379 research outputs found

    Robust low-power digital circuit design in nano-CMOS technologies

    Get PDF
    Device scaling has resulted in large scale integrated, high performance, low-power, and low cost systems. However the move towards sub-100 nm technology nodes has increased variability in device characteristics due to large process variations. Variability has severe implications on digital circuit design by causing timing uncertainties in combinational circuits, degrading yield and reliability of memory elements, and increasing power density due to slow scaling of supply voltage. Conventional design methods add large pessimistic safety margins to mitigate increased variability, however, they incur large power and performance loss as the combination of worst cases occurs very rarely. In-situ monitoring of timing failures provides an opportunity to dynamically tune safety margins in proportion to on-chip variability that can significantly minimize power and performance losses. We demonstrated by simulations two delay sensor designs to detect timing failures in advance that can be coupled with different compensation techniques such as voltage scaling, body biasing, or frequency scaling to avoid actual timing failures. Our simulation results using 45 nm and 32 nm technology BSIM4 models indicate significant reduction in total power consumption under temperature and statistical variations. Future work involves using dual sensing to avoid useless voltage scaling that incurs a speed loss. SRAM cache is the first victim of increased process variations that requires handcrafted design to meet area, power, and performance requirements. We have proposed novel 6 transistors (6T), 7 transistors (7T), and 8 transistors (8T)-SRAM cells that enable variability tolerant and low-power SRAM cache designs. Increased sense-amplifier offset voltage due to device mismatch arising from high variability increases delay and power consumption of SRAM design. We have proposed two novel design techniques to reduce offset voltage dependent delays providing a high speed low-power SRAM design. Increasing leakage currents in nano-CMOS technologies pose a major challenge to a low-power reliable design. We have investigated novel segmented supply voltage architecture to reduce leakage power of the SRAM caches since they occupy bulk of the total chip area and power. Future work involves developing leakage reduction methods for the combination logic designs including SRAM peripherals

    TuRaN: True Random Number Generation Using Supply Voltage Underscaling in SRAMs

    Full text link
    Prior works propose SRAM-based TRNGs that extract entropy from SRAM arrays. SRAM arrays are widely used in a majority of specialized or general-purpose chips that perform the computation to store data inside the chip. Thus, SRAM-based TRNGs present a low-cost alternative to dedicated hardware TRNGs. However, existing SRAM-based TRNGs suffer from 1) low TRNG throughput, 2) high energy consumption, 3) high TRNG latency, and 4) the inability to generate true random numbers continuously, which limits the application space of SRAM-based TRNGs. Our goal in this paper is to design an SRAM-based TRNG that overcomes these four key limitations and thus, extends the application space of SRAM-based TRNGs. To this end, we propose TuRaN, a new high-throughput, energy-efficient, and low-latency SRAM-based TRNG that can sustain continuous operation. TuRaN leverages the key observation that accessing SRAM cells results in random access failures when the supply voltage is reduced below the manufacturer-recommended supply voltage. TuRaN generates random numbers at high throughput by repeatedly accessing SRAM cells with reduced supply voltage and post-processing the resulting random faults using the SHA-256 hash function. To demonstrate the feasibility of TuRaN, we conduct SPICE simulations on different process nodes and analyze the potential of access failure for use as an entropy source. We verify and support our simulation results by conducting real-world experiments on two commercial off-the-shelf FPGA boards. We evaluate the quality of the random numbers generated by TuRaN using the widely-adopted NIST standard randomness tests and observe that TuRaN passes all tests. TuRaN generates true random numbers with (i) an average (maximum) throughput of 1.6Gbps (1.812Gbps), (ii) 0.11nJ/bit energy consumption, and (iii) 278.46us latency

    Statistical Characterization and Decomposition of SRAM cell Variability and Aging

