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Abstract
We study the multi-level Steiner tree problem: a generalization of the Steiner tree problem in graphs
where terminals T require varying priority, level, or quality of service. In this problem, we seek to
find a minimum cost tree containing edges of varying rates such that any two terminals u, v with
priorities P (u), P (v) are connected using edges of rate min{P (u), P (v)} or better. The case where
edge costs are proportional to their rate is approximable to within a constant factor of the optimal
solution. For the more general case of non-proportional costs, this problem is hard to approximate
with ratio c log logn, where n is the number of vertices in the graph. A simple greedy algorithm by
Charikar et al., however, provides a min{2(ln |T |+ 1), `ρ}-approximation in this setting, where ρ is
an approximation ratio for a heuristic solver for the Steiner tree problem and ` is the number of
priorities or levels (Byrka et al. give a Steiner tree algorithm with ρ ≈ 1.39, for example).

In this paper, we describe a natural generalization to the multi-level case of the classical (single-
level) Steiner tree approximation algorithm based on Kruskal’s minimum spanning tree algorithm.
We prove that this algorithm achieves an approximation ratio at least as good as Charikar et al., and
experimentally performs better with respect to the optimum solution. We develop an integer linear
programming formulation to compute an exact solution for the multi-level Steiner tree problem with
non-proportional edge costs and use it to evaluate the performance of our algorithm on both random
graphs and multi-level instances derived from SteinLib.
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1 Introduction

We study the following generalization of the Steiner tree problem where terminals have
priorities, levels, or quality of service (QoS) requirements. Variants of this problem are
known in the literature under different names including multi-level network design (MLND),
quality-of-service multicast tree (QoSMT) [4], quality-of-service Steiner tree [10, 18], and
Priority Steiner Tree [6]. Motivated by multi-level graph visualization, we refer to this
problem as the multi-level Steiner tree problem.

I Definition 1 (Multi-level Steiner tree (MLST)). Let G = (V,E) be a connected graph, and
T ⊆ V be a subset of terminals. Each terminal t ∈ T has a priority P (t) ∈ {1, 2, . . . , `}. A
multi-level Steiner tree (MLST) is a tree G′ with edge rates y(e) ∈ {1, 2, . . . , `} such that for
any two terminals u, v ∈ T , the u–v path in G′ uses edges of rate greater than or equal to
min{P (u), P (v)}.

We use 1 for the lowest priority and ` for the highest, and assume without loss of generality
that there exists v ∈ V such that P (v) = `. If ` = 1, then Definition 1 reduces to the
definition of Steiner tree.

The cost of an MLST G′ is defined as the sum of the edge costs in G′ at their respective
rates. Specifically, for 1 ≤ i ≤ `, we denote by ci(e) the cost of including edge e with rate i,
in which the cost of an MLST is

∑
e∈E(G′) cy(e)(e). Naturally, an edge with a higher rate

should be more costly, so we assume that c1(e) ≤ c2(e) ≤ . . . ≤ c`(e) for all e ∈ E. The
MLST problem is to compute an MLST with minimum cost.

We note that equivalent formulations [4, 6] include a root (or source) vertex r ∈ V in
which the problem is to compute a tree rooted at r such that the path from r to every
terminal t ∈ T uses edges of rate at least as good as P (t). One can observe that Definition 1
is equivalent to this formulation as we can fix the root to be any terminal r ∈ T such that
P (r) = `. In an optimized MLST, the path from the root to any terminal uses non-increasing
edge rates. Note that this becomes relevant for the discussion of the exact value of the
approximation given by our algorithm and the state-of-the-art algorithm [4]. We use the
phrase “multi-level” since a tree G′ with a root having top priority and edge rates y(·) induces
a sequence of ` nested Steiner trees, where the tree induced by {e ∈ E : y(e) ≥ i} is a Steiner
tree over terminals Ti = {t ∈ T : P (t) ≥ i} for 1 ≤ i ≤ `.

We distinguish the special case with proportional costs, where the cost of an edge is equal
to its rate multiplied by some “base cost” (e.g., c1(e)). This is similar to the rate model
in [4] as well as the setup in [10].

I Definition 2. An instance of the MLST problem has proportional costs if ci(e) = ic1(e)
for all e ∈ E and for all i ∈ {1, 2, . . . , `}. Otherwise, the instance has non-proportional costs.

For u, v ∈ T , we define σ(u, v) to equal the cost of a minimum cost u–v path in G using
edges of rate min{P (u), P (v)}. In other words, σ(u, v) represents the minimum possible cost
of connecting u and v using edges of the appropriate rate. Note that σ is symmetric, but
does not satisfy the triangle inequality, and is not a metric. Lastly, we denote by Hk the kth
harmonic number given by Hk = 1 + 1

2 + . . .+ 1
k .

1.1 Related work
The Steiner tree (ST) problem admits a simple 2

(
1− 1

|T |

)
-approximation (see Section 2.1).

Currently, the best known approximation ratio is ρ = ln 4 + ε ≈ 1.39 by Byrka et al. [3]. It
is NP-hard to approximate the ST problem with ratio better than 96

95 ≈ 1.01 [5].
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In [1], simple top-down and bottom-up approaches are considered for the MLST problem
with proportional costs. In the top-down approach, a Steiner tree is computed over terminals
{v ∈ T : P (v) = `}. For i = `−1, . . . , 1, the Steiner tree over terminals {v ∈ T : P (v) = i+1}
is contracted into a single vertex, and a Steiner tree is computed over terminals with P (v) = i.
In the bottom-up approach, a Steiner tree is computed over all terminals, which induces
a feasible solution by setting the rate of all edges to `. These approaches are ( `+1

2 )ρ- and
`ρ-approximations, respectively [1] (moreover, these bounds are tight). It is worth noting
that the bottom-up approach can perform arbitrarily poorly in the non-proportional setting.

