
The Structure of Logarithmic AdviceComplexity Classes �Jos�e L. Balc�azarDepartment of Software (LSI)Universitat Polit�ecnica de CatalunyaPau Gargallo 5, E-08028 Barcelona, Spainbalqui@lsi.upc.esMontserrat HermoDepartment of Software (LSI)Universidad del Pa��s Vasco, P.O. Box 649E-20080 San Sebasti�an, Spainjiphehum@si.ehu.esMay, 1997AbstractA nonuniform class called here Full-P/log, due to Ko, is studied. It correspondsto polynomial time with logarithmically long advice. Its importance lies in the struc-tural properties it enjoys, more interesting than those of the alternative class P/log;speci�cally, its introduction was motivated by the need of a logarithmic advice classclosed under polynomial-time deterministic reductions. Several characterizations ofFull-P/log are shown, formulated in terms of various sorts of tally sets with very smallinformation content. A study of its inner structure is presented, by considering themost usual reducibilities and looking for the relationships among the correspondingreduction and equivalence classes de�ned from these special tally sets.
�Partially supported by the E.U. through the ESPRIT Long Term Research Project 20244 (ALCOM-IT) and through the HCM Network CHRX-CT93-0415 (COLORET); by the Spanish DGICYT throughproject PB95-0787 (KOALA), and by Acciones Integradas Hispano-Alemanas HA-119-B and AL-201-B.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 IntroductionNonuniform complexity classes were essentially introduced in [17], where the main rela-tionships to uniform classes were already shown. In order to capture characteristics ofnonuniform models of computation, in which �xed input lengths are compulsory, in thede�nition of nonuniform classes a bounded amount of extra information, the \advice",dependent of the length of the input, is provided. The two most natural families of boundfunctions for the advice information are polynomials (as in the class P/poly) and loga-rithms (as in the class P/log). In structural terms, the class P/poly has a high interest,due to its many characterizations, and has been studied in considerable depth.However, P/log not being closed under the most usual reducibilities, its structural studyhas less interest. We consider in this paper a variant, proposed by Ker-I Ko in [19] (andalso treated marginally in [11] and [8]) of the complexity class P=log, in which closure underpolynomial time reductions is obtained via a more restrictive condition in the de�nition.Our aim is to argue here that this relative of P/log, that we call Full-P/log, not only isclosed under reducibilities but also has an internal structure worth study, comparable tothat of P/poly, with many similarities and a few interesting di�erences.This internal structure has also consequences for the learnability of certain circuit ex-pression classes of logarithmic Kolmogorov complexity. The reason is that Full-P=log char-acterizes the concepts that can be described by these representation classes, similarly tothe characterization of P=poly by polynomial size circuits. This aspect of Full-P=log istreated in depth elsewhere [7].We must mention in passing another motivation to study this class. In [24], a modelof neural networks is described, and the language recognition power of these networksis characterized in terms of the types of numbers employed as weights. Also a precisecorrespondence is establish between the choice of integer, rational, or real weights and therespective classes of languages. When the computation time of the networks is constrainedto be polynomial in the input size, the classes recognized by the respective nets are: regular,P; and P/poly [17]. It may be argued that any net with real weights that is computationallyfeasible to implement must admit a short description of its real-valued weights. Thus,setting a logarithmic bound on the resource-bounded Kolmogorov complexity of the realweights, it is proved in [9] that the languages recognized correspond to the class Full-P=log.This paper is structured in two di�erent parts. The �rst one shows several characteriza-tions of Full-P=log as a reduction class. The proofs are quite interesting in that they requireto de�ne another technical variant of the class, based on pre�x-closed advice words, and tointroduce a new proof technique, by which information is selected at a doubly exponentialrate, skipping all information corresponding to intermediate advice words. This kind ofargument has been heavily used in [16]. As applications of this technique, we obtain sev-eral characterizations of Full-P=log as the reduction class of special sets: tally sets whosewords follow a given regular pattern, and tally sets that are regular in a resource-boundedKolmogorov complexity sense.The second part focuses on the inner structure of Full-P/log, trying to understand the2

power of this sort of special tally sets when they are used as oracles. To do that, weexplain some of the relationships which exist among reductions classes de�ned from them.In addition, we describe how equivalence classes de�ned in terms of the same tally sets arerelated.The results of sections 3 to 5 appeared in preliminary form in [10]. The results ofsection 6 appeared in preliminary form in [15]. Almost all the results described here arefrom [16].2 PreliminariesAn alphabet � is any non-empty, �nite set. We use here the alphabets f0; 1g and f0g.Given any alphabet �, a �nite string (or word) over � is a �nite sequence of symbols from�. We denote words by lower case Latin letters, such as x; y; : : :. Any set (�nite of in�nite)of these strings is called a language. The language of all possible �nite strings over � isdenoted by ��. There is a special string in �� that is the unique word consisting of zerosymbols. We call it �.Given a set A, we indicate the cardinality of A with the expression jAj. In the sameway, when we refer to the number of symbols in some string x, we use jxj.Regarding words, xi:j means the substring formed by x from the i-th symbol on upto and including the j-th symbol. As our strings are usually sequences over � = f0; 1g,sometimes we speak about the j-th bit of x instead of the j-th symbol.A natural operator, the concatenation, is de�ned among the strings of ��. Given twowords x; y, the concatenation of x with y produces the new word xy. A pre�x of a wordy is any word z such that for some word w, y = zw. The notation z v y denotes the factthat z is a pre�x of y.Let A be a language over some alphabet. The set of all strings x in A whose length isless than or equal to n (jxj � n) is denoted by A�n. When we refer to the strings of A thathave exactly length n, we use the notation A=n. We express that the set A is included inthe set B by writing A � B, but when the inclusion is strict we say that A � B. Thecomplement of a language A � �� is denoted by A�; when � is known, we omit it, leavingjust A. Given any � with at least two symbols, say 0 and 1, the join or marked union oftwo languages A and B over � is:A�B = fx0 j x 2 Ag [fx1 j x 2 BgDe�nition 1 A language is tally if and only if it is included in f0g�.The class of all tally sets is denoted by Tally. The upper case initial is used to expressthe complete class while the lower case initial means \the property of belonging to Tally".Next let us de�ne the concept of characteristic sequence of a particular set:De�nition 2 Given a language A � �� 3

1. Its characteristic sequence �A is an in�nite string of f0; 1g1 such that, for all n,the n-th bit of �A is 1 if the n-th �nite string of ��, ordered by lengths and inlexicographical order within each length, belongs to A. Otherwise this bit is 0.2. Its characteristic sequence up to a particular length n, �A�n is a �nite string ful�llingthat j�A�nj = 2n+1 � 1 and �A�n v �A.When the set A is a tally set, �A is the characteristic sequence relative to f0g�, thatmeans, we only take into account the words 0n for any n. In the same way, slightly abusingthe notation, when we use sets L such that L � f02n j n 2 INg, the characteristic sequence�L will be relative to the language formed by a power of 2 many 0's. More generally,arbitrary in�nite strings are denoted by Greek letters as �; �; : : :.Throughout the paper, all logarithms are to base 2.2.1 Di�erent Types of ReductionsOur uniform computational model is the multi-tape Turing machine, with a read-only inputtape. An oracle Turing machine has an additional write-only oracle tape. The machinescan be deterministic (DTM) or nondeterministic (NDTM).We work with classes of languages recognized by oracle Turing machines that work inpolynomial time. Since the access to the oracle can be restricted in di�erent ways thefollowing reducibilities can be obtained:De�nition 3 A language A is r-reducible to B in polynomial time (A 2 Pr(B)) if andonly if there exists an r-restricted deterministic polynomial-time oracle Turing machineMsuch that A is the language recognized by M querying oracle B.Now we explain the meaning of r for a �xed reduction:1. When r is the Turing reduction (r = T), there are no restrictions on the oraclemachine M .2. When r is the truth-table reduction (r = tt), the machine M is able to write downon a separate tape all the queries to be made during the computation before the �rstword is queried.3. A particular case of the truth-table reduction is the k-truth-table reduction (writtenr = k-tt), when k > 0. Now there exist polynomial-time computable functions f andh such that for all x, f(x) is a list of k strings, f(x) = hx1; x2; : : : ; xki, h(x) is a truthtable with k variables, and x 2 A if and only if the truth-table h(x) evaluates to trueon the boolean k-tuple hx1 2 B;x2 2 B; : : : ; xk 2 Bi.Set A is bounded truth-table reducible (r= btt) to set B, if there is a positive k suchthat A is k-tt reducible to B. 4