    Get PDF
    abstract: Memories play an integral role in today's advanced ICs. Technology scaling has enabled high density designs at the price paid for impact due to variability and reliability. It is imperative to have accurate methods to measure and extract the variability in the SRAM cell to produce accurate reliability projections for future technologies. This work presents a novel test measurement and extraction technique which is non-invasive to the actual operation of the SRAM memory array. The salient features of this work include i) A single ended SRAM test structure with no disturbance to SRAM operations ii) a convenient test procedure that only requires quasi-static control of external voltages iii) non-iterative method that extracts the VTH variation of each transistor from eight independent switch point measurements. With the present day technology scaling, in addition to the variability with the process, there is also the impact of other aging mechanisms which become dominant. The various aging mechanisms like Negative Bias Temperature Instability (NBTI), Channel Hot Carrier (CHC) and Time Dependent Dielectric Breakdown (TDDB) are critical in the present day nano-scale technology nodes. In this work, we focus on the impact of NBTI due to aging in the SRAM cell and have used Trapping/De-Trapping theory based log(t) model to explain the shift in threshold voltage VTH. The aging section focuses on the following i) Impact of Statistical aging in PMOS device due to NBTI dominates the temporal shift of SRAM cell ii) Besides static variations , shifting in VTH demands increased guard-banding margins in design stage iii) Aging statistics remain constant during the shift, presenting a secondary effect in aging prediction. iv) We have investigated to see if the aging mechanism can be used as a compensation technique to reduce mismatch due to process variations. Finally, the entire test setup has been tested in SPICE and also validated with silicon and the results are presented. The method also facilitates the study of design metrics such as static, read and write noise margins and also the data retention voltage and thus help designers to improve the cell stability of SRAM.Dissertation/ThesisM.S. Electrical Engineering 201

    Cross-Layer Resiliency Modeling and Optimization: A Device to Circuit Approach

    Get PDF
    The never ending demand for higher performance and lower power consumption pushes the VLSI industry to further scale the technology down. However, further downscaling of technology at nano-scale leads to major challenges. Reduced reliability is one of them, arising from multiple sources e.g. runtime variations, process variation, and transient errors. The objective of this thesis is to tackle unreliability with a cross layer approach from device up to circuit level

    A Novel variation-tolerant 9T SRAM design for nanoscale CMOS

    Get PDF
    As the feature sizes decrease, understanding manufacturing variations becomes essential to effectively design robust circuits. Manufacturing variations occur when process parameters deviate from their ideal or expected values, resulting in variations in device characteristics. Variations in the device characteristics cause the circuit to deviate from its expected behavior resulting in circuit instability, performance degradation, and yield loss. Both from an economic and performance standpoint, the yield and performance of Static Random Access Memories (SRAMs) are of great importance to the modern System-on-Chip designs. SRAM bitcells typically employ well-matched, minimum-sized transistors which make them highly sensitive to process variations. To overcome these challenges, researchers have proposed different topologies for SRAMs with 8T and 10T SRAM designs. These designs improve the cell stability but suffer from bitline-leakage noise, placing constraints on the number of cells shared by each bitline. These designs also have substantial area overhead when compared to the traditional 6T design. In this work, the published SRAM designs are characterized using commercial CMOS 65 nm models and are compared based on critical SRAM parameters like read stability, write stability, bitline leakage and the impact of process variations. Furthermore, a single-ended 9T SRAM design is proposed that enhances data stability and simultaneously addresses the bitline leakage problem. The proposed design also satisfies the yield criterion to achieve 90% yield for a 1Mb SRAM array in the presence of process variations