If edge costs are proportional, Charikar et al. [4] give a simple 4ρ-approximation algorithm
(which we later denote by C1) by rounding the vertex priorities up to the nearest power of 2,
then computing a ρ–approximate Steiner tree for the terminals at each rounded-up priority.
They then give an eρ ≈ 4.213-approximation for the same problem (using ρ ≈ 1.55 [12]).
Karpinski et al. [10] tighten the analysis from [4] to show that this problem admits a 3.802-
approximation with an unbounded number of priorities. Ahmed et al. [1] generalize the above
techniques by considering a composite heuristic which computes Steiner trees over a subset of
the priorities, and show that this achieves a 2.351ρ ≈ 3.268-approximation for ` ≤ 100. They
provide experimental comparisons of the simple top-down, bottom-up, 4ρ-approximation
of Charikar et al. [4], and a generalized composite algorithm. The experiments in [1] show
that the bottom-up approach typically provides the worst performance while the composite
algorithm typically performs the best, and these results match the theoretical guarantees.

For non-proportional costs, which is the more general setting, Charikar et al. [4] give a
min{2(ln |T | + 1), `ρ}-approximation for QoSMT, consisting of taking the better solution
returned by two sub-algorithms (which we denote by C2a and C2b, Section 2.2). On the
other hand, Chuzhoy et al. [6] show that PST cannot be approximated with ratio better than
Ω(log logn) in polynomial time unless NP⊆DTIME(nO(log log log n)). However, the problem
setup for PST [6] is slightly more specific; each edge has a single cost ce and a Quality of
Service (priority) given as input, and a solution consists of a tree such that the path from
the root to each terminal t uses edges of QoS at least as good as P (t).

1.2 Our contributions

In this paper, we propose approximation algorithms for the MLST problem based on Kruskal’s
and Prim’s algorithms for computing a minimum spanning tree (MST). We show that the
Kruskal-based algorithm is a 2 ln |T |-approximation even for non-proportional costs, matching
the state-of-the-art algorithms. An interesting feature of this algorithm is that for the single
level case, it reduces to the standard Kruskal approximation to the Steiner tree problem,
which is not the case of other state-of-the-art algorithms for MLST. We also show that,
somewhat surprisingly, a natural approach based on Prim’s algorithm can perform rather
poorly. We then describe an integer linear program (ILP) to compute exact solutions
to the MLST problem given non-proportional edge costs and evaluate the approximation
ratios of the proposed approximation algorithms experimentally. Specifically, we provide an
experimental comparison between the algorithm of Charikar et al. [4] and our Kruskal-based
algorithm, in which the latter performs better with respect to the optimum a majority of
the time in both proportional and non-proportional settings. Experiments are performed on
random graphs from various generators as well as instances of the MLST problem derived
from the SteinLib library [11] of hard ST instances. Finally, we describe a class of graphs
for which the Kruskal-based algorithm always performs significantly better than that by
Charikar et al. [4].

ESA 2020
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2 Preliminaries

In this section, we review some existing approximation algorithms that are pivotal for the
subsequent developments in this paper.

2.1 Kruskal- and Prim-based approximations for the ST problem

A well-known 2
(

1− 1
|T |

)
-approximation algorithm for the ST problem first constructs the

metric closure graph G̃ over T : the complete graph K|T | where each vertex corresponds to a
terminal in T , and each edge has weight equal to the length of the shortest path between
corresponding terminals. An MST over G̃ induces |T | − 1 shortest paths in G; combining
all induced paths and removing cycles yields a feasible Steiner tree whose cost is at most
2
(

1− 1
|T |

)
times the optimum.

For computing an MST over G̃, one can use any known MST algorithm (e.g., Kruskal’s,
Prim’s, or Borůvka’s algorithm). However, one can directly construct a Steiner tree from
scratch based on these MST algorithms without the need to construct G̃; Poggi de Aragão
and Werneck provide details for such implementations [7] (see also [13, 17]).

Specifically, the Prim-based approximation algorithm for the ST problem due to Takahashi
and Matsuyama [13] grows a tree rooted at a fixed terminal. In each iteration, the closest
terminal not yet connected to the tree is connected through its shortest path. The process
continues for |T | − 1 iterations until all terminals are spanned. The resulting Steiner tree
achieves the 2

(
1− 1

|T |

)
approximation guarantee [13]. The Kruskal-based algorithm for the

ST problem due to Wang [14] maintains a forest initially containing |T | singleton trees. In
each iteration, the closest pair of trees is connected via a shortest path between them. The
process continues for |T | − 1 iterations until the resulting forest is a tree. Widmayer showed
that this algorithm achieves the 2

(
1− 1

|T |

)
bound [16].

2.2 Review of the QoSMT algorithm of Charikar et al.

Charikar et al. [4] give a min{2(ln |T |+1), `ρ}-approximation for QoSMT which we denote by
C2, consisting of taking the better of the solutions returned by two sub-algorithms (denoted
C2a and C2b). For this section, we focus primarily on the 2(ln |T | + 1)-approximation,
Algorithm C2a. The `ρ-approximation, Algorithm C2b, simply computes a ρ-approximate
Steiner tree over the terminals of each priority separately, then merges the ` computed trees
and prunes cycles to output a tree; this leads to a better approximation ratio if `� |T |.

The first sub-algorithm (C2a) sorts the terminals T by decreasing priority P (·), starting
with a root node r (here, we may treat the root as any terminal with priority `). Then, for
i = 1, . . . , |T |, the ith terminal ti is connected to the existing tree spanning the previous i− 1
terminals using the minimum cost path with edges of rate at least P (ti), where the cost of
this path is defined as the connection cost of ti.

