
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Koolen, Wouter M. & de Rooij, Steven
(2013)
Universal codes from switching strategies.
IEEE Transactions on Information Theory, 59(11), pp. 7168-7185.

This file was downloaded from: http://eprints.qut.edu.au/73147/

c© Copyright 2012 IEEE

Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this mate-
rial for advertising or promotional purposes, creating new collective works
for resale or redistribution to servers or lists, or reuse of any copyrighted
components of this work in other works.

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://doi.org/10.1109/TIT.2013.2273353

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/33491769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Koolen,_Wouter.html
http://eprints.qut.edu.au/73147/
http://doi.org/10.1109/TIT.2013.2273353

1

Universal Codes from Switching Strategies
Wouter M. Koolen and Steven de Rooij

Abstract—We discuss algorithms for combining sequential
prediction strategies, a task which can be viewed as a natural
generalisation of the concept of universal coding. We describe a
graphical language based on Hidden Markov Models for defining
prediction strategies, and we provide both existing and new
models as examples. The models include efficient, parameterless
models for switching between the input strategies over time,
including a model for the case where switches tend to occur
in clusters, and finally a new model for the scenario where the
prediction strategies have a known relationship, and where jumps
are typically between strongly related ones. This last model is
relevant for coding time series data where parameter drift is
expected. As theoretical contributions we introduce an interpol-
ation construction that is useful in the development and analysis
of new algorithms, and we establish a new sophisticated lemma
for analysing the individual sequence regret of parameterised
models.

Index Terms—Universal Coding, Regret, Individual Sequence,
Hidden Markov Models, Prediction with Expert Advice, Expert
Tracking

I. INTRODUCTION

For the most delectable universal codes, fill a cooking pot
with water, add a bunch of experts, a.k.a. codes, and put it on a
slow fire, stirring constantly. The resulting mix is guaranteed
to delight, achieving a codelength close to that of the best
among the ingredient codes.

In this paper we investigate such cookery in detail, de-
viating from the usual recipe in two ways. First, following
Shtarkov [4] and Rissanen [5], universality is expressed in
terms of the individual sequence regret: the difference between
the length of the considered code and the shortest codelength
among any of the ingredient codes, for the data that were
actually observed. As such, there are no distributional assump-
tions. Second, the setting is generalised somewhat: rather than
always comparing our performance to that of the best code,
we will also consider combinations of the ingredient codes as
baselines for the regret. Among other things, this allows us to
compete with the best possible way to split the data sequence
into a small number of blocks of consecutive outcomes, and
encode each block with the best original code for that block, a
problem known as expert tracking in online learning [6], [7],
which is also a core focus of this work.

S. de Rooij is with the Informatics Institute, University of Amsterdam
Science Park 904, P.O. Box 94323 1090 GH Amsterdam, Netherlands
(steven.de.rooij@gmail.com) and with the VU University Amsterdam, De
Boelelaan 1081a, 1081HV Amsterdam, Netherlands .

W. M. Koolen is with the Centrum Wiskunde & Informatica (CWI), P.O.
Box 94079, NL-1090 GB Amsterdam, Netherlands (wmkoolen@cwi.nl)

A pre-print of this paper appeared as [1]. An extended abstract [2] of this
paper appeared at COLT 2008. The dissertation of the first author includes
this paper as [3, Chapter 3].

Copyright c© 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Figure 1 Prediction with Expert Advice (Logarithmic Loss)

for each round t = 1, 2, . . . do
Each expert ξ ∈ Ξ issues prediction Pξ,t
We produce prediction Qt
Outcome xt ∈ X is revealed
We incur log loss − lnQt(xt).

end for

We identify sequential coding with sequential prediction as
follows. In each round t = 1, 2 . . ., a sequential prediction
strategy issues a probability distribution Qt on the outcome
space X , which for simplicity we assume to be countable. Sub-
sequently, a new outcome xt is observed, and the prediction
is evaluated using logarithmic loss − log2Qt(xt). The Kraft
inequality states that there exists a prefix code such that the ac-
cumulated logarithmic loss of the prediction strategy, rounded
up to the nearest integer, corresponds exactly to the codelength
for the data; in fact there are many practical algorithms for
implementing such a code, such as arithmetic coding [8]. For
this reason, we will use the words “prediction strategy” and
“code” interchangeably; similarly we use “codelength” as a
synonym for “logarithmic loss”, and forget about the rounding.
Also, for convenience we will use natural logarithms such
that codelengths are expressed in nats. See [9], [10], [11]
for more information about the connection between sequential
prediction and data compression.

Given a set of codes, our aim is to build universal codes
with efficient implementations, and evaluate their performance.
Borrowing terminology from learning theory, we henceforth
call the ingredient codes “experts” to emphasize that they are
black boxes that can be interpreted as prediction strategies. The
overall protocol is as follows (see Figure 1). Let Ξ be a set of
experts, that we fix throughout this paper. Each round t, each
expert ξ ∈ Ξ issues a prediction Pξ,t of the next outcome in
the form of a probability distribution. Our universal prediction
strategy collects all these predictions and uses them to form
a prediction Qt of its own. We then wait until the new data
item xt is observed, and incur a logarithmic loss of (encode it
using) − lnQt(xt) nats. By the end of the game we compare
our accumulated loss (total codelength) to that of the best
among a set of reference strategies.

Algorithms for combining prediction strategies can be found
in the literature under various headings. On the one hand
there are results in (Bayesian) statistics and source coding.
Most relevant is Volf and Willems’ algorithm for combining
two sequential data compression algorithms [12], called the
“Switching Method”, which we discuss in Section IV-D.
Important precursors of this work include [13], [14]; the
algorithms described there do not combine expert predictions

ar
X

iv
:1

31
1.

65
36

v1
 [

cs
.I

T
]

 2
6

N
ov

 2
01

3

2

but can be used for that purpose (see Section IV-B for details).
The tradeoff between time complexity and regret has received
substantial further analysis, see [15], [16], [17], [18], [19], but
such work is outside the scope of this introduction. On the
other hand, the learning theory community has produced a lot
of work on universal prediction under the heading “prediction
with expert advice” [7], [20], [21], [22], [6], [23]. In this case
the experts’ predictions are not necessarily probabilistic, and
scored using an arbitrary loss function. In this paper we focus
on results for logarithmic loss, although our results apply to
any mixable loss function, as discussed in Section V-D.

In order to give a clear, consistent and comprehensive intro-
duction/overview of the topic, we use the Bayesian framework
to describe the considered codes, and show how algorithms
for prediction with expert advice can often be described using
a prior distribution on sequences of experts. This approach
allows unified description of many of the mentioned results as
well as some new models that represent interesting trade-offs
between time complexity and modelling power. Following in
the footsteps of, e.g., [13], [12], [15], [24], we use hidden
Markov models (HMMs) as an intuitive graphical language
to describe such priors, and obtain a computationally efficient
implementation using standard algorithms such as the forward
algorithm. Our main focus will be on algorithms for expert
tracking.

Let us emphasize that, although technically the algorithms
we consider are Bayesian, we use a worst-case individual
sequence analysis. Thus, we do not adopt the usual subjective
Bayesian interpretation of the prior distribution as an expres-
sion of belief; in fact, we do not make any statements or
assumptions about the data-generating machinery whatsoever.

A. Our Contribution

The aim of this work is to provide a readily useful and
accessible introduction to prediction with expert advice for
an information theoretic audience. To this end we present
models in terms of HMM state transition diagrams which,
although widely used, have not been applied as consistently to
the problem of prediction with expert advice. This graphical
language allows us to conveniently describe many existing
models and design new ones. The resulting diagrams can be
understood and compared with ease; moreover, computational
efficiency can be gleaned directly from their structure.

Beyond its tutorial nature, the paper also has two theor-
etical contributions: first, we describe an interpolation con-
struction that is useful in the development and analysis of
new algorithms (Section IV-B). Second, Lemma 3 provides a
substantial generalisation of earlier methods from [25], [24]
for analysing the regret of expert models; the lemma is later
used in the proof of Theorem 16, which cannot be proven
using earlier results.

We describe a number of straightforward applications of
the theory developed in the paper, which can be interpreted
both as examples and as models of practical utility. A number
of these models are new, in particular the Quickly Decreasing
Switching Rate model in Section IV-C and the Ordered Experts
model in Section IV-F.

B. Overview

In Section II we describe Bayesian prediction strategies
based on a prior distribution on sequences of experts, and
discuss how the resulting prediction strategies can be cast in
the form of a hidden Markov model.

The performance of the algorithms we are interested in
is expressed in terms of guarantees about their individual
sequence regret. Section III provides the main theoretical tools
for analysing the regret.

In Section IV we illustrate our approach by rendering
various models for tracking the best expert in HMM form,
thus showing the relationships between them. The seminal
Fixed Share algorithm [26], [6] serves as a starting point.
Fixed Share has two drawbacks: first, one has to specify
a fixed switching rate in advance; choosing a suboptimal
value here produces a linear penalty in the regret. Second,
the incurred regret depends on the number of observations t,
even when the optimal number of switches is bounded. To
address these problems, the switching probabilities need to
be modelled differently. Section IV-B explains how the part
of the model that describes switching probabilities can be
isolated from the rest; we then proceed to describe several
alternative models for the switching probabilities, and discuss
how these modifications affect the regret bound. In particular,
Section IV-C describes a new, simple and effective approach to
solve both problems associated with Fixed Share, Section IV-D
describes several methods for learning the switching rate
from data, and Section IV-E describes another model that
is especially well suited to the scenario where changes in
predictive performance of experts are expected to appear in
clusters.

So far, none of the considered models for expert tracking
made any assumptions as to the inner workings of, or the
relationships between, the various experts – they are black
boxes. However, as an interesting special case we consider
the scenario where the experts are ordered. For example, if
the experts are prediction strategies associated with a para-
metric model, instantiated with various parameter values, then
switches between two experts seem intuitively more likely if
they represent parameter values that are close. This scenario
is explored in Section IV-F; the notion is taken to its extreme
in Section IV-G, where the regret is no longer analysed in
terms of all-or-nothing “switches”, but rather in terms of a
more smooth characterisation of the amount of “parameter
drift”.

A number of loose ends are discussed in Section V. We spe-
cifically discuss a number of useful results from the literature
that would distract from the exposition but are nevertheless
too important to skip over altogether (V-A), as well as a
variant evaluation criterion called adaptive regret (V-B). We
then consider how one might estimate which expert made the
best prediction at a certain time (V-C). Finally we describe
how our results can be generalised to any mixable loss function
(V-D) and to online investment (V-E).

3

II. EXPERT SEQUENCE PRIORS AND HIDDEN MARKOV
MODELS

Since we do not know who among our set Ξ of experts will
issue the best predictions and achieve minimal codelength, the
straightworward Bayesian response is to define a prior w on
Ξ, and then construct a distribution Bw for the joint space
X∞ × Ξ with

Bw(xt, ξ) := w(ξ)Pξ(x
t), where Pξ(x

t) :=

t∏
i=1

Pξ,i(xi). (1)

The Bayesian prediction is obtained by conditioning on past
observations and marginalising over Ξ as follows:

Qt+1(xt+1) := Bw(xt+1 | xt).

(Random variables are denoted in bold face.) Note that this
prediction depends on the expert predictions from times 1
through t + 1 but not beyond. This strategy is simple and
effective. Compared to the single best expert, the regret of
this strategy is

− ln Bw(xt)−
(
− ln Pξ̂(x

t)
)
, (2)

where ξ̂ = argmaxξ Pξ(x
t), breaking ties arbitrarily. To bound

the regret, note that

Pξ̂(x
t) ≥

∑
ξ∈Ξ

w(ξ)Pξ(x
t)︸ ︷︷ ︸

=Bw(xt)

≥ w(ξ̂)Pξ̂(x
t); (3)

substitution in (2) reveals that the regret must be in the interval
[0,− lnw(ξ̂)].

