-

View metadata, citation and similar papers at core.ac.uk brought to you byt CORE

provided by Unitn-eprints Research

UNIVERSITY
OF TRENTO

DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo — Trento (ltaly), Via Sommarive 14
http://www.dit.unitn.it

THE TROPOS SOFTWARE DEVELOPMENT METHODOLOGY:
PROCESSES, MODELS AND DIAGRAMS

Fausto Giunchiglia, John Mylopoulos, and Anna Perini

November 2001

Technical Report # D1 T-02-0008

Also in: Proceedings of AOSE 2002

https://core.ac.uk/display/11828911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Tropos Software Development Methodology:
Processes, Models and Diagrams

Fausto Giunchiglia
Department of Information and
Communication Technology
University of Trento
via Sommarive, 14
[-38050 Trento-Povo, Italy

fausto@dit.unitn.it

ABSTRACT

Tropos is a novel agent-oriented software development metho-
dology founded on two key features: (%) the notions of agent,
goal, plan and various other knowledge level concepts are
fundamental primitives used uniformly throughout the soft-
ware development process; and (%) a crucial role is assigned
to requirements analysis and specification when the system-
to-be is analyzed with respect to its intended environment.
This paper provides a (first) detailed account of the Tropos
methodology. In particular, we describe the basic concepts
on which Tropos is founded and the types of models one
builds out of them. We also specify the analysis process
through which design flows from external to system actors
through a goal analysis and delegation. In addition, we pro-
vide an abstract syntax for Tropos diagrams and other lin-
guistic constructs.

Keywords

Agent-Oriented Software Engineering.

1. INTRODUCTION

New application areas such as eBusiness, application ser-
vice provision and peer-to-peer computing call for software
systems which have open, evolving architectures, operate
robustly and exploit resources available in their environ-
ment. To build such systems, practicing software engineers
are discovering the importance of mechanisms for communi-
cation, negotiation, and coordination between software com-
ponents. We expect that many will be turning to multi-
agent system technologies and methodologies for guidance
and support in building the software systems of the future.

Focusing on methodologies, practitioners expect detailed
accounts of processes which cover all phases of software de-
velopment from requirements analysis to implementation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 2001 ACM X-XXXXX-XX-X/XXIXX ...$5.00.

John Mylopoulos
Department of Computer
Science
University of Toronto
M5S 3H5, Toronto, Ontario,
Canada

jm@cs.toronto.edu

Anna Perini
ITC-Irst
Via Sommarive, 18
[-38050 Trento-Povo, Italy

perini@irst.itc.it

Object oriented and structured software development metho-
dologies are examples of the breadth and depth of detail
expected by practitioners. This paper focuses on the prob-
lem of providing such a detailed account for agent-oriented
software systems.

We are developing a comprehensive software engineer-
ing methodology, named Tropos, for multi-agent systems.
The methodology begins with a model of the environment
within which the system-to-be will eventually operate. The
model is described in terms of actors, their goals and inter-
dependencies. Through incremental refinements, this model
is extended to include the system-to-be and its subsystems,
also represented as actors that have been delegated goals
to achieve, plans to execute and resources to furnish. The
Tropos language is founded on a small set of concepts and
provides tools and techniques for building models which rep-
resent actors (agents, positions or roles), their goals, and
their intentional inter-dependencies. Such models are used
to capture the intentions of stakeholders (users, owners,
managers,...), the responsibilities of the new system with
respect to these stakeholders, the architecture of the new
system and the details of its design. These models provide a
common interface to various software development phases,
from early requirements to implementation. They can also
be used as part of the documentation of a software system
during operation and maintenance.

In a nutshell, the two key features of Tropos are: (i) the
use of knowledge level [16] concepts, such as agent, goal, plan
and other through all phases of software development, and
(i) a pivotal role assigned to requirements analysis when
the environment and the system-to-be is analyzed.

The phases covered by the proposed methodology are as
follows.

Early Requirements: during this phase the relevant stake-
holders are identified, along with their respective objectives;
stakeholders are represented as actors, while their objectives
are represented as goals;

Late Requirements: the system-to-be is introduced as an-
other actor and is related to stakeholder actors in terms
of actor dependencies; these indicate the obligations of the
system towards its environment, also what the system can
expect from actors in its environment;

Architectural Design: more system actors are introduced

and they are assigned subgoals or subtasks of the goals and
tasks assigned to the system,;

Detailed Design: system actors are defined in further detail,
including specifications of communication and coordination
protocols;

Implementation: during this phase, the Tropos specifica-
tion, produced during detailed design, is transformed into
a skeleton for the implementation. This is done through a
mapping from the Tropos constructs to those of an agent
programming platform such as JACK [4]; code is added to
the skeleton using the programming language supported by
the programming platform.

