1,613,974 research outputs found

    Improving a data-acquisition software system with abstract data type components

    Get PDF
    Abstract data types and object-oriented design are active research areas in computer science and software engineering. Much of the interest is aimed at new software development. Abstract data type packages developed for a discontinued software project were used to improve a real-time data-acquisition system under maintenance. The result saved effort and contributed to a significant improvement in the performance, maintainability, and reliability of the Goldstone Solar System Radar Data Acquisition System

    Some design constraints required for the assembly of software components: The incorporation of atomic abstract types into generically structured abstract types

    Get PDF
    It is nearly axiomatic, that to take the greatest advantage of the useful features available in a development system, and to avoid the negative interactions of those features, requires the exercise of a design methodology which constrains their use. A major design support feature of the Ada language is abstraction: for data, functions processes, resources, and system elements in general. Atomic abstract types can be created in packages defining those private types and all of the overloaded operators, functions, and hidden data required for their use in an application. Generically structured abstract types can be created in generic packages defining those structured private types, as buildups from the user-defined data types which are input as parameters. A study is made of the design constraints required for software incorporating either atomic or generically structured abstract types, if the integration of software components based on them is to be subsequently performed. The impact of these techniques on the reusability of software and the creation of project-specific software support environments is also discussed

    The Tropos Software Development Methodology: Processes, Models and Diagrams

    Get PDF
    Tropos is a novel agent-oriented software development methodology founded on two key features: (i) the notions of agent, goal, plan and various other knowledge level concepts are fundamental primitives used uniformly throughout the software development process; and (ii) a crucial role is assigned to requirements analysis and specification when the system-to-be is analyzed with respect to its intended environment. This paper provides a (first) detailed account of the Tropos methodology. In particular, we describe the basic concepts on which Tropos is founded and the types of models one builds out of them. We also specify the analysis process through which design flows from external to system actors through a goal analysis and delegation. In addition, we provide an abstract syntax for Tropos diagrams and other linguistic constructs

    Design Criteria to Architect Continuous Experimentation for Self-Driving Vehicles

    Full text link
    The software powering today's vehicles surpasses mechatronics as the dominating engineering challenge due to its fast evolving and innovative nature. In addition, the software and system architecture for upcoming vehicles with automated driving functionality is already processing ~750MB/s - corresponding to over 180 simultaneous 4K-video streams from popular video-on-demand services. Hence, self-driving cars will run so much software to resemble "small data centers on wheels" rather than just transportation vehicles. Continuous Integration, Deployment, and Experimentation have been successfully adopted for software-only products as enabling methodology for feedback-based software development. For example, a popular search engine conducts ~250 experiments each day to improve the software based on its users' behavior. This work investigates design criteria for the software architecture and the corresponding software development and deployment process for complex cyber-physical systems, with the goal of enabling Continuous Experimentation as a way to achieve continuous software evolution. Our research involved reviewing related literature on the topic to extract relevant design requirements. The study is concluded by describing the software development and deployment process and software architecture adopted by our self-driving vehicle laboratory, both based on the extracted criteria.Comment: Copyright 2017 IEEE. Paper submitted and accepted at the 2017 IEEE International Conference on Software Architecture. 8 pages, 2 figures. Published in IEEE Xplore Digital Library, URL: http://ieeexplore.ieee.org/abstract/document/7930218

    Modeling and analyzing variability for mobile information systems

    Get PDF
    Abstract. Advances in size, power, and ubiquity of computing, sensors, and communication technology made possible the development of mobile or nomadic information systems. Variability of location and system behavior is a central issue in mobile information systems, where behavior of software has to change and re-adapt to the different location settings. This paper concerns modeling and analysis of the complementary relation between software and location variability. We use graphical and formal location modeling techniques, show how to elicit and use location model in conjunction with Tropos goal-oriented framework, and introduce automated analysis on the location-based models.

    Domain specific software design for decision aiding

    Get PDF
    McDonnell Aircraft Company (MCAIR) is involved in many large multi-discipline design and development efforts of tactical aircraft. These involve a number of design disciplines that must be coordinated to produce an integrated design and a successful product. Our interpretation of a domain specific software design (DSSD) is that of a representation or framework that is specialized to support a limited problem domain. A DSSD is an abstract software design that is shaped by the problem characteristics. This parallels the theme of object-oriented analysis and design of letting the problem model directly drive the design. The DSSD concept extends the notion of software reusability to include representations or frameworks. It supports the entire software life cycle and specifically leads to improved prototyping capability, supports system integration, and promotes reuse of software designs and supporting frameworks. The example presented in this paper is the task network architecture or design which was developed for the MCAIR Pilot's Associate program. The task network concept supported both module development and system integration within the domain of operator decision aiding. It is presented as an instance where a software design exhibited many of the attributes associated with DSSD concept

    TRUST IN CO-SOURCED SOFTWARE DEVELOPMENT

    Get PDF
    Software development projects are increasingly geographical distributed with offshoring. Co-sourcing is a highly integrative and cohesive approach, seen successful, to software development offshoring. However, research of how dynamic aspects of trust are shaped in co-sourcing activities is limited. We present a case study of how the co-sourcing relationship between a certified CMMI-level 5 Danish software company and an offshoring supplier can be conceptualized as an Abstract System. An Abstract System is a dis-embedded social system (such as banking) that is trusted despite lack of detailed understanding or personal trust relations. The paper suggest how certain work practices among developers and managers can be explained using a dynamic trust lens based on Abstract Systems, especially dis- and re-embedding mechanisms

    Requirement engineering evaluation of real time instant messaging using ISO 9126 metrics (integrated RMN signal reader/drafter)

    Get PDF
    Software development that does not have documentation, poses difficulties in modification and maintenance processes. Therefore, the maintenance activity system depends so much on a highly skilled software engineer. As a consequence, project management becomes imbalance especially in workload and responsibility. Moreover, clients are often unaware of the structure development of each software. Client tends to give full trust to the capability of software developer especially when there is no standard communication procedure lined out by developer. Indirectly, it causes the value of activity cost unclear to the customer. Besides, a systematic evaluation upon every system is difficult since software development structure is not concrete and abstract. The DoD-2167A standard was chosen to guide in forming standard documentation in analysis, design and testing. Unified Modeling Language (UML) technique was used to model requirement and software architecture. Object oriented programming was applied in developing the software in easing the maintenance activities. ISO 9126 quality metric is used to evaluate the software system. A signal reader system known as “Virtual Signal Reader/Drafter (VirSiRD)” system has been selected as a foundation to the software development in practicing software engineering tasks

    Model-Driven Software Development

    Get PDF
    Model-Driven Software Development (MDSD) is an emerging technology approach that has potential to revolutionize the software industry. MDSD has the ability to both increase software delivery velocity, while at the same time reduce complexity and reuse software assets. Experts in the field believe that the MDSD approach helps to abstract away the growing interdependencies of enterprise software development by use of sophisticated tools, models, and automatic code generation. Through the use of Unified Modeling Language (UML/UML2) and other related technologies, the models are intricate enough to fully represent a system domain and then generate system code to represent that system. The case study evaluates the key factors of velocity, modeling complexity, code generation, and code completeness. Using both Model-Driven Software Development and so-called traditional methods of development, both techniques were applied against a real-world system for First United Methodist Church Children\u27s Ministry. The two techniques were measured and critiqued for their effect on the software development. Future direction of MDSD and potential impacts are presented
    corecore