4. When r is the many-one reduction (r = m), it is only allowed to make a unique queryto the oracle in the last step of the computation, in such a way that M accepts ifand only if the answer is \YES". An equivalent de�nition of the many-one reductionis as follows: A �m B if and only if there exists a polynomial-time function f suchthat for all x x 2 A() f(x) 2 BWe say that the Turing reduction is an adaptive process because the queries depend onthe answers given by the oracle, on the previous steps of the computation. Conversely, thetruth-table approach is non-adaptive, since the queries are completely independent of theanswers. Actually, the idea of the truth-table reduction is sometimes described in terms ofmaking all the queries to the oracle at the same time, in parallel.Given a class of languages G, the class of sets that are r-reducible to some set in G isexpressed by writing Pr(G). Since we only work with NDTM's that access to the oraclewithout any restriction, NP(A) identi�es the class of languages that are Turing reducibleto A via a NDTM.We also de�ne the classes of sets that are not only \reducible to" but also \inter-reducible with":De�nition 4 Given a family of languages G, a set A is in the class Er(G) when thereexists B 2 G such that A 2 Pr(B) and B 2 Pr(A).2.2 About FunctionsThere exist some functions with a special property known as honesty.De�nition 5 A function f is honest if and only if for every value y in the range of f thereis an x in the domain of f such that f(x) = y and jxj � jyjk for some �xed constant k.It is not known whether there are polynomial time computable honest functions whoseinverses are not polynomial time computable. In fact, this open problem is equivalent todetermining whether P 6= NP.Theorem 6 (see [8]) P = NP if and only if every honest partial function computable inpolynomial time has an inverse computable in polynomial time.We need to encode several words into one in such a way that both computing theencoding, and recovering the coded words can be easily done. We have chosen a pairingfunction h i: �� � �� ! ��. Given x and y, the word hx; yi is obtained by duplicatingeach bit of x, appending to this the word y, inserting a 01 in between. Assuming that thelengths of x and y are n and m respectively, the length of the pairing function applied to(x; y) is jhx; yij = 2n + 2 + m. The computations of h i and its inverses needs very littleresources. 5

The pairing function can be applied to tuples as follows: hx; y; zi = hhx; yi; zi and soon. However, sometimes, we use a di�erent function in order to encode a �nite or in�nitesequence of strings. Namely, the notationx1#x2#x3# : : :#xnmeans that we append together all words in the sequence fxigi�n, duplicating each bit ofeach xi, separating each xi from the next by the mark # = 01.2.3 Kolmogorov ComplexityFix a Universal Turing machine U . The Kolmogorov complexity of a string w (resp. theKolmogorov complexity relative to y) is the length of the shortest program (resp. pairhprogram; yi) which, when given as input to U , will lead U to write down w as output.Hartmanis [14] and Sipser [25] modi�ed the original idea of Kolmogorov complexityto include the running time or space used by the Universal Turing machine, in order toproduce an output. Ko, in [18]1, followed the same approach but applying it to the notionof in�nite sequences with respect to polynomial-time and space complexity. The sets ofbounded Kolmogorov complexity strings K[f(n); g(n)] is de�ned as follows:De�nition 7K[f(n); g(n)] = fx j 9y; jyj � f(jxj), U(y) = x in at most g(jxj) stepsg2.4 Nonuniform classesThe basic nonuniform complexity classes are P=poly and P=log. The conditions for alanguage L to be in some of these classes are:De�nition 8 [17]1. L 2 P=poly i� there exist B 2 P and a polynomial p, such that8n 9wn (jwnj � p(n)) such that 8x (jxj = n); x 2 L() hx;wni 2 B2. L 2 P= log i� there exists B 2 P and a constant c, such that8n 9wn (jwnj � c log n) such that 8x (jxj = n); x 2 L() hx;wni 2 BIt is easy to see that PT(P=log) = P=poly, since tally sets are in P/log (see [16] formore details). Since P=log 6= P=poly (see for instance [11]), we have:Theorem 9 PT(P=log) is not included in P=log.Moreover, one can see that even Pm(P=log) is not included in P=log. (see again [16]).1Preliminary versions of [18] circulated simultaneously to [14] and [25].6

3 The classes Full-P=log and Pref-P=logSince the logarithmic analog to P/poly is not closed under most usual reducibilities, analternative approach was introduced by Ko [19]. Ko's class, although with a di�erent name,is introduced in the following de�nition.De�nition 10 A set A is in Full-P=log if8n 9wn (jwnj � c log n) 8x (jxj � n) x 2 A() hx;wni 2 Bwhere B 2 P and c is a constant.Note that the di�erence respect to P/log lies in the range of the \8x" quanti�er.The idea is quite natural. For instance, if the de�nition of P=poly is changed accordingto this, we obtain the same class P=poly. That is to say:De�nition 11 A set A is in Full-P/poly if8n 9wn (jwnj � nc) 8x (jxj � n) x 2 A() hx;wni 2 Bwhere B 2 P and c is a constant.Proposition 12 Full-P/poly = P/poly.Proof: By de�nition, Full-P/poly � P/poly. Now suppose that A 2 P=poly. That means:8n 9wn (jwnj � nc) 8x (jxj = n) x 2 A() hx;wni 2 Bwhere B 2 P and c is a constant. Denote by vn the concatenation of all the advice wordsw1, w2, : : :wn: vn = w1#w2# : : : wnFor all n, the length of vn is in no(1), and vn can be used as advice word by all the lengthsup to n. Therefore A 2 Full-P/poly. utIt is easy to see that Full-P=log is closed under polynomial-time Turing reducibility:Proposition 13 [19] PT(Full-P=log) = Full-P=log.Proof: The nontrivial inclusion is PT(Full-P=log) � Full-P=log. Suppose that A 2 PT(C),with C 2 Full-P=log, and that the Turing reduction is done via a DTM M , which worksin time nq. In order to decide whether a �xed word x is in A, simulate the computationof the machine M on input x with the extra information of the advice word for the set Cand the length jxjq. Each time a query is made to C, the answer is given using the adviceword. That means, for all input x, the advice word for C and the length jxjq can be usedas advice word for A and the length jxj. The size of these advice words is a function inO(log nq) = O(log n), therefore A 2 Full-P=log. utAs a result of the closure of Full-P=log under Turing reducibility, the closure of theclass under the other common polynomial-time reducibilities is also obtained, and since byTheorem 9, P/log is not closed under polynomial reducibilities, we get:7

Corollary 14 P=log 6= Full-P=log.Actually, also their restrictions to tally sets are di�erent: in Theorem 29 we preciselycharacterize the tally sets in Full-P=log as those of low Kolmogorov complexity.In order to characterize the class Full-P=log we present a technical variant of full log-arithmic advice, in which the advice words corresponding to various lengths are not inde-pendent but highly correlated.De�nition 15 A set A has pre�x logarithmic full advice, briey A 2 Pref-P=log, if A isin Full-P=log via an in�nite sequence of advice words wn having the additional propertythat for all n � m, wn is a pre�x of wm.Thus, each advice is simply an extension, with some extra bits, of the previous advice.In the limit, therefore, the sequence of advice words converges towards a unique in�niteword �, such that, for all n, wn = �1:c logn, the �rst c log n bits of �. Observe also that herethe advice length is so tightly bounded that, for most values of n, the corresponding advicewn does not have room to include one more bit than its predecessor. Indeed, c log n onlyincreases by one when n increases by a multiplicative factor of 2(c�1). Thus, very frequentlywn = wn+1, and only exponentially often can wn be a proper pre�x of wn+1.Of course, the de�nition can be straightforwardly rephrased to apply to other bounds onthe advice length or to other uniform complexity classes. For instance, a similar de�nitionfor polynomial advice gives exactly P=poly:De�nition 16 A set A is in Pref-P/poly when A is in P/poly via an in�nite sequence ofpolynomial advice words wn such that for all n � m, wn is a pre�x of wm.Proposition 17 Pref-P/poly = P/poly.Proof: The construction of Proposition 12 yields a sequence of advice words having therequested pre�x property. ut4 Characterization of Pref-P=logThis section shows that Pref-P=log can be characterized by polynomial-time Turing reduc-tion classes of regularly structured tally sets, as well as using bounded query machines.Theorem 18 The following classes of languages are the same:i/ SL PT(L) where L � f02k j k 2 INg.ii/ SL PT(L) via polynomial-time machines whose queries have lengths at most O(log n),where L � f0g�. 8