The authors show that for 1 ≤ m ≤ |T |, the mth most expensive connection cost is at
most 2OPT

m , which implies that the total cost is at most 2OPT
(

1 + 1
2 + 1

3 + . . .+ 1
|T |

)
≤

2(ln |T |+ 1)OPT. While not explicitly mentioned in [4], this approximation ratio is roughly
tight (see Figure 1). Algorithm C2a can be implemented by running Dijkstra’s algorithm
from ti until a vertex already in the tree is encountered. The running time of C2a is roughly
|T | times the running time of Dijkstra’s algorithm, or O(nm+ n2 logn) [4].
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3 Kruskal-based MLST algorithms

We propose Algorithm KruskalMLST for the MLST problem. The main distinction compared
to Algorithm C2a is that the subsequent algorithm connects the “closest” pairs of terminals
first, rather than connecting terminals in order of priority. Algorithm KruskalMLST proceeds
as follows: initializing S = T , while |S| ≥ 1, find terminals u, v ∈ S with P (u) ≥ P (v) which
minimize the cost of connecting them. If P is the u–v path chosen, then the rate of each
edge in P is upgraded to P (v) (if its rate is less). Remove v from S. We will say that v is
connected at the current iteration. At this point, we do not need to worry about v anymore,
and u (the node it is connected to) essentially becomes responsible for v for the rest of the
algorithm. When |S| = 1, if there are no cycles, then the resulting tree is a feasible MLST
rooted at some vertex r with P (r) = `. Otherwise, we can prune one edge from each cycle
with the lowest rate to produce a tree. We note that KruskalMLST takes |T | − 1 iterations
while C2a takes |T | iterations; this follows as the setting for MLST does not specify a root
vertex while QoSMT does. As such, there is a small constant difference in the approximation
ratios, which is not significant.

When finding u, v ∈ S which minimize σ(u, v), Algorithm KruskalMLST takes into
account edges which have already been included at lower rates. In other words, line 6 seeks
a pair of vertices (u, v) which minimizes the cost of “upgrading” the rates of some edges
so that u and v are connected via a path of rate min{P (u), P (v)}. We denote this cost by
σ′(u, v), and observe that σ′(u, v) ≤ σ(u, v).

Algorithm KruskalMLST(graph G, priorities P, costs c).

1: Initialize y(e) = 0 for e ∈ E
2: c′i(e) = ci(e) for i ∈ [`], e ∈ E
3: S = T

4: while |S| > 1 do
5: Compute σ′(·, ·) for all (·, ·) ∈ S × S
6: Find u, v ∈ S with P (u) ≥ P (v) which minimizes σ′(u, v)
7: P = path chosen of cost σ′(u, v)
8: y(e) = max{y(e), P (v)} for e ∈ P
9: c′i(e) = max{0, ci(e)− cy(e)(e)} for e ∈ P and i ∈ {1, . . . , `}

10: S = S \ {v}
11: end while
12: return y

I Theorem 3. Algorithm KruskalMLST is a 2 ln |T |-approximation to the MLST problem.

Proof. Define the connection cost of v to be σ′(u, v) (line 6), and note that the cost of the
returned solution is the sum of the connection costs over all terminals T \ {r}. Now let t1,
t2, . . . , t|T |−1 be the terminals in sorted order by which they were connected, and let OPT
denote the cost of a minimum cost MLST for the instance. We have the following lemma.

I Lemma 4. For 2 ≤ m ≤ |T |, consider the iteration of Algorithm KruskalMLST when
|S| = m. Let ti be the terminal connected during this iteration (where i = |T |+ 1−m). Then
the connection cost of ti is at most 2OPT

m .

ESA 2020
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Proof. Note that immediately before ti is connected, we have S = {ti, ti+1, . . . , t|T |−1, r}
of size m. Consider the optimum solution T ∗ for the instance, and let T ′ be the minimal
subtree of T ∗ containing all terminals in S. The total cost of the edges in T ′ is at most
OPT. Perform a depth-first traversal starting from any terminal in T ′ and returning to that
terminal. Since every edge in T ′ is traversed twice, the cost of the traversal is at most 2OPT.

Consider pairs of consecutive terminals tj , tk visited for the first time along the traversal.
The path connecting tj and tk in T ′ necessarily uses edges of rate at least min{P (tj), P (tk)}.
Then, the cost of the edges along this path is at least σ(tj , tk). There are m pairs of
consecutive terminals along the traversal (including the pair containing the first and last
terminals visited), and the sum of the costs of these m paths is at most 2OPT. Hence, some
pair tj , tk of terminals is connected by a path of cost ≤ 2OPT

m in the optimum solution,
implying that for this pair tj , tk, we have σ′(tj , tk) ≤ σ(tj , tk) ≤ 2OPT

m . Since KruskalMLST
selects the pair which minimizes σ′(·, ·), the connection cost of ti is at most 2OPT

m . J

Lemma 4 immediately implies Theorem 3. Indeed, summing from m = 2 to m = |T |, the
total cost is at most 2OPT

(
1
2 + 1

3 + . . .+ 1
|T |

)
= 2OPT(H|T | − 1) ≤ 2 ln |T |OPT. J

An interesting note is that Algorithm KruskalMLST reduces to the Kruskal-based al-
gorithm [14] for computing a Steiner tree, when there are no priorities on the terminals (i.e.,
the single level case when ` = 1). As mentioned earlier, this is a 2(1− 1

|T | )-approximation,
whereas algorithm C2a is still a 2 ln |T | one, and this is an advantage of the proposed
algorithm.

A simple variant of our algorithm, GreedyMLST, yields the same theoretical approxima-
tion ratios and is easier to implement. The difference is that GreedyMLST does not update
the costs σ at each iteration of the while loop.

Algorithm GreedyMLST(graph G, priorities P, costs c).

1: Initialize y(e) = 0 for e ∈ E
2: S = T

3: while |S| > 1 do
4: Find u, v ∈ S with P (u) ≥ P (v) which minimizes σ(u, v)
5: P = path chosen of cost σ(u, v)
6: y(e) = max(y(e), P (v)) for e ∈ P
7: S = S \ {v}
8: end while
9: return y

I Theorem 5. Algorithm GreedyMLST is a 2 ln |T |-approximation to the MLST problem.

