
Citation: Oruma, S.O.;

Sánchez-Gordón, M.;

Colomo-Palacios, R.; Gkioulos, V.;

Hansen, J.K. A Systematic Review on

Social Robots in Public Spaces:

Threat Landscape and Attack Surface.

Computers 2022, 11, 181. https://

doi.org/10.3390/computers11120181

Academic Editors: Osvaldo Gervasi

and Bernady O. Apduhan

Received: 8 November 2022

Accepted: 6 December 2022

Published: 8 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Review

A Systematic Review on Social Robots in Public Spaces: Threat
Landscape and Attack Surface
Samson O. Oruma 1 , Mary Sánchez-Gordón 1 , Ricardo Colomo-Palacios 1,2,* , Vasileios Gkioulos 3

and Joakim K. Hansen 4

1 Faculty of Computer Sciences, Østfold University College, 1757 Halden, Norway
2 Escuela Técnica Superior de Ingenieros Informáticos, Universidad Politécnica de Madrid,

28660 Boadilla del Monte, Spain
3 Faculty of Information Technology and Electrical Engineering,

Norwegian University of Science and Technology, 2802 Gjøvik, Norway
4 RSS Department, Institute for Energy Technology, 1777 Halden, Norway
* Correspondence: ricardo.colomo-palacios@hiof.no or ricardo.colomo@upm.es

Abstract: There is a growing interest in using social robots in public spaces for indoor and outdoor
applications. The threat landscape is an important research area being investigated and debated by
various stakeholders. Objectives: This study aims to identify and synthesize empirical research on
the complete threat landscape of social robots in public spaces. Specifically, this paper identifies the
potential threat actors, their motives for attacks, vulnerabilities, attack vectors, potential impacts of
attacks, possible attack scenarios, and mitigations to these threats. Methods: This systematic literature
review follows the guidelines by Kitchenham and Charters. The search was conducted in five digital
databases, and 1469 studies were retrieved. This study analyzed 21 studies that satisfied the selection
criteria. Results: Main findings reveal four threat categories: cybersecurity, social, physical, and
public space. Conclusion: This study completely grasped the complexity of the transdisciplinary
problem of social robot security and privacy while accommodating the diversity of stakeholders’
perspectives. Findings give researchers and other stakeholders a comprehensive view by highlighting
current developments and new research directions in this field. This study also proposed a taxonomy
for threat actors and the threat landscape of social robots in public spaces.

Keywords: social robots; humanoids; threat landscape; attack surface; public space; cybersecurity;
privacy; safety

1. Introduction

Social robotics is a rapidly growing technology with the potential to address some
of our modern societal challenges [1]. The importance of social robots in today’s soci-
ety is evident from their ability to provide personalized human-like services in elderly
care [2,3], general healthcare [4], hospitalized children care [5], mental healthcare [6], de-
mentia care [7–9], education [10–13], language studies [14–17], entertainment [18], retail
services [19], tourism [20], hospitality [21,22], public spaces [23–25], and during pandemics
like COVID-19 [26,27] or in other possible cases. The social robotics market was valued
at USD 1.98 billion in 2020 and will reach USD 11.24 billion in 2026 [28], with healthcare
being the main driver. The European Union, in collaboration with industrial partners, is
investing EUR 2.6 billion in ten years of research (2021–2030) for Artificial Intelligence
(AI), data, and robotics [29], of which social robots represent a practical embodiment of all
these technologies.

According to the United Nations (ESCAP), the number of older persons (60+) in 2021 is
651 m (14% of the global population), and it is estimated to rise to one quarter by 2050 [30].
This development attests to advances in medical healthcare; however, there is a serious
concern, as the number of ageing people already outnumbers the number of children
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younger than five years as of 2020 [31]. The shortage of competent and committed paid
long-term elder care workers is an open challenge [32] that social robots can conveniently
resolve. However, introducing social robots to public spaces has attracted several concerns
from the research community, industry, policymakers, and other stakeholders, ranging
from security, safety, privacy, ethical, legal, and technological concerns [25,33–37]. The
security and safety of humans and the protection of the data collected by these social robots
in public spaces are the foremost of all these concerns [38,39].

