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Abstract
We consider temporal graphs with discrete time labels and investigate the size and the approxim-
ability of minimum temporally connected spanning subgraphs. We present a family of minimally
connected temporal graphs with n vertices and Ω(n2) edges, thus resolving an open question of
(Kempe, Kleinberg, Kumar, JCSS 64, 2002) about the existence of sparse temporal connectivity
certificates. Next, we consider the problem of computing a minimum weight subset of temporal
edges that preserve connectivity of a given temporal graph either from a given vertex r (r-MTC
problem) or among all vertex pairs (MTC problem). We show that the approximability of r-MTC
is closely related to the approximability of Directed Steiner Tree and that r-MTC can be solved
in polynomial time if the underlying graph has bounded treewidth. We also show that the best
approximation ratio for MTC is at least O(2log1−ε n) and at most O(min{n1+ε, (∆M)2/3+ε}), for
any constant ε > 0, where M is the number of temporal edges and ∆ is the maximum degree of
the underlying graph. Furthermore, we prove that the unweighted version of MTC is APX-hard
and that MTC is efficiently solvable in trees and 2-approximable in cycles.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Temporal Graphs, Temporal Connectivity, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.149

1 Introduction

Graphs and networks are ubiquitous in Computer Science, as they provide a natural and useful
abstraction of many complex systems (e.g., transportation and communication networks) and
processes (e.g., information spreading, epidemics, routing), and also of the interaction between
individual entities or particles (e.g., social networks, chemical and biological networks).
Traditional graph theoretic models assume that the structure of the network and the strength
of interaction are time-invariant. However, as observed in e.g., [3, 19], in many applications
of graph theoretic models, the availability and the weights of the edges are actually time-
dependent. For instance, one may think of information spreading and distributed computation
in dynamic networks (see e.g., [6, 12, 19, 20]), of mobile adhoc and sensor networks (see e.g.,
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[22]), of transportation networks and route planning (see e.g., [3, 15]), of epidemics, biological
and ecological networks (see e.g., [17, 19]), and of influence systems and coevolutionary
opinion formation (see e.g., [5, 9]).

Several variants of time-dependent graphs have been suggested as abstractions of such
settings and computational problems (see e.g., [6] and the references therein). No matter
the particular variant, the main research questions are usually related either to optimizing
or exploiting temporal connectivity or to computing short time-respecting paths (see e.g.,
[1, 2, 3, 13, 15, 19, 21]). In this work, we adopt the simple and natural model of temporal
graphs with discrete time labels [19] (and its extension with multiple labels per edge [21]), and
study the existence of dense minimally connected temporal graphs and the approximability
of temporally connected spanning subgraphs with minimum total weight.

Temporal Graphs and Temporal Connectivity. A temporal graph is defined on a time-
invariant set of n vertices. Each (undirected) edge e is associated with a set of discrete time
labels denoting when e is available. If every edge is associated with a single time label, as in
[19], the temporal graph is simple. An edge e available at time t comprises a temporal edge
(e, t) and there is a positive weight w(e, t) associated with it. A (resp. strict) temporal (or
time-respecting) path is a sequence of temporal edges with non-decreasing (resp. increasing)
time labels. So, temporal paths respect the time availability constraints of the edges.

Given a source vertex r, a temporal graph is (temporally) r-connected if there is a
temporal path from r to any other vertex. A temporal graph is (temporally) connected if
there exists a temporal path from any vertex to any other vertex. We study the existence of
dense minimally connected temporal graphs and the optimization problems of computing a
minimum weight subset of temporal edges that preserve either r-connectivity or connectivity.
We refer to these optimization problems as (Minimum) Single-Source Temporal Connectivity
(or r-MTC, in short) and (Minimum) All-Pairs Temporal Connectivity (or MTC, in short).
They arise as natural generalizations of Minimum Arborescence and Minimum Spanning
Tree in temporal networks, and to the best of our knowledge, their approximability has not
been determined so far (but see [1, 18] for some results on variants or special cases).

Previous Work and Motivation. The model of simple temporal graphs with discrete time
labels was introduced in [19]. It is essentially equivalent to the model of scheduled networks
[3], where each edge is available in a time interval. [3, 19] investigated how time availability
restrictions on the edges affect certain graph properties. Berman [3] presented an algorithm
for reachability by temporal paths and proved that an analogue of the max-flow-min-cut
theorem holds for temporal graphs. Kempe et al. [19] focused on vertex-disjoint temporal
paths and showed that Menger’s theorem does not generalize to temporal graphs. They also
identified a simple forbidden topological minor for Menger’s theorem in temporal graphs.
Mertzios at al. [21] introduced multiple labels per edge and studied the number of temporal
edges required for a temporal design to guarantee certain graph properties. Interestingly,
they proved that a variant of Menger’s theorem, which also takes time into account, holds
in all temporal graphs. A key technical tool in [3, 19, 21] is the time-expanded version of
a temporal graph, which reduces reachability, edge-disjoint path and vertex-disjoint path
questions in temporal graphs to similar questions in standard directed graphs.