The proof follows the same argument as that for Theorem 3; indeed the use of σ′ implies
that KruskalMLST should perform better than GreedyMLST, but is more costly to run.

3.1 Tightness
The approximation ratio for Algorithms C2a [4] and GreedyMLST is tight up to a constant,
even if ` = 1 or if |E| = O(|V |). As a tightness example, we use a graph construction
(Gi)i≥0 given by Imase and Waxman [9] for the inapproximability of the dynamic Steiner
tree problem. Let G0 contain two vertices v0, v1 with an edge of cost 1 connecting them.
We say that v0 and v1 are depth zero vertices. For i ≥ 1, graph Gi is obtained by replacing
each edge uv in Gi−1 with two depth i vertices w1, w2, and adding edges uw1, w1v, uw2,
and w2v.
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Let G = Gk for sufficiently large k, let ` = 1 (i.e., the Steiner tree problem), and let
each edge of Gi have a cost of 1

2i , so that the cost of any shortest v0-v1 path is 1. Let the
terminals T be the vertices of some v0-v1 path (Figure 1, left), so that OPT = 1. Note that
any u-v path contains 2k edges, so |T | = 2k + 1. Algorithm C2a first sorts the terminals
by priority; since all terminals in Gk have the same priority, we consider a worst possible
ordering where T is ordered in increasing depth, with v0 the root. In this case, it is possible
that Algorithm C2a connects v1 to v0 via a shortest path which does not include other
terminals, then connects subsequent terminals via shortest paths which include no other
terminal, as shown in Figure 1. Conversely in the worst case, Algorithm GreedyMLST may
connect depth k, k − 1, k − 2, . . . terminals in order while avoiding previously-used paths,
as Algorithm GreedyMLST does not consider existing edges. In both cases, the cost of the
returned solution is

Cost = 1
2k + 1 = 1

2 log2(|T | − 1) + 1 ≥ 1
2 (log2 |T |+ 1) OPT ≈

(
0.72 ln |T |+ 1

2

)
OPT.

v0

v1

Depth

0

3

2

3

1

3

2

3

0

v0

v1

Figure 1 Left: Example instance where G = G3 using the construction by Imase and Waxman [9],
` = 1, with terminals bolded. All edges have cost 1

8 so that OPT = 1. Right: Example solution T
which could be returned by Algorithms C2a and GreedyMLST, with cost 20

8 . Note that in hindsight,
G may be sparsified so that |E| = O(|V |), by letting E = E(T ) ∪ E(T ∗), then contracting each
simple path between two terminals to a single edge with cost equal to the length of the path.

3.2 Running Time
The running time of Algorithm GreedyMLST is similar to that of Algorithm C2a, namely
|T | times the running time of Dijkstra’s algorithm. This can be implemented as follows:
before line 4, for each terminal t ∈ T , run Dijkstra’s algorithm from t using edge weights
cP (t)(·), and only keep track of distances from t to terminals with priority ≥ P (t). Thus,
each terminal t ∈ T keeps a dictionary of distances from t to a subset of T . Then at each
iteration (line 6), find the minimum distance among at most |T | distances. The running time
of KruskalMLST is |T |2 times that of Dijkstra’s algorithm due to the update step (line 9 of
Algorithm KruskalMLST).

ESA 2020
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4 Prim-based MLST algorithm

A natural approach based on Prim’s algorithm is as follows. Choose a root terminal r with
P (r) = ` and remove r from T . Then, find a terminal v ∈ T whose connection cost is
minimum, where the connection cost is defined to be the cost of installing or upgrading
edges from r to v using rate P (v) (namely, using edge costs cP (v)(·)). Remove v from T , and
decrement costs. Repeat this process of connecting the existing MLST to the closest terminal
until T is empty. Interestingly, unlike Algorithm GreedyMLST, this approach can return a
solution |T | times the optimum, which is rather poor. We remark that Algorithm C2a [4]
is similar to the Prim-based algorithm, where terminals are connected in order of priority
rather than connecting the closest terminals first.

As an example, suppose G is a cycle containing |V | = `+ 1 vertices v1, v2, v3, . . . , v`,
r in that order (Figure 2, left). Let P (vi) = i, and let P (r) = `. Let ci(rv`) = 1 (edge rv`

has cost 1 regardless of rate), and let ci(rv1) = i(1− ε). Let all other edges have cost zero
(or perhaps a small ε′ � ε), regardless of rate. Then the Prim-based algorithm greedily
connects v1, v2, . . . , v` in that order, incurring a cost of 1− ε at each iteration. Hence the
cost returned is `(1− ε) ≈ |T |, while OPT = 1.

`

1

2

3

` 1
i(1− ε)

`

1

2

3

` 1
i(1− ε)

`

1

2

3

` 1
i(1− ε)

Figure 2 Left: Simple example demonstrating that a Prim-based algorithm can perform poorly.
The priorities P (·) and edge costs ci(·) are shown, and the root r is bolded. Center: Solution found
by the Prim-based algorithm with cost `(1− ε). Right: Optimum solution with cost OPT = 1.

5 Integer linear programming (ILP) formulation

In [1], ILP formulations were given for the MLST problem with proportional costs. We
extend these and give an ILP formulation for non-proportional costs. First, direct the graph
G by replacing each edge e = uv with two directed edges (u, v) and (v, u). Let xi

uv = 1 if
(u, v) appears in the solution with rate greater than or equal to i, and 0 otherwise. Let c′i(u, v)
denote the incremental cost of edge (u, v) with rate i, defined as ci(e)− ci−1(e) where e = uv

and c0(e) = 0. Fix a root r ∈ T with P (r) = `. For i = 1, . . . , `, let Ti = {t ∈ T : P (t) ≥ i}
denote the set of terminals requiring priority at least i. For every edge e = (u, v) we define
two flow variables f i

uv and f i
vu.

