4,553 research outputs found

    Kruskal-Based Approximation Algorithm for the Multi-Level Steiner Tree Problem

    Get PDF
    We study the multi-level Steiner tree problem: a generalization of the Steiner tree problem in graphs where terminals TT require varying priority, level, or quality of service. In this problem, we seek to find a minimum cost tree containing edges of varying rates such that any two terminals uu, vv with priorities P(u)P(u), P(v)P(v) are connected using edges of rate min{P(u),P(v)}\min\{P(u),P(v)\} or better. The case where edge costs are proportional to their rate is approximable to within a constant factor of the optimal solution. For the more general case of non-proportional costs, this problem is hard to approximate with ratio cloglognc \log \log n, where nn is the number of vertices in the graph. A simple greedy algorithm by Charikar et al., however, provides a min{2(lnT+1),ρ}\min\{2(\ln |T|+1), \ell \rho\}-approximation in this setting, where ρ\rho is an approximation ratio for a heuristic solver for the Steiner tree problem and \ell is the number of priorities or levels (Byrka et al. give a Steiner tree algorithm with ρ1.39\rho\approx 1.39, for example). In this paper, we describe a natural generalization to the multi-level case of the classical (single-level) Steiner tree approximation algorithm based on Kruskal's minimum spanning tree algorithm. We prove that this algorithm achieves an approximation ratio at least as good as Charikar et al., and experimentally performs better with respect to the optimum solution. We develop an integer linear programming formulation to compute an exact solution for the multi-level Steiner tree problem with non-proportional edge costs and use it to evaluate the performance of our algorithm on both random graphs and multi-level instances derived from SteinLib

    A polylogarithmic approximation algorithm for group Steiner tree problem

    No full text
    The group Steiner tree problem is a generalization of the Steiner tree problem where we are given several subsets (groups) of vertices in a weighted graph, and the goal is to find a minimum-weight connected subgraph containing at least one vertex from each group. The problem was introduced by Reich and Widmayer and finds applications in VLSI design. The group Steiner tree problem generalizes the set covering problem, and is therefore at least as hard. We give a randomized O(log3nlogk)O(\log^3 n \log k)-approximation algorithm for the group Steiner tree problem on an nn-node graph, where kk is the number of groups.The best previous performance guarantee was (1+lnk2)k(1+\frac{\ln k}{2})\sqrt{k} (Bateman, Helvig, Robins and Zelikovsky). Noting that the group Steiner problem also models the network design problems with location-theoretic constraints studied by Marathe, Ravi and Sundaram, our results also improve their bicriteria approximation results. Similarly, we improve previous results by Slav{\'\i}k on a tour version, called the errand scheduling problem. We use the result of Bartal on probabilistic approximation of finite metric spaces by tree metrics to reduce the problem to one in a tree metric. To find a solution on a tree, we use a generalization of randomized rounding. Our approximation guarantees improve to O(log2nlogk)O(\log^2 n \log k) in the case of graphs that exclude small minors by using a better alternative to Bartal's result on probabilistic approximations of metrics induced by such graphs (Konjevod, Ravi and Salman) -- this improvement is valid for the group Steiner problem on planar graphs as well as on a set of points in the 2D-Euclidean case

    On the Size and the Approximability of Minimum Temporally Connected Subgraphs

    Get PDF
    We consider temporal graphs with discrete time labels and investigate the size and the approximability of minimum temporally connected spanning subgraphs. We present a family of minimally connected temporal graphs with nn vertices and Ω(n2)\Omega(n^2) edges, thus resolving an open question of (Kempe, Kleinberg, Kumar, JCSS 64, 2002) about the existence of sparse temporal connectivity certificates. Next, we consider the problem of computing a minimum weight subset of temporal edges that preserve connectivity of a given temporal graph either from a given vertex r (r-MTC problem) or among all vertex pairs (MTC problem). We show that the approximability of r-MTC is closely related to the approximability of Directed Steiner Tree and that r-MTC can be solved in polynomial time if the underlying graph has bounded treewidth. We also show that the best approximation ratio for MTC is at least O(2log1ϵn)O(2^{\log^{1-\epsilon} n}) and at most O(min{n1+ϵ,(ΔM)2/3+ϵ})O(\min\{n^{1+\epsilon}, (\Delta M)^{2/3+\epsilon}\}), for any constant ϵ>0\epsilon > 0, where MM is the number of temporal edges and Δ\Delta is the maximum degree of the underlying graph. Furthermore, we prove that the unweighted version of MTC is APX-hard and that MTC is efficiently solvable in trees and 22-approximable in cycles

