REQUIREMENT ENGINEERING EVALUATION OF REAL TIME INSTANT MESSAGING USING ISO 9126 METRICS (INTEGRATED RMN SIGNAL READER/DRAFTER)

MAZLAN BIN YASIN

This project report submitted in partial fulfillment of the requirement for the degree in Master of Computer Science (Real Time Software Engineering)

> Faculty of Computer Science & Information System Universiti Teknologi Malaysia

> > AUGUST, 2004

Special dedication to

The most understanding and caring person, My beloved wife Zarina Bt Fuad...... And Bonda Saminah Bt Satiman... Lovely daughters and sons ... My entire course mate..... And to my late father, Yasin Bin Mohayat al-fatihah..

"THANK YOU FOR YOUR SACRIFICE AND CONTRIBUTIONS"

ACKNOWLEDGEMENT

"BISMILLAHIRRAHMANIRRAHIM"

Very special thanks to my supervisor, Mr. Othman Bin Mohd Yusop who gave lots of supports for me in preparing this report. Also to my industrial mentor, Mr. Suhailan Bin Safei and Mr. Abu Bakar Hj Hasan for giving so much precious experiences and guiding me to the success of delivering the project. To all CASE lecturers for serving me with software engineering knowledge that definitely benefit me in facing real life and real time continuing my profession in the Navy.

THANK YOU.

ABSTRACT

Software development that does not have documentation, poses difficulties in modification and maintenance processes. Therefore, the maintenance activity system depends so much on a highly skilled software engineer. As a consequence, project management becomes imbalance especially in workload and responsibility. Moreover, clients are often unaware of the structure development of each software. Client tends to give full trust to the capability of software developer especially when there is no standard communication procedure lined out by developer. Indirectly, it causes the value of activity cost unclear to the customer. Besides, a systematic evaluation upon every system is difficult since software development structure is not concrete and abstract. The DoD-2167A standard was chosen to guide in forming standard documentation in analysis, design and testing. Unified Modeling Language (UML) technique was used to model requirement and software architecture. Object oriented programming was applied in developing the software in easing the maintenance activities. ISO 9126 quality metric is used to evaluate the software system. A signal reader system known as "Virtual Signal Reader/Drafter (VirSiRD)" system has been selected as a foundation to the software development in practicing software engineering tasks.

ABSTRAK

Membangunkan perisian yang tidak mempunyai dokumentasi, menyukarkan proses untuk pengubahsuaian dan penyenggaraan. Faktor ini menyebabkan aktiviti penyenggaraan sistem tersebut amat memerlukan seorang jurutera perisian yang berkemahiran tinggi. Natijahnya, pengurusan projek menjadi tidak seimbang terutama dari segi beban kerja dan tanggungjawab. Tambahan pula, pengguna kebiasaannya tidak terdedah kepada aktiviti-aktiviti pembinaan struktur suatu perisian. Ini menyebabkan pengguna meletakkan sepenuh kepercayaan kepada kebolehan pembangun perisian apatah lagi tiada prosidur komunikasi piawai yang dijelaskan oleh pihak pembangun perisian. Secara tak langsung ini menyebabkan nilai kos aktiviti tidak begitu jelas pada pandangan pengguna. Manakala penilaian sistematik ke atas sesebuah sistem juga sukar dijalankan memandangkan struktur senibina perisian tidak konkrit dan abstrak. Piawaian DoD-2167A digunapakai sebagai satu langkah cepat dan mudah untuk menyenggara proses dan aktiviti sesuatu pembangunan perisian terutama dalam dokumentasi. Teknik Unified Modeling Language (UML) digunakan untuk menggambarkan keperluan dan struktur senibina perisian. Pengaturcaraan berorientasikan objek juga digunakan sebagai langkah penyelenggaraan yang lebih mudah. Metrik kualiti ISO 9126 pula digunakan untuk menilai perisian. Perisian Pembaca Kawat yang dinamakan "Virtual Signal Reader/ Drafter (VirSiRD)", dipilih sebagai projek asas pembangunan perisian dalam mempraktiskan kerja-kerja kejuruteraan perisian.