Our motivation comes from a natural open question in [19, Section 6]. Attempting an
analogy between spanning trees of (standard undirected) graphs and connectivity certificates
of temporal graphs, Kempe et al. asked whether any simple temporal graph admits a sparse
connectivity certificate. They observed that any r-connected temporal graph has a time-
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respecting arborescence with n−1 edges that serves as a sparse r-connectivity certificate. For
all-pairs temporal connectivity, however, minimum temporal connectivity certificates may
have different sizes. Kempe et al. observed that an allocation of time labels to the edges of the
hypercube makes it minimally temporally connected. Hence, there are temporal graphs on n
vertices with temporal connectivity certificates of Ω(n logn) edges. An open question in [19,
Section 6] was to determine the tightest function c(n) for which any temporally connected
graph on n vertices has a temporal connectivity certificate with at most c(n) edges. A trivial
upper bound on c(n) is O(n2), since taking n time-respecting arborescences, each rooted
at a different vertex, results in a temporally connected subgraph. Kempe et al. observed
that if we consider strict temporal paths and allow for the same time label at different edges,
c(n) = Ω(n2) (e.g., consider Kn with the same time label on all edges). Nevertheless, for
connectivity with strict temporal paths and distinct time labels, the best known lower bound
on c(n) is Ω(n logn) ([1], again by a labeling of the hypercube).

Contribution. In this work, we resolve the open question of [19] and derive upper and lower
bounds on the approximability of Single-Source and All-Pairs Temporal Connectivity.

In Section 3, we construct a family of simple temporal graphs with 3n vertices and roughly
n(n+ 9)/2 edges which are almost minimally temporally connected, in the sense that the
removal of any subset of 5n edges results in a disconnected temporal graph 1 (Theorem 1).
Hence, we show that c(n) = Θ(n2) (i.e., there are graphs with dense minimum temporal
connectivity certificates), thus resolving the open question of [19]. Our construction is
essentially best possible and can be easily extended to connectivity by strict temporal paths
(with distinct time labels on the edges). An interesting feature of our construction (and an
indication of its tightness) is that slightly increasing the time label of a single temporal edge
results in a temporal connectivity certificate with O(n) edges!

Given the huge gap on the size of temporal connectivity certificates, it is natural to
ask about the complexity and the approximability of Single-Source and All-Pairs Temporal
Connectivity. Previous work shows that we can decide if a temporal graph is connected in
polynomial time (see e.g., [1, 3, 19]) and that Single-Source Temporal Connectivity can be
solved in polynomial time in the unweighted case. Another interesting observation is that if
we use the time-expanded version of a temporal graph for Minimum Temporal Connectivity,
the resulting optimization problems are quite similar to Group Steiner Tree problems. In
fact, this observation serves as the main intuition behind several of our results.

In Section 4, we show that the polynomial-time approximability of Single-Source Temporal
Connectivity (r-MTC) is closely related to the approximability of the classical Directed Steiner
Tree problem. Using a transformation from Directed Steiner Tree to r-MTC (Theorem 2) and
[16, Theorem 1.2], we show that r-MTC cannot be approximated within a ratio of O(log2−ε n),
for any constant ε > 0, unless NP ⊆ ZTIME(npoly log n). Our transformation also implies that
any o(nε)-approximation for r-MTC would improve the best known approximation ratio of
Directed Steiner Tree. On the positive side, using a transformation from r-MTC to Directed
Steiner Tree and the algorithm of [7], we obtain a polynomial-time O(nε)-approximation,
for any constant ε > 0, and a quasipolynomial-time O(log3 n)-approximation for r-MTC
(Theorem 3). We also show that r-MTC can be solved in polynomial time if the underlying
graph has bounded treewidth (Theorem 4).

1 Based on Theorem 1, we can easily obtain a family of minimally connected temporal graphs with
Ω(n2) edges (e.g., we remove temporal edges from the graph, as long as connectivity is preserved).
For simplicity and clarity, we avoid presenting a tight (but more complicated) construction of dense
minimally connected temporal graphs, and stick to almost minimal graphs in the proof of Theorem 1.

ICALP 2016
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In Section 5, we consider the approximability of All-Pairs Temporal Connectivity (MTC).
Theorem 3 implies an O(n1+ε)-approximation for MTC (Corollary 5). An approximation-
preserving reduction to Directed Steiner Forest and [14, Theorem 1.1] imply a polynomial-time
O((∆M)2/3+ε)-approximation for MTC, where M is the number of temporal edges and ∆
is the maximum degree of the underlying graph (Theorem 6). If M is quasilinear and ∆ is
polylogarithmic, we obtain an O(n2/3+ε)-approximation. On the negative side, a reduction
from Symmetric Label Cover implies that MTC cannot be approximated within a factor of
O(2log1−ε n) unless NP ⊆ DTIME(npoly log n) (Theorem 7, see also [10, Section 4]). We also
show that the unweighted version of MTC is APX-hard (Theorem 8).

In Section 6, we show that MTC can be solved optimally, in polynomial time, if the
underlying graph is a tree (Theorem 9), and that MTC is 2-approximable if the underlying
graph is a cycle (Theorem 10, but it is open whether MTC remains NP-hard for cycles).

For clarity, we focus on connectivity by (non-strict) temporal paths. However, all our
results can be extended (with small changes in the proofs and with the same approximation
guarantees and running times) to the case of connectivity by strict temporal paths.

Comparison to Previous Work. Akrida et al. [1] study connectivity by strict temporal
paths. Allocating distinct time labels to the hypercube, they obtain a minimal temporally
connected graph with Ω(n logn) edges. They also show that any allocation of distinct labels
to Kn results in a temporal graph that is not minimally connected. However, they do not
give any lower bound on the size of temporal connectivity certificates for Kn. Our Theorem 1
improves on the lower bound of [1] from Ω(n logn) to Ω(n2). [1] also shows that computing
the maximum number of edges that are redundant for temporal connectivity is APX-hard.

