
7_ .. .%,7

IDA Progress Report 42-100

N90-21901

February 15, 1990

Improving a Data-Acquisition Software System

With Abstract Data Type Components

S. D. Howard

Communications Systems Research Section

Abstract data types and object-oriented design are active research areas in

computer science and software engineering. Much of the interest is aimed at new

software development. In this experiment, abstract data type packages developed

for a discontinued software project were used to improve a real-time data-acquisition

system under maintenance. The result saved effort and contributed to a significant

improvement in the performance, maintainability, and reliability of the Goldstone

Solar System Radar Data Acquisition System.

I. Introduction

Software components based on abstract data type de-

sign and initially developed for a new software system
have been used to improve the performance and quality

of a data-acquisition software system under maintenance.

Although object-oriented design and abstract data types

(ADTs) are active research areas in software engineering

and computer science, much of the attention has been de-
voted to the employment of these concepts in the creation

of new software systems; incorporating ADTs into software

systems under maintenance has been less widely explored.

ADT packages may be thought of as extensions to

high-level programming languages. (A more complete dis-
cussion of this idea can be found in a paper by Liskov and

Zilles [1].) Most widely used procedural languages provide

facilities for declaring and manipulating basic data types.

Integers, arrays, characters, and booleans are examples of
basic data types available in high-level languages. Each

248

https://ntrs.nasa.gov/search.jsp?R=19900012585 2020-03-19T23:07:21+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42823902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

type has a set of operators that form part of the definition

of the type. ADT packages provide additional data types

and encapsulate the valid operations on those types. Type

packages can be used to capture the domain-specific data

abstractions that a general high-level language cannot pro-

vide. Integers, arrays, characters, and booleans are quite
reusable in high-level languages. Similarly, ADT packages

have potential for reusability in related applications.

The abstract data type components used in this ex-

periment were developed for the Goldstone Solar System

Radar Data Acquisition System. The architecture for the
software system was based on an ADT component library

from which specialized data-acquisition systems could be

quickly assembled to support established science objectives

and new experiments. The software was designed to re-

place prototype data-acquisition systems that had been

used to collect radar returns for the planetary radar as-

tronomy program since the inception of the High Speed

Data Acquisition System. Reference 2 gives an overview

of the High Speed Data Acquisition System.

The data-acquisition software ADT library was never
completed. Work stopped in May 1988. To support ob-

servations of Mars during the fall 1988 opposition, effort
was redirected toward the modification and enhancement

of the Binary Phase Coded Ranging prototype system.

II. Assessment

The successful modification of the ranging prototype
for the 1988 Mars opposition did not resolve all of the lim-

itations of the prototype system. The performance of the

ranging prototype had always fallen far below the estimate

of possible performance. An interprocess communication

mechanism based on polling, chosen for ease of implemen-

tation in the prototype system, was inadequate for oper-

ational use. Conversion to event-driven processing was a

likely solution to the performance problem. However, the

modification involved replacing parts of the real-time inter-

process communication structure; a similar change to the

ranging prototype had been attempted in the past without
Success.

This situation opened the opportunity to consider the

inclusion of previously developed ADTs. Reliable compo-

nents reduce the difficulty of modifications by minimiz-

ing errors introduced into the system. Two high-quality

ADT-based packages managing event signals and interpro-

cess message passing had been among the first deliveries
to the ADT software library. After assessment of the mod-

ifications that would be necessary to the structure of the

prototype software to support event-driven real-time pro-
cessing, it appeared that the new ADT packages could

support the changes.

The benefits of using the new ADTs were clear. In

addition to encapsulating data types and operators, ADT

packages also encapsulate the important software quality
attributes of maintainability, robustness, and reliability.

The type packages that had been developed for the ADT

software library were of high quality. Reliability was rec-
ognized in the initial work assessment to be a very im-

portant factor in the success of the enhancement to the

ranging prototype. Errors in the interprocess communica-

tion mechanism of a real-time system can cause the sys-
tem to transition to an unknown state and fail. The cir-

cumstances of these failures can be difficult to trace. The

prototype software had not been designed for operational

reliability. The maintenance history of the prototype indi-

cated that the system was sensitive to change and prone to

side-effect errors that were difficult to trace. Introducing

unreliable new work into the interprocess communication
mechanism had the potential for degrading the system to

the point of unusability.

Successful use of the ADTs could also reduce the

amount of time necessary to complete the ranging proto-

type system upgrade. One software engineer (the author)

was available to complete the work. Without the imple-

mented type packages, event signals and interprocess mes-

sage passing would have to be designed, implemented, and

tested for the prototype revision. It is estimated that four

weeks of calendar time were required for the development

of each ADT. That estimate includes work by two software

engineers on specification, specification checking, test plan

specification, ADT implementation, test implementation,

and unit testing.