TABLE OF CONTENTS

CHAPTER	Т	ITLE PAGE:	5
	ACK	NOWLEDGEMENT iv	V
	ABS	TRACT	V
	ABS	TRAK v	i
	TAB	BLE OF CONTENTSvi	i
	LIST	Г OF TABLES x	i
	LIST	Г OF FIGURESxi	i
	LIST	Г OF APPENDICES xiv	V
	LIST	Γ OF ACRONYMS xv	V
CHAPTER 1	INT	RODUCTION	1
	1.1	Company Background	1
	1.2	Company Structure	2
	1.3	Company Involvement	3
	1.4	Problem Statement	1
CHAPTER II	OB	JECTIVE	6
	2.1	Project Vision	5
	2.2	Project Mission	5
	2.3	Objectives	7
	2.4	Scope	7

	2.5	Project Organization And Resources	9	
CHAPTER III	LITERATURE STUDY			
	3.1	Background	10	
		3.1.1 Introduction	10	
		3.1.2 Existing Communication System	11	
		3.1.3 Modern Communication System	11	
		3.1.4 Future Communication System	13	
	3.2	Security	15	
		3.2.1 Technology	15	
		3.2.2 Policy	19	
	3.3	TLDMNet	19	
	3.4	Virtual Signal Reader/Drafter	32	
		3.4.1 Draft Signal using Signal Format		
		3.4.2 Draft Folder.	39	
		3.4.3 In-Box Folder.	40	
		3.4.4 Out-Box Folder	41	
		3.4.5 Action Folder	41	
		3.4.6 Send Signal Folder	42	
		3.4.7 Deleted Signal Folder	43	
		3.4.8 Rejected Signal Folder	44	
		3.4.9 Approved Signal Folder.	44	
		3.4.10 Query Signal Folder.	45	
		3.4.11 Menu Profile	45	
		3.4.12 Changing User Profile.	46	
		3.4.13 Option Menu	46	
		3.4.14 View Menu.	48	
	3.5	Virtual Auto-Messaging Processing System	48	
		3.5.1 Introduction	48	
		3.5.2 Concepts Of Operation	48	
		3.5.3 Message Handling Concept	49	
		3.5.4 Features	50	

	3.6	Autom	atic Switching And Distribution System (ASAI	D S)54
		3.6.1	Security	55
		3.6.2	Audit Trail Log	55
		3.6.3	User Access Right	56
		3.6.4	Message Reception	56
		3.6.5	Message Preparation	58
		3.6.6	Message Transmission	59
		3.6.7	System Database	60
		3.6.8	Communications Interface	61
		3.6.9	Media	62
		3.6.10	Statistic	62
	3.7	Instant	Messaging System	63
		3.7.1	Background	63
		3.7.2	Advantages	64
		3.7.3	Disadvantages	65
	3.8	Virtua	Messenger	65
		3.8.1	Features	66
	3.9	ISO 91	26	69
		3.9.1	ISO 9126 Quality Characteristics	69
		3.9.2	ISO 9126 Quality Characteristics Analysis	72
	3.10	Litera	ture Study Conclusion	76
CHAPTER IV	МЕТ	HODO	LOGY	77
	4.1	Introdu	action	77
	4.2	Softwa	re Process	78
		4.2.1	Maturity	
		4.2.2	Management	
	4.3	Softwa	are Development Standard	
		4.3.1	Project And Requirements Planning	
		4.3.2	Product Requirements And Specification Analy	
			84	, -
	4.4	Proble	m Solving Methodology	85

		4.4.1	Object Oriented Programming	5
		4.4.2	Unified Modeling Language87	7
	4.5	Syster	ns Architecture	8
CHAPTER V	PRO	JECT	DISCUSSION90	D
	5.1	Outpu	t Analysis90	0
		5.1.1	VirSiRD System Modules	0
		5.1.2	Quality Achievement	2
	5.2	Const	raints	4
		5.2.1	Non IT Background	4
		5.2.2	Product Oriented Company	4
		5.2.3	Improper Designed Project Architecture	4
		5.2.4	Requirements Were Incomplete	5
		5.2.5	Lack Of Team Members	5
		5.2.6	Artifacts Were Not Synchronized To All Team	
		Memb	ers	5
	5.3	Recon	nmendations	5
CHAPTER V1			ION	
	RIR	LIUGK	APHY 101	1