Huang et al. [18] consider the Single-Source (but not the All-Pairs) version of Minimum
Temporal Connectivity in simple scheduled networks [3]. They show that the problem is APX-
hard. Using a transformation to Directed Steiner Tree, they show that the approximation
guarantees of [7] carry over to Single-Source Temporal Connectivity for scheduled networks.
Although the approximation guarantees are the same, the reduction of [18] is slightly different
and less general than ours in Theorem 3 (which we discovered independently). In addition
to the approximability result, we present strong inapproximability bounds for r-MTC and
show that it is polynomially solvable for graphs with bounded treewidth.

Erlebach et al. [13] study the problem of computing a shortest exploration schedule of a
temporal graph, i.e., a shortest strict temporal walk that visits all vertices. They prove that
it is NP-hard to approximate the shortest exploration schedule within a factor of O(n1−ε),
for any ε > 0, and construct temporal graphs whose exploration requires Θ(n2) steps. Since
the notion of exploration schedules is much stronger than (r-)connectivity, their results do
not have any immediate implications for r-MTC and MTC (e.g., the Θ(n2)-explorable graphs
of [13, Lemma 4] admit a temporally connected subgraph with O(n) edges).

2 The Model and Preliminaries

Throughout, we let [k] ≡ {1, . . . , k}, for any integer k ≥ 1. An (edge weighted) temporal
graph G(V,E, L) with vertex set V , edge set E and lifetime L is a sequence of (undirected
edge-weighted) graphs (Gt(V,Et, wt))t∈[L], where Et ⊆ E is the set of edges available at time
t and wt(e) (or w(e, t)) is the nonnegative weight of each edge e ∈ Et. We often write G or
G(V,E), for brevity. A temporal graph G is unweighted if w(e, t) = 1 for all e ∈ Et and all
t ∈ [L]. For each edge e ∈ Et, we say that (e, t) is a temporal edge of G. For each edge e ∈ E,
Le = {t ∈ [L] : e ∈ Et} denotes the set of time units (or time labels) when e is available. A
temporal graph is simple if |Le| = 1 for all edges e ∈ E.
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We let n be the number of vertices and M =
∑

e |Le| be the number of temporal edges of
G. For temporal connectivity problems, we can assume that at least one temporal edge is
available in each time unit, and thus, L ≤M . The (static) graph G(V,E) is the underlying
graph of G. We say that G has some (non-temporal) graph theoretic property (e.g., is a tree,
a cycle, a clique, has bounded treewidth) if the underlying graph G has this property.

For a vertex set S, G[S] (resp. G[S]) is the underlying (resp. temporal) graph induced
by S. A spanning subgraph G′ of a temporal graph G = (Gt(V,Et, wt))t∈[L] is a sequence of
graphs (G′t(V,E′t, wt))t∈[L] such that E′t ⊆ Et. The total weight of G′ is

∑
t∈[L]

∑
e∈E′t

w(e, t).
A temporal (or time-respecting) path is an alternating sequence of vertices and temporal

edges (v1, (e1, t1), v2, (e2, t2), . . . , vk, (ek, tk), vk+1), such that ei = {vi, vi+1} ∈ Eti , for all
i ∈ [k], and 1 ≤ t1 ≤ t2 ≤ · · · ≤ tk. A temporal path is strict if t1 < t2 < · · · < tk. Such a
temporal path is from v1 to vk+1 (or a temporal v1 − vk+1 path).

A temporal graph G is (temporally) r-connected, for a given source r ∈ V , if there is a
temporal path from r to any vertex u ∈ V . A temporal graph G is (temporally) connected, if
there is a temporal path from u to v for any ordered pair (u, v) ∈ V ×V . If all temporal paths
are strict, G is strictly connected (or strictly r-connected). An (r-)connectivity certificate of
G is any spanning subgraph of G that is also (r-)connected.

Given a temporal graph G and a source vertex r, the problem of (Minimum) Single-Source
Temporal Connectivity (r-MTC) is to compute a temporally r-connected spanning subgraph
of G with minimum total weight. The optimal solution to r-MTC is a simple temporal graph
whose underlying graph is a tree (see e.g., [19, Section 6]). Given a temporal graph G, the
problem of (Minimum) All-Pairs Temporal Connectivity (MTC) is to compute a temporally
connected spanning subgraph of G with minimum total weight.

An algorithm A has approximation ratio ρ ≥ 1 for a minimization problem, such as
Single-Source and All-Pairs Temporal Connectivity, if for any instance I, the cost of A on I
is at most ρ times I’s optimal cost.

Directed Steiner Tree and Forest. To understand the approximability of r-MTC and
MTC, we use reductions from and to Directed Steiner Tree and the Directed Steiner Forest.

Given a directed edge-weighted graph G(V,E) with n vertices, a source r ∈ V and a set of
k terminals S ⊆ V , the Directed Steiner Tree (DST) problem asks for a subgraph of G that
includes a directed path from r to any vertex in S and has minimum total weight. The best
known algorithm for DST is due to Charikar et al. [7] and achieves an approximation ratio of
O(kε), for any constant ε > 0, in polynomial time, and of O(log3 k) in quasipolynomial time.
On the negative side, [16, Theorem 1.2] shows that DST cannot be approximated within a
factor O(log2−ε n), for any constant ε > 0, unless NP ⊆ ZTIME(npoly log n).