The Tropos methodology has been motivated and illus-
trated with two case studies [20, 6]. The purpose of this pa-
per is to present the methodology in further detail. The rest
of the paper is structured as follows. Section 2 presents the
Tropos primitive knowledge level concepts used for building
the different types of models, and illustrates them with ex-
amples. Section 3 describes the analysis process that guides
model evolution through different development phases. The
Tropos modeling language is then defined in Section 4 in
terms of UML diagrams, while related work is discussed in
Section 5. Conclusions and directions for further research
are presented in Section 6.

2. CONCEPTSAND MODELS

The Tropos conceptual models and diagrams are devel-
oped as instances of the following intentional and social con-
cepts: actor, goal, dependency, plan, resource, capability,
and belief. Below we discuss each one in turn.

Actor. The notion of actor models an entity that has strate-
gic goals and intentionality. An actor represents a physical
agent (e.g., a person, an animal, a car), or a software agent
as well as a role or a position. A roleis an abstract character-
ization of the behavior of an actor within some specialized
context, while a position represents a set of roles, typically
played by one agent. An agent can occupy a position, while
a position is said to cover a role. Notice that the notion of
actor in Tropos is a generalization of the classical AI notion
of software agent, as given for instance in [17]. A discussion
on this issue can be found in [26].

Goal. A goal represents the strategic interests of actors. Our
framework distinguishes between hard goals and softgoals,
the latter having no clear-cut definition and/or criteria as to
whether they are satisfied. Softgoals are useful for model-
ing software qualities [7], such as security, performance and
maintainability.

Dependency. A dependency between two actors indicates
that one actor depends on another in order to attain some
goal, execute some plan, or deliver a resource. The former
actor is called the depender, while the latter is called the
dependee. The object (goal, plan resource) around which
the dependency centers is called dependum. By depending
on other actors, an actor is able to achieve goals that it would
otherwise be unable to achieve on its own, or not as easily,
or not as well. At the same time, the depender becomes
vulnerable. If the dependee fails to deliver the dependum
the depender would be adversely affected in its ability to
achieve its goals.

provide
cultural
services

get cultural
information

taxes well
spent

increase

internet use

O Actor C) Goa C} Softgoal
O —,‘ ‘, —O Goal dependency

depender dependee

dependum

Figure 1: Actor diagram of the stakeholders of the
eCulture System.

Plan. A plan represents a way of satisfying a goal.

Resource. A resource represents a physical or an informa-
tional entity that one actor wants and another can deliver.

Capability. A capability represents the ability of an actor to
define, choose and execute a plan to fulfill a goal, given a
particular operating environment.

Belief. Beliefs are used to represent each actor’s knowledge
of the world.

Notice how the notions of belief, goal (or desire), and plan
(or intention) are the key concepts of the BDI framework.
The notion of capability is used in some agent platforms,
notably in the JACK agent programming platform. The
notion of resource stems quite straightforwardly from an
analysis aimed at identifying the modeling concepts needed
in the software development process. The notion of depen-
dency, instead, is quite interesting and novel, and it turns
out to be very important when modeling the intentional
inter-dependencies between actors (thereby playing, at the
knowledge level, a similar role to associations in UML class
diagrams).

These concepts can be used to build different types of
models throughout the development process. We illustrate
these with examples extracted from a substantial software
system developed for the government of Trentino (Provincia
Autonoma di Trento, or PAT), and partially described in
[20]. The system (which we will call throughout the eCul-
ture system) is a web-based broker of cultural information
and services for the province of Trentino, including informa-
tion obtained from museums, exhibitions, and other cultural
organizations and events to be used by a variety of users, in-
cluding Trentino citizens and visitors.

We consider, in turn, examples of actor, dependency, goal
and plan models. Other types of models are not discussed

use internet
technology

eCulture
System

extensible
eCulture

_—==
S

J eCulture
System

avaiaDke .

eCulture \

System .
y

provide
eCultural
services

usable
eCulture
System

+
provide
info
4\

eCulture
System

03

~ -

Figure 2: An actor diagram including PAT and eCul-
ture System and a goal diagram of the eCulture System.

here for lack of space; see [20] for more examples.

