2,814 research outputs found

    Internet of Things for Sustainability: Perspectives in Privacy, Cybersecurity, and Future Trends

    Get PDF
    In the sustainability IoT, the cybersecurity risks to things, sensors, and monitoring systems are distinct from the conventional networking systems in many aspects. The interaction of sustainability IoT with the physical world phenomena (e.g., weather, climate, water, and oceans) is mostly not found in the modern information technology systems. Accordingly, actuation, the ability of these devices to make changes in real world based on sensing and monitoring, requires special consideration in terms of privacy and security. Moreover, the energy efficiency, safety, power, performance requirements of these device distinguish them from conventional computers systems. In this chapter, the cybersecurity approaches towards sustainability IoT are discussed in detail. The sustainability IoT risk categorization, risk mitigation goals, and implementation aspects are analyzed. The openness paradox and data dichotomy between privacy and sharing is analyzed. Accordingly, the IoT technology and security standard developments activities are highlighted. The perspectives on opportunities and challenges in IoT for sustainability are given. Finally, the chapter concludes with a discussion of sustainability IoT cybersecurity case studies

    Internet of Things for Sustainable Community Development: Introduction and Overview

    Get PDF
    The two-third of the city-dwelling world population by 2050 poses numerous global challenges in the infrastructure and natural resource management domains (e.g., water and food scarcity, increasing global temperatures, and energy issues). The IoT with integrated sensing and communication capabilities has the strong potential for the robust, sustainable, and informed resource management in the urban and rural communities. In this chapter, the vital concepts of sustainable community development are discussed. The IoT and sustainability interactions are explained with emphasis on Sustainable Development Goals (SDGs) and communication technologies. Moreover, IoT opportunities and challenges are discussed in the context of sustainable community development

    Emerging Technologies

    Get PDF
    This monograph investigates a multitude of emerging technologies including 3D printing, 5G, blockchain, and many more to assess their potential for use to further humanity’s shared goal of sustainable development. Through case studies detailing how these technologies are already being used at companies worldwide, author Sinan Küfeoğlu explores how emerging technologies can be used to enhance progress toward each of the seventeen United Nations Sustainable Development Goals and to guarantee economic growth even in the face of challenges such as climate change. To assemble this book, the author explored the business models of 650 companies in order to demonstrate how innovations can be converted into value to support sustainable development. To ensure practical application, only technologies currently on the market and in use actual companies were investigated. This volume will be of great use to academics, policymakers, innovators at the forefront of green business, and anyone else who is interested in novel and innovative business models and how they could help to achieve the Sustainable Development Goals. This is an open access book

    A Systematic Review on Social Robots in Public Spaces: Threat Landscape and Attack Surface

    Get PDF
    There is a growing interest in using social robots in public spaces for indoor and outdoor applications. The threat landscape is an important research area being investigated and debated by various stakeholders. Objectives: This study aims to identify and synthesize empirical research on the complete threat landscape of social robots in public spaces. Specifically, this paper identifies the potential threat actors, their motives for attacks, vulnerabilities, attack vectors, potential impacts of attacks, possible attack scenarios, and mitigations to these threats. Methods: This systematic literature review follows the guidelines by Kitchenham and Charters. The search was conducted in five digital databases, and 1469 studies were retrieved. This study analyzed 21 studies that satisfied the selection criteria. Results: Main findings reveal four threat categories: cybersecurity, social, physical, and public space. Conclusion: This study completely grasped the complexity of the transdisciplinary problem of social robot security and privacy while accommodating the diversity of stakeholders’ perspectives. Findings give researchers and other stakeholders a comprehensive view by highlighting current developments and new research directions in this field. This study also proposed a taxonomy for threat actors and the threat landscape of social robots in public spaces.publishedVersio

    Preliminary Analysis of Cyberterrorism Threats to Internet of Things (IoT) Applications