iii/ SB PT(B) via polynomial-time machines whose queries have lengths at mostlog(log n) + O(1).iv/ Pref-P=log.Observe that no constant factors are allowed on the term log(log n) in part iii/: onlyadditive constants can be accommodated in the bound. Part i/ is quite interesting, inthat it shows that Pref-P=log is the reduction class of tally sets exhibiting a high degree ofregularity. All query bounds mentioned assume, as usual, that n is the length of the input.Proof: The proofs that i/ implies ii/ and that ii/ implies iii/ are simple and similar: bothare tantamount to a change of scale in the oracle set. Let A be a set in PT(L), withL � f02k j k 2 INg. De�ne L0 = f0k j 02k 2 Lg. It is easy to see that A 2 PT(L0), querying0k instead of 02k when required. Observe that the length of the queries is now logarithmic,since k 2 O(log n) whenever 2k 2 no(1). Now we repeat the argument: if A 2 PT(L0) withO(log n) length queries, de�ne B = fk j 0k 2 L0g. Again A 2 PT(B), and the maximumlength of the oracle queries is log(c � log n) = O(1) + log(log n).To prove that iii/ implies iv/, we will employ the characteristic function of B as anin�nite word limiting the sequence of advice words. Let A be a set with A 2 PT(B)via a DTM M . By hypothesis, the lengths of the queries are smaller than or equal tod + log(log n). Therefore, the number of di�erent queries that M can make, is boundedby 2d+log(logn) = c log n, for an appropriate constant c. Moreover, these are the �rst c log nwords. So we de�ne the advice wn as the characteristic sequence of B up to the elementin place c log n. With this information, each query to oracle B can be answered. Thus,A 2 Pref-P=log.Finally, the proof of iv/ implies i/ is essentially a converse of the composition of thethree arguments. Suppose that A 2 Pref-P=log, where the in�nite word � is the limit ofthe sequence of advice words. Let L be the tally setL = f02k j the k-th bit of � is 1 gNow A 2 PT(L) by simply querying the words 02i for i = 1 to i = c log jxj to extract thenecessary advice of length c log jxj from the tally oracle, and then using it. utFrom now on, we denote the following classes of tally sets as Tally2:Tally2 = fL j L � f02k j k 2 INggHence, parts i/ and iv/ in the theorem characterize Pref-P/log as PT(Tally2).5 Characterization of Full-P=logIn this section, one of the main contributions of this paper is presented: both in results byrelating Full-P=log to the classes already described, and in technical contents by explaining9

a technique which consists of selecting information separated by a doubly exponential gap.Several examples of the application of this technique are presented in [16]. Now we willgive two of them, both giving somewhat surprising characterizations of Full-P=log. The�rst one shows that Full-P=log equals the seemingly more restrictive class of sets withlogarithmic pre�x-closed advice, and the second one will show that Full-P=log equals a lessrestrictive class de�ned in terms of Kolmogorov-regular tally sets.Theorem 19 Full-P=log = Pref-P=log = PT(Tally2).Equivalently, whenever a set is decidable in polynomial time with full logarithmic ad-vice, then it is possible to construct equivalent advice words for the set, within of the samelogarithmic length bounds, and obeying the restriction that each advice word is a pre�x ofall the following ones.Proof: By de�nition, Pref-P=log is a subclass of Full-P=log. The relevant part of thetheorem is of course the converse inclusion. Suppose that A 2 Full-P=log. This means thatthere is a set B 2 P and a sequence of advice words fwn j n 2 INg with jwnj 2 O(log n) sothat 8x;8m� jxj; x 2 A() hx;wmi 2 B. We will use the result in the previous section,characterizing Pref-P=log as PT(Tally2). Thus we will de�ne a tally set L containing onlywords of length a power of 2, and will prove that A 2 PT(L).Since Full-P=log is closed under polynomial-timeTuring reducibility, it is strictly smallerthan P=log, and therefore our proof now must unavoidably exploit the property that oneadvice can help all the smaller lengths. The main idea is to keep only the informationcorresponding to some selected advice strings, instead of storing all of them in the oracleset. Of course, we have to select for the oracle in�nitely many advice words; but the factthat each of them is good for all the words smaller than the length it is designed for allowsus to select them arbitrarily far apart.We must �nd a balance between two contradictory restrictions. If we select advicestrings for the oracle too frequently then they will need too many bits, and some of themwill be encoded too far away in the oracle; but if we select them too separated, then forsome words the nearest valid advice would be too long to be extracted from the oracle bya polynomial-time machine.It turns out that there is a way of skipping advice words for which the balance issatisfactory. We will encode in the oracle all the advice words corresponding to lengths22m for all m 2 IN and skip all the intermediate ones. Each bit, of each of the selectedadvice strings, will be encoded by the presence or absence of a word of the form 02m inthe set L.Let k be a constant, such that jwnj � k log n for all n, and without loss of generalityassume that jwnj = k log n by padding out each jwnj with a su�x word from 10� up to thedesired length.The advice words corresponding to the length 220, respectively 221 : : :22m , have size k,respectively 2k : : : 2mk. We use the �rst k powers of two, from 02 until 02k , to encode theadvice for length 220. (The empty string is not used here.) The second advice string tostore has length 2k, so this information needs 2k powers of two: use the next ones, from10

02k+1 until 02k+2k . In general, the information of the advice corresponding to the length22m is encoded in the tally set L from the element02k+2k+22k+���+2m�1k+1up to 02k+2k+22k+���+2mkSo let L beL = f02�Pi�m�1 2ik�+p j 1 � p � 2mk such that the p-th bit of w22m is 1gWe prove �rst that A 2 PT(L). On input x, �nd an integerm such that 22m�1 < jxj � 22m.This can be done in polynomial time. Since 22m = (22m�1)2 < jxj2, this selection ensuresthat log(log jxj) � m < log(log jxj2).Now, for each value of p from 1 to 2mk, ask whether 02�Pi�m�1 2ik�+p 2 L and, in thisway, obtain all the bits of the advice w22m , which now can be used to decide whether x 2 Ain polynomial time. It remains to be seen whether the queries can be asked in polynomialtime; it su�ces to prove that they are polynomially long.The number of queries is bounded by k log jxj2. A bound on the length of the oraclequeries is 2k+2k+22k+���+2mk = 2(1+2+22+���+2m)k < 22m+1kAs m < log(log jxj2), the queries have length at most2k2log(log jxjd) = (22log(log jxjd))k = jxjd0for appropriate constants d and d0. So A 2 PT(L). utWe have chosen to keep those advice strings corresponding to the length 22m . Let usbriey describe how crucial the arithmetic properties of the double exponential are forthis proof. Naively it may seem that a single exponential separation should su�ce; butthis fails because for each advice there are logarithmically many smaller advice words oflogarithmic length to be encoded, i.e. a total of (log n)2 bits: when distributed over the tallyset, they cover a broad region up to length nlogn which cannot be scanned in polynomialtime. Surprisingly, as described above, a double exponential works. However, if we wouldtry to select advice strings with triply exponential gaps, skipping all advice words exceptthose corresponding to lengths 222m , then these advice strings are too large, although thereare fewer of them: the �rst appropriate m would be such that 222m�1 < jxj � 222m , andstraightforward computation shows that the corresponding advice might be nlogn long.We give now a second application of the doubly exponential skip technique. Consideringthe previous results, it is clear in what sense the tally sets used exhibit a regularity: theirwords can appear at only selected, speci�c places such as powers of 2. Many other similar11