Thus, the good news is that this first strategy guarantees
a codelength that is within a constant of the performance
of the best available expert ξ̂. On the other hand, with this
strategy we never do any better than ξ̂ either! Consider that
the nature of the data generating process may evolve over time;
consequently different experts may be better during different
periods of time. It is also possible that not the data generating
process, but the experts themselves change as more and more
outcomes are being observed: they may learn from past mis-
takes, possibly at different rates, or they may have occasional
bad days, etc. By generalising the Bayesian modelling a little
bit, we can compete with prediction strategies that perform far
better than the best individual expert.

A. Including Transient Behaviour

Rather than using a prior distribution to represent our
uncertainty about which single expert is best, we generalise
the setup by considering which expert is best in each round.
Let π be a prior on infinite sequences of experts, called an
expert sequence prior (ES-prior). We subsequently define the
Bayesian joint distribution Bπ by

Bπ(xt, ξt) := π(ξt)Pξt(x
t), where Pξt(x

t) :=

t∏
i=1

Pξi,i(xi).

(4)

Figure 2 HMM description of a prediction strategy
q1

//

��

q2
//

��

q3
//

��

q4
//

��
ξ1

��

ξ2

��

ξ3

��

ξ4

��
x1 x2 x3 x4

We can recover the previous prediction strategy by defining
π such that it assigns probability zero to any expert sequence
that lists more than one expert.

In the simplest case, the prior models the sequence of
experts as a Markov chain, but it is often desirable to carry
along some additional state information besides the identity
of the previous expert in the definition of the prior. Therefore,
we will construct the Bayesian prediction strategy as a Hidden
Markov Model of the form depicted in Figure 2, where the
state of the prior process is captured by the qt variables.

Being a black box, an expert ξ may use any strategy to form
the prediction Pξ,t for xt. The framework could even incor-
porate psychic experts who have some metaphysical access to
future data! Or, as is the standard assumption for proving regret
bounds, we may consider experts that conspire to maximally
frustrate the prediction task. As such, an application may
involve complicated dependencies between the xt and the
predictions of the experts in general. However, as not only
the data but also the predictions of the experts are observed,
there is no need to include these dependencies in the model.

B. Graphical Specification of Expert HMMs

We now outline a graphical language for describing HMMs
of the form shown in Figure 2, which allows us to cleanly and
intuitively display model structure. The resulting prediction
strategy can be read off directly from these diagrams, and
diagrammatic simplicity implies computational efficiency.

An Expert Hidden Markov Model (EHMM) is a joint
distribution on sequences of states, experts and outcomes. It
is defined by the following ingredients. We start by choosing
a set of states Q and a designated start state q0 ∈ Q. We
then specify the transition probability between states using
a Markov kernel P~. (We now have a regular Markov chain
on the sequence of states.) A subset Qp ⊆ Q of the states
are called productive. Experts are deterministically assigned
to the productive states by Λ : Qp → Ξ. The role of
the non-productive silent states is to provide fine-grained
independencies in the Markov chain, allowing us to “spell
out” the transitions between productive states conceptually and
computationally efficiently.

Given expert predictions Pξ,i for all ξ ∈ Ξ and i = 1, 2, . . .,
the joint probability is given as follows. Let qλ be a sequence
of states, and let qp

1, . . . , q
p
t be the subsequence of its productive

4

Figure 3 Bayesian mixture Bw

A

〈A,1〉

// A
〈A,2〉

// A // A //

B

〈B,1〉

// B
〈B,2〉

// B // B //
〈0〉 77

DD

''

��

C

〈C,1〉

// C
〈C,2〉

// C // C //

D

〈D,1〉

// D
〈D,2〉

// D // D //

Bw = 〈Q,Qp, 0,P~,Λ〉
Q = Qp ∪ {0} Qp = Ξ× Z+ Λ(ξ, t) = ξ

P~

(〈0〉 → 〈ξ, 1〉
〈ξ, t〉 → 〈ξ, t+ 1〉

)
=

(
w(ξ)

1

)

states. Then

Q(qλ, ξt, xt) :=Pξt(x
t)

λ−1∏
i=0

P~(qi → qi+1) if ∀i : Λ(qp
i) = ξi,

0 otherwise.

(5)

For convenience, we identify the EHMM distribution with its
defining 5-tuple, i.e. Q ≡ 〈Q,Qp, q0,P~,Λ〉.

The advantage of our setup is that we can specify EHMMs
using intuitive state transition diagrams, as done for example
in Figures 3 and 4. We first draw a node Nq for each state q.
We use an open dot for the start state, black dots for the
silent states, and we display each productive state q as an open
circle labelled by the expert Λ(q) who is assigned to make the
prediction, like this: A . We draw an arrow from Nq to Nq′ if
the transition probability P~(q → q′) is nonzero. The transition
probabilities themselves could be written along such arrows,
but this quickly becomes messy. Instead we write them below
our graphs.

The forward algorithm, see e.g. [27], can be used to compute
the predictive distribution on experts given past data, i.e.

Q
(
ξt+1

∣∣xt) .
Intuitively, this is done by maintaining weights on the pro-
ductive states. These weights are then alternately used for
prediction and subsequently conditioned on observations, and
percolated forward through the network of silent states accord-
ing to the transition probabilities P~.

The total running time of the forward algorithm for all time
steps is proportional to the number of edges in the graph.

C. Examples

We give the ES-priors and EHMMs that correspond to the
simplest models: Bayesian mixtures and elementwise mixtures
with fixed parameters.

Example 1 (Bayesian Mixtures): The EHMM Bw for the
Bayesian mixture is shown in Figure 3. The figure illustrates
that in the standard Bayesian mixture there is no provision

Figure 4 Fixed elementwise mixture EMw

A

〈A,1〉

��

A

〈A,2〉

��

A

��

A

��
B

〈B,1〉

''
B

〈B,2〉

''
B

''
B

''
〈0〉 77

EE

''

��

〈1〉 77

EE

''

��

〈2〉 77

EE

''

��

〈3〉 77

EE

''

��

C

〈C,1〉
77

C

〈C,2〉
77

C

77

C

77

D

〈D,1〉

EE

D

〈D,2〉

EE

D

EE

D

EE

EMw = 〈Q,Qp, 0,P~,Λ〉
Q = Qs ∪Qp Qs = N Qp = Ξ× Z+ Λ(ξ, t) = ξ

P~

(〈t〉 → 〈ξ, t+ 1〉
〈ξ, t〉 → 〈t〉

)
=

(
w(ξ)

1

)

for a-priori redistribution of probability mass between experts:
the posterior distribution will concentrate very quickly on
the state corresponding to the expert that assigns the overall
highest likelihood to the data. The vector-style definition of
P~ is a shorthand; each row specifies one or more transition
probabilities. The reader may check that this EHMM formally
corresponds to the Bayesian mixture in the sense that the
marginal likelihoods on data of (5) and (1) coincide. It is
well-known that the Bayesian prediction Bw(xt+1|xt) can be
computed in O(k) time per trial by maintaining the posterior.
The forward algorithm on Bw has the same efficiency.

Example 2 (Elementwise Mixtures): The elementwise mix-
ture1 with mixture weights w on experts Ξ predicts as follows:

Qt(xt) :=
∑
ξ∈Ξ

Pξ,t(xt)w(ξ).

This prediction strategy for elementwise mixtures can be
implemented by the EHMM EMw defined in Figure 4. The
EHMM has a single silent state per outcome, whose transition
probabilities are the mixture weights w. Intuitively, by funnel-
ling all weight through a single silent state all differentiation
between the experts based on past performance is forgotten. As
such no learning occurs, the strength of this model instead lies
in the fact that the model always assigns reasonable probability
to any outcome that is likely according to any of the experts.
The forward algorithm calculates the prediction of EMw in
O(k) time per trial.

III. REGRET BOUNDS

Here we provide some handles for analysing the predictive
performance of EHMMs. In each case, the idea is to compare
the loss incurred by some model Q to the loss incurred
by another prediction strategy from a set M of reference
strategies. For example, M might be the set of all prediction
strategies based on a fixed expert sequence that contains m
blocks, or it might be the set of all prediction strategies that

1These mixtures are sometimes just called mixtures, or predictive mixtures,
or exponentially weighted averages. We use the term elementwise mixtures
to avoid confusion with Bayesian mixtures.

5

can be obtained by mixing over the predictions of the experts
with fixed weights. The goal is now to provide an upper bound
on the excess codelength of the model Q compared to the best
of these reference strategies. Note that for many models we
provide simultaneous regret guarantees with respect to several
distinct reference classes; e.g. the regret bounds for expert
tracking algorithms hold for all numbers of blocks m.

Throughout this paper, we use three types of regret bounds,
which are given in order of increasing sophistication. The first
bound is appropriate if only a few expert sequences contribute
significantly to the probability of the data. In that case it
is sufficient to simply drop some terms from the Bayesian
mixture.

Lemma 1 (Regret w.r.t. Expert Sequence ξt): Let Q denote
an EHMM, and let ξt denote a particular reference expert
sequence. Then, for all data xt,

ln
Pξt(x

t)

Q(xt)
≤ − ln Q(ξt). (6)

Proof: The bound is obtained by dropping all terms in
the mixture except for the one corresponding to ξt.

We obtain an expression for the regret w.r.t. some reference
set M ⊆ Ξt by maximising ξt over its elements. We have
already seen an example application: the regret bound (3) for
Q = Bw is derived in this way.

In the second kind of bound, another EHMM R plays the
role of reference prediction strategy. It can be useful even
if the number of different expert sequences with significant
contribution to the probability is very large. The following
lemma forms the basis for such bounds.

Lemma 2 (Regret w.r.t. another EHMM): Fix data xt and
EHMMs Q and R. We have

ln
R(xt)

Q(xt)
≤ − ln EV

[
Q(ξt)

R(ξt)

]
≤ EV

[
ln

R(ξt)

Q(ξt)

]
,

where V(ξt) = R(ξt|xt).
Proof: Rewrite

Q(xt)

R(xt)
≥
∑

ξt:R(xt,ξt)>0

R(xt, ξt)

R(xt)
· Q(xt, ξt)

R(xt, ξt)

= EV

[
Q(xt, ξt)

R(xt, ξt)

]
= EV

[
Q(ξt)

R(ξt)

]
,

take the − ln and subsequently apply Jensen’s inequality.
Although this bound still involves the actual data through the
distribution V, sometimes the expectation can be replaced by
a maximum over ξt. This may be sufficiently sharp for the job
at hand if a good uniform bound is available for the ES-priors.
However, it is possible to say more about the regret if Q and
R share a certain structure.

The next and final lemma applies to EHMMs in which some
of the transition probabilities are a function of a parameter
vector β. Intuitively, models with fewer parameters have more
constrained transition dynamics and are hence less expressive,
making it easier to compete with the maximum likelihood
parameter values.

The lemma is a generalisation of Theorems 1 and 3 in [25]2.
Theorem 1 is concerned with the special case of Fixed Share,
where the transition matrix is parameterised by the switching
rate α. Theorem 3 applies to unconstrained Markov transition
dynamics (with |Ξ|2 parameters). The lemma below yields
sharper results for restricted transition dynamics that can be
expressed in exponential family form. We will apply this
result to reobtain Monteleoni & Jaakkola’s sophisticated regret
bound [24] of Fixed Share (in Theorem 5) and then use it for
the kernel models of Sections IV-F and IV-G (Theorem 16),
for which the added generality is essential.

The parameterisation of the EHMM should be of the
following form. Let Tβ(j) = eβ

>φ(j)h(j)/Z(β) be an expo-
nential family of distributions with parameter vector β, some
sufficient statistic φ, carrier h and normalisation Z(β) =∑
j e
β>φ(j)h(j), where j takes values in a finite set J . Let

Q† ⊆ Q be a subset of the state space for which the transition
probabilities are governed by this exponential family model Tβ
in the sense that there is an injective function S : Q†×J → Q
that indicates for each such state how the symbols in J map
to the successor states:

P~(q → S(q, j)) = Tβ(j).