LIST OF TABLES

TABLE NO.TITLEPAGES

2.1	Project Resources	9
2.2	Projects Organization	9
3.1	ISO 9126 Quality Characteristics	69
3.2	VirSiRD Functionality	72
3.3	VirSiRD Reliability	73
3.4	VirSiRD Efficiency	73
3.5	VirSiRD Usability	74
3.6	VirSiRD Maintainability	74
3.7	VirSiRD Portability	75
5.1	Use Cases Analysis	90
5.2	Scenario Analysis	91

LIST OF FIGURES

FIGURE NO. TITLE

PAGES

1.0	Management Structure	2
3.1	TLDMNet Main Screen	19
3.2	E-Mail Screen (A)	20
3.3	E-Mail Screen (B)	20
3.4	Signal Distribution Screen	21
3.5	Leave Application Screen	22
3.6	Vehicle Application Screen	23
3.7	Duty Roster Screen	24
3.8	Daily Order Screen	25
3.9	Screen for conference room reservation	26
3.10	Search Engine Screen	27
3.11	Electronic Calendar Screen	28
3.12	Task Screen	29
3.13	Contacts Screen	29
3.14	Electronic File Screen	30
3.15	Document Screen in Public Folder	31
3.16	Signal Reader Icon	32
3.17	Main Signal Interface Window	33
3.18	Folder Icon	33
3.19	SIAWARA Signal Form	34
3.20	BERITERA Signal Form	35
3.21	GUDRR Signal Form	36
3.22	UDRR Signal Form	36
3.23	Signal Form Guide	37
3.24	Draft Folder	39

3.25	Detail Button for Clarification	40
3.26	In-Box Folder	40
3.27	Out-Box Folder	41
3.28	Action Folder	41
3.29	Action Folder	42
3.30	Send Signal Folder	43
3.31	Deleted Signal Folder	43
3.32	Rejected Signal Folder	44
3.33	Approved Signal Folder	44
3.34	Query Signal Folder	45
3.35	Profile Menu	45
3.36	Changing User Profile	46
3.37	Option Menu	46
3.38	Query Folder	47
3.39	Message Retrieval Capability	51
3.40	Status Monitoring System	53
3.41	Centralized Password Management	53
3.42	Signal Tracing Feature	54
3.43	ASADS Login Window	54
3.44	Audit Trial Log	55
3.45	Message Template	58
3.46	Storage and Retrieval	60
3.47	Statistic	62
4.1	Networking of TLDMNet	78
4.2	VSS Maintenance Life Cycle For	
	Undocumented System	81
4.3	VAMPS Main Concept Diagram	89
5.1	System Tree View	93
5.2	System Main Interfaces	93

LIST OF APPENDICES

APPENDIX TITLE PAGES

APPENDIX A: GANNT CHART	102
APPENDIX B: ISO 9126 Questionnaires	103

LIST OF ACRONYMS

ACP123	Allied Communications Publication number 123
ACP127	Allied Communications Publication number 127
ACP	Availability Capacity Payment
AES	Advanced Encryption Standard
CASE	Centre for Advance Software Engineering
CD	Compact Disc
CSC	Computer Software Configuration
CSU	Computer Software Unit
DES	Data Encryption Standard
I/O	Input output
IDE	Integrated Development Environment
IPX	Internetwork Packet Exchange
IRS	Interface Requirement Specification
ISO	International Standard Organization
JPS	Jabatan Pengairan Selangor
LAN	Local Area Network
MS	Microsoft
NIST	National Institute of Standards and Technology
PCR	Problem Change Request
PCSB	Petronas Carigali Sdn Bhd
PPA	Power Purchase Agreement
PPSB	Prai Power Sdn Bhd
RMN	Royal Malaysian Navy
RTU	Remote Transmission Unit
SCADA	Supervisory Control And Data Acquisition
SDD	Software Design Document
SDP	Software Development Plan