notions of tally sets with regularities can be proposed, but among them there is one that isparticularly natural: regularity could be de�ned in terms of resource-bounded Kolmogorovcomplexity. We could consider tally sets that are regular in the sense that there is a short,say logarithmic, way of describing their characteristic function and a resource-bounded,say polynomial time, algorithm to recover it. Observe that the tally sets used in the proofof Theorem 19 ful�ll this regularity property.In principle the class obtained would be larger, since it is conceivable that some tally setsare Kolmogorov regular but encode more information than a set having such an extremeregularity as implied by the superset f02k j k 2 INg. We will show that, modulo polynomial-time Turing reducibility, this is not the case: the reduction class of Kolmogorov-regularsets is again Full-P=log. As before, L denotes a tally set.Theorem 20 The following two classes coincide:i/ Full-P=log.ii/ SL PT(L) where there exists a positive constant c (depending only on L) such that,for all n, �L�n 2 K[c log n; nc].Proof:Again, we use the characterization of the class Full-P=log as PT(Tally2) which followsfrom the previous result. Then it is easy to see that i/ implies ii/: to construct thecharacteristic sequence of a tally2 set L up to a �xed length we only need to know whichones among the logarithmically many words of the form 02k are in L; these are the onlypotential non-zeros in �L. Thus given, as a logarithmically long seed, the characteristicfunction of L relative to f02k j k 2 INg, we can easily print out an initial segment of �L intime polynomial in the length of the output.To see that ii/ implies i/, again we apply the doubly exponential skip technique. Ob-serve �rst that an easier proof seems possible. Consider A 2 PT(L) where L is Kolmogorov-regular; we can show that A can be accepted with the help of a short advice. On inputx, the maximum oracle query is 0jxjq for some q. To decide whether x 2 A it su�ces toknow an initial segment of the sequence �L up to jxjq bits (recall that the characteristicsequence of a tally set is taken with respect to f0g�). We can obtain this sequence inpolynomial time from a seed of size log jxjq = O(log jxj), which we take as an advice word.It follows that A 2 P=log. However, this does not prove that A 2 Full-P=log. It may bethe case that together with x we get a seed for an advice creating an exponential part ofthe characteristic function, which is much more than we need; but the relevant part of itmay take too long to be constructed, and then there is no way to decide x in polynomialtime.We resort again to a doubly exponential skip: for a given length n, select as advice nota single seed but a sequence of them, corresponding to lengths of the form 22m , up to thesmallest one allowing us to construct nq bits of �L. This one corresponds to22m�1 < nq � 22m12

so that m � log(log nq) = log(log n) + O(1). For length 22i, the length of the seed isc log 22i = c2i, and thus as before the total length of the sequence of seeds selected for theadvice is Pi�m c2i = c2m+1 2 O(log n). Now the di�culty explained above can be avoided.If, together with x, we get the advice for a much longer length, we can scan it and selecta seed large enough to create �L up to jxjq but not much more: there is one there for 22mwith 22m�1 < jxjq � 22m, which implies 22m < jxj2q, only quadratically longer. ThereforeA 2 Full-P=log. utFrom now on, we denote the class of Kolmogorov-regular sets as Lowtally, on the basisof their low Kolmogorov complexity. That is to say: L 2 Lowtally if and only if L 2 Tallyand there exist a positive constant c such that, for all n, �L�n 2 K[c log n; nc].Thus, for polynomial-time machines, tally2 oracle sets have exactly the same power aslowtally oracle sets. Again we have a phenomenon like the one discussed previously: longerand longer pre�xes of the characteristic function of the tally oracle, which require log nnew bits linearly often to be described, can be replaced by a much simpler oracle which,exponentially often, adds a constant number of bits.6 The inner structure of Full-P/logFull-P/log has been characterized in previous sections in terms of the reduction class to tallysets with very small information content. We focus here on the most usual reducibilitiesand investigate the corresponding reduction classes to these special tally sets. In additionto other results, we show that using tally2 languages as oracles, there are more sets that canbe recognized under Turing (or, equivalently, truth-table) reducibility than under boundedtruth-table reductions. The analogous problem for lowtally sets remains open.To provide some context, let us mention the paper by Book and Ko [12]. There,the classes of sets that can be reduced to sparse and tally sets under di�erent notions ofreducibilities are studied. On the other hand, Tang and Book [26] and Allender and Watan-abe [3] studied sets that are not only reducible to arbitrary tally and sparse languages, butalso inter-reducible with them. With the same approach, we consider here reduction andequivalence classes to tally2 and lowtally sets, and study the relationships between them:although the truth-table and the Turing equivalence classes (i.e. degrees) of arbitrary tallysets do not coincide, in the case of using our restricted tally sets the problem of decidingwhether they are di�erent is at least as di�cult as solving P 6= NP. In the same way, it isargued that separating the class of languages that are bounded truth-table equivalent tolowtally sets, from the class of languages that are m-equivalent to the same class of sets isalso a di�cult task. However the relationship between these two degrees, when tally2 setsare used as oracles, is clear: both degrees di�er.As a consequence of our results, we can present a rather complete (read \not tooincomplete") map of the inner structure of Full-P/log.13

6.1 Relationships among Reduction ClassesIn this subsection we focus on the reduction classes de�ned from tally2 and lowtally sets,and explain some of the relationships that exist among them.The Turing and truth-table reducibilities in polynomial time are equivalent when tallysets are used as oracle. Using the same arguments, it is easy to see that the followingholds:Proposition 21PT(Lowtally) = PT(Tally2) = Ptt(Lowtally)= Ptt(Tally2).Proof: Suppose that T is a tally2 set, and A 2 L(M;T) whereM runs in time bounded bynq. Let m be such that 2m�1 < n � 2m. The number of possible nontrivial (i.e. potentiallyanswered \yes") queries to T , made byM on input of size n, is bounded by mq. Therefore,there is a logarithmic quantity of potential queries to the oracle which we know in advance.We can make all these queries at the beginning of the computation. This fact implies thattally2 sets produce the same information under truth-table than under Turing reductions.By the characterization of Full-P/log the reduction classes PT(Lowtally) and PT(Tally2)coincide. From the above argument, PT(Tally2)= Ptt(Tally2), therefore, PT(Lowtally)=Ptt(Tally2). But since the class Tally2 is included in the class Lowtally, Ptt(Tally2) �Ptt(Lowtally) � PT(Tally2), and all four coincide. utWe now study the relationship between many-one and bounded truth-table reductionsover tally2 and lowtally sets. As we shall see next, both reducibilities, applied to lowtallylanguages, have the same power; however the behaviour of them over tally2 sets is di�erent.Proposition 22 Pbtt(Lowtally) = Pm(Lowtally).Proof: The proof is based on the fact that the boolean closure of any class Pm(A) isprecisely the class Pbtt(A) [20], and follows Book and Ko's steps in [12]. Applying thisfact, if we show that Pm(Lowtally) is closed under boolean operations, then we obtain thatPbtt(Lowtally) = Pm(Lowtally).Let T be any lowtally set, therefore for all length n, �T�n 2 K[d log n; nd] for someconstant d. The same seed for �T�n can be used to produce �T�n , that is to say�T�n 2 K[d log n; nd]:Then Pm(Lowtally) is closed under complementation.Closure under intersection follows from the following fact: Let TA and TB be lowtallysets. Suppose that f reduces A �m TA and g reduces B �m TB. Then we can de�ne the setT = f0hn;mi j 0n 2 TA and 0m 2 TBg whose characteristic sequence can be also constructedin polynomial time from logarithmic seeds. The function h such that h(x) = 0hn;mi whenf(x) = 0n 2 TA and g(x) = 0m 2 TB, or h(x) = 1 otherwise, testi�es that A\B �m T . ut14