Minimize
∑̀
i=1

∑
(u,v)∈E

c′i(u, v)xi
uv subject to (1)

∑
(v,w)∈E

f i
vw −

∑
(u,v)∈E

f i
uv =


|Ti| − 1 if v = r

−1 if v ∈ Ti \ {r}
0 else

∀ v ∈ V ; 1 ≤ i ≤ ` (2)
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xi
uv ≤ xi−1

uv ∀ (u, v) ∈ E; 2 ≤ i ≤ `
(3)

0 ≤ f i
uv ≤ (|Ti| − 1) · xi

uv ∀ (u, v) ∈ E; 1 ≤ i ≤ `
(4)

xi
uv ∈ {0, 1} ∀ (u, v) ∈ E; 1 ≤ i ≤ `

(5)

In the optimal solution, the edges of rate greater than or equal to i form a Steiner tree
over Ti, so the flow constraint ensures that this property holds. The second constraint ensures
that if an edge is selected at rate i or greater, then it must be selected at lower rates. The
third constraint ensures that the indicator variable is set equal to one if and only if the
corresponding edge is in a tree. The last constraint ensures that the xi

uv variables are 0–1.

I Theorem 6. The optimal solution for the ILP induces an MLST with cost OPT.

The proof is deferred to Appendix A. Additionally, it can be seen from the formulation that
the number of variables is O(`|E|) and the number of constraints is O(`(|E|+ |V |)).

6 Experiments

We run two primary kinds of experiments: first, we compare the various MLST approximation
algorithms discussed here on random graphs from different generators; second, to provide
comparison with the Steiner tree literature, we perform experiments on instances generated
using the SteinLib library [11]. In both cases, we consider natural questions about how the
number of priorities, number of vertices, and decay rate of terminals with respect to priorities
affect the running times and (experimental) approximation ratios (cost of returned solution
divided by OPT) of the algorithms explored here. We also record how often the algorithms
proposed here provide better approximation ratios than pre-existing algorithms. Moreover,
we illustrate a class of graphs for which Algorithm KruskalMLST always performs better
than Algorithm C2a.

6.1 Experiment Parameters
We run experiments first to test runtime vs. parameters discussed above, and then to test the
experimental approximation ratio vs. the parameters. Each set of experiments has several
parameters: the graph generator (random generators or SteinLib instances), the maximum
number of priorities `, |V |, how the size of the terminal sets Ti (terminals requiring priority
at least i) decrease as i decreases, and proportional vs. non-proportional edge costs.

In what follows, we use the Erdős–Rényi (ER) [8], Watts–Strogatz (WS) [15], and
Barabási–Albert (BA) [2] models or SteinLib instances [11] to generate the input graph
(more on how SteinLib instances are given priorities later). The number of vertices of the
graphs generated by different models varies from 10 to 100. We consider number of priorities
` ∈ {2, . . . , 7}, and adopt two methods for selecting terminal sets (equivalently priorities):
linear and exponential. A terminal set T` with lowest priority of size n(1− 1

`+1 ) in the linear
case and n

2 in the exponential case is chosen uniformly at random. For each subsequent
priority, 1

`+1 terminals are deleted at random in the linear case, whereas half the remaining
terminals are deleted in the exponential case. Priorities and terminal sets are related via
Ti = {t ∈ T : P (t) ≥ i}. For the proportional edge weight case, we choose c1(e) uniformly at
random from {1, . . . , 10} for each edge independently and set ci(e) = ic1(e) for i = 1, . . . , `.
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For the non-proportional setting, we select the incremental edge costs c1(e), c2(e)− c1(e),
c3(e)− c2(e), . . . , c`(e)− c`−1(e) uniformly at random from {1, 2, 3, . . . , 10} for each edge
independently.

In the case that the input graph comes from SteinLib, it has a prescribed terminal set
(since SteinLib graphs are instances of ST problem for a single priority). For these inputs,
priorities are generated in two ways: filtered terminals and augmented terminals. To generate
filtered terminals we divide the set of original terminals from the SteinLib into ` sets (with
` ∈ {2, . . . , 6}). We assign the first set as the topmost priority terminals. We assign the
second set to the next priority and so on. For the augmented case, we start with the initial
terminals from the SteinLib instance and add additional terminals uniformly at random from
the remaining vertices. We assign 5 vertices as top priority terminals, double the number of
terminals in the next priority, and so on until the maximum number of terminals is reached
(we assign ` ∈ {2, 3, 4} priorities). Augmentation makes sense given that some of the original
SteinLib instances have very few terminals. We have generated our datasets from two subsets
of SteinLib: I080 and I160; we generate both types of terminals (filtered and augmented)
for each of these datasets. The reason we run our experiment on the two SteinLib datasets
is that the sizes of the graphs are relatively smaller. Our exact algorithm based on the
ILP formulation has an exponential running time, and will not be able to terminate in a
reasonable time for the datasets that contain large instances.

An experimental instance of the MLST problem here is thus characterized by five
parameters: graph generator, number of vertices |V |, number of priorities `, terminal
selection method TSM ∈ {Linear,Exponential}, and proportionality of the edge weights
TE ∈ {Prop,Non-prop}. As there is randomness involved, we generated five instances for
every choice of parameters (e.g., ER, |V | = 70, ` = 4, Linear, Non-prop).

For the following experiments, we implement the KruskalMLST and C1 algorithms in
the proportional case, and the KruskalMLST and C2a algorithms in the non-proportional
case. We note here that Algorithm GreedyMLST achieves much poorer results with respect
to OPT than KruskalMLST in practice despite having similar theoretical guarantees. The
reason for the poor performance is that the algorithm over–counts the edge costs when it
is considered multiple times. On the other hand, KruskalMLST updates the cost of the
edges so that for a particular edge and rate, it pays only once. Hence, in our experiment we
only use KruskalMLST. To compute the approximation ratios, we use the ILP described in
Section 5 using CPLEX 12.6.2 as an ILP solver.