SRS	Software Requirement Specification
STD	Software Test Document
TCP/IP	Internet Protocol Suite
TNB	Tenaga Nasional Berhad
TJSB	Teknik Janakuasa Sdn Bhd
TLDMNet	Tentera Laut Diraja Malaysia Networking
UML	Unified Modeling Language
VCL	Visual Component Language
VABS	Virtual Auto Billing System
VAMPS	Virtual Automatic Message Processing System
VirSiRD	Virtual Signal Reader/Drafter
VirQMS	Virtual Quotation Management System
VSS	Virtual Softnet Solutions Sdn Bhd
WAN	Wide Area Network

CHAPTER 1

INTRODUCTION

1.1 Company Background

Virtual Softnet Solutions Sdn. Bhd. was founded by Mr. Abu Bakar Hj Hassan in April 1998. This company was formerly known as Virtual Software & Networks Enterprise. For the first three months, this company started its business in Sg. Petani, Kedah. Thinking about business opportunity, this company shifted to Sitiawan, Perak for expansion strategies and to seek more business opportunities especially for Royal Malaysian Navy (RMN). In December 2000, Virtual Software & Networks Enterprise changed its name to Virtual Softnet Solutions Sdn. Bhd. (VSS) upgraded its status from Enterprise to Sdn. Bhd. (Private Limited) to cope with the requirement of the Royal Malaysian Navy. After about five years of operation in Sitiawan, VSS again moved to its own building in Manjung Business Centre.

Today, the company has taken one step ahead as one of local capable software house in Information Technology (IT) consultation, software development and system integrator. This company has been involved not only in local market but also international market. This happened in Oct 2002, when Rohde & Schwarz Co. GmbH, Bremen, Germany, purchased ship communication system software known as Automatic Signal Switching And Distribution System (ASADS). ASADS was purchased for the used of RMN ships which were built in Germany. With this purchase, shown that the international company recognized this company.

1.2 Company Structure

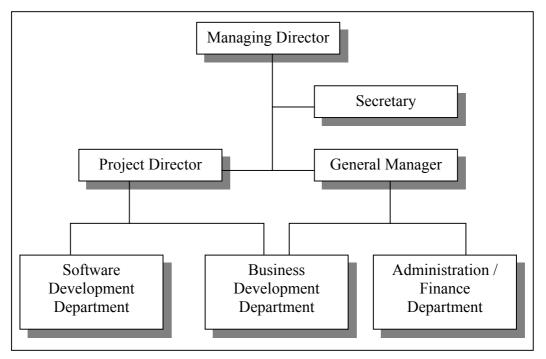


Figure 1.0: Management Structure

The structure of the company is separated into 2 sections, which are the management and software development. General Manager heads the Management Department and Project Director heads the Software Development Department. This structure enables VSS people to work independently and focusing into their relevant expertise and facilitates the development skills among themselves. VSS also created in-between department, which called Business Development Department as the very dynamic and progressive department to fulfill the company needs in marketing, maintenance and support. The uniqueness of this department was that they might occupy their people from both department of Software Development Department and Administration/Finance Department to form a special team to tackle any specific project.

1.3 Company Involvement

Besides other agencies, VSS was involved in software development mostly for the RMN. This company used Borland C++ Builder to develop software for their clients. They have expertise that exposed with Navy signal protocol ACP127 and ACP123, as they are the main software provider for signal communication in RMN. The product that comply with the Navy messaging protocol known as Virtual Automatic Message Processing System (VAMPS) for the RMN and Virtual Signal Reader/Drafter (VirSiRD). Most of RMN ships and bases currently used these applications.

The advantage of this company is that the expertise varies from electrical to software background. With this advantage, many products involve with real-time hardware communication especially in Supervisory Control And Data Acquisition (SCADA) system were successfully delivered. The software developed has the capabilities in communicating to Remote Transmission Unit (RTU), modem, and other equipment that support RS232 or TCP/IP protocol. Examples of the products are: -

- a. Virtual Performance Test System for Lumut Power Plant.
- b. SCADA system for Lembaga Air Perak.
- c. SCADA system for Kulim Hitech Water Treatment Plant.
- d. Pump House Control System for JPS Negeri Selangor.
- e. Tidal Gate Control System for JPS Negeri Selangor.