The behaviour of tally2 sets is completely di�erent as we point out in next results.Although �m is equivalent to �1-tt, for all k � 2 holds that �k-tt and �(k�1)-tt do notcoincide. Essentially, the analogous argument using h(x) = 02hn;mi for f(x) = 02n andg(x) = 02m breaks down because j02hn;mij = 2hn;mi is about 2n�m, which is not polynomialin 2n + 2m.Proposition 23 Pm(Tally2) = P1-tt(Tally2).Proof: Let T be a tally set in Tally2, and assume that A 2 P1-tt(T) via a Turing machineM . We de�ne another tally2 set L containing information about T and its complement.L = f022m j 02m 2 Tg [f022m+1 j 02m 62 Tg:Using as oracle the set L and a new machine N we can see that A 2 Pm(L). N works asM , but whenever M makes a query of the form 02m (w.l.o.g. we assume that all queriesmade by M are of this form), it has to change as follows:1. Suppose that the computation of M is independent from the answer given by T . Inthis case, N does not ask, and follows the same steps as M .2. Suppose thatM rejects when the answer is NO, and accepts when the answer is YES.Now N makes the query 022m to L, and accepts if and only if the answer is YES.3. If M rejects when the answer is YES, otherwise accepts, then N makes the query022m+1 to L, and accepts if and only if the answer is YES.N testi�es that A 2 Pm(L), and therefore A 2 Pm(Tally2). utThe following theorem states that there exists an strict hierarchy among the reductionsclasses Pk-tt(Tally2) when k � 1.Theorem 24 8k > 1 P(k�1)-tt(Tally2) � Pk-tt(Tally2).We construct a language in Pk-tt(Tally2) � P(k�1)-tt(Tally2), by diagonalization. Letffigi2IN be an enumeration of the polynomial-time computable functions that for any stringx yields a list of k � 1 strings. Let fhjgj2IN be an enumeration of all polynomial-timecomputable functions that for any single string x yields one of the 22k�1 (k�1)-tt conditions.We can enumerate all of the (k � 1)-tt reduction machines as fMi;jgi;j2IN where on inputx, Mi;j computes the list fi(x) = hx1; x2; : : : ; xk�1i and the (k � 1)-tt condition hj(x).We assume for now that k is an odd number. The even case needs just slight syntacticchanges in the proof. The language we want to construct is de�ned in terms of a particulartally2 set T , and therefore it is denoted by L(T):L(T) = f02r112r202r3 : : : 12rk�102rk j 8s (1 � s � k) 02rs 2 T and r1 < r2 < : : : < rkgAt stage m = hq; i; ji we expand the set L(Tm�1) constructed so far, adding a word insuch a way that L(Tm) cannot be k � 1-reducible, via fi (whose running time is bounded15

by the function nq), and hj, to any tally2 set. At the beginning T0 is the empty set. Inorder to do this, we study the function fi, because we use di�erent strategies dependingon whether it is injective.Similarly to fi(x) = hx1; x2; : : : ; xk�1i, denote fi(y) = hy1; y2; : : : ; yk�1i to de�ne that xand y are alike for T under fi if the two boolean vectorsfiT (x) = hx1 2 T; x2 2 T; : : : ; xk�1 2 T i and fiT (y) = hy1 2 T; y2 2 T; : : : ; yk�1 2 T icoincide.Stage m = hq; i; jiConsider Mi;j with running time bounded by the function nq;Let wordsm = fw 2 f0; 1g� j w = 02r112r202r3 : : : 12rk�102rkand 2mk < r1 < r2 < : : : < rk � 2m+1k g;For each of the 22k�1 (k � 1)-tt conditions t,let Gt = fx 2 wordsm j hj(x) = tg.Choose any t such that jGtj is maximum.if fi is not injective on Gtthen look for two di�erent words 02r1 : : : 02rk ; 02t1 : : : 02tk 2 Gtsuch that fi(02r1 : : : 02rk) = fi(02t1 : : : 02tk);Tm := Tm�1 [f02r1 ; : : : ; 02rkg;else look for two di�erent words 02r1 : : : 02rk ; 02t1 : : : 02tk 2 Gtthat are alike under fi for all T 2 Tally2Tm := Tm�1 [f02r1 ; : : : ; 02rkg;end if;Given the function fi working in time nq, at stage m = hq; i; ji, either there exists twodi�erent words w; v 2 Gt such that, fi(w) = fi(v). In this case the words added to Tm�1witnesses that the set L(Tm) is not (k � 1)-reducible to any set via fi and hj ; or for allwords w; v 2 Gt ; f(w) 6= f(v). The key point now is the cardinality of Gt.On the one hand, the number of di�erent words in the set wordsm is exactly � 2mkk �,which is
((2mk2)k) =
(2kmk2k).On the other hand, there are 22k�1 (k � 1)-tt conditions t: there must exist some twhose Gt has at least 2km22k�1k2k 2
(2km) words. Therefore, the Gt chosen in the algorithmhas at least
(2km) di�erent words. From now on we work with this Gt.In the case that the function is injective on Gt, we need the following lemma; recallfrom above that, for each tally2 set T , the function fiT is de�ned asfiT (x) = hx1 2 T; x2 2 T; : : : ; xk�1 2 T i:Lemma 25 If fi is injective on Gt, then there exists at least two words x; y 2 Gt, that arealike under fi for all tally2 sets T : fiT (x) = fiT (y).16

Applying this lemma, as we add to Tm�1 the corresponding strings in order that x 2L(Tm), without adding the corresponding ones for y, we conclude that the set L(Tm) cannot be (k � 1)-tt reducible to any tally2 set via Mi;j.Now we prove the lemma.Proof: The length of the largest string in the set wordsm is bounded by 22m+1 . Since Mi;jworks in time bounded by the function nq, the lengths of the queries made by Mi;j arebounded by (22m+1)q = 2q2m+1 . The strings of the tally2 sets are of the form 02j with j 2 IN,but Mi;j only can query words 02j with 0 � j � q2m+1. Therefore there are 1 + q2m+1many di�erent words in the tally2 sets that could be queried by Mi;j.Now we show that there must exist two di�erent words x and y of Gt ful�lling thatfi(x) 6= fi(y). because the function fi is injective on Gt, but for each l such that 1 � l �k� 1, if xl 6= yl, then xl and yl are not of the form 02j with 0 � j � q2m+1. That is, eitherxl and yl are di�erent, and then both strings are outside of any tally2 set, or xl = yl. Thisensures that for any tally2 set T , fiT (x) = fiT (y).Fix a string outside of any tally2 set, for example the string: 11. Suppose that eachtime that Mi;j, on any input in Gt, queries a string that is not of the form 02j with0 � j � q2m+1, this string is always 11. Then we can show that the amount of di�erentwords x in Gt, with the property that Mi;j(x) makes at least one query of the form 02jwith 0 � j � q2m+1, is fewer than the cardinality of Gt.On the one hand, the quantity of strings x in Gt, such that Mi;j(x) makes a uniquequery of the form 02j with 0 � j � q2m+1 is at most �k�11 �(1 + q2m+1). In the same way,the number of strings x in Gt, such that Mi;j(x) makes exactly two queries that could bein some tally2 set is �k�12 �(1 + q2m+1)2. In general, the number of strings x in Gt, suchthat Mi;j(x) makes exactly i queries (1 � i � k � 1) that could be in some tally2 set is�k�1i �(1 + q2m+1)i. Using that q � m, so that mk�1 < 2m for large enough m, the totalamount of strings with the above property is:�k�1i=1 k � 1i !(1 + q2m+1)i � (2 + q2m+1)k�1 2 o(2km):On the other hand jGtj �
(2km). Therefore, there must exist at least two words xand y in Gt such that when Mi;j(x) makes a query of the form 02j with 0 � j � q2m+1,then Mi;j(y) makes the same query (otherwise both query outside every tally2 set). Thisimplies that fiT (x) = fiT (y). utWe show now how the lowtally sets provide more information than the tally2 sets usedas oracles under btt-reduction.Theorem 26 Pbtt(Tally2) � Pbtt(Lowtally).Proof: We prove the stronger fact that the class Lowtally is not included in Pk-tt(Tally2)for any constant k � 1; i.e., we �nd a set L 2 Lowtally such that, given a polynomial-time17