Intuitively, the more often such parameterised transitions are
traversed, the larger the difference between two distinct values
for β. Therefore we need to count the number of transitions
from states in Q†. Define the random variable q(t)(q∞) := qλ

where λ is chosen such that qλ is the tth productive state of
q∞. We assume throughout that q(t) is well-defined almost
surely for all t. Further define nj(q

(t)) := |{i | 0 ≤ i <
λ, qi ∈ Q†, S(qi, j) = qi+1}|, where λ is the length of q(t), so
that nj(q(t)) is the number of transitions in q(t) between states
in Q† and their j-successors, and let n(q(t)) =

∑
j nj(q

(t))
be the total parametrised transition count. We can now state
our result:

Lemma 3 (Regret w.r.t. ML Parameter β̂): Let Qβ be para-
meterised as defined above. Fix outcomes xt and let β̂ =
argmaxβ Qβ(xt) with the assumption that Qβ̂(xt) > 0. Fur-
thermore let W(q(t)) = Qβ̂(q(t)|xt) denote the posterior
distribution of q(t) under prior Qβ̂ . We then have

ln
Qβ̂(xt)

Qβ(xt)
≤ − ln EW

[
Qβ(q(t))

Qβ̂(q(t))

]
≤ EW

[
ln

Qβ̂(q(t))

Qβ(q(t))

]
= EW [n(q(t))] D

(
Tβ̂
∥∥Tβ),

where D is the Kullback-Leibler divergence.
As before, the goal of this lemma is to say something about
the overhead incurred by using a particular strategy Qβ instead
of the reference strategy Q β̂ . The result still depends on the
data via the distribution W, but in applications of the lemma
the idea will be to replace EW [n(q(t))] by a bound on the
number of states in Q† that may be traversed by relevant state
sequences.

2Theorem 1 also appears in [24]. Although both theorems are valid, The-
orem 3 does not generalise Theorem 1; there is a problem with Lemma 3.3.1
in the cited work.

6

As an important special case, the distribution on J may be
fully specified by a multinomial distribution with parameter
vector w; we can then apply the lemma above by setting
φ(j) = (0, . . . , 1, 0, . . .), with the 1 appearing at the jth

position, and h(j) = 1. Instantiated in this way the Lemma ex-
presses a bound with respect to all possible distributions on the
successor state, much like Theorem 3 of [25]. However, if we
choose a more constrained exponential family, the reference
strategy Tβ̂ has fewer degrees of freedom and the divergence
D(Tβ̂‖Tβ) that appears in the bound is reduced. This can be
used to obtain Theorem 1 of [25] (which also appears here as
Theorem 5); we also use it to prove Theorem 16 below.

Proof of Lemma 3: The first two inequalities are
Lemma 2 on the level of state sequences. The contribution
of this lemma lies in the last equality. First expand

EW

[
ln

Qβ̂(q(t))

Qβ(q(t))

]
= EW

∑
j∈J

nj(q
(t)) ln

Tβ̂(j)

Tβ(j)

=
∑
j

EW [nj(q
(t))]

(
(β̂ − β)>φ(j) + ln

Z(β)

Z(β̂)

)

= (β̂ − β)>
∑
j

φ(j) EW [nj(q
(t))] + EW [n(q(t))] ln

Z(β)

Z(β̂)
.

(7)

Since β̂ maximises the probability of Qβ and since
∇β ln Qβ(xt, q(t)) = ∇β ln

(
Qβ(q(t))/Qβ̂(q(t))

)
we obtain3

~0 = −∇β
Qβ(xt)

Qβ̂(xt)

∣∣∣∣
β=β̂

= −
∑
q(t) ∇βQβ(xt, q(t))

∣∣
β=β̂

Qβ̂(xt)

= −
∑
q(t)

Qβ̂(xt, q(t))

Qβ̂(xt)
∇β ln Qβ(xt, q(t))

∣∣
β=β̂

= ∇β EW

[
ln

Qβ̂(q(t))

Qβ(q(t))

]∣∣∣∣
β=β̂

.

This shows that the vector differential of (7) must be zero at
β̂. Reordering terms we obtain

∑
j

φ(j) EW [nj(q
(t))] = EW [n(q(t))]∇β ln

Z(β)

Z(β̂)

∣∣∣∣
β=β̂

= EW [n(q(t))] E
j∼Tβ̂

[φ(j)],

(8)

where the last step follows from

∇β lnZ(β) =
∇βZ(β)

Z(β)
=
∑
j∈J

eβ
>φ(j)h(j)

Z(β)
φ(j) = E

j∼Tβ
[φ(j)].

3 Recall that for a function f : Rk → R, the vector differential ∇βf is
defined as the column vector

(
∂f
∂β1

, . . . , ∂f
∂βk

)
.

Using (8) we may now simplify (7) to

EW

[
ln

Qβ̂(q(t))

Qβ(q(t))

]

= EW [n(q(t))]

(
(β̂ − β)> E

j∼Tβ̂
[φ(j)] + ln

Z(β)

Z(β̂)

)
= EW [n(q(t))] D

(
Tβ̂
∥∥Tβ),

completing the proof.
We now apply the lemma to our two running examples.

Note that in both cases, the model is parameterised such that
the total number of parameterised transitions is known.

Example 3 (Bayesian Mixture Regret): We have already
obtained the bound (3) for Bw using Lemma 1, but it is
instructive to do the same using Lemma 3. Let Q† contain
just the initial silent state and identify the experts Ξ with J .
We now have EW [n(q(t))] = 1, so the lemma tells us that
our regret is D(ŵ‖w), where ŵ is the hindsight optimal prior
weight vector that maximises the probability of the available
data, and w is the prior we actually use. Now observe that
in order to maximise probability, ŵ must assign all mass to a
single expert ξ̂, so D(ŵ‖w) = − lnw(ξ̂) as before.

Example 4 (Elementwise Mixture Regret): We now com-
pute the regret of EMw. Let Q† contain the silent states and
again identify the experts Ξ with J . For elementwise mixtures,
EW [n(q(t))] = t. So by Lemma 3, the regret of predicting
the outcomes xt with an elementwise mixture with weights w
instead of the hindsight optimal mixture weights ŵ is bounded
by tD(ŵ‖w).

IV. SWITCHING STRATEGIES

A. Fixed Share

Mark Herbster and Manfred Warmuth’s paper on tracking
the best expert [26], [6] is the first to consider the scenario
where the best predicting expert may change over time. They
compare the loss of their algorithm to the smallest loss that can
be achieved by splitting the data of size t into m segments, and
within each segment, copying the predictions of the expert who
in hindsight turns out to be best for that particular segment.
They give two algorithms called Fixed Share and Variable
Share, but the motivation for the second algorithm applies
only to loss functions other than log-loss (see Section V-A),
so we focus on Fixed Share, which matches the EHMM FSw,α
defined in Figure 5. Note that all arcs into the silent states have
fixed probability α ∈ [0, 1] and all arcs from the silent states
have some fixed distribution w on Ξ (the original algorithm
uses a uniform w(ξ) = 1/k). The same algorithm is also
described as an instance of the Aggregating Algorithm in [22].
Fixed Share reduces to fixed elementwise mixtures by setting
α = 1 and to Bayesian mixtures by setting α = 0. Each
productive state represents that a particular expert is used at
a certain sample size. Once a transition to a silent state is
made, all expert history is forgotten and a new expert is chosen
according to w.

We now bound the regret of Fixed Share with respect to a
given partition, i.e. sequence of experts.

7

Figure 5 Fixed Share: FSw,α

A

��

// A

��

// A

��

// A //

��
B

&&
// B

&&
// B

&&
// B //

&&
〈0〉

EE

88

&&

��

〈1〉

EE

88

&&

��

〈2〉

EE

88

&&

��

〈3〉

EE

88

&&

��

C

88
// C

88
// C

88
// C //

88

D

EE

// D

EE

// D

EE

// D //

EE

Q = Qs ∪Qp Qs = N Qp = Ξ× Z+

q0 = 0 Λ(ξ, t) = ξ

P~

 〈t〉 → 〈ξ, t+ 1〉
〈ξ, t〉 → 〈t〉
〈ξ, t〉 → 〈ξ, t+ 1〉

 =

 w(ξ)

α

1− α

Theorem 4 (Herbster and Warmuth [6]): Fix experts Ξ
and data xt, and let ξt be a sequence of experts with
m blocks (i.e. |{1 ≤ i < t | ξi 6= ξi+1}| = m − 1),
k = |Ξ|, and w(ξ) = 1/k. Let α∗ = (m − 1)/(t − 1)
denote the switching frequency in ξt. Write
H(α∗, α) = −α∗ lnα − (1 − α∗) ln(1 − α) for the
cross entropy. Then

ln
Pξt(x

t)

FSw,α(xt)
≤ m ln k + (t− 1) H(α∗, α). (9)

Proof: Let q(t) be the state sequence that produces ξt and
that passes through silent state 〈i〉 iff ξi 6= ξi+1. Then

FSw,α(xt)

Pξt(xt)

by (6)
≥ FSw,α(ξt) ≥ FSw,α(q(t))

= k−m(1− α)t−mαm−1.

Taking logarithms and substituting α∗ completes the proof.
Note that in Herbster and Warmuth’s algorithm, switches to the
same expert are disallowed, allowing them to derive a bound
with ln k + (m − 1) ln(k − 1) instead of our m ln k. We do
allow switches to the same expert in all our models to keep
the exposition clean and simple, but this can be changed in
the same way that this is done in the Fixed Share paper.

While α∗ optimises the bound, it does not necessarily max-
imise the probability of the data. We therefore also calculate
the regret of FSw,α with respect to the set of Fixed Share
algorithms for all α ∈ [0, 1].

Theorem 5 (Monteleoni and Jaakkola [24]): For all data
xt and switching rate α ∈ [0, 1],

ln
FSw,α̂(xt)

FSw,α(xt)
≤ (t− 1) D (α̂‖α) ,

where α̂ maximises the Fixed Share likelihood.
Proof: Apply Lemma 3, setting Q† to Qp, the set of all

productive states, whose outgoing transitions are parameterised
by the switching rate α.
Judging from this theorem and from (9), the regret appears
to grow linearly with time, but if we substitute the switching
rate α = α∗ that optimises the bound, cross entropy reduces

to ordinary entropy, and we find that if m is kept fixed, the
regret only has a logarithmic dependence on t: we have

(m− 1) ln
t− 1

m− 1
≤ (t− 1) H(α∗) ≤ (m− 1) ln

t− 1

m− 1
+m

(10)
where H(α∗) = H(α∗, α∗) is the binary entropy. The problem
is that such asymptotics can only be achieved if we are
somehow able to guess the optimal switching rate before
observing the data. This issue is addressed in the following
sections. We will evaluate the performance of the other models
for expert tracking using the loss of Fixed Share with α = α∗

as a baseline.

B. Intermezzo: Interpolation

Note how Fixed Share (Figure 5) interpolates between the
Bayesian Mixture (Figure 3) and the Elementwise Mixture
(Figure 4). The parameter α determines when switches occur.
If no switch occurs then the Bayesian Mixture’s transitions
are used: all experts’ weights remain unchanged. On the other
hand, if a switch occurs then the Elementwise Mixture’s trans-
itions are used: all experts’ weights are gathered and redistrib-
uted. Fixed Share can thus be interpreted as an algorithm that
interpolates between the Bayesian and Elementwise mixtures.

In this section we first give an intuitive high-level definition
of interpolation, and then follow it up with a detailed defin-
ition that carefully manipulates silent states for the sake of
efficiency.

Interpolations are natural to the switching domain. In [18],
Bernoulli HMMs are used to produce switching rates; these are
really just interpolators as defined below. In similar fashion,
interpolation allows us to lift pretty much any algorithm for
predicting binary data, such as [13], [14], to the context of
prediction with expert advice.

Interpolations are useful as a tool to build models in a
modular fashion. For example, the Bayesian Mixture model
(Figure 3) can be interpreted as a method for learning which
expert is best; the Fixed Share algorithm augments this model
by introducing the possibility to reset the weights, so that
the Bayesian learning process starts anew. By reinterpreting
Fixed Share as an interpolation between the Bayesian Mixture
and the Elementwise Mixture, as we do below, it becomes
possible to replace the Bayesian component of Fixed Share
with any other EHMM. Useful examples include EHMMs that
are designed to learn elementwise mixture coefficients. This
endows the model with the option to reset its state, effectively
restarting the learning process. Such possibilities are explored
in detail in [28].