With the wide use of internet technology to become part of industry business style, this company also doesn't restrict the opportunity in developing system using web based. Support with the C++ Builder expertise, all the limitation of web application were solved such as in providing real time monitoring and control system and integration with other system. Some examples of the products developed by this company under this web-based category are: -

a. Metocean PCSB Intranet Website for Petronas Carigali Sdn. Bhd.

- b. 13e2Blading Web Based System for Teknik Janakuasa Sdn. Bhd.
- c. Kasturi-Net for KD Kasturi, TLDM.
- d. QueSystem for Majlis Perbandaran Manjung.
- e. FSD E-Purchase System

1.4 **Problem Statement**

Tentera Laut Diraja Malaysia Networking (TLDMNet) is an application platform used in the RMN as one of means for communication and electronic administration via intranet. RMN officer now can send and receive signals through TLDMNet. This scenario happens when VirSiRD, a signal's software was integrated with TLDMNet. VirSiRD was developed according to ACP 127 protocol. Prior to this, RMN officers have to wait for the distribution signal in the form of printed papers. In addition, there are also e-mail and office automation or electronic administration facilities had been provided.

However, these types of administration and communication's tools are not a real-time communication because of the delay factor. Delay can caused late of decision making, implementation and will produced inefficiency result. To date, there is a real-time communication tools available in the market called Instant Messenger (IM). Bantu, a secure IM was given a chance by the US government to be applied in US Armed Forces. Inline with the government policy "buy local product", today we have local IM known as Virtual Messenger (VM). Therefore VM should be introduced in the RMN service as a complement to provide the real time electronic communication. Since VirSiRD is already become one of the TLDMNet tool, this project will integrate VirSiRD with VM to make TLDMNet more sophisticated.

VirSiRD that is currently used in the RMN is mainly for sending official messages. Normally, before something official come up, there are a few things need to be clarified. So far, using fax or telephone has done it. Using fax and telephone

are limited only for text and voice. Sometime, information might be in the form of graph, photo or even need to transfer files. All these kind of information sending will be eased if instant messaging is introduced.

Another problem is that there was no software documents ever produced for the existing system. In the long term, this can contribute to the difficulties if product needs to be upgraded or maintained. System quality also became issues since no specific procedures or evaluations to claim the level of the system achievement.

BIBLIOGRAPHY

- Basili, V.R.; Selby, R.W.; Hutchens, D.H (1986). "Experimentation in Software Engineering". IEEE Transactions on Software Engineering. Page 733-743
- Bob Hughes and Mike Cotterell (2002). "Software Project Management." McGraw-Hill, Berkshire, England.
- Eric Rescorla (1972). "SSL and TLS: Designing and Building Secure System." Addison-Wesley. Page 1.
- Fenton, N (1991). "Software Metrics" A Rigorous Approach. Chapman & Hall, London, UK.
- Grady Booch (2000). "Visual Modeling With Rational Rose 2000 and UML." Addison-Wesley.
- Jesse Liberty (1998). "Beginning Object Oriented and Design With C++." Wrox Press Limited, Birmingham, UK.
- Jason T.Roff (2003). "UML: A Beginner's Guide." McGraw-Hill, California, USA.
- Kazman, R., Abowd, G., Bass, Len., and Clements, P.(November 1996). "Scenario-Based Analysis of Software Architecture". IEEE Software.
- Roger S. Pressman (2001). "Software Engineering. A Practitioner's Approach." McGraw-Hill International Edition.
- Steve McConnell (1996). "Rapid Development." Microsoft Press. Page 421.

"Army, Air Force Merge Instant Messaging Systems." By Henry S. Kenyon. http://corp.bantu.com/

- ISO/IEC TR 9126-1:2001, Software engineering Product Quality Part 1: Quality Model.
- ISO/IEC TR 9126-3:2003(E), Software engineering Product Quality Part 1: Internal Metrics.