computable function f , that for any word x yields a list of k strings, it is not the case thatL 2 Pk-tt(Tally2).In order to de�ne such a lowtally set L, for each i we denote by Ii the following setIi = f0n j n = j � 22i; with 2 � j � 22igand we de�ne the set L in such a way that, for all i � 0, there is exactly one word in Iithat belongs to set L. Actually, this unique word is called xi and ful�lls thatxi = 0ji�22i with 2 � ji � 22iHence, in each Ii, there are 22i � 1 possibilities of choosing this string.If we get L of this form, then we ensure that L 2 Lowtally. To know the characteristicsequence of L up to length n, we look for the integer m ful�lling 22m�1 < n � 22m . Let gbe a function that on each i, g(i) expresses what xi is chosen given the information ji.g(i) = 02i�jjijjiso that jg(i)j = 2i. In order to obtain �L�n we can use as seed the following word ss = g(0)g(1) : : : g(m� 1)g(m)that is formed by concatenating each g(i) for i � m. The length of s is exactly jsj =�mi=0 2i = 2m+1 � 1 that is bounded by 4 log n. Thus �L�n 2 K[d log n; nd] (d is a constant)and L 2 Lowtally.We construct the set L by diagonalization. Let ffigi2IN be an enumeration of thepolynomial-time computable functions that for any string x yields a list of k strings. Letfhjgj2IN be an enumeration of all polynomial-time computable functions that for any singlestring x yields one of the 22k k-tt conditions. We can enumerate all of the k-tt reductionmachines as fMi;jgi;j2IN where on input x, Mi;j computes the list fi(x) = hx1; x2; : : : ; xkiand the k-tt condition hj(x).In each stage m = hq; i; ji we are adding to the set L one word of the form 0j�22m ,(2 � j � 22m), in such a way that, L cannot be k-reducible, via fi and hj, to any tally2set. As in the diagonalization of Theorem 24, in the case of having an injective functionfi, we can �nd two words alike under fi for all tally2 sets; so, if only one of these words isincluded in the set L, then we diagonalize over Tally2.Stage m = hq; i; jiConsider Mi;j with running time bounded by the function nq;Let Im = f0p j p = j � 22m; with 2 � j � 22mg;For each of the 22k k-tt conditions t, let Gt = fx 2 Im j hj(x) = tg.Choose any t such that jGtj � 22m�122k .if fi is not injective on Gt.then look for 0p1 ; 0p2 2 Im, p1 6= p2, such that fi(0p1) = fi(0p2);18

Lm := Lm�1 [f0p1g;else look for 0p1 ; 0p2 2 Gt, p1 6= p2, alike under fi for all T 2 Tally2Lm := Lm�1 [f0p1g;end if;When the function is not injective on Gt, the selection of 0p1 ensures that L is not k-ttreducible to any set via Mi;j. In the other case, for each tally2 set T , again let fiT be thefunction such that fiT (x) = hx1 2 T; x2 2 T; : : : ; xk 2 T i:A similar result to Lemma 25 holds:Lemma 27 If fi is injective on Gt, then there exist at least two words x; y in Gt, suchthat, for any tally2 set T , fiT (x) = fiT (y).Applying this lemma, if we add to Lm�1 the string x, without adding y, then weconclude that the set L cannot be k-tt reducible to any tally2 set via Mi;j.The proof of the lemma follows the same steps of Lemma 25. The largest string inthe set Im is 022m�22m whose length is 22m+1 . Therefore there are 1 + q2m+1 many di�erentwords in the tally2 sets that could be queried by Mi;j.Fixing a word outside the tally2 for all queries made byMi;j that are not of the form 02jwith 0 � j � q2m+1, the amount of di�erent words x in Gt, with the property that Mi;j(x)makes at least one query that could be in some tally2 set, is fewer than the cardinality ofGt. Namely this amount is�ki=1 ki!(1 + q2m+1)i � (2 + q2m+1)k:While the cardinality of Gt is greater than or equal to 22m�122k . Therefore, since 22m�122k >(2 + q2m+1)k (for large enough m), there must exist at least two words x and y in Gt suchthat fiT (x) = fiT (y). utThis result, together with the fact that in Pbtt(Tally2) there exist languages that arenot lowtally sets, ensure that both classes are incomparable. This is not the case whenTuring (or equivalently truth-table) reduction is used, because the class Lowtally is strictlyincluded in PT(Tally2). The relationship between Lowtally and PT(Tally2) is explainedin more detail in the following theorem, but before, let us introduce a lemma which willbe helpful later on.Lemma 28 For each lowtally set L, there is a tally2 set T2 such that L 2 Ptt(T2) andT2 2 Ptt(L). 19

Proof: Let L be any lowtally set. By de�nition of the class Lowtally, there exists a constantc, such that for every length n, there exists a seed sn, with jsnj � c log n, that produces�L�n in polynomial time. Without loss of generality we consider that every seed sn hasexactly c log n number of bits. Moreover, if there would be many di�erent seeds for thesame pre�x of the characteristic sequence, we choose only the �rst seed in lexicographicalorder. The idea is to encode the seeds sn into a tally2 set T2, in order to produce �L�n.The way of encoding these seeds is again based on the \doubly exponential skip" tech-nique, and consists on keeping only the information sn corresponding to n = 22m withm 2 IN.For all m, the seed corresponding to length 22m, has size 2mc. So, as in Theorem 19,let T2 be T2 = f02(�i�m�12ic)+p j 1 � p � 2mc such that the p-th bit of s22m is 1gOn the one hand, L 2 Ptt(T2): to decide whether a word of the form 0n is in L, wecan generate easily �L�n querying T2. The steps to follow are exactly those given in theproof of Theorem 19: �rst �nd an integer m such that 22m�1 < n � 22m, and then obtainthe seed s22m querying the tally2 set T2. It is easy to see that the sizes of the queriesare polynomially long, and there are polynomially many queries. Furthermore, they arenonadaptive, as required.On the other hand, T2 2 Ptt(L). On input 02n , the following steps su�ce to decidewhether 02n 2 T2:1. Look for the number m ful�lling:c(2m � 1) < n � c(2m+1 � 1)Thus, 2n = 2c(2m�1)+p with 1 � p � c2m.2. Find the characteristic sequence of L up to length 22m querying, in a nonadaptiveway, L. Note that 22m is polynomial in 2n because:c(2m � 1) < n =) 2m < n+ cc =) 22m < 2nc+13. When �L�22m is known, check which is the �rst seed (in lexicographical order) thatproduces (in time bounded by an appropriate polynomial) this characteristic sequenceamong all the possible seeds of length less than or equal to c2m. As the number ofseeds is bounded by 2c2m , this process can be done in polynomial time in 2n.4. In the above seed, if the p-th bit is 1, then the word 02n is in the set T2, otherwise02n is not in T2.This shows that T2 2 Ptt(L). utNow we present the relationship between lowtally sets and the class Full-P/log.20

P (Tally2)

P (Tally2)

Tally2

Lowtally

btt

m

Full-P/log

btt mP (Lowtally) = P (Lowtally)

Figure 1: Reduction classes to special tally setsTheorem 29 Lowtally = Tally \ Full-P=log.Proof: The class Lowtally is included in Tally and, by the previous lemma, it is alsoincluded in PT(Tally2) = Full-P=log. Conversely, we see that any tally set in PT(Tally2)is in particular a lowtally language. Suppose that L 2 PT(T2) via a DTM M that worksin time nc. Here c is a constant and T2 is a tally2 set. The characteristic sequence of Lup to n can be generated from M and the characteristic sequence of T2 up to length nc.Since �(T2)�nc is relative to the set f02m j m 2 INg and M is a �xed DTM, the informationneeded is logarithmic in n. utUp to now, we have not been able to show a precise relationship between the classFull-P/log and Pbtt(Lowtally) = Pm(Lowtally).Figure 1 describes the relationships among reduction classes. The arrows mean inclu-sions: the boldface arrow relates classes whose exact relationship remains open, while theothers mean that the inclusions are strict. The proper in�nite hierarchy of k-tt reductionclasses betweem m-reduction and btt-reduction is not shown.21