Given a directed edge-weighted graph G(V,E) with n vertices and m edges, and a
collection D ⊆ V × V of k ordered vertex pairs, the Directed Steiner Forest (DSF) problem
asks for a subgraph of G that contains an s− t path for each (s, t) ∈ D and has minimum
total weight. [14] presents a polynomial-time O(nε min{n4/5,m2/3})-approximation for DSF,
for any constant ε > 0.

3 A Lower Bound on the Size of Temporal Connectivity Certificates

In this section, we construct an infinite family of simple temporal graphs with Θ(n) vertices
and lifetime Θ(n) such that any temporal connectivity certificate has Ω(n2) edges. Our
construction is essentially best possible, since any temporal graph with n vertices and lifetime
L admits a connectivity certificate with O(min{n2, nL}) edges.

ICALP 2016
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I Theorem 1. For any even n ≥ 2, there is a simple connected temporal graph with 3n
vertices, n(n+ 9)/2− 3 edges and lifetime at most 7n/2, so that the removal of any subset of
5n edges results in a disconnected temporal graph.

Proof sketch. For any even n, we construct a simple connected temporal graph G with Θ(n)
vertices and Θ(n2) edges so that virtually any edge is essential for temporal connectivity.

We start with describing the construction. For any even n, G consists of 3n vertices
partitioned into three sets A = {a1, . . . , an}, H = {h1, . . . , hn} and C = {c1, . . . , cn}, with
n vertices each. The underlying graph G[A] is the complete graph Kn and comprises the
dense part of the construction with Θ(n2) edges. The edges of G[A] are partitioned into n/2
edge-disjoint paths p1, . . . , pn/2. Each path pi has length n− 1 and spans all vertices in A
(see Figure 1.a). All edges of each path pi have time label i.

The vertices of H comprise the intermediate part of the construction. There are no edges
with both endpoints in H. For every i ∈ [n/2], one endpoint of the path pi is connected to
h2i−1 and the other endpoint is connected to h2i. Both edges have time label i.

The vertices of C form the interconnecting part of the construction. For each i ∈ [n/2],
we refer to c2i−1 (resp. c2i) as the entry vertex (resp. the exit vertex) for the vertices h2i−1
and h2i. There are two edges connecting c2i−1 to h2i−1 and h2i with labels n/2 + 2i− 1 and
n/2+2i, respectively, and two edges connecting c2i to h2i−1 and h2i with labels (n/2+2i−1)ε
and (n/2 + 2i)ε, respectively, for some fixed ε ∈ (0, 1/(4n)). We also connect the vertices
of C to each other. For every i ∈ [n/2− 2], there are edges connecting c2i−1 to c2i+2 and
to cn, and a single edge connecting cn−3 to cn. To allocate time labels to these edges,
we order them in decreasing order of their endpoint with higher index, breaking ties by
ordering them in increasing order of their endpoint with lower index, i.e., the order is {c1, cn},
{c3, cn}, . . . , {cn−3, cn}, {cn−5, cn−2}, {cn−7, cn−4}, . . . , {c1, c4}. The time label of the k-th
edge in this order is 1− (k − 1)ε. Finally, for every i ∈ [n/2], there are an edge with time
label ε connecting the vertex c2i−1 to the vertex a2i−1 in A and an edge with time label n+ 1
connecting the vertex c2i to the vertex a2i in A (see also Figure 1.b).

The total number of edges is n(n + 9)/2 − 3, the number of different time labels is at
most 7n/2, and each edge has a single label.

Next, we present the intuition and discuss the main technical claims. The construction
is based on the collection p1, . . . , pn/2 of n/2 edge-disjoint paths, where all edges in each
path pi have label i. Extending each path pi to vertices h2i−1 and h2i, we get a path that
connects h2i to h2i−1 (and vice versa) and to all vertices in A at time i. Moreover, different
time labels make these paths essentially independent of each other, in the sense that if a
temporal walk begins and ends at time i, it can use only edges with label i (i.e., only edges of
this path) to connect h2i to h2i−1. Formalizing this intuition, we can show that the unique
temporal path from h2i to h2i−1 is through path pi. Therefore, all edges of G[A] must be
present in any temporally connected spanning subgraph of G. To achieve a dense underlying
graph G[A], we observe that the collection of n/2 edge-disjoint paths can be defined so that
they go through the same n vertices, in a different order each (see Figure 1.a). This describes
the main intuition behind our construction and explains how the dense and the intermediate
parts work. The only problem now is that H-vertices with high indices, e.g., hn, cannot
reach H-vertices with low indices, e.g., h1. The vertices in the interconnecting part C serve
to carefully connect each hj to each hi, with j > i+ 1, without destroying the property that
the only temporal path from h2i to h2i−1 is through path pi.

For every vertex pair h2i−1, h2i ∈ H, we introduce a vertex pair c2i−1, c2i ∈ C. As an
entry vertex, c2i−1 is connected to h2i−1 and h2i with “large” labels (larger than n/2). Hence,
starting from the rest of G, we can reach h2i−1 and h2i through c2i−1, but we cannot continue
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(a) Partition into 3 Hamiltonian paths. (b) Putting the 3 parts together.