The most serious difficulty associated with using

ADTs was that much of the ranging prototype had been
implemented in FORTRAN and the ADTs were imple-

mented in Pascal. A mechanism for invoking both of the

Pascal type packages from FORTRAN had to be estab-
lished. The great_st risk, of course, was that the incor-

poration of ADT components into programs already de-

signed and implemented had not been attempted before.
Modifications to the prototype that were done to support

the 1988 Mars opposition involved replacing two processes

in the prototype software with processes that had been

rewritten and redesigned to include abstract data types.

Designing programs to incorporate ADTs was a relatively
well-understood task. Including ADTs in program struc-

tures that were not designed to accommodate them was

not a familiar task; it was difficult to assess the scope of

249

changes that might be necessary to support the inclusion of

ADTs. Underestimating the scope of modifications could

result in the loss of approximately 3 to 4 work-months of

engineering time.

III. Implementation

It was possible to gather more information about the

feasibility of using the ADTs in the ranging prototype

by investigating the parameter-passing mechanisms that
would be necessary to call Pascal type packages from FOR-

TRAN. The creation of two FORTRAN test shells quickly

demonstrated that both of the candidate type packages

could be cleanly invoked from FORTRAN.

The process in the real-time ranging prototype that

managed the operator interface had been written in FOR-

TRAN. Polling for interprocess messages in the operator

program consumed excessive CPU time. Calls to the ADT

procedures were added to the FORTRAN operator pro-

gram; only minor modifications to the program structure
were necessary to convert from polling to event-driven pro-

cessing using the ADT-based operators.

Because the prototypes and the ADT packages used

VAX/VMS operating system facilities, experimentation
demonstrated that the new ADT interprocess communi-

cation structures were compatible with the older facilities

in the prototypes. This was an unexpected advantage that
allowed modification and testing of one process in the pro-

totype at a time. Modification of the operator process was

commenced in November 1988 and completed in January

1989. The demonstration of the event-driven operator pro-

gram communicating successfully in the ranging system

marked the beginning of the use of ADTs in software for
which they had not been originally designed.

IV. Evaluation

The inclusion of the ADTs in the ranging prototype

was remarkably free of difficulty. The availability of the

components saved development and testing time. Consid-
erable time could have been lost if changes and corrections

to the ADTs had been necessary. No changes or correc-
tions have been required. Instead, the time was available

to spend on other tasks that needed attention in the pro-
totype modification. Well-crafted and carefully checked

ADT components improved the overall system maintain-

ability and reliability.

Software design based on ADTs has interesting conse-

quences for both software development and software main-

tenance. All of the software products that had been devel-

oped for the discontinued ADT software library are now

potentially usable. Furthermore, this work established the

concept of using previously developed ADT components in
the maintenance of systems for which they had not been

designed.

It is important to note that this approach is not a

simple solution to software development problems. ADT-

based software design, like many modern software engi-

neering techniques (Fagan inspections, for instance), can

cause "front-end loading" in the software development

project; there is often a long preliminary phase while the

type library is being constructed, during which results are
not visible to those outside the software development team.

Reliability and reusability are obtained only by careful

initial work. Good design decisions in the definition (or

specification) of ADT components are not achieved me-

chanically. Reliability is gained from careful craftsman-

ship, static program verification, and well-considered test

strategies.

Care must be exercised in the generalization of these

results. No attempt was made to control this experiment

or remove bias; the primary objective was to successfully

convert the prototype to event-driven processing. The pro-

totypes and the ADT components were designed by the

same software developer. It is difficult to determine how

much this might bias the result. Further, this experience
was limited to a small number of ADTs. Confidence in

continuing to use ADTs in maintenance derives from an
assessment that the circumstances under which this work

took place were typical.

V. Conclusion

Successful use of ADT-based software components in

the prototype system played a critical part in achieving a
seven-fold improvement in ranging data throughput. This

capacity was used as soon as it was available on radar in-

terferometry observations of Mercury in the spring and fall

of 1989. The ADTs remain unchanged since their delivery

to the data-acquisition software ADT library in 1987; no

errors have been detected in these components.

The satisfactory results of this work have led to fur-

ther exploration. Recently, a new ADT-based software

component was created specifically for adaptive mainte-
nance in the ranging prototype. These experiences with

ADT-based components have created another software

maintenance option for the improvement of the Goldstone

Solar System Radar Data Acquisition System.

250

Acknowledgment

The abstract data type-based software architecture of the data-acquisition sys-
tem was the work of Dr. J. L. Robinett. Dr. Robiuett and the author collaborated

on the production of the two abstract data type packages that were described in
this article.

References

[1] B. H. Liskov and S. N. Zilles, "Programming with Abstract Data Types," ACM

SIGPLAN No$ices, vol. 9, no. 4, pp. 5(}-59, April 1974.

[2] L. J. Deutsch, R. F. Jurgens, and S. S. Brokl, "Goldstone R/D High Speed Data

Acquisition System," TDA Progress Report 42-77, vol. January-March 1984,

Jet Propulsion Laboratory, Pasadena, California, pp. 87-96, May 15, 1984.

251