Interpolation works as follows. We start with two EHMMs
Qn and Qs on state space Q. We interpret Qn(qi+1|qi) as a
specification of the state evolution under normal (n) behaviour,
while we regard Qs(qi+1|qi) as a codification of what happens
upon a switch (s). The decision whether switches are taken
is left to a third EHMM C, now on state space C, with node
labels Σ in {n, s} that we use to select which evolution is
desired at each time step. The resulting interpolation R =
Qn ⊗C Qs is displayed in Figure 6 as a Bayesian network on
variables ci, σi, qi, ξi and xi for each time i = 1, 2, . . . (Note

8

Figure 6 Bayesian network of interpolation R = Qn ⊗C Qs

c1
//

��

c2
//

��

c3
//

��

c4
//

��
σ1

��

σ2

��

σ3

��

σ4

��q1
//

��

q2
//

��

q3
//

��

q4
//

��
ξ1

��

ξ2

��

ξ3

��

ξ4

��
x1 x2 x3 x4

that C differs from regular EHMMs in that it does not have
a data layer (the xi variables), and the produced symbols are
from {n, s} rather than the fixed expert set Ξ.) We will now
define the interpolation distribution on these variables. Most
conditional distributions are copied from the input EHMMs:
as before ξi = Λ(qi), σi = Σ(ci), the state evolution for the
selection process R(ci+1|ci) is copied from C, and R(xi|ξi)
denotes the prediction of expert ξi for the ith outcome. As
indicated, the switch decisions σi = Σ(ci) are made between
rounds, with σi = s indicating that a switch occurs between
time i and i+ 1. In the interpolation the probability of a state
qi+1 now depends not only on the previous state qi, but also
on the switch decision σi, which determines which of the
original two dynamics is selected:

R(qi+1|qi,σi) := Qσi(qi+1|qi).

In addition, we have to define which of the two dynamics is
used initially. We arbitrarily choose to define the model to
start with the switching dynamics, and set R(q1) := Qs(q1).
We note that the interpolation R is again a prediction strategy
of the form shown in Figure 2, now with joint state space
Q× C.

Interpolation separates concerns; C, on the highest level,
determines when to switch. Below, Qn and Qs determine the
normal and switching behaviour. This separation is reflected
in the following modular loss bound:

Lemma 6 (Interpolation Decomposition): Fix interpolation
R = Qn⊗C Qs. For each sequence σt−1 ∈ {n, s}t−1 of switch
decisions (on the C level) and each sequence qt ∈ Qt of
productive states (on the Q level)

R(qt) ≥ C(σt−1) Qs(q1)

t−1∏
i=1

Qσi(qi+1|qi).

Proof: By dropping terms from the marginal, we find
R(qt) ≥ R(σt−1)R(qt|σt−1). By the definition of interpol-
ation, we have R(σt−1) = C(σt−1) and R(qt|σt−1) =
Qs(q1)

∏t−1
i=1 Qσi(qi+1|qi).

Corollary 7 (Default Interpolation Regret): We apply this
lemma to our Q-level EHMMs of interest, Qn = Bw and
Qs = EMw where w is uniform on k experts. Fix ξt. Set
σi = s iff ξi+1 6= ξi, and let m be the number of blocks in
ξt, i.e. the number of s in σt−1 plus one. Then for all data xt

ln
Pξt(x

t)

R(xt)
≤ − ln C(σt−1) +m ln k.

Proof: Recall that in both Q-level EHMMs there is,
at each time, a one-one correspondence between productive
states and experts, so we may just as well identify them. Then
we have Qs(ξ1) = w(ξ1), and

Bw(ξi = ξi−1|ξi−1) = 1; EMw(ξi|ξi−1) = w(ξi).

Now using w(ξ) = 1/k, Lemma 6 yields R(ξt) ≥
C(σt−1) k−m and the result follows by (6).

Example 5 (Fixed Share Regret): We abbreviate
EM{n,s},(1−α,α) to FSα. We now redefine the Fixed Share
model in terms of the interpolation

FSw,α := Bw ⊗FSα EMw.

This definition is equivalent to the one in Figure 5, as the
sets of infinite state sequences are in one-one correspondence
between the models. We now reprove the Fixed Share regret
bound (9) by combining Corollary 7 with the observation that

− ln FSα(σt−1) = − ln
(
(1− α)t−mαm−1

)
= (t− 1) H(α∗, α).

In the following we often use this mechanism. We prove
a loss bound for the interpolator C on switch sequences, and
transport it to the data level using Corollary 7, adding m ln k.

Detailed construction: We now describe an explicit con-
struction for the interpolation of two EHMMs, and relate the
size of the interpolation to the size of the original models.
This section is technical, and may be skipped on first reading.

The construction takes three EHMMs, C, Qn and Qs. The
interpolator C specifies when switches occur, Qn determines
the normal (n) evolution and Qs determines the evolution when
a switch (s) occurs. In particular, we obtain a model that
defines the same distribution as FSw,α by interpolation using
C = EM{n,s},(1−α,α), Qn = Bw and Qs = EMw.

Definition 8 (Interpolation): See Figure 7 for an illustra-
tion. Let C = 〈C,Cp, c0,P~,Σ〉 be a EHMM on {n, s}, and let
Qn and Qs be EHMMs on experts Ξ sharing a common state
set Q with identical start state q0 and labelling Λ (and thus
identical productive states Qp), but with different transition
functions Pn

~
and Ps

~
. For the construction below it will be

convenient to prefix a new productive start state c? to C
labelled Σ(c?) = s, with a single transition P~(c? → c0) = 1
to the original start state. This will ensure that we initially
follow the Qs dynamics.

We define Qn ⊗C Qs, the C-interpolation of Qn and Qs, by

Qn ⊗C Qs :=
〈
R,Rp, r0,P

⊗
~
,Λ⊗

〉
.

Each state of the interpolation is a pair of states, consisting
of one state from the common state set Q, and one state from
the interpolator C, at least one of them productive, plus a bit
that indicates which state is to evolve next:

R := Qp × C × {0} ∪ Q× Cp × {1}.

The productive states of the interpolation are the triples with
two productive states and zero bit

Rp := Qp × Cp × {0},

and the interpolator has start state r0 := 〈q0, c?, Iq0 6∈Qp〉. The
transition function P⊗

~
alternately forwards the components

9

of the state, as indicated by the bit. First it evolves the first
state component (q in Q) to the next productive state in Q
using either Pn

~
or Ps

~
as determined by the produced label

Σ(c) ∈ {n, s}. Then it forwards the second state component
(c in C) to the next productive state using P~. That is

P⊗
~

(
〈q, c, 1〉 → 〈q′, c, Iq′ 6∈Qp〉
〈q, c, 0〉 → 〈q, c′, Ic′∈Cp〉

)
:=

(
PΣ(c)
~

(q → q′)

P~(c→ c′)

)
Finally, the node label is that of the first component

Λ⊗(q, c, 0) := Λ(q).

Figure 7b shows the state transition diagram of an interpola-
tion, with the interpolator shown in Figure 7a.

As mentioned before, the predictions of an EHMM can
be computed with constant work per edge, where an edge
is defined as a pair of states q, q′ with non-zero transition
probability P~(q → q′) > 0. We now bound the number of
edges of an interpolation.

Lemma 9: Let eC , es, en and eR be the numbers of edges
in EHMMs C, Qn, Qs and the interpolation R = Qn ⊗C Qs.
Then

eR ≤ |Cp|max {en, es}+ |Qp|eC

Proof: From the definition of P⊗
~

.
This theorem provides an upper bound, for not all these

edges may be reachable from the start state. A careful counting
for Fixed Share yields that between the reachable productive
states at time t and t + 1 sit c|Ξ| edges, for some constant c
independent of t. The running time of the interpolation version
is hence no worse than that of the classical version.

This concludes the intermezzo. In the remainder of this
section, we discuss the benefits and costs of several choices
for C, both in terms of loss bound and in terms of running
time. We also briefly discuss alternatives for Qn and Qs.

C. Decreasing Switching Rate

Fixed Share uses a fixed switching rate α. However it is
possible to get good bounds without having to choose α, by
letting the switching probability decrease as a function of time.
This trick was employed in the source coding setting in [15].

Intuitively, if the number of blocks m is small, then the term
(t− 1) H(α∗) in the Fixed Share bound (10) with the optimal
switching rate is not much smaller than (m − 1) ln(t − 1).
To ensure at most an additive ln(t) penalty to the regret per
switch, a switching rate of αt = 1/t suffices. This inspires the
models described in this section.

Whereas Fixed Share uses the elementwise mixture inter-
polator with switching rate α, we consider a new interpolator,
DSRαω , which is similar to FSα, except that the switching
probability αt is no longer a parameter of the model, but a
fixed decreasing function of the time t. We still model switches
as independent, and as before, we define the full model as

DSRw,αω := Bw ⊗DSRαω EMw.

To obtain bounds, we use the following equality. Let σt−1

be a sequence with m − 1 occurrences of s at positions

t2, . . . , tm, and let t1 = 0. Then

− ln DSRαω (σt−1) = − ln

(
t−1∏
i=1

(1− αi)
m∏
j=2

αtj
1− αtj

)

= −
t−1∑
i=1

ln(1− αi)−
m∑
j=2

ln
αtj

1− αtj
. (11)

The last expression can be read as follows: the first sum
denotes the cost of not switching during the first t outcomes,
and the second sum denotes the correction for the switches
that actually did occur.

Recall the two problems we identified above for Fixed
Share: that the switching rate α has to be tuned to obtain a
good bound, and that the regret keeps increasing even if, from
some point on, no switches occur anymore. Below we describe
a first choice for αi that adequately solves the first of these
two issues. In the next section we propose a different choice
for αi that solves both problems simultaneously at the cost
of a slight additional overhead in the regret bound; a variant
of this second model was shown in [19] to yield a substantial
improvement of Bayes factors model selection; this will be
discussed in more detail below.

1) Switching with Slowly Decreasing Probability:
Theorem 10: Let αi = 1 − e−c/i for some c > 0. Let w

be the uniform distribution on the set Ξ of k experts. For any
data xt and expert sequence ξt with m blocks

ln
Pξt(x

t)

DSRw,αω (xt)

≤ m ln k + c− (m− 1) ln c+ (m− 1 + c) ln(t− 1).

(12)

Proof: By (11), using
∑t
i=1

1
i < ln t+1 and ex ≥ x+1,

− ln DSRαω (σt−1) = c

t−1∑
i=1

1

i
−

m∑
j=2

ln
(
ec/tj − 1

)
≤ c ln(t− 1) + c− (m− 1) ln c+

m∑
j=2

ln tj . (13)

The sum is bounded by substituting each tj by t− 1, and the
result follows by Corollary 7.
Note that while we succeeded in eliminating the parameter α,
we have in fact introduced a new parameter c, so it would
appear that matters have not improved much. But unlike α, a
suboptimal value for c only yields a regret penalty of order
ln t, so it may safely be set to some convenient constant like
c = 1. The optimising value is c∗ = (m− 1)/(1 + ln(t− 1)),
which yields slightly better asymptotics, but this defeats the
purpose as it would require a priori knowledge of m and t
again.

We now compare the regret bound (12) to the bound (9)
for Fixed Share. To maximise the difference, we use the
optimising parameter α∗ for Fixed Share, and we lower bound
the entropy using (10). The difference is

c− (m− 1) ln c+ c ln(t− 1) + (m− 1) ln(m− 1),

where the last two terms dictate asymptotic behaviour. Which
of these terms is dominant depends on how quickly m grows as

10

Figure 7 Interpolation example: state transition diagram
(a) EHMM C on {n, s} (normal/switch)

n // n // n //JJ

//

��

s

FF

��

s

FF

��

s

��

FF

FF

��

FF

��
n

FF

n

FF

n

FF

(b) Interpolation Qn ⊗C Qs where Qn = Bw and Qs = EMw on experts {A, B, C}
// A // // A // //

// B // // B // //

// C // // C // //

A

GG

//

��

''
A

@@

��

''
A

@@

��

''
77
//
''
B

GG

//

��

//
77
//
''
B

@@

��

//
77
//
''
B

@@

��

//

C

GG

//

��

77

C

@@

��

77

C

@@

��

77
EE

��

EE

��

EE

��

EE

��

EE

��

EE

��

// A

EE

// A

EE

//

// B

EE

// B

EE

//

// C

EE

// C

EE

//

_?
〈·,·,1〉
� _?