Social robots interact with humans and the environment through their numerous
sensors and actuators, which are vulnerable to diverse attacks [40,41]. Most social robot
processing functions are performed at the edge/cloud [42,43] through wireless commu-
nication links [44] due to limitations on battery capacity, physical space, and the systems’
demanding storage and computational needs, which creates new attack surfaces for threat
actors. When social robots are connected to the Internet, they are exposed to the same threats
and vulnerabilities as other Internet of Things (IoT) systems. A review of specific features
and challenges in the IoT systems impacting their security and reliability was conducted by
Bures et al. [45]. Similarly, Mahmoud et al. [46] reviewed literature about the security con-
cerns specific to IoT layers and devices by implementing corresponding countermeasures.

Humanoids generally combine hardware and software components from trusted
supply chain entities. This trusted relationship introduces another element of a possible
attack surface. The public spaces where these social robots will operate are dynamic (subject
to human and environmental interference), thereby introducing the possibility of several
physical attacks such as theft, vandalism, and sabotage. There is also the risk of physical
harm to users during interaction due to cyber-attacks or malfunction [47]. If a humanoid is
under the control of a malicious actor, it can result in a terrorist attack [48].

Unlike their other autonomous counterparts, autonomous vehicles (AVs) and un-
manned aerial vehicles (UAVs) with relatively high operational speeds, social robots will
operate at relatively low speeds or in stationary positions in some cases. This feature also
introduces the humanoids to passive attacks like reconnaissance and non-invasive attacks
like spoofing, jamming, blinding, and so on [49]. Other potential sources of attacks on
social humanoids include the human element [50] and the AI system [51]. In this context, a
current challenge is inadequate knowledge of the threat actors, attack surface, and threat
landscape for social robots in public spaces. There is also a need for organizations and
other stakeholders to understand potential attack scenarios so they can analyze and man-
age the risks associated with social robots as a business endeavor. Therefore, identifying
potential threats and analyzing their impacts is crucial to any business continuity plan and
mandatory to avoid regulatory sanctions.

The need for security, safety, privacy, and ethical consideration of social robots in
public spaces has been discussed in previous works [25,52] without a framework for its
implementation. Previous literature reviews provided a definition of social robots and their
general application domains [23,53,54]. Other studies highlighted the potential applications
of social robots in specific fields such as education [10,55–57], language studies [14–17],
healthy ageing [58], elderly care [2,3], and mental health [6]. Moreover, other studies have
established cybersecurity threat actors [48,59] and the AI threat landscape [51,60], but not
in the context of social robots in public spaces whose threats exceed cybersecurity concerns.
For example, Giaretta et al. [61] conducted a structured security assessment on Pepper in a
laboratory without considering the particular aspects of public space. To the best of our
knowledge, this is the first literature review on threat actors, attack surface, and threat
landscape of social robots in public spaces.

The main contributions of this review are as follows:

1. A transdisciplinary perspective of threat actors, threat landscape, and attack surface
of social robots in public spaces.

2. A set of comprehensive taxonomies for threat actors and threat landscape.
3. A comprehensive attack surface for social robots in public spaces.
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4. A description of four potential attack scenarios for stakeholders in the field of social
robots in public spaces.

The relevance of this study is threefold: (i) it discusses the security and privacy
concerns of using social robots in public spaces, (ii) it provides guidance on risk assessment
and management of social robots in public space, and (iii) it highlights current development
and new research directions for social robots in public spaces.

The remainder of this paper is as follows. Section 2 presents background and related
works. Section 3 presents the methodology adopted for this study. Section 4 contains the
results obtained. Section 5 is for discussion, including limitations, threats to validity, and
recommendations for future research. Section 6 presents two taxonomies, threat actors and
threat landscape, while Section 7 concludes the paper.