6.2 Relationships among Equivalence ClassesWe move now to the study of the relationships between the classes of languages that areequivalent to tally2 sets and lowtally sets under various notions of reducibility.The �rst problem is to determine whether the m-equivalence classes to tally2 andlowtally sets are di�erent. The answer is provided by following lemma from Tang andBook [26] relating reducibility and inter-reducibility.Lemma 30 [26] Let C1 and C2 two classes of sets, and let �r and �s two reducibilitieswith r; s 2 fm, btt, tt, Tg. If Pr(C1) 6= Ps(C2), then Er(C1) 6= Es(C2).Proof: The proof is based on the operator �. Suppose that there exists a set A 2Pr(C1)�Ps(C2). Since A 2 Pr(C1), there exists a set C 2 C1 such that A �r C. ThusA� C �r C and C �r A� C, so A� C 2 Er(C1). If Er(C1) = Es(C2) then there exists aset D 2 C2 such that A�C �s D, but this implies that A �s D and this is impossible. utCombining the above lemma with the results obtained in the previous section we getthe following consequences:Corollary 31- Em(Tally2) � Em(Lowtally).- Ebtt(Tally2) � Ebtt(Lowtally).- Em(Tally2) � Ebtt(Tally2).Corollary 32 For all reducibilities �r with r 2 fm, bttg and �s with s 2 fT, ttg, wehave Er(Tally2) � Es(Tally2).We have also the corresponding extension to all k-tt-reductions to Tally2.As PT(Tally2), Ptt(Tally2), PT(Lowtally) and Ptt(Lowtally) coincide, the above argu-ment does not work neither in the case of Turing, nor in the case of truth-table equivalence.Indeed, the equalities hold as well:Theorem 33ET(Lowtally) = ET(Tally2) and Ett(Lowtally) = Ett(Tally2)Proof: ET(Tally2) � ET(Lowtally) because Tally2 � Lowtally. The other inclusion isnot trivial. Suppose that A is Turing equivalent to a lowtally set L. That means that A 2PT(L) and L 2 PT(A). By Lemma 28 there exists a tally set T2 such that L 2 Ptt(T2)and T2 2 Ptt(L). Since A 2 PT(L), A 2 PT(Ptt(T2)), thus A 2 PT(T2). Conversely,since T2 2 Ptt(L), and again by transitivity T2 2 PT(A).As Lemma 28 is in terms of truth-table reduction, using the same argument as beforewe can prove that Ett(Lowtally) � Ett(Tally2). ut22

The problem of whether Em(Lowtally)[�� is equal to Ebtt(Lowtally) is now studied.Actually, we show �rst that distinguishing equivalence and reducibility to lowtally sets,under the many-one reduction, would imply that P 6= NP, in the same way that it is notpossible to separate equivalence and reducibility to sparse sets, for many-one reductions,if P = NP (for more information see [2]). As a consequence of this result, we also obtainthat separating Em(Lowtally) [�� and Ebtt(Lowtally) becomes a di�cult task too.Theorem 34 P = NP =) Pm(Lowtally) = Em(Lowtally) [��.Proof: The inclusion Em(Lowtally)[�� � Pm(Lowtally) is obvious. So, it is only neces-sary to see the converse. let L and LT be sets such that L �m LT via g, where LT is alowtally set and L 6= ��. We de�ne the set LT 0, using the method from [22], and followingthe steps of [2], as follows:LT 0 = f0hl;mi j 9y; jyj = l ^ g(y) = 0m 2 LTgOn the one hand, L �m LT 0 via a function h de�ned in this way:h(y) = 0hjyj;jg(y)jiIndeed, h can be calculated in polynomial time, and for all yy 2 L() h(y) 2 LT 0When y 2 L, the word 0hjyj;jg(y)ji is in LT 0 by the de�nition of LT 0 itself. Moreover, ifh(y) = 0hjyj;jg(y)ji 2 LT 0, then g(y) 2 LT , so that y 2 L.On the other hand, since h is honest and using the hypothesis that P = NP, byTheorem 6, it is possible to compute an inverse function of h (denote it by f) in polynomialtime. Thus f ful�lls that 0hl;mi 2 LT 0 () f(0hl;mi) 2 LTherefore, LT 0 �m L.To �nish this proof we show that, in our context, LT 0 is itself a lowtally set, proving thatthere exists a constant d, such that, for all n, LT 0�n 2 K[d log n; nd]. From the hypothesisthat P = NP, we get the seeds for LT that are also seeds for LT 0, so that, when we take aseed for LT�n, then we can produce LT 0�n. The algorithm is as follows:input a seed s producing �LT�n;produce from s, �LT�n;for i := 1 to n dolet i = hl;mi;guess y such that jyj = l ^ g(y) = 0m;if 0m 2 LTthen 0hl;mi 2 LT 0;else 0hl;mi 62 LT 0;end if;end for;output LT 0�n; 23

If P = NP, then this algorithm is in P. utThis result can be lifted to btt-reductions:Theorem 35 P = NP =) Pbtt(Lowtally) = Ebtt(Lowtally).Proof: By Proposition 22 Pm(Lowtally) = Pbtt(Lowtally)By the hypothesis that P=NP and Theorem 34Pbtt(Lowtally) = Em(Lowtally) [��but it is clear that Em(Lowtally) [�� � Ebtt(Lowtally)Therefore Pbtt(Lowtally) � Ebtt(Lowtally), but the other inclusion also holds, thus bothclasses coincide. utAs a whole, under the assumption that P = NP, all the classes Em(Lowtally) [��,Ebtt(Lowtally), Pm(Lowtally) and Pbtt(Lowtally) coincide.In order to present the relationship between the truth-table and the Turing equivalenceclasses, we focus on a new approach that studies the complexity of producing advice wordsfor sets A in Full-P=log relative to A itself. For instance, there exists a characterization ofET(Tally2) according to this.Theorem 36 The following facts are equivalent:i/ A 2 ET(Tally2).ii/ A has a family of logarithmic advice words that can be obtained in polynomial timemaking queries to A.Proof: First we prove i/ =) ii/.Let A be a set in ET(Tally2). That is, there exists a tally2 set L ful�lling A 2 PT(L)and L 2 PT(A). Let nj and nk be respectively, the polynomials that bound the runningtime of the machines that query oracle L and oracle A respectively. L�nj su�ces to decidewhich words of length n are in A. Therefore �L�nj is a logarithmic advice word for lengthn, and because L 2 PT(A), there exists a polynomial-time algorithm that with input n inunary, constructs the advice word �L�nj querying A.Second, we show ii/ =) i/. Let A be a set recognized by a family of logarithmic advicewords fwn j n 2 INg which can be obtained in polynomial time querying A.Using again the doubly exponential skip technique, we can keep only some selectedwn's in order to encode them into a tally2 set T2, in such a way that A 2 ET(T2). Thede�nition of T2 is as in Lemma 28 the following:T2 = f02(�i�m�12ic)+p j 1 � p � 2mc and p-th bit of w22m is 1g24

Note that in Lemma 28 we deal with logarithmic seeds instead of logarithmic advice words,but the de�nition of T2 is the same. Following similar steps as in that lemma, it is easyto see that1. A 2 PT(T2), since given x as input, the advice word wjxj, which can be producedquerying T2, su�ces to decide whether x 2 A.2. T2 2 PT(A) using the hypothesis: to decide whether 02n is in T2 su�ces to look forthe value m such that 2n = 2c(2m�1)+p with 1 � p � c2m, and then to check the p-thbit of w22m , which is produced querying A.Therefore A 2 ET(T2) and this implies that A 2 ET(Tally2). utA similar statement can be obtained if instead of using adaptiveness and Turing reduc-tions, nonadaptive queries and truth-table reductions are considered.Theorem 37 The following facts are equivalent:i/ A 2 Ett(Tally2).ii/ A has a family of logarithmic advice words that can be obtained in polynomial timemaking queries to A in a nonadaptive way.The next theorem provides an easy upper bound on the complexity of producing loga-rithmic advice words for sets in Full-P/log.Theorem 38 For every set A 2 Full-P=log there exists a family of advice words for Athat can be obtained in polynomial time, making logarithmically many queries to NP(A).Proof: Suppose A 2 Full-P=log. Then8n 9wn (jwnj � c log n) 8x (jxj � n) (x 2 A() hx;wni 2 B)where B 2 P and c is a constant.For each n, we can construct wn by a pre�x-search algorithm querying an oracle inNP(A), which is identi�ed in more detail next:De�nition 39 Let y be a word such that jyj � c log n. We say that y is \good for n" (inthe sense of being a correct advice) if and only if8u juj � n (hu; yi 2 B () u 2 A):Let GA be the following oracle set:GA = fhz; 0ni j jzj � c log n and 9y z v y; jyj � c log n; and y is \good for n" gGA and GA are respectively in co-NP(A) and NP(A). Note that they depend both onA and B. Given the length n in unary, a good advice word corresponding to n can beproduced in polynomial time querying GA logarithmically many times. utLogarithmically many queries to NP(A) implies, at most, a polynomial number ofdi�erent queries, which moreover can be computed in polynomial time. Therefore all ofthem can be asked at the beginning of the computation, and the following holds.25