〈·,·,0〉
� _?

〈·,·,1〉
� _?

〈·,·,0〉
� _?

〈·,·,1〉
� _?

〈·,·,0〉
� �

〈·,·,1〉
�

a function of t. If there are relatively few switches, m lnm =
o(ln t), then the c ln(t− 1) term dominates, so it pays to use
a small value for c to get good asymptotics in that case. If, on
the other hand, the number of switches is large, then the last
term is larger, and it may be substantial; careful judgement is
then required to decide whether or not this is an acceptable
price to pay or that a more sophisticated method for learning
the switching rate (Section IV-D) is preferable.

2) Switching with More Quickly Decreasing Probability:
In some settings the optimal number of switches between
experts may remain bounded. A natural example is Bayes
factors model selection, where the considered experts are
Bayesian prediction strategies associated with model classes
of varying complexity; at small sample sizes, simple model
classes typically yield the best predictions (as their parameter
estimates are quicker to converge to their optimal values),
but if one of the more complex model classes contains the
data generating distribution, then that model class eventually
produces the best predictions. From that point in time onwards,
no more switches away from that model class are required.

In such a scenario, a simple Bayesian mixture of the experts
with uniform prior yields a regret bound of ln k w.r.t. the
ultimately best expert (see (3)), which depends on the number
of experts but not on the sample size. Asymptotically, this
is therefore a better solution than the one presented in the
previous section, where even if there are no switches at all
(m = 1), the incurred regret bound of ln k + c + c ln(t − 1)
grows without bound due to the first term of (13). This happens
because the ES-prior DSRαω assigns zero probability to the
event that no more switches occur from some time t onwards.
The problem with the Bayesian mixture, as apparent in (3),
is that it cannot take advantage of the superior performance
of the simpler models at small sample sizes. As shown
in [19], this results in a suboptimal rate of convergence in
the nonparametric case for the Bayesian mixture: its overhead
compared to a switching model (such as the one from the

previous section) can be arbitrarily large!
To achieve the best of both worlds, we must tweak the

model from the previous section somewhat: while we still
assign positive prior probability to the occurrence of switches,
we also ensure that the probability that no more switches occur
from any given time onwards is strictly positive. This section
describes a simplification of the Switch Distribution4 proposed
in [19] for which the results of that paper still hold. In brief,
this model achieves the optimal rate of risk convergence when
used for sequential prediction, but at the same time, it defines
a consistent model selection criterion (it selects the model
containing the true distribution with probability 1 as sufficient
data become available).

Theorem 11: Let αi = 1 − e−cτ(i) for some c > 0 and a
decreasing probability mass function τ on the positive integers.
Let w be the uniform distribution on the set Ξ of k experts.
For any data xt and expert sequence ξt with m blocks

ln
Pξt(x

t)

DSRw,αω (xt)
≤ m ln k+c−(m−1) ln c−(m−1) ln τ(tm).

Proof: Using (11),
∑
i τ(i) = 1 and ex ≥ x+ 1,

− ln DSRαω (σt−1) = c

t−1∑
i=1

τ(i)−
m∑
j=2

ln
(
ec·τ(tj) − 1

)
≤ c− (m− 1) ln c−

m∑
j=2

ln τ(tj).

For decreasing τ , we obtain an upper bound by substituting
ti = tm for 1 ≤ i < tm, and the theorem follows from
Corollary 7.
A desirable feature of this bound is that it is expressed in
terms of the index tm of the last switch rather than in terms

4Incidentally, the switch distribution is a tracking model whose interpolator
has the structure depicted in Figure 7a. The idea is that with every switch, there
is a certain fixed probability of “stabilisation”, meaning that the interpolator
enters a special “band” of states where further switching is impossible.

11

of the time t, as we obtained in Section IV-C1. The role of c
is even weaker than before, as there is no c ln t penalty term;
its optimal value is now c∗ = m − 1, but in practice c = 1
would be a sensible value. On the flip side, a ln t cost per
switch as in (12) can no longer be guaranteed. A convenient
fat-tailed prior that comes very close is

τ(t) =
1

ln(t+ e− 1)
− 1

ln(t+ e)
, (14)

which satisfies − ln τ(t) ≤ ln(t) + 2 ln ln(t+ e) + e/t.

D. Learning the Switching Rate

1) The Switching Method: In a very early publication [12],
Volf and Willems describe an algorithm called the switching
method, which is very similar to Herbster and Warmuth’s
Fixed Share, except that it is able to learn the optimal
switching rate α on-line. A similar method was developed
independently in [22]. Here we describe the Switching Method
as an interpolation and bound its regret. Whereas Fixed Share
interpolates using a fixed Bernoulli[α] distribution, the switch-
ing method “integrates out” the parameter using Jeffreys’ prior
(which is Beta[1

2 ,
1
2]).

The switching method EHMM is defined as the interpolation

SMw := Bw ⊗SM EMw,

with the interpolator SM defined in Figure 8. Each productive
state 〈nn, ns, σ〉 represents the fact that after observation nn +
ns + 1 a switch occurs (σ = s) or not (σ = n), while there
have been ns switches in the past.

We now bound the regret of the switching method with
respect to Fixed Share with any switching rate α (in particular
the maximum likelihood rate α̂), and thereby show that it is
universal for the Fixed Share model class

{
FSw,α

∣∣ α ∈ [0, 1]
}

.
Theorem 12 (The Switching Method Regret): For any

switching rate α and data xt

ln
FSw,α(xt)

SMw(xt)
≤ ln 2 + 1

2 ln t.

Proof: Fixed Share and the switching method interpolate
the same EHMMs, so we have the following information
processing inequalities (c.f. Lemma 2)

max
xt

FSw,α(xt)

SMw(xt)
≤ max

ξt

FSw,α(ξt)

SMw(ξt)

≤ max
σt−1

FSw,α(σt−1)

SMw(σt−1)
= max

σt−1

FSα(σt−1)

SMw(σt−1)
.

Thus we may transfer regret bounds from the interpolator level
via the expert-sequence level to the data level. The rightmost
term is the worst-case regret for the Bernoulli model with
Jeffreys prior, which can be bounded (see e.g. [13]) by ln 2 +
1
2 ln t for all α.
By the previous theorem and the Fixed Share regret bound
Theorem 4, we obtain for all ξt with switching frequency α∗

ln
Pξt(x

t)

SMw(xt)
≤ m ln k + (t− 1) H(α∗) + ln 2 + 1

2 ln t.

The switching method was independently derived in [29],
where this last inequality is also proved. Our theorem is

Figure 8 The switching method interpolator SM

s

99

〈3,0〉

//
::

n //

s

::

s

::

〈2,0〉

//
::

n //
〈2,1〉

//
::

n //

s

::

s

::

s

::

〈1,0〉

//
::

n //
〈1,1〉

//
::

n //
〈1,2〉

//
::

n //

s

::

s

::

s

::

s

::

〈0,0〉

//
::

n //
〈0,1〉

//
::

n //
〈0,2〉

//
::

n //
〈0,3〉

//
::

n //

Q = Qs ∪Qp Qs = N2 Qp = N2 × {n, s}
q0 = 〈0, 0〉 Λ(nn, ns, σ) = σ

P~

〈nn, ns, n〉 → 〈nn + 1, ns〉
〈nn, ns, s〉 → 〈nn, ns + 1〉
〈nn, ns〉 → 〈nn, ns, n〉
〈nn, ns〉 → 〈nn, ns, s〉

 =

1

1
(nn+

1
2
)

(nn+ns+1)

(ns+
1
2
)

(nn+ns+1)

slightly sharper, as it bounds the regret w.r.t. the actual
maximum-likelihood Fixed Share performance instead of its
regret bound.

2) Improving Time Efficiency for Learning the Switching
Rate: The new ingredient of the switching method compared
to Fixed Share is that the EHMM includes a switch count in
each state. This allows us to adapt the switching probability
to the data, but it also renders the number of states quadratic.
The quadratic running time O(k t2) restricts its use to moder-
ately sized data sets. The approach taken by Monteleoni and
Jaakkola [24] is to place a discrete prior on the switching rate
α: the prior mass is distributed over

√
t well-chosen points,

where the ultimate sample size t is assumed known. This way
they still achieve the bound of Theorem 12 up to a constant,
while reducing the running time to O(k t

√
t).

This approach has two disadvantages of its own: first,
the ultimate sample size t has to be known in advance,
which means that the presented algorithm is only quasi-
online. Second, the discretisation of the prior is obtained by
a numeric optimisation procedure, which means that both the
number and the locations of the discretisation points are not
known in closed form. As a consequence, the resulting regret
bound can only be determined up to O(1). In [18] a simple
explicit discretisation scheme is presented which allows the
regret bound to be calculated exactly. Furthermore, it is shown
how, at the cost of a somewhat worse regret bound, this
discretisation scheme can be refined online such that t no
longer has to be known in advance.

E. The Run-length Model for Clustered Switching

Run-length codes have been used extensively in the context
of data compression, see e.g. [30]. The corresponding prob-
ability distributions are known in the statistical literature as
renewal processes, see [31].

12

Rather than applying run length codes directly to the obser-
vations, we use them as interpolators, as they constitute good
models for the distances between consecutive switches.

The run-length model is especially useful if the switches
are clustered, in the sense that some parts of the expert
sequence contain relatively few switches, while other parts
contain many. The Fixed Share algorithm remains oblivious
to such properties, as its interpolator is a Bernoulli model:
the probability of switching remains the same, regardless of
the index of the previous switch. Essentially the same limit-
ation also applies to the switching method, whose switching
probability normally converges as the sample size increases.
The decreasing α models perform well when the switches are
clustered toward the beginning of the sample, but depending
on the application this may be unrealistic and may introduce
a new unnecessary loss overhead.

The run-length model, which is related to Willems’ “linear
complexity coding method” from [13] and its subsequent
refinement in [15], models the intervals between successive
switches as independently distributed according to some distri-
bution τ . After the switching method and decreasing α models,
this is a third generalisation of the Fixed Share algorithm,
which is recovered by taking a geometric distribution for τ :
the interpolation then becomes memoryless and reduces to the
interpolator of Fixed Share.

Let τ be a distribution on Z+∪{∞}, which is used to model
the lengths of the blocks. We assume τ(∞) > 0; this keeps
our regret constant when the reference number of switches is
bounded while the number of samples goes to infinity. The
run-length interpolator RLτ is defined in Figure 9. Intuitively,
the state 〈t, δ〉 means that we are at time t, and that sample
t+1 will be the δth sample since the last switch. The EHMM
for the run-length model is given by the interpolation

RLw,τ := Bw ⊗RLτ EMw.

As may be read from the diagram of the interpolator, we
require quadratic running time O(k t2) to evaluate the run-
length model in general.

Theorem 13 (Run-length Model Regret): Let w be the uni-
form distribution on k experts. Assume there is a log-convex
function ϑ on [1,∞) that agrees with τ on Z+. With abuse
of notation, we identify τ with ϑ. Then, for all data xt and
expert sequences ξt with m blocks, we have

ln
Pξt(x

t)

RLw,τ (xt)
≤ m ln k− ln τ(∞)−(m−1) ln τ

(
tm

m− 1

)
.

(15)
Proof: Fix a switch sequence σt−1 with m−1 occurrences

of s at positions t2, . . . , tm, and let t1 = 0. For j = 1, . . . ,m−
1, let δj = tj+1 − tj denote the length of block j. From the
definition of the interpolator above, we obtain

− ln RLτ (σt−1) = − ln τ(z ≥ t− tm)−
m−1∑
j=1

ln τ(δj)

≤ − ln τ(∞)−
m−1∑
j=1

ln τ(δj).