2. Background and Related Works

This section introduces concepts and definitions used in this study. The first sub-
section introduces social robots, social robot sensors, public space, assets, vulnerabilities,
threats, threat landscape, attacks, and attack surface. The second subsection presents some
related works.

2.1. Key Concepts and Definitions

We briefly present some background concepts like the definition of social robots, public
space, assets, vulnerabilities, threats, threat landscape, attacks, attack surface, cybersecurity,
safety, and privacy.

2.1.1. Social Robots and Their Sensors

There are several definitions of social robots in previous works. Sarrica et al. [53] sum-
marized five essential properties of social robots after reviewing 143 scientific publications
and online definitions of the term “social robot” published from 2009 to 2015. The proper-
ties are (i) autonomy, (ii) physical embodiment, (iii) ability to sense and humanly respond to
environmental cues, (iv) ability to interact with humans and other robots, and (v) ability to
understand and follow social norms (rules). Essentially, a social robot must have a physical
embodiment (anthropomorphic or non-anthropomorphic) that can autonomously navigate
and interact with humans (not through scripting).

Another indispensable feature is the ability to interact with humans emotionally and so-
cially while complying with acceptable social norms. According to Srinivas Aditya et al. [62],
the fundamental features are perception, cognition, efficiency, interaction, and ethics. At
the basic design level, a social robot receives signals from the environment (public space)
through its sensors and responds through its actuators [63]. These sensors can be internal
or external (environmental). Internal sensors help maintain the internal dynamics and
stability of the robot. External sensors are responsible for perceiving the environment;
they handle tasks such as vision, detection, range measurement, position measurement,
tactile measurement, localization, and navigation of the public space (environment). Since
sensors are the gateway to social humanoids, they represent a potential surface of attacks
(see a list of typical sensors of social robots in Table A1 of Appendix A [64]). For a social
humanoid to be intelligent in a human-like way during an interaction, it must possess
sensors that emulate those of humans [64]. An AI system processes the data collected by
these sensors before the social robot can understand and decide what type of response to
give. Data collection is indispensable in social humanoids’ operation; however, some of
the collected data may be sensitive. Social humanoids collect a massive amount of data
while interacting with the environment. Due to size and battery constraints, most of the
computation, storage, and AI operations take place in the edge/cloud through a wireless
communication link.
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2.1.2. Public Space

In this study, public space is a publicly or privately owned space, an inside or outside
place, that is accessible to all people, regardless of gender, race, ethnicity, age, or socio-
economic level [23,65]. Access to these locations may be within certain hours of the day (as
in the case of shopping malls, hospitals, elderly care homes, museums, etc.). Laws, culture,
and institutional values strongly regulate public space; hence, appropriate behaviors and
activities are expected in public spaces [66]. Social robots operating in public spaces are
under little or no supervision; as such, users of the public space can have physical access
to them. These locations are subject to natural (environmental) and human factors, which
are dynamic and unpredictable. As people attribute values to a place from experience and
interaction quality in such locations [67], social robots must comply with societal norms
and behave as expected when operating in public spaces.

2.1.3. Assets and Vulnerabilities

According to NIST SP 800-160 [68], assets are significant applications, general sup-
port systems, high-impact programs, physical facilities, mission-critical systems, a team
of people, a piece of machinery, or logically connected sets of systems. Assets include
anything valuable for achieving company goals, which might be tangible (for example, a
piece of hardware, software, firmware, a computer platform, a network device, or other
technological components) or intangible (e.g., information, data, trademark, copyright,
patent, intellectual property, image, or reputation). From the above definition, the assets
of social robots in public spaces could include hardware, software, communication, cloud
services, AI services, humans, and supply chains.

