner structure of this class, we characterize Full-P /log in terms of Turing reducibility to a special family of sparse sets. Other characterizations of Full-P / log, relating it to sets with small information content, were already known. These used tally sets whose words follow a given regular pattern and tally sets that are regular in a resource-bounded Kolmogorov complexity sense. We obtain here relationships between the equivalence classes of the mentioned tally and sparse sets under various reducibiities, which provide new knowledge about the logarithmic advice class. Another way to measure the amount of information encoded in a language in a nonuniform class, is to study the relative complexity of computing advice functions for this language. We prove bounds on the complexity of ad vice functions for Full-P / log and for other subclasses of it. As a consequence, Full-P / log is located in the Extended Low Hierarchy

    Polynomial time quantum computation with advice

    Full text link
    Advice is supplementary information that enhances the computational power of an underlying computation. This paper focuses on advice that is given in the form of a pure quantum state and examines the influence of such advice on the behaviors of an underlying polynomial-time quantum computation with bounded-error probability.Comment: 9 page

    The Value of Help Bits in Randomized and Average-Case Complexity

    Full text link
    "Help bits" are some limited trusted information about an instance or instances of a computational problem that may reduce the computational complexity of solving that instance or instances. In this paper, we study the value of help bits in the settings of randomized and average-case complexity. Amir, Beigel, and Gasarch (1990) show that for constant kk, if kk instances of a decision problem can be efficiently solved using less than kk bits of help, then the problem is in P/poly. We extend this result to the setting of randomized computation: We show that the decision problem is in P/poly if using \ell help bits, kk instances of the problem can be efficiently solved with probability greater than 2k2^{\ell-k}. The same result holds if using less than k(1h(α))k(1 - h(\alpha)) help bits (where h()h(\cdot) is the binary entropy function), we can efficiently solve (1α)(1-\alpha) fraction of the instances correctly with non-vanishing probability. We also extend these two results to non-constant but logarithmic kk. In this case however, instead of showing that the problem is in P/poly we show that it satisfies "kk-membership comparability," a notion known to be related to solving kk instances using less than kk bits of help. Next we consider the setting of average-case complexity: Assume that we can solve kk instances of a decision problem using some help bits whose entropy is less than kk when the kk instances are drawn independently from a particular distribution. Then we can efficiently solve an instance drawn from that distribution with probability better than 1/21/2. Finally, we show that in the case where kk is super-logarithmic, assuming kk-membership comparability of a decision problem, one cannot prove that the problem is in P/poly by a "black-box proof.

    Universal Codes from Switching Strategies

    Get PDF
    We discuss algorithms for combining sequential prediction strategies, a task which can be viewed as a natural generalisation of the concept of universal coding. We describe a graphical language based on Hidden Markov Models for defining prediction strategies, and we provide both existing and new models as examples. The models include efficient, parameterless models for switching between the input strategies over time, including a model for the case where switches tend to occur in clusters, and finally a new model for the scenario where the prediction strategies have a known relationship, and where jumps are typically between strongly related ones. This last model is relevant for coding time series data where parameter drift is expected. As theoretical ontributions we introduce an interpolation construction that is useful in the development and analysis of new algorithms, and we establish a new sophisticated lemma for analysing the individual sequence regret of parameterised models

    A Tight Karp-Lipton Collapse Result in Bounded Arithmetic

    Get PDF
    Cook and Krajíček [9] have obtained the following Karp-Lipton result in bounded arithmetic: if the theory proves , then collapses to , and this collapse is provable in . Here we show the converse implication, thus answering an open question from [9]. We obtain this result by formalizing in a hard/easy argument of Buhrman, Chang, and Fortnow [3]. In addition, we continue the investigation of propositional proof systems using advice, initiated by Cook and Krajíček [9]. In particular, we obtain several optimal and even p-optimal proof systems using advice. We further show that these p-optimal systems are equivalent to natural extensions of Frege systems

    The parameterized space complexity of model-checking bounded variable first-order logic

    Get PDF
    The parameterized model-checking problem for a class of first-order sentences (queries) asks to decide whether a given sentence from the class holds true in a given relational structure (database); the parameter is the length of the sentence. We study the parameterized space complexity of the model-checking problem for queries with a bounded number of variables. For each bound on the quantifier alternation rank the problem becomes complete for the corresponding level of what we call the tree hierarchy, a hierarchy of parameterized complexity classes defined via space bounded alternating machines between parameterized logarithmic space and fixed-parameter tractable time. We observe that a parameterized logarithmic space model-checker for existential bounded variable queries would allow to improve Savitch's classical simulation of nondeterministic logarithmic space in deterministic space O(log2n)O(\log^2n). Further, we define a highly space efficient model-checker for queries with a bounded number of variables and bounded quantifier alternation rank. We study its optimality under the assumption that Savitch's Theorem is optimal

    Fast Parallel Fixed-Parameter Algorithms via Color Coding

    Get PDF
    Fixed-parameter algorithms have been successfully applied to solve numerous difficult problems within acceptable time bounds on large inputs. However, most fixed-parameter algorithms are inherently \emph{sequential} and, thus, make no use of the parallel hardware present in modern computers. We show that parallel fixed-parameter algorithms do not only exist for numerous parameterized problems from the literature -- including vertex cover, packing problems, cluster editing, cutting vertices, finding embeddings, or finding matchings -- but that there are parallel algorithms working in \emph{constant} time or at least in time \emph{depending only on the parameter} (and not on the size of the input) for these problems. Phrased in terms of complexity classes, we place numerous natural parameterized problems in parameterized versions of AC0^0. On a more technical level, we show how the \emph{color coding} method can be implemented in constant time and apply it to embedding problems for graphs of bounded tree-width or tree-depth and to model checking first-order formulas in graphs of bounded degree

    Survey of Distributed Decision

    Get PDF
    We survey the recent distributed computing literature on checking whether a given distributed system configuration satisfies a given boolean predicate, i.e., whether the configuration is legal or illegal w.r.t. that predicate. We consider classical distributed computing environments, including mostly synchronous fault-free network computing (LOCAL and CONGEST models), but also asynchronous crash-prone shared-memory computing (WAIT-FREE model), and mobile computing (FSYNC model)
    corecore