Figure 9 The run-length model interpolator RLτ,c

s

99

〈3,1〉

//
::

n //

s

::

〈2,1〉

//
::

n //
〈3,2〉

//

GG

n //

s

::

〈1,1〉

//
::

n //
〈2,2〉

//

GG

n //
〈3,3〉

II

// n //

s

::

〈0,1〉

//
::

n //
〈1,2〉

//

GG

n //
〈2,3〉

//

II

n //
〈3,4〉

//

II

n //

Q = Qs ∪Qp Qs = S Qp = {n} × S ∪ {s} × N
q0 = 〈0, 1〉 Λ(n, t, δ) = n Λ(s, t) = s

P~

〈s, t〉 → 〈t, 1〉
〈n, t, δ〉 → 〈t, δ〉
〈t, δ〉 → 〈n, t+1, δ+1〉
〈t, δ〉 → 〈s, t+1〉

 =

1

1

τ(z > δ|z ≥ δ)
τ(z = δ|z ≥ δ)

where

S :=
{
〈t, δ〉 ∈ N2 | δ ≤ t+ 1

}
.

Since − ln τ is concave, by Jensen’s inequality we have

m−1∑
j=1

− ln τ(δj)

m− 1
≤ − ln τ

(
m−1∑
j=1

δj
m− 1

)
= − ln τ

(
tm

m− 1

)
.

In other words, the block lengths δi are all equal in the worst
case. Combining this with Corollary 7 we obtain the result.

We have seen that the run-length model reduces to Fixed
Share if the prior on switch distances τ is geometric, so it can
be evaluated in linear time in that case. The geometric prior
is not the only one for which the complexity can be reduced;
for example, the negative binomial distribution can also be
implemented efficiently, as well as any τ with finite support.
However, such priors must have exponentially small tails; for
priors τ with thick tails, which are desirable in our worst-case
analysis, one may use the fully general EHMM as depicted in
Figure 9.

To compare the performance of the run-length model to the
bound (9) for Fixed Share, assume tm = t − 1 and define τ
as in (14). The bound (15) becomes

m ln k − ln τ(∞) + (m− 1) ln
t− 1

m− 1

+ 2(m− 1) ln ln

(
t− 1

m− 1
+ e

)
+ (m− 1)e.

To maximise the difference, we use the optimising parameter
α∗ for Fixed Share, and we bound the entropy from below
using (10). The gap between the bounds is then given by

− ln τ(∞) + 2(m− 1) ln ln

(
t− 1

m− 1
+ e

)
+ (m− 1)e.

At this modest price, the run-length model does not require
tuning any parameters, its regret depends on tm instead of t,

13

and it may take advantage of clustered switches, although this
is not expressed by Theorem 13.

Willems and Krom showed in [14] how the time complexity
of the algorithm can be improved at a cost of a slightly worse
regret bound. They force a switch at carefully chosen states in
the run-length EHMM (Figure 9); all subsequent states in the
same row become unreachable and hence can be pruned from
the model. Using this scheme the number of states reachable
in the model at time t (and therefore the complexity per
time step) can be reduced to log2 t, while the regret bound
deteriorates, also by a logarithmic factor. This approach was
later refined to obtain more general time complexity / regret
tradeoffs in [15], [16], [32], [33].

F. Ordered Experts

In the models discussed so far, once a switch occurs, it
is equally easy to switch to any of the available experts, as
Qs prescribes uniform redistribution of the probability mass.
This approach is reasonable if we do not know anything about
the relationship between the experts; furthermore it has the ad-
vantage that percolating probabilities through Qs requires only
O(k) operations, while we would need O(k2) operations to
support arbitrary transition probabilities between the experts.
In this section we consider an interesting alternative that both
makes intuitive sense and allows for efficient computation.

Assume that the experts can be sensibly organised using
a line or ring topology, with the interpretation that switches
between two experts are more likely if they are close together
on this structure than if they are far apart. An example is given
by Vovk [22] who considers a polynomial regression problem
with one expert to represent the polynomials of each degree. In
this case it is clear that, typically, the optimal degree increases
gradually as more observations are gathered, so switching from
degree 10 to degree 11 is more likely than, say, switching
instead to degree 1,000.

We will simplify matters further by postulating that the
probability of a switch between any pair of experts who are δ
apart is the same. Furthermore, for simplicity of exposition we
identify the experts with the integers, Ξ = Z. (In practice it is
of course not possible to work with an infinite set of experts,
but this can be resolved by simply changing the forward
algorithm to drop all probability mass that at any time becomes
propagated to an expert outside of the considered range.)

Now the notion of similarity between experts may be
expressed by a kernel κ, i.e. a probability distribution on
distances. This allows us to specify an expert sequence prior
of the form

π(ξt+1 | ξt) = κ(ξt+1 − ξt).

Note that in principle a different kernel can be used every
round, but it suffices for our purpose to consider a fixed kernel.
If an EHMM Q has a marginal distribution on expert sequences
of this form, it is relatively easy to maintain the weights on
the experts. A property of Hidden Markov Models is that the
next state ξt+1 is independent of the observed data xt given
the current state ξt, so that Qπ(ξt+1 | ξt, xt) = π(ξt+1 |
ξt) = κ(ξt+1 − ξt). Therefore we can compute the marginal

distribution on the expert at time t + 1 given the previously
observed data as

Qπ(ξt+1 | xt) =
∑
ξt

κ(ξt+1−ξt)Qπ(ξt | xt) =: κ∗Qπ(ξt | xt),

where the asterisk denotes the convolution operation. This
approach can be lifted to the level of states: sometimes it may
be sensible to order all states involved in an expert HMM.
However, for simplicity we will consider the interpolating
model of Section IV-B, where the transitions of Qs are replaced
by a convolution κ on the experts. An EHMM implementing
such convolutions is KERNELκ := 〈Q,Qp, q0,P~,Λ〉, defined as
follows

Q = Qp ∪Qs Qp = Z× Z+ Qs = {〈0, 0〉} q0 = 〈0, 0〉
Λ(ξ, t) = ξ P~(〈ξ, t〉 → 〈ξ′, t+ 1〉) = κ(ξ′ − ξ) .

For this scenario, we derive the following analogue of Corol-
lary 7:

Corollary 14 (Kernel Interpolation Regret): Let Qn = BZ,κ
and Qs = KERNELκ. Fix ξt. Set σi = s iff ξi+1 6= ξi, and
for 1 ≤ j ≤ m let kj denote the expert used in the jth block.
Further let k0 = 0. Then for all xt:

ln
Pξt(x

t)

(Qn ⊗C Qs) (xt)
≤ − ln C(σt−1)−

m∑
j=1

lnκ(kj − kj−1).

Proof: As before, we identify productive states and ex-
perts to get BZ,κ(ξ1) = KERNELκ(ξ1) = κ(ξ1), BZ,κ(ξi =
ξi−1|ξi−1) = 1, and KERNELκ(ξi|ξi−1) = κ(ξi − ξi−1). Now
Lemma 6 yields (Qn ⊗C Qs) (ξt) ≥ C(σt−1)

∏m
j=1 κ(kj −

kj−1), and the result follows by (6).
From the Convolution Theorem, we know that any convolution
κ∗λ on k experts can be carried out in O(k ln k) time using the
Fast Fourier Transform algorithm, see e.g. [34], [35]. Thus, the
ordered expert approach, which can be combined with any of
the interpolating models described in previous sections, seems
to provide a very attractive tradeoff between time complexity
and expressive power.

In the following we consider a particular kernel for which
the convolution can be performed in O(k) time using a much
simpler algorithm. It also has an interesting interpretation as
a nice model for “parameter drift”.

G. Parameter Drift

So far, we have discussed strategies where we follow a
Bayesian prediction strategy which is interrupted every now
and then by switching events. This is reflected by the regret
bound Corollary 14, which consists of a term for the cost
of specifying the indices of the switches, and a second term
for the cost of specifying which experts are involved in the
switches.

In this section we take a radically different approach.
Rather than thinking of sporadic abrupt changes in the relative
predictive performance of the experts, we now imagine that
their performance changes gradually over time. Sticking to
the ordered experts approach, as before we identify the set
of experts with the integers, Ξ = Z (indicating for example
the number of bins in a regular histogram, or arising from

14

discretisation of a continuous parameter space). However, in
this section we will bound the regret in terms of the total
amount of drift in ξt:

d =

t∑
i=1

|δi|, where δ1 = ξ1 and δi = ξi − ξi−1 for 1 < i ≤ t,

which can be viewed as the length of the path described by
ξt.

As an example, one may consider the switching model
proposed by Monteleoni and Jaakkola (see Section IV-D2).
They essentially instantiate a number of Fixed Share models,
for various values of the switching rate α. These Fixed Share
instances are prediction strategies, and can therefore be inter-
preted as experts themselves. However, it seems reasonable to
assume that in many cases the optimal switching rate α might
be subject to drift: it might vary somewhat as time progresses.
Therefore it may be beneficial to combine these “Fixed Share
experts” using a model that can represent parameter drift. The
resulting loss can be bounded in terms of the amount of drift
that occurs in the reference sequence of switching parameters.
For parameter drift we no longer use an interpolation, as in
previous sections, because switches no longer have special
status. Instead, shifts between experts are possible at each
time step, through convolution with the following kernel,
parameterised by 0 < α < 1:

κα(δ) := α|δ|
1− α
1 + α

. (17)

This kernel can be implemented with the EHMM KERNELκα
from the previous section, but as it turns out it is possible
to represent the same kernel using a different EHMM PDα,
defined in Figure 10, that uses silent states to reduce the
number of edges, allowing the convolution to be carried out
in time proportional to the number of experts considered.
Linear time convolution is possible because the kernel is a
memoryless distribution conditional on the sign of the drift.
This sign information is represented by the distinction between
two columns of silent states for each time step.

Theorem 15 (Parameter Drift Regret): Fix any data xt and
reference sequence ξt with total drift d. Let H(P,Q) =
−
∑
x P (x) lnQ(x) denote the cross entropy. Then

ln
Pξt(x

t)

PDα(xt)
≤ tH(κα∗ , κα) = −t ln

1− α
1 + α

− d lnα,

where α∗ = argmaxα PDα(ξt) =
√

1 + (t/d)2 − (t/d).
Proof: By Lemma 1, the left-hand side is bounded above

by − ln PDα(ξt). Since {κα} is an exponential family with
unit carrier (see e.g. [36, Proposition 19.1]),

− ln PDα(ξt) = − ln

t∏
i=1

κα(δi)

= tEκα∗ [− lnκα(δ)] = tH(κα∗ , κα).

The equality of the Theorem further follows from

PDα(ξt) =

t∏
i=1

κα(δi) = αd
(

1− α
1 + α

)t
.

Figure 10 Parameter drift: PDα

�� ��

OO

��

OO

��

2

>>

''

// 2

>>

''

// 2

OO

77

��

OO

77

��

1

>>

''

// 1

>>

''

// 1

OO

77

��

OO

77

��

LL

KK

GG

//

��

��

��

0

>>

''

// 0

>>

''

// 0 · · ·

OO

77

��

OO

77

��

-1

〈1,-1〉
>>

''

// -1

〈2,-1〉
>>

''

// -1

〈1,-2,-1〉

OO

77

〈1,-1,-2〉

��

OO

77

��

-2

>>

''

// -2

>>

''

// -2

OO

77

��

OO

77

��

OO OO

PDα = 〈Q,Qp, q0,P~,Λ〉 Q = Qs ∪Qp

Qp = Z+ × Z q0 = 0 Λ(t, ξ) = ξ

Qs = Z+ × {〈i, i+ 1〉, 〈i, i− 1〉 | i ∈ Z} ∪ {0}

P~

〈0〉 → 〈1, ξ〉
〈t, ξ−1, ξ〉 → 〈t, ξ, ξ+1〉
〈t, ξ+1, ξ〉 → 〈t, ξ, ξ−1〉
〈t, ξ−1, ξ〉 → 〈t+1, ξ〉
〈t, ξ+1, ξ〉 → 〈t+1, ξ〉

〈t, ξ〉 → 〈t+1, ξ〉
〈t, ξ〉 → 〈t, ξ, ξ+1〉
〈t, ξ〉 → 〈t, ξ, ξ−1〉

=

κα(ξ)

α

α

1− α
1− α

(1−α)/(1+α)

α/(1 + α)

α/(1 + α)

The parameter α∗ that maximises the likelihood of ξt is found
by equating the derivative to zero.