    Approximation algorithms for network design and cut problems in bounded-treewidth

    Get PDF
    This thesis explores two optimization problems, the group Steiner tree and firefighter problems, which are known to be NP-hard even on trees. We study the approximability of these problems on trees and bounded-treewidth graphs. In the group Steiner tree, the input is a graph and sets of vertices called groups; the goal is to choose one representative from each group and connect all the representatives with minimum cost. We show an O(log^2 n)-approximation algorithm for bounded-treewidth graphs, matching the known lower bound for trees, and improving the best possible result using previous techniques. We also show improved approximation results for group Steiner forest, directed Steiner forest, and a fault-tolerant version of group Steiner tree. In the firefighter problem, we are given a graph and a vertex which is burning. At each time step, we can protect one vertex that is not burning; fire then spreads to all unprotected neighbors of burning vertices. The goal is to maximize the number of vertices that the fire does not reach. On trees, a classic (1-1/e)-approximation algorithm is known via LP rounding. We prove that the integrality gap of the LP matches this approximation, and show significant evidence that additional constraints may improve its integrality gap. On bounded-treewidth graphs, we show that it is NP-hard to find a subpolynomial approximation even on graphs of treewidth 5. We complement this result with an O(1)-approximation on outerplanar graphs.Diese Arbeit untersucht zwei Optimierungsprobleme, von welchen wir wissen, dass sie selbst in Bäumen NP-schwer sind. Wir analysieren Approximationen für diese Probleme in Bäumen und Graphen mit begrenzter Baumweite. Im Gruppensteinerbaumproblem, sind ein Graph und Mengen von Knoten (Gruppen) gegeben; das Ziel ist es, einen Knoten von jeder Gruppe mit minimalen Kosten zu verbinden. Wir beschreiben einen O(log^2 n)-Approximationsalgorithmus für Graphen mit beschränkter Baumweite, dies entspricht der zuvor bekannten unteren Schranke für Bäume und ist zudem eine Verbesserung über die bestmöglichen Resultate die auf anderen Techniken beruhen. Darüber hinaus zeigen wir verbesserte Approximationsresultate für andere Gruppensteinerprobleme. Im Feuerwehrproblem sind ein Graph zusammen mit einem brennenden Knoten gegeben. In jedem Zeitschritt können wir einen Knoten der noch nicht brennt auswählen und diesen vor dem Feuer beschützen. Das Feuer breitet sich anschließend zu allen Nachbarn aus. Das Ziel ist es die Anzahl der Knoten die vom Feuer unberührt bleiben zu maximieren. In Bäumen existiert ein lang bekannter (1-1/e)-Approximationsalgorithmus der auf LP Rundung basiert. Wir zeigen, dass die Ganzzahligkeitslücke des LP tatsächlich dieser Approximation entspricht, und dass weitere Einschränkungen die Ganzzahligkeitslücke möglicherweise verbessern könnten. Für Graphen mit beschränkter Baumweite zeigen wir, dass es NP-schwer ist, eine sub-polynomielle Approximation zu finden

    The Minimum Wiener Connector

    Full text link
    The Wiener index of a graph is the sum of all pairwise shortest-path distances between its vertices. In this paper we study the novel problem of finding a minimum Wiener connector: given a connected graph G=(V,E)G=(V,E) and a set QVQ\subseteq V of query vertices, find a subgraph of GG that connects all query vertices and has minimum Wiener index. We show that The Minimum Wiener Connector admits a polynomial-time (albeit impractical) exact algorithm for the special case where the number of query vertices is bounded. We show that in general the problem is NP-hard, and has no PTAS unless P=NP\mathbf{P} = \mathbf{NP}. Our main contribution is a constant-factor approximation algorithm running in time O~(QE)\widetilde{O}(|Q||E|). A thorough experimentation on a large variety of real-world graphs confirms that our method returns smaller and denser solutions than other methods, and does so by adding to the query set QQ a small number of important vertices (i.e., vertices with high centrality).Comment: Published in Proceedings of the 2015 ACM SIGMOD International Conference on Management of Dat
    corecore