6.2 Results
As one would expect, runtime for both the ILP and all approximation algorithms increased
as |V | or ` increased. Runtime was typically higher for linear terminal selection than for
exponential. See Figures 12–14 in the Appendix for detailed plots. We do note that the
running times of the approximation algorithms are significantly faster than the running time
of the ILP; the latter takes a couple of minutes for whereas the approximation algorithms
take only a couple of seconds for the same instances generated in our experiments.

There was no discernible trend in plots of Ratio (defined as cost/OPT) vs. |V |, `, or
the terminal selection method (linear or exponential). In all cases, for all graph generators,
both the KruskalMLST and C1 (or C2a in the non-proportional case) exhibited similar
statistical behavior independent of the given parameter (see Figures 5–9 in the Appendix for
detailed plots). For a brief illustration, we show the behavior for Erdős–Rényi graphs with
p = (1 + ε) ln n

n in Figure 3, and include the performance of the Composite Algorithm of [1]
(CMP) as it gives the best a priori approximation ratio guarantee. In the non-proportional

http://steinlib.zib.de/showset.php?I080
http://steinlib.zib.de/showset.php?I160
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case, Charikar et al. [4] have used another algorithm C2b beside C2a and returned the best
solution. In the experiment, we only compare with C2a since C2b runs an iteration for each
priority to get the final solution and in this paper, we are primarily interested in techniques
that run in a single iteration similar to the spanning tree algorithms.

Figure 3 Performance of C1 [4], KruskalMLST, and CMP [1] on Erdős–Rényi graphs w.r.t. |V |,
`, and terminal selection method with proportional edge weights.

From Figure 3, we see that on average KruskalMLST outperforms C2a. However, it is
instructive to compare the instance-wise performance of the different algorithms. Tables 1 and
2 show comparisons of the statistical performance of the the two approximation algorithms
for various graph generators in the proportional and non-proportional case, respectively. For
each graph generator, there are a total of 1140 instances consisting of 5 graphs for each set
of parameters (|V |, `, etc.).

Table 1 Statistics of Algorithms C1 [4] and KruskalMLST (abbreviated K) with proportional
edge cost. Best Approx. reports the percentage of instances (out of 1140) that each algorithm
achieved strictly better experimental approximation ratio. Best performance in each category is
bolded. The statistics correspond to the experimental approximation ratio.

Graph Generator ER WS BA SteinLib
Algorithm C1 K C1 K C1 K C1 K

Equal to OPT 73 133 391 679 94 202 4 8
Mean 1.048 1.044 1.016 1.012 1.028 1.021 1.2355 1.1918
Median 1.044 1.037 1.006 1.0 1.019 1.016 1.2072 1.1707
Min 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Max 1.263 1.202 1.31 1.18 1.212 1.126 1.7488 1.6404

Best Approx. 40.53% 54.29% 24.92% 50.78% 30.62% 69.38% 31.50 59.12%

Table 2 Statistics of Algorithms C2a [4] and KruskalMLST (abbreviated K) with non-proportional
edge cost. Best Approx. reports the percentage of instances (out of 1140) that each algorithm
achieved strictly better experimental approximation ratio. Best performance in each category is
bolded.

Graph Generator ER WS BA
Algorithm C2a K C2a K C2a K

Equal to OPT 16 26 16 30 10 26
Mean 1.123 1.109 1.099 1.081 1.121 1.097
Median 1.109 1.099 1.087 1.067 1.096 1.08
Min 1.0 1.0 1.0 1.0 1.0 1.0
Max 1.667 1.54 1.863 1.601 1.941 1.667

Best Approx. 37.20% 61.22% 34.83% 63.85% 30.62% 68.24%
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We see from these tables that KruskalMLST consistently outperforms the algorithms
of [4] in each of the statistical categories, and also achieves better instance-wise results a
majority of the time, although this behavior depends somewhat on the graph generator.
A full suite of figures is given in the Appendix to further illustrate the performance of
each algorithm for the various generators. The trends are essentially the same and are
as follows. KruskalMLST outperforms C2a on a majority of instances, but has marginally
longer runtime (though the difference is not appreciable); the number of priorities has little
effect on runtime or experimental approximation ratio; the number of vertices increases
the runtime for some generators, but has little effect on the experimental approximation
ratio; experimental approximation ratios are typically better on average for exponentially
decreasing terminal sets (which makes sense given that |T | is smaller and the approximation
guarantees are O(ln |T |)). Finally, we note that the Composite algorithm of [1] can achieve
better approximation in the proportional edge cost setting, but is not known to work for the
non-proportional setting; additionally Composite suffers from exponential growth in runtime
with respect to `, which is a feature not exhibited by KruskalMLST.

6.3 Graphs for which KruskalMLST always outperforms C2a

Here we generate a special class of graphs for which the Kruskal-based algorithm always
provides near-optimal solutions, but Algorithm C2a performs poorly. This class of graphs
consists of cycles with randomly added edges. Begin with a cycle v1, v2, · · · , vn, v1 and set
the weight of edge v1vn be w − ε where length of the path v1, v2, · · · , vn is w. We select v1
and vn as higher-priority terminals, and the remaining vertices as lower-priority terminals.
An algorithm that works in a top-down manner will take the edge v1vn for higher priority
and pay significantly more than the optimal solution [1]. Doing this to every edge (vi, vi+1)
results an MLST instance where a top-down approach performs arbitrarily poorly. On these
graphs, the algorithm provided in Charikar et al. [4] for proportional instances of MLST
performs noticeably worse than our Kruskal-based approach (see Figure 4). We generated
500 graphs of this type (augmented with some additional edges at random). The script
to generate these graphs are available on Github at https://github.com/abureyanahmed/
Kruskal_based_approximation.