Vulnerabilities are “weaknesses or flaws in an information system, system security
procedures, internal controls, or implementation that could be exploited or triggered by a
threat source” [69]. They can also be viewed as security exposures, bugs, deficiencies, or
errors in any of the components stated above.

Threat actors would use attack vectors to exploit vulnerabilities in the social robots.
Therefore, the MITRE Common Attack Pattern Enumeration and Classification (CAPEC) [70]
attack domain could be used to classify the asset groups. The groups are software, hard-
ware, communication, supply chain, human, cloud, and AI categories. This classification is
consistent with a recent review on robotics cybersecurity conducted by Yaacoub et al. [71].
Social robots’ software components consist of the operating system (ROS) and applications
(e.g., gazebo) [72]. Their hardware component includes social robots’ sensors, actuators,
electronic control units (ECU), torso (body and arms), microcontroller/firmware, and
battery [73]. Supply chain components overlap all other elements that incorporate the
trusted entities involved in their manufacture, procurement, and use. The communication
component includes communication devices and protocols of the social robot [44]. The
human component includes users, end users, and other non-users (bystanders, passers-by,
children, elderly, and the disabled) within the immediate vicinity of the social robot. Other
stakeholders include not only the crew members of the supply team, such as hardware,
software, cloud, AI, and communication, but also social robot business owners and regula-
tors; finally, cloud and AI services are necessary for the social robot’s storage, computation,
and cognitive intelligence [51].

2.1.4. Threats and Threat Landscape

A threat is “any circumstance or event with the potential to adversely impact orga-
nizational operations (including mission, functions, image, or reputation), organizational
assets, individuals, other organizations, or the Nation through an information system via
unauthorized access, destruction, disclosure, or modification of information, and or denial
of service”, according to the National Institute of Standards and Technology (NIST) [74].
Moreover, the European Union Agency for Cybersecurity (ENISA) [75] poses that “a threat
landscape is a collection of threats in a particular domain or context, with information on
identified vulnerable assets, threats, risks, threat actors and observed trends”.
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The term threat landscape has traditionally been associated with cybersecurity threats.
Moreover, a particular domain or context, like social robots in public spaces, calls for a
transdisciplinary approach, as suggested by Dautenhahn et al. [76] and Baxter et al. [77].
Dautenhahn et al. emphasized that social robot researchers need to view Human Robot
Interaction (HRI) as not just an extension of previous efforts of one field, as there are
unique differences that deserve special consideration. Baxter et al. brought the research
community’s attention to assumptions and technique bias introduced by each discipline
(cognitive science, social science, AI, computer science, HCI, psychology, engineering, and
robotics), resulting in differences in methods, difficulty in reproducing results, and low
use of comparable measures among researchers. Similarly, Fortunati et al. [66] proposed
that social robots in public space consist of three vital elements, social robots, humans, and
the environment, using the triadic model proposed by Höflich [78]. According to Höflich,
social robot interaction involves both a relationship and communication via a medium
(social robots), where the medium is both a thing and an entity. The author referred to this
as the ego–alter–robot triadic relationship. Therefore, the threat landscape for social robots
in public spaces should consider both cybersecurity threats and physical, social, and public
space threats.

Mayoral-Vilches [79] proposed two broad groups of threat direction for social robots:
(i) threats directed to social robots by the environment (public space to a social robot—
PS2SR) and (ii) threats directed to the environment by social robots (social robots to the
public space—SR2PS). The first group (PS2SR) are threats directed to social robots by the
environment (humans, properties, and public space—nature), while the second group
addresses security threats of social robots to the immediate environment like property
damage, threats to human privacy, and social norm violations.

Finally, cybersecurity threats can be classified using the Common Attack Pattern Enu-
merations and Classification (CAPEC) framework proposed by MITRE [70]. It proposes
a taxonomy that includes software, hardware, communication, supply chain, social engi-
neering, and physical attacks. In a recent work by Mavroeidis et al. [59], the motives for an
attack may include taking (or stealing), copying (or reading), denying, deleting, damaging,
or modifying data, while the outcome could be in the form of financial gain, business or
technical advantage, sabotage, damage, or embarrassment.