Figure 1 The temporal graph constructed in the proof of Theorem 1 for n = 6.

to the edges of pi (with label i ≤ n/2). As an exit vertex, c2i is connected to h2i−1 and h2i

with “very small” labels (at most 1/4). Thus, starting from c2i, we can reach first h2i−1
and h2i, and then all vertices in A and any vertex hj with index j > 2i. Moreover, to avoid
creating a temporal path from h2i to h2i−1, the label of the edge {h2i, c2i−1} (resp. {h2i, c2i})
is larger than the label of the edge {h2i−1, c2i−1} (resp. {h2i−1, c2i}).

It remains now to connect the C-vertices to each other, without creating any alternative
temporal paths from h2i to h2i−1, for any i ∈ [n/2]. For each i ∈ [n/2], the edges between
C-vertices should create temporal paths from c2i−1 and c2i to any vertex cj with index
j < 2i − 1. On the other hand, they should not create any temporal c2i − c2i−1 paths,
since then we would have a new temporal h2i − h2i−1 path. We introduce roughly n edges
between C-vertices and carefully select their “small” labels in [3/4, 1]. Furthermore, to
achieve temporal connectivity between all vertex pairs, we introduce an edge {c2i−1, a2i−1}
with the minimum time label ε and an edge {c2i, a2i} with label n+ 1, for each i ∈ [n/2].

To complete the proof, we need to consider all possible types of ordered vertex pairs and
to show that the temporal graph G is indeed connected. Moreover, since any subset of at
least 5n edges includes some edges of G[A], we can show that the removal of any edge from
G[A] with label i destroys the unique temporal path from h2i to h2i−1. J

We should highlight that increasing the label of edge {a1, c1} from ε to 1, in the graph of
Theorem 1, results in a temporal graph that admits a connectivity certificate of size Θ(n).
Moreover, it is not hard to modify the construction of Theorem 1 so that all time labels of
the edges are distinct, the temporal graph G is connected by strict temporal paths, and the
removal of any subset of 5n edges results in a disconnected temporal graph. Therefore, the
quadratic lower bound of Theorem 1 also applies to connectivity by strict temporal paths
and improves on the lower bound of Ω(n logn) in [1, Theorem 3].

4 The Approximability of Single-Source Temporal Connectivity

We proceed to study the approximability of Minimum Single-Source Temporal Connectivity.
We show that the polynomial-time approximability of r-MTC is closely related to the

ICALP 2016
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approximability of the classical Directed Steiner Tree (DST) problem and that r-MTC can
be solved in polynomial-time for graphs of bounded treewidth.

4.1 A Lower Bound on the Approximability of r-MTC

We start with an approximation-preserving transformation from DST to r-MTC. The
intuition is that we can use strict temporal paths to “simulate” the directed edges of DST.

I Theorem 2. Any polynomial-time ρ(n)-approximation algorithm for r-MTC on simple
temporal graphs implies a polynomial-time ρ(n2)-approximation algorithm for DST.

Proof sketch. We present an approximation-preserving transformation from the DST to
r-MTC. Given an instance I = (G(V,E,w), S, r) of DST with |V | = n, we construct a
temporal graph G′ with n2 vertices so that (i) any Steiner tree connecting r to S in G can be
mapped to an r-connected subgraph of G′ with no larger cost; and (ii) given any r-connected
subgraph of G′, we can efficiently compute a feasible Steiner tree for I with no larger cost.

Each vertex u ∈ V corresponds to a vertex u in the temporal graph G′. For every directed
edge e = (u, v) of G, we create n− 1 strict temporal u− v paths of length 2. Specifically, for
every u ∈ V , G′ contains auxiliary vertices zu

i , for all i ∈ [n− 1], and temporal edges {u, zu
i }

with time label i and weight 0. For every edge e = (u, v) ∈ E, G′ contains temporal edges
{zu

i , v} with time label i + 1 and weight w(e), for all i ∈ [n − 1]. Let Z = {zu
i }u∈V,i∈[n−1]

be the set of all auxiliary vertices. For every vertex x ∈ Z ∪ (V \ S), x 6= r, G′ contains
a temporal edge {r, x} with time label n + 1 and weight 0. These edges ensure that r is
connected to all non-terminal and auxiliary vertices at no additional cost. J

Directed Steiner Tree cannot be approximated within a ratio of O(log2−ε n), for any
constant ε > 0, unless NP ⊆ ZTIME(npoly log n) [16, Theorem 1.2]. Theorem 2 implies
that this inapproximability result carries over to r-MTC. Moreover, any polynomial-time
o(nε)-approximation algorithm for r-MTC would immediately improve the best known
approximation ratio of the notoriously difficult DST problem.

4.2 An Approximation Algorithm for r-MTC

The following shows an approximation-preserving reduction from r-MTC to DST (see also
the more general proof of Theorem 6). Then, we can use the algorithm of [7] and approximate
r-MTC within a ratio of O(nε), for any constant ε > 0, in polynomial time, and within a
ratio of O(log3 n) in quasipolynomial time.

I Theorem 3. Any polynomial-time ρ(k)-approximation algorithm for DST implies a poly-
nomial-time ρ(n)-approximation algorithm for r-MTC on general temporal graphs.

4.3 A Polynomial-Time Algorithm for Graphs with Bounded Treewidth
The following shows that r-MTC can be solved in polynomial time, by dynamic programming,
if the underlying graph has bounded treewidth (see e.g., [11] about nice tree decompositions
and dynamic programming algorithms for graphs of bounded treewidth).