Figure 4 A class of graphs for which the Algorithm KruskalMLST significantly outperforms
Algorithm C2a [4]. The x–axis is the instance number and carries no meaning of time; the y–axis is
the approximation ratio.

https://github.com/abureyanahmed/Kruskal_based_approximation
https://github.com/abureyanahmed/Kruskal_based_approximation
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7 Conclusion

We proposed two algorithms for the MLST problem based on Kruskal’s and Prim’s algorithms.
We showed that the Kruskal-based algorithm is a logarithmic approximation, matching the
best approximation guarantee of Charikar et al. [4], while the Prim-based algorithm can
perform arbitrarily poorly. We formulated an ILP for the general MLST problem and
provided an experimental comparison between the algorithm provided by Charikar et al. [4],
Ahmed et al. [1], and the Kruskal-based algorithm, KruskalMLST. We demonstrated that
KruskalMLST compares favorably to other algorithms in terms of experimental approximation
ratio for both the proportional and non-proportional edge costs while incurring a minor
cost in run time. Finally, we generated a special class of graphs for which KruskalMLST
always performs significantly better than that by Charikar et al. [4]. A natural question is
whether the analysis of any of these algorithms GreedyMLST, KruskalMLST, or C2a can
be tightened, improving the approximability gap between O(log logn) and O(logn) for the
MLST problem with non-proportional edge costs.
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A Proof of Theorem 6

Proof. We first show that the flow variables take only integer values from zero to |Ti| − 1
although it is not specifically mentioned in the formulation. Note that for every priority the
ILP generates a connected component in order to fulfill the conditions of the second equation.
The algorithm will compute a tree for every priority, otherwise, there is a cycle at a tree of a
particular priority and removing an edge from the cycle minimizes the objective. According
to the second equation, the flow variable corresponding to an incoming edge connected to
a terminal that is not root is equal to one if the edge is in the tree. Since the difference
between the incoming and outgoing flow is |Ti| − 1 for the root and zero for any intermediate
node, every flow variable must be equal to an integer. Also if we do not have integer flows
(for example the incoming flow is one and there are two outgoing flows with values 1/2),
then because of the conditions in second equation cycles will be generated. Because of this
property, the fourth equation ensures that xi

uv is equal to one iff the corresponding flow
variable has a value greater than or equal to one. In other words, an indicator variable is
equal to one iff the corresponding edge is in the tree. Note that, the formulation has only
one assumption on the edge weights: the cost of an edge for a particular rate is greater than
or equal to the weight of the edge having lower rates. Hence, the formulation computes the
optimal solution for (non-)proportional instances. J

B Additional Experimental Results

In this section, we provide some details of the experiments discussed in Section 6.

B.1 Graph Generator Parameters
Given a number of vertices, n, and probability p, the model ER(n, p) assigns an edge
to any given pair of vertices with probability p. An instance of ER(n, p) with p = (1 +
ε) ln n

n is connected with high probability for ε > 0 [8]. For our experiments we use n ∈
{10, 15, 20, · · · , 100}, and ε = 1.

The Watts–Strogatz model [15] is used to generate graphs that have the small-world
property and high clustering coefficient. The model, denoted by WS(n,K, β), initially creates
a ring lattice of constant degree K, and then rewires each edge with probability 0 ≤ β ≤ 1
while avoiding self-loops or duplicate edges. In our experiments, the values of K and β are
set to 6 and 0.2 respectively.

The Barabási–Albert model generates networks with power-law degree distribution,
i.e., few vertices become hubs with extremely large degree [2]. The model is denoted by
BA(m0,m), and uses a preferential attachment mechanism to generate a growing scale-free
network. The model starts with a graph on m0 vertices. Then, each new vertex connects to
m ≤ m0 existing nodes with probability proportional to its instantaneous degree. This model
is a network growth model. In our experiments, we let the network grow until the desired
network size n is attained. We vary m0 from 10 to 100 in our experiments, and set m = 5.

https://doi.org/10.1007/s00453-001-0050-6
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B.2 Computing Environment
For computing the optimum solution, we implemented the ILP described in Section 5 using
CPLEX 12.6.2 as an ILP solver. The model of the HPC system we used for our experiment
is Lenovo NeXtScale nx360 M5. It is a distributed system; the models of the processors in
this HPC are Xeon Haswell E5-2695 Dual 14-core and Xeon Broadwell E5-2695 Dual 14-core.
The speed of a processor is 2.3 GHz. There are 400 nodes each having 28 cores. Each node
has 192 GB memory. The operating system is CentOS 6.10.

B.3 Experimental Setup
We have considered proportional and non-proportional instances separately. The Kruskal-
based algorithm is the same in both settings, but the algorithms of [4] admit 2 variants: C1 for
proportional edge costs which is a 4ρ–approximation, and C2a for non-proportional edge costs
which is a 2(ln |T |+ 1)–approximation. In figures below, Ratio stands for the approximation
ratio given by the cost of the solution returned by the approximation algorithm divided by
the optimum cost OPT returned by the ILP.

All box plots shown below show the minimum, interquartile range (IQR) and maximum,
aggregated over all instances using the parameter being compared.

B.4 Approximation Ratio vs. Parameters – Proportional edge costs
First, we take a look at how the approximation ratio of the approximation algorithms is
affected by the parameters chosen. Figures 3, 5, and 6 illustrate the change in approximation
for different parameters (|V |, `, and the terminal selection method) in the case of proportional
edge costs. For comparison to [1], we include the performance of the Composite algorithm
(CMP) described therein.

Figure 5 Performance of C1 [4], KruskalMLST, CMP [1] on Watts–Strogatz graphs w.r.t. |V |, `,
and terminal selection method with proportional edge weights.

Figure 6 Performance of C1 [4], KruskalMLST, and CMP [1] on Barabási–Albert graphs w.r.t.
|V |, `, and terminal selection method with proportional edge weights.
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We see that for Erdős–Rényi graphs, the number of vertices marginally increases the
approximation ratio over time, while for the other generators this does not appear to be
the case. Overall, no discernible trend occurs for the number of priorities regardless of the
generator. Interestingly, for randomly generated graphs, there appears to be no relation to
the rate of decrease of terminal sets (i.e., linear vs. exponential) with the statistics of the
approximation ratios.