2.1.5. Attacks and Attack Surface

According to NIST SP 800-12, Revision 1 [80], an attack is “any malicious activity
that attempts to collect, disrupt, deny, degrade, or destroy information system resources
or the information itself. Or an attempt to gain unauthorized access to system services,
resources, or information or an attempt to compromise system integrity, availability, or
confidentiality”. Threat actors exploit vulnerabilities during attacks. Attacks may be
passive or active. In passive attacks, the attackers aim to acquire information about the
targeted system (reconnaissance) without causing any damage or disruption [81]. On the
contrary, active attacks can cause damage or disruption to an information system [82].

An attack surface is the set of points around the perimeter of a social robot component
or its environment where an attacker could attempt to break in, disrupt, or steal data from
the system, component, or environment [83]. From a cybersecurity perspective, the attack
surface is viewed as physical (tangible) and digital (cyber) surfaces. The attack vectors of a
system can also give valuable information about its attack surface.

2.1.6. Cybersecurity, Safety, and Privacy

Cybersecurity, safety, and privacy are three interwoven terms associated with the
threat landscape of social robots in public spaces. A social robot cannot satisfy one of
these terms without either of the other two [34]. A brief definition of those terms is
presented below.

The UK National Cyber Security Strategy 2016–2021 [84] defines cybersecurity as “the
protection of information systems (hardware, software and associated infrastructure), the
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data on them, and the services they provide, from unauthorised access, harm or misuse.
This includes harm caused intentionally by the operator of the system or accidentally as a
result of failing to follow security procedures”.

NIST SP 800-160 [85] defines safety as “freedom from conditions that can cause death,
injury, occupational illness, damage to or loss of equipment or property, or damage to the
environment”. Moreover, EN ISO 13482:2014 specifies the safety requirements for personal
care robots, which also applies to social robots in public spaces. Physical harm prevention
alone does not address the psychological harm that social robots can inflict on users during
interactions [86]. From a holistic perspective, the safety of social robots in public spaces
entails both the physical and psychological safety of users and the freedom of social robots
from abuse, sabotage, theft, and destruction.

NIST IR 8053 [87] defines privacy as “freedom from intrusion into the private life or
affairs of an individual when that intrusion results from undue or illegal gathering and use
of data about that individual”. There are currently no standards for privacy requirements
for social robots in public spaces [37].

2.2. Related Works

To the best of our knowledge, this is the first review addressing the threat landscape
of social robots in public spaces from a transdisciplinary perspective. However, for com-
pleteness, some related studies are briefly presented in the following subsections.

2.2.1. Cybersecurity Threat Actors

Timothy Casey developed the first comprehensive public threat actor library (TAL)
for Intel Corporation in 2007 [88]. The list consists of eight attributes—intent, access,
outcome, limit, resources, skill level, objectives, and visibility—thirty-two sub-attributes,
and twenty-one threat actors. In 2021, the TAL was revised and improved to infer threat
actors’ types and characteristics [59]. Although the TAL provides valuable insights into
understanding threat actors, its classification is too broad for social robots in a public
space. Sailio et al. [48] identified eight threat actors for factories of the future by reviewing
22 different international cybersecurity reports. None of these reports identified the unique
threats from the supply chain and public space peculiar to social robots. Yaacoub et al. [71]
identified three robotics threat sources—malicious users, manufacturers/integrators, and
external adversaries—and ten threat actors without mentioning their information source.
This study is also focused on general robotics; hence, they did not address aspects of supply
chain and environmental threat actors.