2.1 Actor and Dependency models

Actor and dependency models result from the analysis
of social and system actors, as well as of their goals and
dependencies for goal achievement. These types of models
are built in the early requirements phase when we focus on
characterizing the application domain stakeholders, their in-
tentions and the dependencies that interleave them. Actor
and dependency models are graphically represented through
actor diagrams in which actors are depicted as circles, their
goals as ovals and their softgoal as cloud shapes. The net-
work of dependency relationships among actors are depicted
as two arrowed lines connected by a graphical symbol vary-
ing according to the dependum: a goal, a plan or a resource.
Figure 1 shows the actor diagram for the eCulture domain
as resulting from a first early requirement analysis. In par-
ticular, the actor Citizen is associated with a single relevant
goal: get cultural information, while the actor Visitor has an
associated softgoal enjoy visit. Along similar lines, the ac-
tor PAT wants to increase internet use for Trentino citizens,
while the actor Museum wants to provide cultural services.

Actor models are extended during the late requirements
phase by adding the system-to-be as another actor, along
with its inter-dependencies with social actors. For example,
in Figure 2 the actor PAT delegates a set of goals to the
eCulture System actor through goal dependencies namely,
provide eCultural services, which is a goal that contributes to
the main goal of PAT increase internet use and softgoals such
as extensible eCulture System, flexible eCulture System, usable
eCulture System, and use internet technology.

Actor models at the architectural design level provide
a more detailed account of the system-to-be actor and its
internal structure. This structure is specified in terms of
subsystem actors, interconnected through data and control
flows that are modeled as dependencies. This model pro-
vides the basis for capability modeling, an activity that will
start later on during the architectural design phase, along
with the mapping of system actors to software agents. Fig-
ure 3 illustrates a portion of the actor diagram built dur-

eCulture
System

educational make irtual visit
services reservations virtual visits

Educational Reservation Virtual Visit System
Broker Broker Broker Manager
system user
interfacing interfacing

System
Interface
Manager

provide

provide info interface

Info
Broker

User
Interface
Manager

Figure 3: Actor diagram of the architectural orga-
nization for the eCulture System.

ing architectural design. The eCulture System actor is de-
composed into sub-actors and delegates to them some of its
goals. So, the eCulture System depends on the Info Broker to
provide info, on the Educational Broker to provide educational
services, on the Reservation Broker to make reservations, on
Virtual Visit Broker to provide virtual visits, and on System
Manager to provide interface.

2.2 Goal and Plan models

Goal and plan models allow the designer to analyze goals
and plans from the perspective of a specific actor by using
three basic reasoning techniques: means-end analysis, con-
tribution analysis, and AND/OR decomposition. For goals,
means-end analysis proceeds by refining a goal into subgoals
in order to identify plans, resources and softgoals that pro-
vide means for achieving the goal (the end). Contribution
analysis allows the designer to point out goals that can con-
tribute positively or negatively in reaching the goal being
analyzed. In a sense, contribution analysis can be consid-
ered as a special case of means-end analysis, where means
are always goals. AND/OR decomposition allows for a com-
bination of AND and OR decompositions of a root goal into
sub-goals, thereby refining a goal structure.

Goal models are first developed during early requirements
using initially-identified actors and their goals. Figure 4,
shows portions of the goal model for PAT, relative to the
goals that Citizen has delegated to PAT through an earlier
goal analysis. Goal and plan models are depicted through
goal diagrams that represent the perspective of a specific ac-
tor as a balloon that contains graphs whose nodes are goals
(ovals) and /or plans (hexagonal shape) and whose arcs rep-
resents the different types of relationships that can be iden-
tified between its nodes. In Figure 4, the goals increase in-
ternet use and eCulture System available are both well served
(through a contribution relationship) by the goal build eCul-
ture System. Within an actor balloon, softgoal analysis is
also performed identifying positive or negative contributions
from other goals. The softgoal taxes well spent gets positive
contributions from the softgoal good services, and the goal

internet
infrastructure
available

.
reasonable
expenses

fundig
museums for
own systems

good
services

offer
inexpensive
infrastructure

increase
internet use

eCulture
System
available

rovidé
interesting
systems

-

Means-ends analysis

~
~a.