B.5 Approximation Ratio vs. Parameters – Non-Proportional Edge
Costs

Here we consider the case non-proportional edge cost, in which we compare Algorithms C2a
and KruskalMLST. The Composite algorithm of [1] was not designed for non-proportional
edge costs and so is not included here. Figures 7–9 show the approximation ratios vs.
parameters for each of the random graph generators discussed above.

Figure 7 Performance of C2a [4] and KruskalMLST w.r.t. |V |, `, and terminal selection method
with non-proportional edge weights on Erdős–Rényi graphs.

Figure 8 Performance of C2a [4] and KruskalMLST w.r.t. |V |, `, and terminal selection method
with non-proportional edge weights on Watts–Strogatz graphs.

Figure 9 Performance of C2a [4] and KruskalMLST w.r.t. |V |, ` and terminal selection method
with non-proportional edge weights on Barabási–Albert graphs.
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In the non-proportional case, it is interesting that the approximation ratio appears to be
little affected by any of the parameters, and even appears to decrease with respect to the
number of priorities. It is unclear if this trend would continue for large number of priorities,
but it is an interesting one nonetheless. Of additional note is that KruskalMLST typically
has less variance in its approximation ratio than the algorithms of Charikar et al. [4] in both
the proportional and non-proportional case.

B.6 Approximation Ratio vs. Parameters – SteinLib Instances
For the experiments on the SteinLib graphs [11], we first extended two datasets (I080 and
I160) to have priorities via filtering or augmenting as described in Section 6. We provide
the plots showing the Performance of C1 [4], KruskalMLST, and CMP [1] on I080 and I160
graphs w.r.t. ` with filtered priorities in Figure 10, and for augmented priorities in Figure 11.

Figure 10 Performance of C1 [4], KruskalMLST, and CMP [1] on I080 and I160 graphs w.r.t. `
with filtered priorities.

Figure 11 Performance of C1 [4], KruskalMLST, and CMP [1] on I080 and I160 graphs w.r.t. `
with augmented priorities.

B.7 Runtime vs. Parameters – Proportional Edge Costs
Now we take a look at the affect of the parameters mentioned above on the average runtimes
of the approximation algorithms in the case of proportional edge costs. Figures 12–14 show
the runtime of the algorithms C2a, KruskalMLST, and GreedyMLST versus |V |, `, and the
terminal selection method.

As is to be expected, on all generators, the average runtime increases as |V | increases, as
does the variance in the runtime. Interestingly, average runtime does not appear to be much
affected by the number of priorities, although the variance in runtime does substantially
increase with `. Runtime is lower for exponentially decreasing terminals, which makes sense
given that in this case, the overall size of the terminal sets is smaller than in the linearly
decreasing case.
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Figure 12 Experimental running times for computing approximation algorithm solutions w.r.t.
|V |, `, and terminal selection method with proportional edge weights on Erdős–Rényi graphs.

Figure 13 Experimental running times for computing approximation algorithm solutions w.r.t.
|V |, `, and terminal selection method with proportional edge weights on Watts–Strogatz graphs.

Figure 14 Experimental running times for computing approximation algorithm solutions w.r.t.
|V |, `, and terminal selection method with proportional edge weights on Barabási–Albert graphs.

B.8 Runtime vs. Parameters – Non-Proportional Edge Costs
Now we take a look at the affect of the parameters mentioned above on the average runtimes
of the approximation algorithm in the non-proportional case. Figures 15–17 show the runtime
of the algorithms C2a, KruskalMLST, and GreedyMLST versus |V |, `, and the terminal
selection method.

Figure 15 Experimental running times for computing approximation algorithm solutions w.r.t.
|V |, `, and terminal selection method with non-proportional edge weights on Erdős–Rényi graphs.
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Figure 16 Experimental running times for computing approximation algorithm solutions w.r.t.
|V |, `, and terminal selection method with non-proportional edge weights on Watts–Strogatz graphs.

Figure 17 Experimental running times for computing approximation algorithm solutions w.r.t.
|V |, `, and terminal selection method with non-proportional edge weights on Barabási–Albert graphs.

The trends are essentially the same as in the case of proportional edge costs; however, we
note that the overall runtimes are almost two orders of magnitude smaller on average in the
non-proportional trials run here.

C ILP Solver

Without doubt, the most time consuming part of the experiments above was calculating the
exact solutions of all MLST instances. For illustration, we show the runtime trends for the
ILP solver with respect to |V |, `, and the terminal selection method for proportional edge
costs in Figures 18–20 and for non-proportional edge costs in Figures 21–23 for all of the
random graph generators.

Figure 18 Experimental running times for computing exact solutions w.r.t. |V |, `, and terminal
selection method with proportional edge weights on Erdős–Rényi graphs.

As expected, the running time of the ILP gets worse as |V | and ` increase. The running
time of the ILP is worse for the linear terminal selection method, again likely because of the
overall larger terminal set T . Note that the running time of the approximation algorithms are
significantly faster than the running time of the exact algorithm. The exact algorithm takes
a couple of minutes whereas the approximation algorithms take only a couple of seconds.
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Figure 19 Experimental running times for computing exact solutions w.r.t. |V |, `, and terminal
selection method with proportional edge weights on Watts–Strogatz graphs.

Figure 20 Experimental running times for computing exact solutions w.r.t. |V |, `, and terminal
selection method with proportional edge weights on Barabási–Albert graphs.

Figure 21 Experimental running times for computing exact solutions w.r.t. |V |, `, and terminal
selection method with non-proportional edge weights on Erdős–Rényi graphs.

Figure 22 Experimental running times for computing exact solutions w.r.t. |V |, `, and terminal
selection method with non-proportional edge weights on Watts–Strogatz graphs.
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Figure 23 Experimental running times for computing exact solutions w.r.t. |V |, `, and terminal
selection method with non-proportional edge weights on Barabási–Albert graphs.
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