    Get PDF
    The era of Internet of Things (IoT) being a combination of various networking and computing technologies already in a state of growth that introduces a new age of data aggregation mechanism and ubiquitous connectivity among physical objects. However, the most of the cyber threats still remain unsolved and may create huge impact on our lives. One of the possible major changes in impact landscape is the imminent physical results of cyber threats as IoT technologies enable closer interactions between humans and information systems. Although the cyber threats to critical infrastructures have been highly considered by the cyber security community, the cases with catastrophic physical impacts are rare which means the impact posture has not exactly shifted from information centric impacts to physical ones. However, widespread usage of IoT technologies have the potential to accelerate this shift which may bring the threat of cyber terrorism into the picture. This paper provides a preliminary comparison of a typical IoT application in health area with an industrial control system (ICS) in order to show that IoT applications are required to be deeply assessed as terrorists may attack them with easy-to implement cyberattacks for the purpose of creating physical harm

    Development of Criteria for Mobile Device Cybersecurity Threat Classification and Communication Standards (CTC&CS)

    Get PDF
    The increasing use of mobile devices and the unfettered access to cyberspace has introduced new threats to users. Mobile device users are continually being targeted for cybersecurity threats via vectors such as public information sharing on social media, user surveillance (geolocation, camera, etc.), phishing, malware, spyware, trojans, and keyloggers. Users are often uninformed about the cybersecurity threats posed by mobile devices. Users are held responsible for the security of their device that includes taking precautions against cybersecurity threats. In recent years, financial institutions are passing the costs associated with fraud to the users because of the lack of security. The purpose of this study was to design, develop, and empirically test new criteria for a Cybersecurity Threats Classification and Communication Standard (CTC&CS) for mobile devices. The conceptual foundation is based on the philosophy behind the United States Occupational Safety and Health Administration (OSHA)’s Hazard Communication Standard (HCS) of Labels and Pictograms that is mainly focused on chemical substances. This study extended the HCS framework as a model to support new criteria for cybersecurity classification and communication standards. This study involved three phases. The first phase conducted two rounds of the Delphi technique and collected quantitative data from 26 Subject Matter Experts (SMEs) in round one and 22 SMEs in round two through an anonymous online survey. Results of Phase 1 emerged with six threats categories and 62 cybersecurity threats. Phase 2 operationalized the elicited and validated criteria into pictograms, labels, and safety data sheets. Using the results of phase one as a foundation, two to three pictograms, labels, and safety data sheets (SDSs) from each of the categories identified in phase one were developed, and quantitative data were collected in two rounds of the Delphi technique from 24 and 19 SMEs respectively through an online survey and analyzed. Phase 3, the main data collection phase, empirically evaluated the developed and validated pictograms, labels, and safety data sheets for their perceived effectiveness as well as performed an analysis of covariance (ANCOVA) with 208 non-IT professional mobile device users. The results of this study showed that pictograms were highly effective; this means the participants were satisfied with the characteristics of the pictograms such as color, shapes, visual complexity, and found these characteristics valuable. On the other hand, labels and Safety Data Sheets (SDS) did not show to be effective, meaning the participants were not satisfied or lacked to identify importance with the characteristics of labels and SDS. Furthermore, the ANCOVA results showed significant differences in perceived effectiveness with SDSs with education and a marginal significance level with labels when controlled for the number of years of mobile device use. Based on the results, future research implications can observe discrepancies of pictogram effectiveness between different educational levels and reading levels. Also, research should focus on identifying the most effective designs for pictograms within the cybersecurity context. Finally, longitudinal studies should be performed to understand the aspects that affect the effectiveness of pictograms

    A Framework for Integrating Transportation Into Smart Cities

    Get PDF
    In recent years, economic, environmental, and political forces have quickly given rise to “Smart Cities” -- an array of strategies that can transform transportation in cities. Using a multi-method approach to research and develop a framework for smart cities, this study provides a framework that can be employed to: Understand what a smart city is and how to replicate smart city successes; The role of pilot projects, metrics, and evaluations to test, implement, and replicate strategies; and Understand the role of shared micromobility, big data, and other key issues impacting communities. This research provides recommendations for policy and professional practice as it relates to integrating transportation into smart cities