I Theorem 4. Let G be a temporal graph on n vertices with lifetime L, source vertex r and
treewidth at most k. Then, there is a dynamic programming algorithm which given a nice tree
decomposition of G, computes an optimal solution to r-MTC in time O(nk23k(L+ k)k+1).
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5 The Approximability of All-Pairs Minimum Temporal Connectivity

In this section, we study the approximability of the all-pairs version of Minimum Temporal
Connectivity in general temporal graphs. Reducing MTC to r-MTC and to Directed Steiner
Forest, we obtain polynomial-time approximation algorithms for MTC, albeit with not so
strong guarantees (Corollary 5 and Theorem 6). To justify the poor approximation ratios,
we reduce Symmetric Label Cover (SLC) to MTC and show that any ρ(n)-approximation for
MTC implies a ρ(n2)-approximation for SLC (Theorem 7). Moreover, using an approximation-
preserving reduction from the Steiner Tree problem, we show that the unweighted version of
MTC is APX-hard (Theorem 8).

5.1 Approximation Algorithms for MTC
Using every vertex of the temporal graph as a source vertex and taking the union of the
solutions obtained by the algorithm of Theorem 3 for r-MTC, we obtain the following.

I Corollary 5. For any constant ε > 0, there is a polynomial-time O(n1+ε)-approximation
algorithm for MTC on temporal graphs with n vertices.

Next, we present a reduction from MTC to Directed Steiner Forest (DSF) that leads
to a different algorithm. Although the approximation ratio may be worse than O(n1+ε) in
general, this algorithm gives significantly better guarantees if the total number of temporal
edges is quasilinear (and if the maximum degree of the underlying graph is polylogarithmic).

I Theorem 6. Let G be a temporal graph with n vertices and M temporal edges such
that the underlying graph has maximum degree ∆. Then, for any constant ε > 0, there
is a polynomial-time O(Mε min{M4/5, (∆M)2/3})-approximation algorithm for MTC on
G. If M = O(n poly logn), we obtain an approximation ratio of O(n4/5+ε). If both M =
O(n poly logn) and ∆ = O(poly logn), we obtain an approximation ratio of O(n2/3+ε).

Proof. The reduction from DSF to MTC is a generalized version of the reduction used in the
proof Theorem 3. Let I be an instance of MTC consisting of an underlying graph G(V,E), a
finite set of time labels Le for each edge e, and a weight w(e, t) for any temporal edge (e, t).
We show how to transform I into an instance I ′ of DSF so that (i) any feasible solution of
I can be mapped to a feasible solution of I ′ with no larger total weight; and (ii) given a
feasible solution of I ′, we can compute a feasible solution of I with no larger total weight.

For convenience, we denote H the edge-weighted directed graph of the DSF instance I ′.
For every temporal edge (e, t) of G, H contains two vertices h1

(e,t) and h2
(e,t). Intuitively,

h1
(e,t) indicates that we may use (e, t) and h2

(e,t) indicates that we actually use (e, t). For each
edge e ∈ E, let l1(e) < l2(e) < ... < lk(e) be the time labels in Le. For every i ∈ [k − 1], H
contains a directed edge (h1

(e,li(e)), h
1
(e,li+1(e))) with weight 0. Intuitively, these edges indicate

that we can wait and use e at some later time up to lk(e). Moreover, for every i ∈ [k], H
contains a directed edge (h1

(e,li(e)), h
2
(e,li(e))) with weight w(e, li(e)). This edge indicates that

we actually use the temporal edge (e, li(e)) and incur the corresponding cost.
For every ordered pair of temporal edges (e1, t1), (e2, t2) of G, such that e1 6= e2, t2 is

the smallest time label in Le2 such that t2 ≥ t1 (t2 > t1, for strict connectivity), and e1 and
e2 share a common endpoint, H contains a directed edge (h2

(e1,t1), h
1
(e2,t2)) with weight 0.

For every vertex vi ∈ V , i ∈ [n], H contains a pair of terminal vertices si and ti. For
every temporal edge (e, t) incident to vi, H contains a directed edge (si, h

1
(e,t)) with weight 0

and a directed edge (h2
(e,t), ti) with weight 0. The set of connection requirements of the DSF

instance I ′ consists of all pairs (si, tj) for all i, j ∈ [n] with i 6= j.
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By construction, any temporal vi − vj path, which consists of a temporal edge sequence
((e1, t1), (e2, t2), . . . , (ek, tk)), corresponds to a directed si − tj path in H of the form

si, h
1
(e1,t1), h

2
(e1,t1), h

1
(e2,t′′2 ), h

1
(e2,t′2), h

1
(e2,t2), h

2
(e2,t2), . . . , h

1
(ek,tk), h

2
(ek,tk), tj

with the same weight and vice versa. Using this observation, we can now establish claims
(i) and (ii). Specifically, to show (i), we construct a feasible solution to I ′ that includes all
directed edges of weight 0 and the directed edges (h1

(e,t), h
2
(e,t)) corresponding to the temporal

edges (e, t) used in the feasible solution to I. Clearly, the two solutions have the same total
weight and any temporal vi − vj path in the solution to I corresponds to an si − tj path
in the solution to I ′. To show (ii), we first observe that any directed path from some si to
some tj should include some directed edges of the form (h1

(e,t), h
2
(e,t)) with weight w(e, t). So,

we construct a feasible solution to I that includes the temporal edges (e, t) corresponding to
the positive-weight directed edges (h1

(e,t), h
2
(e,t)) included in the feasible solution to I ′.