-
-

Figure 4: Goal diagram for PAT.

build eCulture System

Goal models play an analogous role in identifying (and
justifying) actor dependencies during late requirements and
architectural design. Figure 2 shows a goal diagram for the
eCulture System, developed during late requirements analy-
sis. In the example we concentrate on the goal provide eCul-
tural services and the softgoal usable eCulture System. The
goal provide eCultural services is AND-decomposed into four
subgoals make reservations, provide info, educational services
and virtual visits. The goal (provide info) is further decom-
posed into (the provision of) logistic info and cultural info.
Logistic info concerns timetables and visiting information for
museums, while cultural info concerns the cultural content
of museums, special cultural events, and the like. Museum
content may include descriptions and images of historical
objects and/or exhibitions, also the history of a particular
region. Virtual visits are services that allow Citizen to pay a
virtual visit to a city of the past (e.g., Rome during Caesar’s
time!). Educational services include presentation of historical
and cultural material at different levels of detail (e.g., at a
high school or undergraduate university level) as well as on-
line evaluation of the student’s grasp of this material. Make
reservations allows Citizen to make reservations for particu-
lar cultural events, such as concerts, exhibitions, and guided
museum visits.

3. THE DEVELOPMENT PROCESS

The previous section introduced the primitive concepts
supported by Tropos and the different kinds of models one
builds in terms of them during a Tropos-based software de-
velopment project. In this section we focus on the generic
design process through which these models are constructed.
The process is basically one of analyzing goals on behalf of
different actors, and is described in terms of a non deter-
ministic concurrent algorithm, including a completeness cri-
terion. Note that this process is carried out by software en-
gineers (rather than software agents) at design-time (rather
than run-time).

Intuitively, the process begins with a number of actors,

each with a list of associated root goals (possibly including
softgoals). Each root goal is analyzed from the perspective
of its respective actor, and as subgoals are generated, they
are delegated to other actors, or the actor takes on the re-
sponsibility of dealing with them him /her /itself. This analy-
sis is carried out concurrently with respect to each root goal.
Sometimes the process requires the introduction of new ac-
tors which are delegated goals and/or tasks. The process is
complete when all goals have been dealt with to the satisfac-
tion of the actors who want them (or the designers thereof.)
Assume that actorList includes a finite set of actors, also
that the list of goals for actor is stored in goalList(actor).
In addition, we assume that agenda(actor) includes the list
of goals actor has undertaken to achieve personally (with no
help from other actors), along with the plan that has been
selected for each goal. Initially, agenda(actor) is empty. de-
pendencyList includes a list of dependencies among actors,
while capabilityList(actor) includes < goal, plan > pairs in-
dicating the means by which the actor can achieve particular
goals. Finally, goalGraph stores a representation of the goal
graph that has been generated so far by the design process.
Initially, goalGraph contains all root goals of all initial actors
with no links among them. We will treat all of the above as
global variables which are accessed and/or updated by the
procedures presented below. For each procedure, we use as
parameters those variables used within the procedure.

global actorList, goal List, agenda, dependencyList,
capabilityList, goalGraph,;
procedure rootGoal Analysis(actorList, goal List,
goalGraph)
begin
rootGoalList = nil,;
for actor in actorList do
for rootGoal in goalList(actor) do
rootGoalList = add(rootGoal, rootGoalList);
rootGoal.actor = actor;
end ;
end ;
end ;
concurrent for
rootGoal in rootGoalList do
goal Analysis(rootGoal, actor List)
end concurrent for ;
if not[satis fied(rootGoalList, goalGraph))
then fail;
end procedure

The procedure rootGoalAnalysis conducts concurrent goal
analysis for every root goal. Initially, root goal analysis
is conducted for all initial goals associated with actors in
actorList. Later on, more root goals are created as goals
are delegated to existing or new actors. Note that the
concurrent for statement spawns a concurrent call to goal-
Analysis for every element of the list rootGoalList. More-
over, more calls to goalAnalysis are spawn as more root goals
are added to rootGoalList. concurrent for is assumed to
terminates when all its threads do. The predicate satis-
fied checks whether all root goals in goalGraph are satisfied.
This predicate is computed in terms of a label propagation
algorithm such as the one described in [15]. Its details are
beyond the scope of this paper. rootGoalAnalysis succeeds if
there is a set of non-deterministic selections within the con-

current executions of goalAnalysis procedures which leads to
the satisfaction of all root goals.