We can be somewhat more precise about how much it
can hurt performance to use a suboptimal parameter α. The
following theorem, which bounds the regret with respect to the
optimal parameter-drift model, is an analogue of Theorem 5
for Fixed Share. The theorem applies to a wide class of kernel
EHMMs, but in particular it holds for the parameter-drift
model PDα, for which the transition dynamics are governed
by the one-dimensional exponential family (17). It is a strong
result that uses the full generality of Lemma 3.

Theorem 16 (Kernel ML Regret): Fix xt and let β̂ =
argmaxβ KERNELκβ (xt) for some exponential family {κβ}.
We have

ln
KERNELκβ̂ (xt)

KERNELκβ (xt)
≤ tD

(
κβ̂
∥∥κβ).

Proof: Since the transition probabilities associated with
each productive state (i.e. the kernel κβ) are an exponential
family distribution, we can apply Lemma 3 with Q† equal to
the set of all productive states.

15

Instantiating this theorem for parameter drift we obtain:
Corollary 17 (Parameter Drift ML Regret): Fix xt and let

α̂ = argmaxα PDα(xt). We have

ln
PDα̂(xt)

PDα(xt)
≤ t

(
2α̂ ln

(
α̂
α

)
(1−α̂)(1+α̂)

+ ln

(
(1 + α)(1− α̂)

(1− α)(1 + α̂)

))
.

The parameter drift model as discussed so far shares both
the elegance of the Fixed Share algorithm and its awkward de-
pendence on a parameter α. However, most of the techniques
to avoid specifying α that were discussed in previous sections
can be adapted to the parameter drift model. In particular, we
can compete with the maximum likelihood drift parameter α̂
using a discretisation scheme akin to [24], [18], such that the
discretisation point α closest to α̂ reduces the right hand side
of Corollary 17 to a uniformly bounded constant. As before,
this is possible using O(

√
t) discretisation points, leading to

a O(t
√
t) total running time. We omit the details.

Moreover we can adapt the trick we used in Section IV-C,
and let the kernel parameter α decrease with time. This yields
a linear run time, at the cost of deteriorating the bound for
large drifts.

Theorem 18 (Decreasing Drift Regret): Let PD denote the
ES-joint based on the parameter drift model with time-
dependent kernel καi with αi = 1/(i + 1). For any data xt

and reference sequence ξt with total drift d, we have

ln
Pξt(x

t)

PD(xt)
≤ (d+ 2) ln(t+ 1).

Proof: We first expand

PD(ξt) =

t∏
i=1

καi(δi) =

t∏
i=1

α
|δi|
i

1− αi
1 + αi

=

t∏
i=1

(i+ 1)−|δi|
i

i+ 2
=

2

(t+ 1)(t+ 2)

t∏
i=1

(i+ 1)−|δi|.

For fixed total drift d, it is clear that this probability is
minimised by |δi| = 0 for 1 ≤ i < t and |δt| = d. Therefore

PD(ξt) ≥ 2

(t+ 1)(t+ 2)
(t+ 1)−d ≥ (t+ 1)−d−2.

We now take the − ln and apply Lemma 1 to complete the
proof.

V. EXTENSIONS

In this section we describe a number of extensions to the
framework described above. In Section V-A we discuss a
number of tracking algorithms for which different, potentially
useful performance guarantees can be given. Then in Sec-
tion V-B we discuss adaptive regret, a criterion for evaluating
performance more locally. In Section V-C we try to find out
which expert was best at a particular time step, and finally in
Sections V-D and V-E and we indicate how our approach can
be generalised to work with any mixable loss function and
how it can be applied to online investment.

A. Other Approaches to Switching

The models described in the present paper can be described
in the Bayesian framework using prior distributions on se-
quences of experts. The priors we presented so far did not
depend on any contextual information, such as the outcomes,
or any other external information. Below, we will list three
other important models for expert tracking whose EHMM
transition probabilities depend on the past losses of the experts.
We are not aware of any models in which the transition
probabilities depend on properties of the observed data other
than the losses; this is an interesting area for future research.

In all three cases it is straightforward to find counter-
examples that show that these algorithms cannot be repres-
ented as EHMMs with fixed transition probabilities.

The first such algorithm, Variable Share, was introduced
together with Fixed Share in [6]. It is useful for loss functions
like square loss, that are not only mixable, but also bounded
(also see Section V-D). For this setting, which is outside the
scope of this paper, a regret of O(m ln k + m ln(L/m)) can
be established, where m and k are the number of blocks and
the number of experts as usual, but L is the loss of the best
reference strategy using m blocks. Thus, if the data can be
predicted well by partitioning it into blocks and using a fixed
expert within each block, then the overhead of the algorithm
is small. In the log loss setting however, the algorithm incurs
infinite regret in the worst case, so no useful guarantees can
be provided.

The other two approaches do in fact work in the log loss
setting. The first is known as “Mixing Past Posteriors” [37].
Like Fixed Share, this algorithm allows for efficient tracking
of the best predicting expert; but unlike Fixed Share, it is
especially efficient for sparse problems, where the predictions
of only a few out of the full set of experts ever need to be
used. For Mixing Past Posteriors, a regret of O(u ln k+m ln t)
can be achieved, where u is the number of experts that occur
in the comparator sequence, and t, k and m are as usual. This
is beneficial if k is large and u is small. Whereas the original
algorithm is rather eclectic, a proper Bayesian interpretation
(making use of specialists) and a slight improvement of the
bound can be found in [38].

The last result combines two experts in such a way that
the regret is controlled in terms of the fluctuations in the
cumulative loss difference of the two experts as a function of
time. The idea is that if the fluctuations are large, the regret
is relatively high, but in that case you also gain a lot from
switching between the experts in the first place. The paper
[39] is phrased in terms of investment policies, but the setting
is equivalent to ours. In financial terms, the bound expresses
that you have a large overhead only when you are making a
lot of money anyway!

B. Adaptive Regret

Also of interest is the notion of adaptive regret proposed
by Hazan and Seshadhri in [32]. The adaptive regret of an
algorithm on a given interval is the difference between the loss
of the algorithm on that interval and that of the best expert for
that interval. The new goal is then to design algorithms with

16

low worst-case adaptive regret on all intervals. An algorithm
with low adaptive regret will automatically have low tracking
regret, the tracking bound is obtained simply by summing
the adaptive bound over all blocks of a segmentation of the
data; the converse is not always possible. It is proved in [40]
that Fixed Share, and its generalisations with time-varying
switching rates (as e.g. in Section IV-C) are optimal algorithms
for adaptive regret: no other algorithm can guarantee lower
adaptive regret on all intervals. Moreover in that paper’s
forthcoming journal version [41] it is shown that the worst-
case adaptive regret of any algorithm is dominated by that of
such a generalised Fixed Share. As such, whereas the local
perspective taken by adaptive regret allows giving stronger
performance guarantees for Fixed Share, it cannot capture
the global benefit of modelling the switching dynamics, as
expressed e.g. by the bounds for run-length and the Switching
Method.

C. Expert Estimation

We focused on EHMM models for sequential prediction.
However, EHMMs may also be used for batch data analysis.
Below we indicate how to obtain the best regularised expert
sequence, for example to gauge change-points in the data. We
then discuss calculating the posterior marginal distribution on
experts at each time step. This can be used to visualise the
evolution of the prediction performance of each of the experts.
The forward algorithm computes the probability of the data,
that is

Q(xt) =
∑
q(t)

Q(xt, q(t)),

Instead of the entire sum, we are sometimes interested in the
sequence of states q(t) that contributes most to it:

argmax
q(t)

Q(xt, q(t)) = argmax
q(t)

Q(xt|q(t))Q(q(t)).

The Viterbi algorithm [27] is used to compute the most likely
sequence of states for HMMs. It can be easily adapted to
handle silent states. However, we may also write

Q(xt) =
∑
ξt

Q(xt, ξt),

and wonder about the sequence of experts ξt that contributes
most. This problem is harder because several states can
produce the same expert simultaneously; in other words, a
single sequence of experts can be generated by many different
sequences of states. So we cannot use the Viterbi algorithm
as it is. The Viterbi algorithm can be extended to compute the
MAP expert sequence for general EHMMs, but the resulting
running time explodes. Still, the MAP ξt can be sometimes be
obtained efficiently by exploiting the structure of the EHMM
at hand. This turns out to be possible for Fixed Share, and
also for the more sophisticated Switch Distribution mentioned
in Section IV-C2; the algorithm for the latter is given in [1].

As an alternative way to gain insight, one may run the
forward and backward algorithms to compute Q(xi, qp

i) and
Q(xt|qp

i, x
i). Recall that qp

i is the productive state that is
used at time i. From these we can compute the a posteriori

probability Q(qp
i|xt) of each productive state qp

i. That is, the
posterior probability taking all the available data into account
(including observations that were made later than time i). This
is a standard way to analyse data in the HMM literature, see
e.g. [27]. We can then project the posterior on states down to
obtain the posterior probability Q(ξi|xt) of each expert ξi ∈ Ξ
at each time i = 1, . . . , t. This gives us a sequence of mixture
weights over the experts that we can, for example, plot on a
Ξ×t grid. On the one hand this gives us a mixture over experts
for each time instance, obviously a richer representation than
just single experts. On the other hand we lose the temporal
correlations that can be important in MAP calculation, as each
time instance is treated separately.

D. Mixable Loss Functions

We presented log-loss regret bounds for experts that sequen-
tially produce probability distributions on the next outcome.
Not all prediction tasks are in this form, for example, we
may be asked to make a point prediction based on real-valued
expert advice and be scored using quadratic loss. Fortunately,
several loss functions are mixable [7], [23], in that for each
mixture of predictions, there is a single prediction whose loss
is always less than the exponentiated average loss. Mixable
losses include log loss, quadratic loss, Hellinger loss and
entropic loss. 0/1 loss and absolute loss are not mixable.

Prediction strategies that are obtained by running the for-
ward algorithm on any EHMM can be adapted to mixable
losses straightforwardly, by preprocessing the input to and
post-processing the output of the forward algorithm for se-
quential prediction. On the input side, expert predictions are
transformed into probabilities. On the output side, the posterior
distribution on the next expert is transformed (using the
mixability condition) into a single prediction. The resulting
prediction strategy has the same mixable-loss regret bound as
the original prediction strategy (although possibly expressed
in different units). The details of the general reduction can be
found in [28]. In the special case of online investment an even
tighter correspondence holds, as outlined in the next section.

E. Online Investment

As it happens, all algorithms for prediction with expert
advice discussed in this paper can also be used as strategies for
online investment. The key observation is that the weights on
the experts issued by any considered prediction algorithm and
the resulting codelength only depend on the losses incurred by
the experts, not on any other aspect of their behaviour. This
is clear from the motivating definition (4).

To predict on the stock market, we start again from (4),
but replace expert ξ’s data likelihood Pξ,s(xs) with the mul-
tiplication factor rξ,s incurred by stock ξ in trading round s.
Each round, the investment algorithm uses the same expression
to compute the posterior distribution on the next stock. It
then divides its capital among the stock according to this
distribution. In the prediction algorithm this posterior was used
instead to mix the predictions of the experts to form its own
predictive distribution; for the investment strategy this last step
has been abstracted away.

17

Note that while the expert data likelihoods are proper
probability distributions, the multiplication factors rξ,t may
be larger than one; this does not cause problems since the
posterior weights are renormalised by Bayes’ rule.

The returns obtained by the investment strategy are given by
the formula for the data likelihood with the above substitution.
As such, all regret guarantees derived in this paper carry
over unmodified when using these algorithms as investment
strategies.

For further discussion of the relation between investment
and prediction algorithms see [7, Chapter 10].