E (Lowtally) = E (Tally2)

Full-P/log

E (Lowtally) = E (Tally2)

E (Tally2)

E (Tally2)

Tally2 Lowtally

E (Lowtally)

E (Lowtally)

m m

btt btt

tt tt

T T

Figure 2: Equivalence classes to special tally setsCorollary 40 For every set A 2 Full-P=log there exists a family of advice words for Athat can be obtained in polynomial time, making queries to NP(A) in a nonadaptive way.Wagner used a similar argument in [27], where the power of polynomial-time machineswith restricted access to an NP oracle was studied.The notions of instance complexity and the class IC[log, poly] of sets of strings withlow instance complexity were introduced in [23]; we do not need the precise de�nition here,only two known properties. Speci�cally, the fact that Full-P/log is included in IC[log, poly]together with the fact that IC[log, poly] is in the �rst level of the extended low hierarchy(EL1) [1, 6, 13, 21], allow us to show that:Theorem 41 The following statements are equivalent:i/ A 2 Full-P=log.ii/ A has a family of logarithmic advice words that can be obtained in polynomial timemaking queries to (A� SAT) in a nonadaptive way to A.26

Proof: The nontrivial direction is from i/ to ii/, and it is a consequence of previous resultsfrom [4, 5]2. Actually, in [5] it was proven that IC[log, poly] is in the �rst level of theextended hierarchy. That is, NP(A) � P(A�SAT) for all sets A in IC[log, poly]. Moreover,the proof of this shows that for each language L in NP(A) there exists a deterministicalgorithm that decides L in polynomial time querying (A� SAT), and although it has anadaptive access to SAT, the queries to A are made in a nonadaptive way.Therefore ii/ holds, since Full-P/log is included in IC[log, poly]. utNow we apply the hypothesis that P = NP: all the queries made by the algorithm tooracle SAT 2 NP can be replaced by a polynomial-time computation. This together withprevious results su�ce to see the following.Theorem 42 Full-P=log = ET(Tally2) = Ett(Tally2), if P = NP.Figure 2 presents the results regarding equivalence classes. Now the discontinuous ar-rows appear when, under assumption that P = NP, the inclusions turn out to be equalities.There is again an open question, indicated by the boldface arrow; note that it matches (andactually re�nes) its corresponding \open question" arrow in �gure 1. We believe that adi�erent toolkit is necessary to close our two remaining fully open questions. On the otherhand, forthcoming work by the authors, jointly with H. Buhrman (and constituting thearchival version of [7]) reduces optimally the strength of the necessary complexity-theoreticcondition P = NP used in several of our theorems.AcknowledgmentWe would like to thank Ricard Gavald�a for helpful discussions, including alternativeproofs of theorem 42, and for pointing out that a proof in [15] of the fact that Pm(Lowtally)is di�erent from PT(Lowtally) was erroneous.References1. E. Allender and L. Hemachandra. Lower Bounds for the Low Hierarchy. Journal ofthe Association for Computing Machinery, 39(1):234{250, 1992.2. E. Allender, L. Hemachandra, M. Ogiwara, and O. Watanabe. Relating Equivalenceand Reducibility to Sparse Sets. SIAM Journal on Computing, 21(3):521{539, 1992.3. E. Allender and O. Watanabe. Kolmogorov Complexity and Degrees of Tally Sets.Information and Computation, 86(2):160{178, 1990.2A direct proof exists although we prefer to mention previous results.27

4. V. Arvind, Y. Han, L. Hemachandra, J. Koebler, A. Lozano, M. Mundhenk, M. Ogi-wara, U. Sch�oning, R. Silvestri, and T. Thierauf. Reductions to Sets of Low Informa-tion Content. In Complexity Theory, pages 1{46. Cambridge University Press, eds K.Ambos-Spies, S. Homer, U. Sch�oning, 1993.5. V. Arvind, J. K�obler, and M. Mundhenk. Upper Bounds on the Complexity of Sparseand Tally Descriptions. Mathematical Systems Theory, 29(1):63{94, 1996.6. J. Balc�azar, R. Book, and U. Sch�oning. Sparse Sets, Lowness, and Highness. SIAMJournal on Computing, 15(3):739{747, 1986.7. J. Balc�azar, H. Buhrman, and M. Hermo. Learnability of Kolmogorov-Easy CircuitExpression Via Queries. In Computational Learning Theory, Proc. Eurocolt'95, volume904, pages 112{124. Lecture Notes in Arti�cial Intelligence. Springer-Verlag, 1995.8. J. Balc�azar, J. D��az, and J. Gabarr�o. Structural Complexity I. Second Edition. Textsin Theoretical Computer Science. Springer-Verlag, 1995.9. J. Balc�azar, R. Gavald�a, H. Siegelmann, and E. Sontag. Some Structural ComplexityAspects of Neural Computation. In Proc. Structure in Complexity Theory 8th annualconference, pages 253{265. IEEE Computer Society Press, 1993.10. J. Balc�azar, M. Hermo, and E. Mayordomo. Characterizations of Logarithmic AdviceComplexity Classes. In Proc. of the IFIP 12th World Computer Congress, volume 1,pages 315{321. North-Holland, 1992.11. J. Balc�azar and U. Sch�oning. Logarithmic Advice Classes. Theoretical ComputerScience, 99:279{290, 1992.12. R. Book and K. Ko. On Sets Truth-table Reducible to Sparse Sets. SIAM Journalon Computing, 17(5):903{919, 1988.13. J. Castro and C. Seara. Complexity Classes Between �Pk and �Pk . InformatiqueTh�eorique et Applications, 30(2):101{121, 1996.14. J. Hartmanis. Generalized Kolmogorov Complexity and the Structure of FeasibleComputations. In Proc. 24th IEEE Symposium on Foundations of Computer Science,pages 439{445, 1983.15. M. Hermo. Degrees and Reducibilities of Easy Tally Sets. In Proc. 19th Symposium onMathematical Foundations of Computer Science, volume 841, pages 403{412. LectureNotes in Computer Science. Springer-Verlag, 1994.16. M. Hermo. Nonuniform Complexity Classes with Sub-Linear Advice Functions. Doc-toral Thesis, 1996. 28

17. R. Karp and R. Lipton. Some Connections between Nonuniform and Uniform Com-plexity Classes. In Proc. 12th ACM Symposium on Theory of Computing, pages 302{309, 1980.18. K. Ko. On the Notion of In�nite Pseudorandom Sequences. Theoretical ComputerScience, 48:9{13, 1986.19. K. Ko. On Helping by Robust Oracle Machines. Theoretical Computer Science, 52:15{36, 1987.20. J. K�obler, U. Sch�oning, and K. Wagner. The Di�erence and Truth-Table Hierarchyfor NP. Informatique Th�eorique et Applications, 21(4):419{435, 1987.21. T. Long and M. Sheu. A Re�nement of the Low and High Hierarchies. MathematicalSystems Theory, 28(4):299{327, 1995.22. S. Mahaney. Sparse Complete Sets for NP: Solution of a Conjecture of Berman andHartmanis. Journal of Computer and System Sciences, 25:130{143, 1982.23. P. Orponen, K. Ko, U. Sch�oning, and O. Watanabe. Instance Complexity. Journal ofthe Association for Computing Machinery, 41:96{122, 1994.24. H. Siegelmann and E. Sontag. Analog Computation via Neural Networks. TheoreticalComputer Science, 131:331{360, 1994.25. M. Sipser. A Complexity-Theoretic Approach to Randomness. In Proc. 15th ACMSymposium on Theory of Computing, pages 330{335, 1983.26. S. Tang and R. Book. Reducibilities on Tally and Sparse Sets. Informatique Th�eoriqueet Applications, 25(3):293{302, 1991.27. K. Wagner. Bounded Query Classes. SIAM Journal on Computing, 19(5):833{846,1990.
29