The procedure goalAnalysis conducts concurrent goal anal-
ysis for every subgoal of a given root goal. Initially, the root
goal is placed in pendingList. Then, concurrent for selects
concurrently goals from pendingList and for each decides
non-deterministically whether it will be expanded, adopted
as a personal goal, delegated to an existing or new actor,
or whether the goal will be treated as unsatisfiable (’de-
nied’). When a goal is expanded, more subgoals are added
to pendingList and goalGraph is augmented to include the
new goals and their relationships to their parent goal. Note
that the selection of an actor to delegate a goal is also non-
deterministic, and so is the creation of a new actor. The
three non-deterministic operations in goalAnalysis are high-
lighted with italic-bold font. These are the points where the
designers of the software system will use their creative in
designing the system-to-be.

procedure goalAnalysis(rootGoal,actorList)
pendingList = add(rootGoal, nil);
concurrent for goal in pendingList do
decision = decideGoal(goal)
case of decision
expand :
begin
newGoalList = expandGoal(goal, goalGraph);
for newGoal in newGoalList do
newGoal.actor = goal.actor;
add(newGoal, pendingList);
end ;
end ;
solve : acceptGoal(goal,agenda(goal.actor));
delegate :
begin
actor = selectActor(actorList);
delegateGoal(goal, actor,
rootGoal List, dependencyList);
end ;
newActor :
begin
actor = newActor(goal);
actorList = add(actor,actorList);
delegateGoal(goal, actor,
rootGoal List, dependencyList);
end ;
fail : goal.label =' denied';
end case of ;
end concurrent for ;

end procedure

Finally, we specify two of the sub-procedures used in goal-
Analysis, for the lack of space, others are left to the imagi-
nation of the reader. delegateGoal adds a goal to an actor’s
goal list because that goal has been delegated to the actor.
This goal now becomes a root goal (with respect to the ac-
tor it has been delegated to), so another call to goalAnalysis
is spawn by rootGoalAnalysis. Also, dependencyList is up-
dated. The procedure acceptGoal simply selects a plan for a
goal the actor will handle personally from the actor’s capa-
bility list. The process we present here does not provide for
extensions to a capability list to deal with a newly assigned
goal.

| Level | Description | Examples |
meta Basic language Attribute,
metamodel | structural elements | Entity
metamodel Knowledge level Actor, Goal,
notions Dependency
domain Application domain | PAT, Citizen,
entities Museum
instance Domain model Mary: instance
instances of Citizen

Table 1: The four level architecture of the Tropos
metamodel.

procedure delegateGoal(goal,toActor,
rootGoalList, dependencyList)
begin
add(goal, goal List(toActor));
add(goal,rootGoal List);
goal.actor = toActor;
add(< goal.actor,toActor, goal >, dependencyList);
end

end procedure

procedure acceptGoal(goal, agenda)
begin
plan = select Plan(goal, capability List(goal.actor));
add(< goal, plan >, agenda(goal.actor));
goal.label = satisfied';
end
end procedure

During early requirements, this process analyzes initially-
identified goals of external actors (”stakeholders”). At some
point (late requirements), the system-to-be is introduced as
another actor and is delegated some of the subgoals that
have been generated from this analysis. During architectural
design, more system actors are introduced and are delegated
subgoals to system-assigned goals. Apart from generating
goals and actors in order to fulfill initially-specified goals
of external stakeholders, the development process includes
specification steps during each phase which consist of fur-
ther specifying each node of a model such as those shown
in figures 3-4. Specifications are given in a formal language
(Formal Tropos) described in detail in [13]. These specifi-
cations add constraints, invariants, pre- and post-conditions
which capture more of the semantics of the subject domain.
Moreover, such specifications can be simulated using model
checking technology for validation purposes [13, 8].

4. THE TROPOSMODELING LANGUAGE

The modeling language is at the core of the Tropos metho-
dology. The abstract syntax of the language is defined in
this section in terms of a UML metamodel. Following stan-
dard approaches [19], the metamodel has been organized in
four levels, as shown in Table 1. The four-layer architecture
makes the Tropos language extensible in the sense that new
constructs can be added. Semantics for the language (aug-
mented with a powerful fragment of Temporal Logic [9]) is
handled in [13] and won’t be discussed here.

The meta-metamodel level provides the basis for meta-
model extensions. In particular, the meta-metamodel con-
tains language primitives that allows for the inclusions of
constructs such as those proposed in [13]. The metamodel
level provides constructs for modeling knowledge level en-
tities and concepts. The domain model level contains a
representation of entities and concepts of a specific appli-
cation domain, built as instances of the metamodel level
constructs. So, for instance, the examples used in section 2
illustrate portions of the eCulture domain model. The in-
stance model level contains instances of the domain model.

For lack of space, we focus below only the metamodels for
actors and goals. !

0..n 1..n

Belief Actor
are has
bel i eved \%a'n?s
dependee depender
Dependency

(XOR} pependuw

Resource

dependu

Figure 5: The Actor concept.