In the resulting DSF instance I ′, the total number of vertices is O(n+M) = O(M) and
the number of connection requirements is O(n2). If the maximum degree of the underlying
graph is ∆, the total number of edges is dominated by the edges of the form (h2

(e1,t1), h
1
(e2,t2)),

which are O(∆M). Applying the approximation algorithm of [14, Theorem 1.1] to the
DSF instance I ′, we obtain a polynomial-time O(Mε min{M4/5, (∆M)2/3})-approximation
algorithm, for any constant ε > 0. In the special case where the number of temporal edges is
M = O(npoly logn), we obtain an O(n4/5+ε)-approximation, for any constant ε > 0. If both
M = O(npoly logn) and the maximum degree of the underlying graph ∆ = O(poly logn),
we obtain a polynomial-time O(n2/3+ε)-approximation algorithm for any constant ε > 0. J

5.2 A Lower Bound on the Approximability of MTC
In this section, we present an approximation-preserving reduction from Symmetric Label
Cover to MTC. Our reduction along with standard inapproximability results for Symmetric
Label Cover indicate that MTC in general temporal networks is hard to approximate.

I Theorem 7. MTC on temporal graphs with n vertices cannot be approximated within a
factor of O(2log1−ε n), for any constant ε > 0, unless NP ⊆ DTIME(npoly log n).

Proof. We present a polynomial-time approximation-preserving reduction from the Symmet-
ric Label Cover (SLC) problem to MTC. In SLC (see e.g., [10, Definition 4.1]), we are given
a complete bipartite graph H(U,W ), with |U | = |W |, a finite set of colors C and a binary
relation R(u,w) ⊆ C × C for every vertex pair (u,w) ∈ U ×W . We seek to assign a color
subset σ(u) ⊆ C to each vertex u ∈ U ∪W so that for every vertex pair (u,w) ∈ U × U ,
there are colors a ∈ σ(u) and b ∈ σ(w) with (a, b) ∈ R(u,w) and

∑
u∈U∪W |σ(u)|, i.e., the

total number of colors used, is minimized.
Given an instance of SLC, we create a temporal graph G whose vertex set V is partitioned

into six sets VU , VC(U), VW , VC(W ), VX and {p, q}. There is a correspondence between the
vertices of the bipartite graph H and the vertices of G in the sets VU and VW . The vertex
sets VC(U) = VU × C and VC(W ) = VW × C serve to encode the color assignment to the
vertices of U and W in the SLC instance. Moreover, VX contains a vertex (u,w, a, b) for
every vertex pair (u,w) ∈ U ×W and every allowable color pair (a, b) ∈ R(u,w). Intuitively,
the vertices of VX serve to ensure that the color assignment is consistent. Finally, the vertices
p and q ensure that the temporal graph G is connected.

For every u ∈ VU and (u, a) ∈ VC(U), G contains a temporal edge {u, (u, a)} with label
1 and weight 1. Similarly, for every w ∈ VW and (w, b) ∈ VC(W ), G contains a temporal
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edge {w, (w, b)} with label 4 and weight 1. For every vertex (u,w, a, b) ∈ VX , G contains the
temporal edges {(u, a), (u,w, a, b)} with label 2 and weight 0 and {(u,w, a, b), (w, b)} with
label 3 and weight 0. G contains temporal edges with label 5 and weight 0 between p and
every vertex in VU ∪ VC(U) ∪ VC(W ) ∪ VX and between q and every vertex in VU . Moreover,
G contains temporal edges with label 0 and weight 0 between p and every vertex in VW and
between q and every vertex in VW ∪ VC(U) ∪ VC(W ) ∪ VX . We note that G is temporally
connected and has O(k2c2) vertices, where k = |U | = |W | and c = |C| (in fact, the number
of vertices of G is of the same order as the total size of all binary relations R(u,w)).

We next show that this reduction is approximation-preserving. We first show that any
feasible solution to the SLC instance can be mapped to a temporally connected subgraph
G′ of G with at most the same weight. Let us fix any assignment σ of a color set to each
vertex of H that is feasible for the SLC instance. We first include in G′ all temporal edges of
weight 0. For every vertex u ∈ U with assigned colors σ(u), we include in G′ the temporal
edges {u, (u, a)}, for all a ∈ σ(u). The total weight of these edges is |σ(u)|. Similarly, for
every vertex w ∈W , we include in G′ the temporal edges {w, (w, b)}, for all b ∈ σ(w). The
total weight of these edges is |σ(w)|. Therefore, the total weight of the temporal subgraph
G′ is equal to the cost of the solution σ for the SLC problem.

It remains to show that G′ is temporally connected. All vertices in VU ∪ VC(U) ∪ VC(W ) ∪
VX ∪ {p} are connected with each other (through p) by temporal edges with time label 5.
There are also temporal p−q and q−p paths consisting of edges with time label 5 through the
vertices of VU . Similarly, all vertices in VW ∪VC(U)∪VC(W )∪VX∪{q} are connected with each
other (through q) by temporal edges with time label 0. Moreover, there is a temporal path
(using edges with time labels 0 and 5) from every vertex in VW ∪ VC(U) ∪ VC(W ) ∪ VX ∪ {q}
to every vertex in VU . Also, p is connected to every vertex in VW with temporal edges
of time label 0 and vice versa. All these vertex pairs are connected through temporal
paths entirely consisting of 0-weight edges. The really interesting case concerns vertex pairs
(u,w) ∈ VU × VW . By the feasibility of the solution σ, for every vertex pair (u,w) ∈ U ×W ,
there are colors a ∈ σ(u) and b ∈ σ(w) such that (a, b) ∈ R(u,w). Therefore, the temporal
u−w path (u, (u, a), (u,w, a, b), (w, b), b) is included in G′. Hence, G′ is temporally connected.