    Design and modelling of different SRAM's based on CNTFET 32nm technology

    Full text link
    Carbon nanotube field-effect transistor (CNTFET) refers to a field-effect transistor that utilizes a single carbon nanotube or an array of carbon nanotubes as the channel material instead of bulk silicon in the traditional MOSFET structure. Since it was first demonstrated in 1998, there have been tremendous developments in CNTFETs, which promise for an alternative material to replace silicon in future electronics. Carbon nanotubes are promising materials for the nano-scale electron devices such as nanotube FETs for ultra-high density integrated circuits and quantum-effect devices for novel intelligent circuits, which are expected to bring a breakthrough in the present silicon technology. A Static Random Access Memory (SRAM) is designed to plug two needs: i) The SRAM provides as cache memory, communicating between central processing unit and Dynamic Random Access Memory (DRAM). ii) The SRAM technology act as driving force for low power application since SRAM is portable compared to DRAM, and SRAM doesn't require any refresh current. On the basis of acquired knowledge, we present different SRAM's designed for the conventional CNTFET. HSPICE simulations of this circuit using Stanford CNTFET model shows a great improvement in power saving.Comment: 15 Page

    Containing the Nanometer “Pandora-Box”: Cross-Layer Design Techniques for Variation Aware Low Power Systems

    Get PDF
    The demand for richer multimedia services, multifunctional portable devices and high data rates can only been visioned due to the improvement in semiconductor technology. Unfortunately, sub-90 nm process nodes uncover the nanometer Pandora-box exposing the barriers of technology scaling—parameter variations, that threaten the correct operation of circuits, and increased energy consumption, that limits the operational lifetime of today’s systems. The contradictory design requirements for low-power and system robustness, is one of the most challenging design problems of today. The design efforts are further complicated due to the heterogeneous types of designs (logic, memory, mixed-signal) that are included in today’s complex systems and are characterized by different design requirements. This paper presents an overview of techniques at various levels of design abstraction that lead to low power and variation aware logic, memory and mixed-signal circuits and can potentially assist in meeting the strict power budgets and yield/quality requirements of future systems

    Reliability-aware memory design using advanced reconfiguration mechanisms

    Get PDF
    Fast and Complex Data Memory systems has become a necessity in modern computational units in today's integrated circuits. These memory systems are integrated in form of large embedded memory for data manipulation and storage. This goal has been achieved by the aggressive scaling of transistor dimensions to few nanometer (nm) sizes, though; such a progress comes with a drawback, making it critical to obtain high yields of the chips. Process variability, due to manufacturing imperfections, along with temporal aging, mainly induced by higher electric fields and temperature, are two of the more significant threats that can no longer be ignored in nano-scale embedded memory circuits, and can have high impact on their robustness. Static Random Access Memory (SRAM) is one of the most used embedded memories; generally implemented with the smallest device dimensions and therefore its robustness can be highly important in nanometer domain design paradigm. Their reliable operation needs to be considered and achieved both in cell and also in architectural SRAM array design. Recently, and with the approach to near/below 10nm design generations, novel non-FET devices such as Memristors are attracting high attention as a possible candidate to replace the conventional memory technologies. In spite of their favorable characteristics such as being low power and highly scalable, they also suffer with reliability challenges, such as process variability and endurance degradation, which needs to be mitigated at device and architectural level. This thesis work tackles such problem of reliability concerns in memories by utilizing advanced reconfiguration techniques. In both SRAM arrays and Memristive crossbar memories novel reconfiguration strategies are considered and analyzed, which can extend the memory lifetime. These techniques include monitoring circuits to check the reliability status of the memory units, and architectural implementations in order to reconfigure the memory system to a more reliable configuration before a fail happens.Actualmente, el diseño de sistemas de memoria en circuitos integrados busca continuamente que sean más rápidos y complejos, lo cual se ha vuelto de gran necesidad para las unidades de computación modernas. Estos sistemas de memoria están integrados en forma de memoria embebida para una mejor manipulación de los datos y de su almacenamiento. Dicho objetivo ha sido conseguido gracias al agresivo escalado de las dimensiones del transistor, el cual está llegando a las dimensiones nanométricas. Ahora bien, tal progreso ha conllevado el inconveniente de una menor fiabilidad, dado que ha sido altamente difícil obtener elevados rendimientos de los chips. La variabilidad de proceso - debido a las imperfecciones de fabricación - junto con la degradación de los dispositivos - principalmente inducido por el elevado campo eléctrico y altas temperaturas - son dos de las más relevantes amenazas que no pueden ni deben ser ignoradas por más tiempo en los circuitos embebidos de memoria, echo que puede tener un elevado impacto en su robusteza final. Static Random Access Memory (SRAM) es una de las celdas de memoria más utilizadas en la actualidad. Generalmente, estas celdas son implementadas con las menores dimensiones de dispositivos, lo que conlleva que el estudio de su robusteza es de gran relevancia en el actual paradigma de diseño en el rango nanométrico. La fiabilidad de sus operaciones necesita ser considerada y conseguida tanto a nivel de celda de memoria como en el diseño de arquitecturas complejas basadas en celdas de memoria SRAM. Actualmente, con el diseño de sistemas basados en dispositivos de 10nm, dispositivos nuevos no-FET tales como los memristores están atrayendo una elevada atención como posibles candidatos para reemplazar las actuales tecnologías de memorias convencionales. A pesar de sus características favorables, tales como el bajo consumo como la alta escabilidad, ellos también padecen de relevantes retos de fiabilidad, como son la variabilidad de proceso y la degradación de la resistencia, la cual necesita ser mitigada tanto a nivel de dispositivo como a nivel arquitectural. Con todo esto, esta tesis doctoral afronta tales problemas de fiabilidad en memorias mediante la utilización de técnicas de reconfiguración avanzada. La consideración de nuevas estrategias de reconfiguración han resultado ser validas tanto para las memorias basadas en celdas SRAM como en `memristive crossbar¿, donde se ha observado una mejora significativa del tiempo de vida en ambos casos. Estas técnicas incluyen circuitos de monitorización para comprobar la fiabilidad de las unidades de memoria, y la implementación arquitectural con el objetivo de reconfigurar los sistemas de memoria hacia una configuración mucho más fiables antes de que el fallo suced