41 The metamodel for Actor

A portion of the Tropos metamodel concerning the con-
cept of actor is shown in the UML class diagram of Figure 5.
Actor is represented as a UML class. An actor can have
0...n goals. The UML class Goal represents here both hard
and softgoals. A goal is wanted by 0...n actors, as speci-
fied by the UML association relationship. An actor can have
0...n beliefs and, conversely, beliefs are believed by 1...n
actors.

An actor dependency is a quaternary relationship repre-
sented as a UML class (Dependency). A dependency relates
respectively a depender, dependee, and dependum (as de-
fined earlier), also an optional reason for the dependency
(labelled why). Examples of dependency relationships are
shown in Figures 1, 2, and 3. The early requirements model
depicted in Figure 1, for instance, shows a softgoal depen-
dency between the actors Citizen and PAT. Its dependum

!The meta-metamodel and the metamodels concerning the
other concepts are defined analogously with the partial de-
scription reported here. A complete description of the Tro-
pos language metamodel can be found in [22].

is the softgoal taxes well spent, while the actors Citizen and
PAT play respectively the roles of depender and dependee.

1..n
Means-Ends analysis
1..n
Plan mean
— Contribution TxR))
' mean {Xm
Resource -
contributes toN_ mean
contributed by end
Goal
T oot
X . root
pol ntvi ew

L AND-OR decomposition |
0.t .

x
| |

OR-decomposition | | AND-decomposition

|l..n 1..n

Figure 6: The goal concept.

4.2 Themetamodel for Goal

The concept of goal is represented by the class Goal in the
UML class diagram depicted in Figure 6. The distinction
between hard and softgoals is captured through a special-
ization of Goal into subclasses Hardgoal and Softgoal respec-
tively.

Goals can be analyzed, from the point of view of an actor,
performing means-end analysis, contribution analysis and
AND/OR decomposition (listed in order of strength). Let
us consider these in turn.

Means-ends analysis is a ternary relationship defined among
an Actor, whose point of view is represented in the analysis,
a goal (the end), and a Plan, Resource or Goal (the means).
Means-end analysis is a weak form of analysis, consisting
of a discovery of goals, plans or resources that can provide
means for reaching a goal. Means-end analysis is used in the
model shown in Figure 4, where the goals educate citizens
and provide eCultural services, as well as the softgoal provide
interesting systems are means for achieving the goal increase
internet use.

Contribution analysis is a ternary relationship between an
Actor, whose point of view is represented, and two goals.
Contribution analysis strives to identify goals that can con-
tribute positively or negatively towards the fulfillment of a
goal (see association relationship labelled contributes to in
Figure 6). A contribution can be annotated with a quali-
tative metric, as used in [7], denoted by +,++,—,——. In
particular, if the goal gl contributes positively to the goal
g2, with metric ++ then if gl is satisfied, so is g2. Analo-
gously if the plan p contributes positively to the goal g, with
metric ++, this says that p fulfills g. A + label for a goal
or plan contribution represents a partial, positive contribu-

tion to the goal being analyzed. With labels ——, and —
we have the dual situation representing a sufficient or par-
tial negative contribution towards the fulfillment of a goal.
Examples of contribution analysis are shown in Figure 4.
For instance the goal funding museums for own systems con-
tributes positively to both the softgoals provide interesting
systems and good cultural services, and the latter softgoal
contributes positively to the softgoal good services.

Contribution analysis applied to softgoals is often used to
evaluate non-functional (quality) requirements.

AND-OR decomposition is also a ternary relationship which
defines an AND- or OR-decomposition of a root goal into
subgoals. The particular case where the root goal gl is de-
composed into a single subgoal g2, is equivalent to a ++
contribution from g2 to gl.

5. RELATED WORK

As indicated in the introduction, the most important fea-
ture of the Tropos methodology is that it aspires to span the
overall software development process, from early require-
ments to implementation. This is represented in Figure 7
which shows the relative coverage of Tropos as well as i*
[25], KAOS [11], GAIA [24], AAII [10] and MaSE [12], and
AUML [18, 1, 5].

Early Late Architectural Detailed
Requirements Requirements Design Design
Kaos
i*
Tropos
. ___J
Gaia

AAll gng Mgis
%

Figure 7: Comparison of Tropos with other software
development methodologies.

While Tropos covers the full range of software develop-
ment phases, it is at the same time well-integrated with
other existing work. Thus, for early and late requirements
analysis, it takes advantage of work done in the Require-
ments Engineering community, and in particular of Eric Yu’s
1* methodology [25]. It is interesting to note that much of
the Tropos methodology can be combined with non-agent
(e.g., object-oriented or imperative) software development
paradigms. For example, one may want to use Tropos for
early development phases and then use UML [2] for later
phases. At the same time, work on AUML [18] allows us
to exploit existing UML techniques during (our version of)
agent-oriented software development. As indicated in Fig-
ure 7, our idea is to adopt AUML for the detailed design
phase. An example of how this can be done is given in [20].