We also need to show that given a temporally connected subgraph G′ of G, we can
efficiently compute an assignment σ of a color set to each vertex in U ∪W that is feasible for
the SLC instance and has total cost no larger than the total weight of G′. For every u ∈ VU

and every temporal edge of the form ({u, (u, a)}, 1) included in G′, we include the color a
in σ(u). Similarly, for every w ∈ VW and every temporal edge of the form ({w, (w, b)}, 4)
included in G′, we include the color b in σ(w). Since these are the only edges of G (and G′)
with positive weight, the total cost of σ is equal to the total weight of G′.

It remains to show that σ is a feasible solution to the SLC instance. Let (u,w) ∈ U ×W
in the SLC instance. The crucial observation is that the only way to connect u ∈ VU

to w ∈ VW in G′ is through some temporal path ({u, (u, a)}, 1), ({(u, a), (u,w, a, b)}, 2),
({(w, b), (u,w, a, b)}, 3), ({w, (w, b)}, 4), for (a, b) ∈ R(u,w). This claim immediately implies
the feasibility of the assignment σ. To prove this claim, we observe that a temporal u−w path
cannot use any temporal edge incident to p or q, since all edges between VU and {p, q} have
time label 5 and all edges between VW and {p, q} have time label 0. So, any temporal u−w
path in G′ has to move from u to some vertex (u, a) ∈ VC(U). Such a vertex (u, a) ∈ VC(U)
does not have any neighbors in VU other than u. Hence, the next vertex of any temporal
u− w path in G′ must be to visit some (u,w, a, b) ∈ VX , where w ∈W and (a, b) ∈ R(u,w).
Similarly, since such a vertex (u,w, a, b) ∈ VX does not have any neighbors in VC(U) other
than (u, a) and any neighbors in VC(W ) other than (w, b), we conclude that the next step
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of any temporal u− w path in G′ must be to the vertex (w, b) ∈ VC(W ). But now, the last
temporal edge used has time label 3, which implies that the u−w path cannot use any edges
with time labels 1 and 2 anymore. Thus, the path cannot return to VU ∪ VC(U). The only
choice now is that the path moves to w through the temporal edge ({w, (w, b)}, 4), which
establishes the claim about the structure of any temporal u− v path in G′.

The discussion above establishes the correctness of the reduction from SLC to MTC.
Using the fact that the number of vertices of G is quadratic in the number of vertices of H
and standard inapproximability results for SLC (e.g., [10]), we conclude the proof. J

Adjusting the proof of Theorem 7, we can get a reduction from the MinRep problem,
which is considered in [8], to MTC. Thus, any polynomial-time ρ(n)-approximation for MTC
on simple temporal graphs implies a polynomial-time ρ(n2)-approximation for MinRep.
Since the best known approximation ratio for MinRep is O(n1/3 log2/3 n) [8, Section 2], any
O(n1/6)-approximation to MTC would imply an improved approximation ratio for MinRep.

5.3 Inapproximability of Unweighted MTC

The following shows an approximation-preserving reduction from the Steiner Tree problem on
undirected graphs with edge weights either 1 or 2 to MTC on unweighted temporal graphs,
where all temporal edges have weight equal to 1. Since this version of the Steiner Tree
problem is known to be APX-hard [4], we obtain the following.

I Theorem 8. MTC on unweighted temporal graphs is APX-hard, and thus it does not admit
a PTAS, unless P = NP.

6 All-Pairs Temporal Connectivity on Trees and Cycles

We can do better if the underlying graph is either a tree or a cycle. We can show that if the
underlying graph is a tree, there is an optimal solution to the MTC problem that uses each
edge with at most two time labels. Using this structural property, we can show that MTC
can be solved efficiently by dynamic programming if the underlying graph is a tree.

I Theorem 9. Let G be a temporal tree on n vertices with lifetime L. There is a dynamic
programming algorithm that computes an optimal solution to MTC on G in time O(nL4).

We also observe that if the underlying graph is a cycle Cn = (v0, v1, . . . , vn−1, v0), any
temporally connected subgraph G′ can be partitioned into sectors. A sector is a connected
part (vi, vi+1, . . . , vk) of the cycle for which there is a vertex vj 6∈ {vi, . . . , vk−1} such that
the temporal paths pincr = (vi, vi+1, . . . , vj) and pdecr = (vk, vk−1, . . . , vj+1) are present in
G′ (the vertex indices along Cn are taken modulo n). Intuitively, any vertex in the sector
(vi, vi+1, . . . , vk) can reach every vertex in Cn through the paths pincr and pdecr. Then, we
can show that there is an optimal solution to the MTC problem on Cn where each edge is
shared by at most two different sectors. Then, ignoring edges shared by different sectors and
using dynamic programming to determine a near optimal partitioning of Cn into sectors, we
obtain the following.

I Theorem 10. There is a polynomial-time 2-approximation algorithm for the MTC problem
on any temporal cycle Cn.
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