    SRAM Cells for Embedded Systems

    Get PDF

    Ultra Low Power Digital Circuit Design for Wireless Sensor Network Applications

    Get PDF
    Ny forskning innenfor feltet trådløse sensornettverk åpner for nye og innovative produkter og løsninger. Biomedisinske anvendelser er blant områdene med størst potensial og det investeres i dag betydelige beløp for å bruke denne teknologien for å gjøre medisinsk diagnostikk mer effektiv samtidig som man åpner for fjerndiagnostikk basert på trådløse sensornoder integrert i et ”helsenett”. Målet er å forbedre tjenestekvalitet og redusere kostnader samtidig som brukerne skal oppleve forbedret livskvalitet som følge av økt trygghet og mulighet for å tilbringe mest mulig tid i eget hjem og unngå unødvendige sykehusbesøk og innleggelser. For å gjøre dette til en realitet er man avhengige av sensorelektronikk som bruker minst mulig energi slik at man oppnår tilstrekkelig batterilevetid selv med veldig små batterier. I sin avhandling ” Ultra Low power Digital Circuit Design for Wireless Sensor Network Applications” har PhD-kandidat Farshad Moradi fokusert på nye løsninger innenfor konstruksjon av energigjerrig digital kretselektronikk. Avhandlingen presenterer nye løsninger både innenfor aritmetiske og kombinatoriske kretser, samtidig som den studerer nye statiske minneelementer (SRAM) og alternative minnearkitekturer. Den ser også på utfordringene som oppstår når silisiumteknologien nedskaleres i takt med mikroprosessorutviklingen og foreslår løsninger som bidrar til å gjøre kretsløsninger mer robuste og skalerbare i forhold til denne utviklingen. De viktigste konklusjonene av arbeidet er at man ved å introdusere nye konstruksjonsteknikker både er i stand til å redusere energiforbruket samtidig som robusthet og teknologiskalerbarhet øker. Forskningen har vært utført i samarbeid med Purdue University og vært finansiert av Norges Forskningsråd gjennom FRINATprosjektet ”Micropower Sensor Interface in Nanometer CMOS Technology”
    corecore