The metamodel presented in Section 4 has been developed
in the same spirit as the UML metamodel for class diagrams.
A comparison between UML class diagrams and the dia-
grams presented in Section 4 emphasizes the distinct repre-

sentational and ontological levels used for class diagrams and
actor diagrams (the former being at the software level, the
latter at the knowledge level). This contrast also defines the
key difference between object-oriented and agent-oriented
development methodologies. Agents (and actor diagrams)
cannot be thought as a specialization of objects (and class
diagrams), as argued in previous papers. The difference is
rather the result of an ontological and representational shift.
Finally, it should be noted that inheritance, a crucial notion
for UML diagrams, plays no role in actor diagrams. This is-
n’t yet a final decision. However inheritance, at the current
state of the art, seems most useful at a software, rather than
a knowledge, level. This view is implicit in our decision to
adopt AUML for the detailed design phase.

6. CONCLUSION

This paper provides a detailed account of Tropos, an agent
oriented software development methodology which spans the
software development process from early requirements to im-
plementation for agent oriented software. The paper presents
and discusses (in part) the five phases supported by Tropos,
the development process within each phase, the models cre-
ated through this process, and the diagrams used to describe
these models.

Throughout, we have emphasized the uniform use of a
small set of knowledge level notions during all phases of
software development. We have also provided an iterative,
actor and goal based, refinement algorithm which charac-
terizes the refinement process during each phase. This re-
finement process, of course, is instantiated differently during
each phase.

Our long term objective is to provide a complete and de-
tailed account of the Tropos methodology. Object-oriented
and structured software development methodologies are ex-
amples of the breadth and depth of detail expected by prac-
titioners who use a particular software development metho-
dology. Of course, much remains to be done towards achiev-
ing this goal. We are currently working on several open
points, such as the development of formal analysis tech-
niques for Tropos [13]; the formalization of the transfor-
mation process in terms of primitive transformations and
refinement strategies [3]; the definition of a catalogue of ar-
chitectural styles for multi-agent systems which adopt con-
cepts from organization theory and strategic alliances liter-
ature [14]; and the development of tools which support the
methodology during particular phases.

We consider a broad coverage of the software development
process as essential for agent-oriented software engineering.
It is only by going up to the early requirements phase that
an agent-oriented methodology can provide a convincing ar-
gument against other, for instance object-oriented, metho-
dologies. Specifically, agent-oriented methodologies are in-
herently intentional, founded on notions such as those of
agent, goal, plan, etc. Object-oriented ones, on the other
hand, are inherently not intentional, since they are founded
on implementation-level ontological primitives. This fun-
damental difference shows most clearly when the software
developer is focusing on the (organizational) environment
where the system-to-be will eventually operate. Understand-
ing such an environment calls (more precisely, cries out)
for knowledge level modeling primitives. The agent-oriented
programming paradigm is the only programming paradigm
that can gracefully and seamlessly integrate the intentional

models of early development phases with implementation
and run-time phases.

This is the argument that justifies

agent-oriented software development, and at the same time
promises for it a bright future.

7.

ACKNOWLEDGMENTS

We thank all the Tropos Project people working in Trento
and in Toronto. A special thank to Fabrizio Sannicolo’ who
is completing his master thesis on the Tropos modeling lan-
guage [21].

8.
[1]

[2]

[6]

[10]

[11]

[12]

REFERENCES

B. Bauer, J. P. Miiller, and J. Odell. Agent UML: A
formalism for specifying multiagent software systems.
Int. Journal of Software Engineering and Knowledge
Engineering, 11(3):207-230, 2001.

G. Booch, J. Rambaugh, and J. Jacobson. The Unified

Modeling Language User Guide. The Addison-Wesley
Object Technology Series. Addison-Wesley, 1999.

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia,
and J. Mylopoulos. Modeling early requirements in
tropos: a transformation based approach. In
Wooldridge et al. [23].

P. Busetta, R. Ronnquist, A. Hodgson, and A. Lucas.
JACK Intelligent Agents - Components for Intelligent
Agents in Java. Technical Report TR9901, AOS, Jan.
1999. http://www.jackagents.com/pdf/tr9901.pdf.