    The digitalization of the electricity system : Impact assessment of digital technologies on the electricity system and its main stakeholders

    Get PDF
    This work explores the state of digitalization of the European electricity sector and assesses the impacts of digital technologies on the electricity system and its main stakeholders. Digital technologies, such as smart meters and 5G connectivity, represent a powerful tool for system operators to face the new challenges brought about by the decarbonization of the energy sector. By means of an extensive literature review, the position of the energy community on the topic of digitalization, the regulatory framework around it, as well as the state of deployment of digital technologies in Europe are assessed. With the use of a survey as research tool, the impacts of digital technologies on the main stakeholders of the electricity system (namely, transmission and distribution system operators) are assessed. These are based on seven predefined Key Performance Indicators (KPIs) and classified into four main impact categories – technical, economic, environmental, and social. The results of the survey show not only a positive stand of system operators on digital technologies, but also highlight specific benefits and challenges brought about by their integration. By improving electricity networks observability and monitoring, digital technologies are enhancing electricity systems’ stability and reliability and improving operational efficiency, while at the same time favoring customer engagement and the integration of more renewable generation. The increased amount of data shared, however, comes with additional threats related to cyber-security and privacy. An extensive discussion of these and other benefits and challenges experienced by system operators due to digital technologies is provided in this wor

    TCitySmartF: A comprehensive systematic framework for transforming cities into smart cities

    Get PDF
    A shared agreed-upon definition of "smart city" (SC) is not available and there is no "best formula" to follow in transforming each and every city into SC. In a broader inclusive definition, it can be described as an opportunistic concept that enhances harmony between the lives and the environment around those lives perpetually in a city by harnessing the smart technology enabling a comfortable and convenient living ecosystem paving the way towards smarter countries and the smarter planet. SCs are being implemented to combine governors, organisations, institutions, citizens, environment, and emerging technologies in a highly synergistic synchronised ecosystem in order to increase the quality of life (QoL) and enable a more sustainable future for urban life with increasing natural resource constraints. In this study, we analyse how to develop citizen- and resource-centric smarter cities based on the recent SC development initiatives with the successful use cases, future SC development plans, and many other particular SC development solutions. The main features of SC are presented in a framework fuelled by recent technological advancement, particular city requirements and dynamics. This framework - TCitySmartF 1) aims to aspire a platform that seamlessly forges engineering and technology solutions with social dynamics in a new philosophical city automation concept - socio-technical transitions, 2) incorporates many smart evolving components, best practices, and contemporary solutions into a coherent synergistic SC topology, 3) unfolds current and future opportunities in order to adopt smarter, safer and more sustainable urban environments, and 4) demonstrates a variety of insights and orchestrational directions for local governors and private sector about how to transform cities into smarter cities from the technological, social, economic and environmental point of view, particularly by both putting residents and urban dynamics at the forefront of the development with participatory planning and interaction for the robust community- and citizen-tailored services. The framework developed in this paper is aimed to be incorporated into the real-world SC development projects in Lancashire, UK

    Internet of Things for Sustainable Human Health

    Get PDF
    The sustainable health IoT has the strong potential to bring tremendous improvements in human health and well-being through sensing, and monitoring of health impacts across the whole spectrum of climate change. The sustainable health IoT enables development of a systems approach in the area of human health and ecosystem. It allows integration of broader health sub-areas in a bigger archetype for improving sustainability in health in the realm of social, economic, and environmental sectors. This integration provides a powerful health IoT framework for sustainable health and community goals in the wake of changing climate. In this chapter, a detailed description of climate-related health impacts on human health is provided. The sensing, communications, and monitoring technologies are discussed. The impact of key environmental and human health factors on the development of new IoT technologies also analyzed
    corecore