2.2.2. Safety and Social Errors in HRI

Lasota et al. [86] highlighted four approaches to safe human–robot interactions: (i) pre-
and post-collision control methods, (ii) motion planning for human and non-human con-
straints, (iii) prediction of human activities, motion, and other robots’ actions, and (iv)
social robots’ behavior adaptation to psychological factors. Moreover, Zacharaki et al. [89]
classified studies on safe HRI to minimize risk into six categories: (i) perception, (ii) cogni-
tion, (iii) action, (iv) hardware features, (v) societal and psychological factors, and (vi) risk
assessment through hazard analysis techniques. These studies focused on safety without
consideration for other aspects of the threat landscapes of social robots, such as social norm
violations and cybersecurity threats.

Tian et al. [90] proposed a taxonomy of social threats (errors) in HRI, focusing on perfor-
mance and social norm violation errors. Authors emphasized the need for social-affective
competence in terms of emotion and social skills during social interactions. Similarly,
Honig et al. [91] reviewed failures in HRI, including technical and interaction-related fail-
ures. Interaction failures could be social norm violations, human errors, and environmental
agent failure. The ability of social robots to interact in a socially acceptable manner is a
significant factor influencing the acceptance and deployment of this new technology.



Computers 2022, 11, 181 7 of 45

2.2.3. Social Robot Security

Mayoral-Vilches [79] reviewed the status of robot cybersecurity based on recent lit-
erature, questionnaires on robotic forums, and recent research results. Findings revealed
that robotics defense mechanisms are complex and still in the early stages (immature), in
most cases not covering the complete threat landscape and highly costly to implement.
Moreover, Mayoral-Vilches concluded that practitioners in social robotics are mostly yet to
observe cyber-attacks and recommended that future research should focus on zero-trust
security approaches. Yaacoub et al. [71] reviewed the security of robots in general from
the perspective of vulnerabilities and attacks. As a result, elements of robots’ threat land-
scape were identified; however, this review lacks a well-defined methodology and does
not discuss the context of public space. The elements identified include threat actors, the
motive for attack, vulnerabilities, different types of attack, and their mitigations. Likewise,
Cornelius et al. [92] surveyed mobile service robot threats, attacks, and defense mecha-
nisms. In 2017, Cerrudo and Apa [93] published a white paper that identified hardware,
software, and communication threats to social robots in laboratory settings. However, none
of these previous studies addressed the threat landscape of social robots in public spaces
considering all the actors.

2.2.4. Cybersecurity Threat Landscape

ENISA [94] is an international body responsible for the annual publication of the
cybersecurity threat landscape since 2013. The threat landscape usually contains cyber
threat intelligence with a specific sectorial taxonomy using an established methodology [95].
We could not find any existing threat landscape for social robots in public spaces. In 2011,
Kim-Kwang Choo [96] mentioned that routine activity theory could reduce the occurrence
of cyber threats. In collaboration with the Berkman Klein Center for Internet and Society of
Harvard University, Microsoft Corporation proposed a threat taxonomy for AI security [60].
The proposed taxonomy can be applied to AI services of social robots in public spaces.

2.2.5. Summary of Related Works

To sum up, the complete threat landscape and attack surface of social robots in public
spaces has received little attention so far. Most studies on threat actors, safety, social
errors, robot security, and threat landscape investigated general robotics security without
considering the peculiarity of social robots in public spaces. This review seeks to address
the topic from the following perspectives:

(i) The public space in which social robots will operate is dynamic and subject to various
human and natural factors.

(ii) Social robots will operate with little or no supervision and very close to users (includ-
ing threat actors), which will increase the probability of attack success.

(iii) The enabling communication technologies for social robots in public spaces are het-
erogeneous, which further increases their attack surface, as the whole system is more
complicated than the sum of its constituent parts.

(iv) The definition of the threat landscape for social robots in public spaces should include
the perspective of all stakeholders and not just the cybersecurity discipline.