G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo,

J. Gomez, J. Pavon, P. Kearney, J. Stark, and

P. Massonet. Agent oriented analysis using
MESSAGE/UML. In Wooldridge et al. [23].

J. Castro, M. Kolp, and J. Mylopoulos. A
requirements-driven development methodology. In
Proc. 18th Int. Conf. on Advanced Information
Systems Engineering CAWSE 01, Stafford UK, June
2001.

L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos.
Non-Functional Requirements in Software
Engineering. Kluwer Publishing, 2000.

A. Cimatti, E. M. Clarke, F. Giunchiglia, and

M. Roveri. NuSMV: a new symbolic model checker.
International Journal on Software Tools for
Technology Transfer (STTT), 2(4), March 2000.

E. M. Clarke and E. A. Emerson. Design and
Synthesis of Synchronization Skeletons using
Branching Time Temporal Logic. In D. Kozen, editor,
Proceedings of the Workshop on Logics of Programs,
volume 131 of Lecture Notes in Computer Science,
pages 52-71, Yorktown Heights, New York, May 1981.
Springer-Verlag.

M. G. D. Kinny and A. Rao. A Methodology and
Modelling Technique for Systems of BDI Agents. In
W. V. de Velde and J. W. Perram, editors, Agents
Breaking Away: Proc. of the 7Tth European Workshop
on Modelling Autonomous Agents in a Multi- Agent
World, Springer-Verlag: Berlin, Germany, 1996.

A. Dardenne, A. van Lamsweerde, and S. Fickas.
Goal-directed requirements acquisition. Science of
Computer Programming, 20(1-2):3-50, 1993.

S. A. Deloach. Analysis and Design using MaSE and
agentTool. In 12th Midwest Artificial Intelligence and

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

25]

[26]

Cognitive Science Conference (MAICS 2001), Miami
University, Oxford, Ohio, March 31 - April 1 2001.
A. Fuxman, M. Pistore, J. Mylopoulos, and

P. Traverso. Model checking early requirements
specification in Tropos. In Proc. of the 5th IEEE
International Symposium on Requirements
Engineering, Toronto, CA, Aug. 2001.

M. Kolp, P. Giorgini, and J. Mylopoulos. An
goal-based organizational perspective on multi-agents
architectures. In Proc. of the 8th Int. Workshop on
Agent Theories, Architectures, and Languages
(ATAL-2001), Seattle, WA, August 2001.

J. Mylopoulos, L. K. Chung, and B. A. Nixon.
Representing and using non-functional requirements:
A process-oriented approach. IEEE Transactions on
Software Engineering, June 1992.

A. Newell. The Knowledge Level. Artificial
Intelligence, 18:87-127, 1982.

H. Nwana. Software agents: An overview. Knowledge
Engineering Review Journal, 11(3), November 1996.
J. Odell, H. Parunak, and B. Bauer. Extending UML
for agents. In G. Wagner, Y. Lesperance, and E. Yu,
editors, Proc. of the Agent-Oriented Information
Systems workshop at the 17th National conference on
Artificial Intelligence, pages 3-17, Austin, TX, 2000.
OMG. OMG Unified Modeling Language Specification,
version 1.3, alpha edition, January 1999.

A. Perini, P. Bresciani, F. Giunchiglia, P. Giorgini,
and J. Mylopoulos. A Knowledge Level Software
Engineering Methodology for Agent Oriented
Programming. In Proc. of the 5th Int. Conference on
Autonomous Agents, Montreal CA, May 2001. ACM.
F. Sannicolo’. Tropos: Una Metodologia ed un
Linguaggio di Modellazione Visuale Semiformale.
Master’s thesis, University of Trento, 2001.

F. Sannicolo’, A. Perini, and F. Giunchiglia. The
Tropos modeling language. a User Guide. Technical
report, ITC-irst, Dec. 2001.

M. Wooldridge, P. Ciancarini, and o. G. Weiss,
editors. Proc. of the 2nd Int. Workshop on
Agent-Oriented Software Engineering (AOSE-2001),
Montreal, CA, May 2001.

M. Wooldridge, N. R. Jennings, and D. Kinny. The
Gaia methodology for agent-oriented analysis and
design. Journal of Autonomous Agents and
Multi-Agent Systems, 3(3), 2000.

E. Yu. Modelling Strategic Relationships for Process
Reengineering. PhD thesis, University of Toronto,
Department of Computer Science, 1995.

E. Yu. Agent-oriented modeling: Software versus the
world. In Agent-Oriented Software Engineering II,
LNCS 2222. Springer-Verlag, to appear, 2001.