Cover’s Portfolio Selection: Perhaps the best known link
between information theory and finance is provided by Cover’s
seminal results on portfolio selection [42], [43]. These al-
gorithms fit exactly in the formalism described in this paper:
they can be obtained by applying the reduction described
above to specific EHMM models. The simplest such model
was introduced in Example 2, where each round, the predic-
tions of the experts are mixed using a fixed weight vector.
Applying the reduction to finance, we recover the constant
rebalanced portfolio strategy. It is also possible to obtain
Cover’s universal portfolios by using a more sophisticated
EHMM that learns the optimal mixture weights. For the case
of two experts, this EHMM has already been defined, albeit
for a different purpose: the EHMM depicted in Figure 8 was
previously used as an interpolator, for learning the switching
rate in an expert tracking strategy. However, when applied in
its own right it learns the optimal elementwise mixture weights
for combining the predictions of two experts labelled “s” and
“n”.

The construction of Figure 8 can be augmented to more
than two experts, but the state space quickly grows large:
for k experts, the number of states in round t is tk−1. As
such, the algorithm will process t outcomes in O(tk) time,
matching the complexity of Cover’s algorithm. Interestingly,
the methods discussed in Section IV-D2 for reducing the time
complexity of the Switching Method carry over to learning
mixtures, allowing an easy speedup to O(t(k+1)/2).

Substantial advances have been made in making Cover’s
universal portfolio selection practical for large numbers of
stocks (by imposing some assumptions); these fall outside the
scope of this paper. For more information see [44].

VI. CONCLUSION

We generalise the concept of universal coding for some
model classM, by comparing the performance of the universal
code not just to the performance of the codes in M, but also
to other reference classes.

We evaluate performance in terms of individual sequence
regret, and make no distributional assumptions. We summarise
and unify existing algorithms from two domains: information-
theoretic literature about universal coding on the one hand and
universal prediction (also known as “prediction with expert
advice”) from learning theory. Thanks to the well-known
equivalence between prefix coding and probability theory the
algorithms and techniques of this paper can immediately be
applied in both settings.

We present all models in Bayesian form using prior distri-
butions on expert sequences (ES-priors). The (infinitely long)
expert sequence defines which expert is used at which time.
Prediction then amounts to “integrating out” those experts
in the sequence that are used at other time steps than the
one predicted. The challenge is to identify those models that
provide good tradeoffs between predictive performance and
time complexity.

Throughout the paper, hidden Markov models (HMMs) are
used to specify ES-priors, since their explicit representation
of the current state and state-to-state evolution naturally fit
the temporal correlations we seek to model. For reasons of
efficiency we use HMMs with silent states. The standard
algorithms for HMMs (Forward, Backward, Viterbi and Baum-
Welch) can be used to answer questions about the ES-prior as
well as the induced distribution on data. The running time
of the forward algorithm can be read off directly from the
graphical representation of the HMM.

This approach allows a unified presentation of many existing
expert models. We focus on models for tracking the best
expert, where the loss incurred by a prediction strategy is
compared to the loss incurred if the data are optimally divided
into m blocks, and the best expert is used within each
block. The discrepancy (“regret”) is then bounded in terms
of variables such as the current time t, the number of experts
k, and the number of blocks m. In each case, we recover
both the regret bound and the running time known from the
literature.

We not only succinctly summarise and contrast many key
algorithms from the literature, but also describe a number of
new models. In particular the model with quickly decreasing
probability of switching (Section IV-C) and the models that
assume the experts are ordered (Section IV-F) are new and
computationally efficient, and have competitive regret bounds.

ACKNOWLEDGEMENTS

Peter Grünwald’s and Tim van Erven’s suggestions signific-
antly improved this paper. Thanks also go to Mark Herbster
for an enjoyable afternoon exchanging ideas, which has cer-
tainly influenced the shape of this paper. We thank Wojciech
Kotłowski and Thijs van Ommen for proofreading.

REFERENCES

[1] W. M. Koolen and S. de Rooij, “Combining expert advice efficiently,”
abs/0802.2015, Feb. 2008.

[2] ——, “Combining expert advice efficiently,” in Proceeding of the 21st
Annual Conference on Learning Theory, Jun. 2008, pp. 275–286.

[3] W. M. Koolen, “Combining strategies efficiently: High-quality decisions
from conflicting advice,” Ph.D. dissertation, Institute of Logic, Language
and Computation (ILLC), University of Amsterdam, Jan. 2011.

[4] Y. M. Shtarkov, “Universal sequential coding of single messages,” Prob.
Pered. Inf., vol. 23, pp. 175–186, 1987.

[5] J. Rissanen, “Fisher information and stochastic complexity,” IEEE
Transactions on Information Theory, vol. 42, no. 1, pp. 40–47, 1996.

[6] M. Herbster and M. K. Warmuth, “Tracking the best expert,” Machine
Learning, vol. 32, pp. 151–178, 1998.

[7] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge University Press, 2006.

[8] J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM
Journal of Research and Development, vol. 20, no. 3, 1976.

18

[9] ——, “Universal coding, information, prediction, and estimation,” IEEE
Transactions on Information Theory, vol. IT-30, no. 4, pp. 629–636, Jul.
1984.

[10] A. Barron, J. Rissanen, and B. Yu, “The minimum description length
principle in coding and modeling,” IEEE Transactions on Information
Theory, vol. 44, no. 6, pp. 2743–2760, Oct. 1998.

[11] N. Merhav and M. Feder, “Universal prediction,” IEEE Transactions on
Information Theory, vol. 44, no. 6, 1998.

[12] P. Volf and F. Willems, “Switching between two universal source cod-
ing algorithms,” in Proceedings of the Data Compression Conference,
Snowbird, Utah, 1998, pp. 491–500.

[13] F. M. Willems, “Coding for a binary independent piecewise-identically
distributed source,” IEEE Transactions on Information Theory, vol. 42,
no. 6, pp. 2210–2217, Nov. 1996.

[14] F. Willems and M. Krom, “Live-and-die coding for binary piecewise
I.I.D. sources,” in Proceedings of the IEEE International Symposium on
Information Theory (ISIT), 1997, p. 68.

[15] G. Shamir and N. Merhav, “Low-complexity sequential lossless coding
for piecewise-stationary memoryless sources,” IEEE Transactions on
Information Theory, vol. 45, no. 5, pp. 1498–1519, 1999.

[16] G. Shamir and J. D.J. Costello, “Asymptotically optimal low-complexity
sequential lossless coding for piecewise-stationary memoryless sources-
part i: The regular case,” IEEE Transactions on Information Theory,
vol. 46, no. 7, p. 24442467, 2000.

[17] A. György, T. Linder, and G. Lugosi, “Tracking the best quantizer,” IEEE
Transactions on Information Theory, vol. 54, pp. 1604–1625, 2008.

[18] S. de Rooij and T. van Erven, “Learning the switching rate
by discretising Bernoulli sources online,” in JMLR Workshop and
Conference Proceedings, vol. 5: AISTATS, 2009, available at
http://jmlr.csail.mit.edu/proceedings/papers/v5.

[19] T. van Erven, P. Grünwald, and S. de Rooij, “Catching up faster by
switching sooner: A predictive approach to adaptive estimation with an
application to the AIC-BIC dilemma,” Journal of the Royal Statistical
Society, Series B, vol. 74, 2012.

[20] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,”
in Proceedings of the 30th IEEE Symposium on Foundations of Com-
puter Science, 1989.

[21] V. Vovk, “Aggregating strategies,” in Proceedings of the third Annual
Conference on Computational Learning Theory (COLT), 1990, pp. 371–
383.

[22] ——, “Derandomizing stochastic prediction strategies,” Machine Learn-
ing, vol. 35, pp. 247–282, 1999.

[23] D. Haussler, J. Kivinen, and M. K. Warmuth, “Sequential prediction of
individual sequences under general loss functions,” IEEE Transactions
on Information Theory, vol. 44, no. 5, pp. 1906–1925, 1998.

[24] C. Monteleoni and T. Jaakkola, “Online learning of non-stationary se-
quences,” Advances in Neural Information Processing Systems, vol. 16,
pp. 1093–1100, 2003.

[25] C. Monteleoni, “Online learning of non-stationary sequences,” Master’s
thesis, MIT, May 2003, artificial Intelligence Report 2003-11.

[26] M. Herbster and M. K. Warmuth, “Tracking the best expert,” in
Proceedings of the 12th Annual Conference on Learning Theory (COLT
1995), 1995, pp. 286–294.

[27] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” in Proceedings of the IEEE, vol.
77, issue 2, 1989, pp. 257–285.

[28] W. M. Koolen and T. van Erven, “Switching between hidden Markov
models using Fixed Share,” Computing Research Repository (CoRR),
Feb. 2010.

[29] O. Bousquet, “A note on parameter tuning for on-line shifting al-
gorithms,” Max Planck Institute for Biological Cybernetics, Tech. Rep.,
2003.

[30] A. Moffat, Compression and Coding Algorithms. Kluwer Academic
Publishers, 2002.

[31] D. Cox, Renewal Theory. Methuen & Co., 1970.
[32] E. Hazan and C. Seshadhri, “Efficient learning algorithms for changing

environments,” in Proceedings of the 26th annual international confer-
ence on machine learning. ACM, 2009, pp. 393–400.

[33] A. György, T. Linder, and G. Lugosi, “Efficient tracking of large classes
of experts,” Information Theory, IEEE Transactions on, vol. 58, no. 11,
pp. 6709–6725, 2012.

[34] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Mathematics of Computation, vol. 19, no. 90,
pp. 297–301, 1965, available at http://www.jstor.org/stable/2003354.

[35] R. Bracewell, ““Convolution” and “Two-dimensional convolution”,” in
The Fourier Transform and Its Applications. McGraw-Hill, 1965, pp.
25–50 and 243–244.

[36] P. D. Grünwald, The Minimum Description Length Principle. MIT
Press, 2007.

[37] O. Bousquet and M. K. Warmuth, “Tracking a small set of experts by
mixing past posteriors,” Journal of Machine Learning Research, vol. 3,
pp. 363–396, 2002.

[38] W. M. Koolen, D. Adamskiy, and M. K. Warmuth, “Putting bayes to
sleep,” in Advances in Neural Information Processing Systems (NIPS)
25, P. Bartlett, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds.,
Dec. 2012, pp. 135–143.

[39] W. M. Koolen and S. de Rooij, “Switching investments,” Theoretical
Computer Science, vol. 473, no. 0, pp. 61 – 76, 2013, the Special Issue
on Algorithmic Learning Theory for ALT 2010.

[40] D. Adamskiy, W. M. Koolen, A. Chernov, and V. Vovk, “A closer look
at adaptive regret,” in Proceedings of the 23rd International Conference
on Algorithmic Learning Theory (ALT), ser. LNAI 7568, N. Bshouty,
G. Stoltz, N. Vayatis, and T. Zeugmann, Eds. Springer, Heidelberg,
Oct. 2012, pp. 290–304.

[41] ——, “A closer look at adaptive regret,” forthcoming.
[42] T. M. Cover, “Universal portfolios,” Mathematical finance, vol. 1, no. 1,

pp. 1–29, 1991.
[43] T. M. Cover and J. A. Thomas, Elements of Information Theory 2nd

Edition. Wiley-Interscience, July 2006.
[44] E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms for

online convex optimization,” Machine Learning, vol. 69, no. 2–3, pp.
169–192, 2007.

Wouter M. Koolen carried out his graduate re-
search at CWI, supervised by Professor Paul Vitányi
and Professor Peter Grünwald. He graduated cum
laude in 2011 at the University of Amsterdam. He
then took up a research fellowship at the Com-
puter Learning Research Centre at Royal Holloway,
University of London. He joined the information
theoretic learning group at CWI in February 2013.
His interests are online decision making, minimax
algorithms, Bayesian reasoning and finance.

Steven de Rooij received his PhD in 2008 from
the University of Amsterdam, under supervision of
Professor Paul Vitányi and Professor Peter Grünwald
at CWI institute in Amsterdam, Netherlands. From
2008 to 2010 he was Research Associate in the Stat-
istical Laboratory at the University of Cambridge;
he currently works at the University of Amsterdam
and VU university, where he applies concepts from
Minimum Description Length learning, Bayesian
inference, model selection, and sequential prediction
to the semantic web.