3. Methodology

The methodology adopted for this study follows the guidelines by Kitchenham and
Charters [97] for conducting a systematic literature review (SLR) in software engineering.
According to the guidelines, the review process includes three stages: planning the review,
followed by conducting the review and reporting the study. Figure 1 provides an overview
of this study’s research methodology.
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Figure 1. Overview of the research process for this study.

3.1. Planning the Review

According to the guidelines by Kitchenham and Charters [97], the two primary tasks
of the planning stage are determining the research needs and creating a research protocol.
In determining the need for the study, we clearly state the research goals, objectives, and
research questions. A research protocol was also defined to provide a set of complete
instructions on how to conduct the study; specifically, the information source, the search
and filtering strategies, the quality assessment, and data extraction strategies, and how
to report the results. The following subsection will provide more details of the planning
stage activities.

3.1.1. The Need for the Study

A brief description of this study’s research goal, objectives, and research questions are
as follows.

Research goal and objectives. This review aims to systematically review and synthe-
size empirical research on the threat landscape of social robots operating in public spaces.
The primary objective in this study is divided into four sub-objectives: (i) we would like to
investigate and report the trend of empirical research in this field; (ii) we also like to iden-
tify and report the potential threat actors and their motivation for attacks in this domain;
(iii) we want to explore and document social robots’ assets, threats, and vulnerabilities in
public spaces; finally, (iv) we would like to identify and enumerate attack surfaces for social
robots in public spaces.

Research questions are based on the research objectives, and we formulated the
following research questions (RQs) in four groups.

Group 1: Research trend of social robots in public spaces

• RQ1.1: What is the research trend of empirical studies on social robots in public spaces?
• RQ1.2: What is the citation landscape of the primary studies in this area?
• RQ1.3: What are the reported research methods for these empirical studies?

Contribution: Knowing the research focus, types, trends, and publication sources for
social robots in public spaces will give the practitioners and the research community a
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high-level overview of the research landscape. In addition, the research trend can also
review essential studies in this emerging field

Group 2: Threat actors and their motives for attack

• RQ2.1: Who are the reported potential threat actors for social robots in public spaces?
• RQ2.2: What are the reported threat actors’ motives for attack?

Contribution: Knowing the reported threat actors and their motives, especially those
related to social robots, will enhance the development of machine-readable solutions to
mitigate such attacks.

Group 3: Identifying assets, threats, and vulnerabilities

• RQ3.1: What are the reported assets (sub-components) of social robots in public spaces?
• RQ3.2: What are the reported threats?
• RQ3.3: What are the reported vulnerabilities?

Contribution: Answering these questions will provide valuable insights for secu-
rity practitioners, hardware manufacturers, and social robot business owners during risk
analysis and management.

Group 4: Attack surface of social robots in public spaces

• RQ4.1: What are the reported attacks on social robots in public spaces?
• RQ4.2: What are the reported attack scenarios?
• RQ4.3: What are the reported attack impacts?
• RQ4.4: What are the reported attack mitigations?

Contribution: Knowing the reported attack surface before operating social robots in
public spaces is valuable. Social robot researchers, designers, developers, practitioners, and
business owners will benefit from such knowledge.

3.1.2. Developing and Evaluating the Research Protocol

We developed and validated a research protocol for the study during the planning
stage. The research protocol contains guidelines on the information source, search and
filtering strategies, quality assessment, and data extraction/synthesis strategies. In what
follows, we briefly describe our research protocol.

Information source. We included five scientific digital libraries for searching the
primary studies included in this review. These databases are considered the top aca-
demic search engines for computer science, software engineering, and IT security SLR
studies, e.g., [98]. They are also suggested by Kitchenham and Charters [97]. The digital
libraries consulted are ACM digital library, IEEE Xplore, ScienceDirect, SpringerLink, and
Wiley online library (details are available in the study’s Supplementary Materials [99]).

Search strategy. Given the nature of this review, we chose specific keywords to focus
our search on the studies that were most relevant to the topic. The five keywords are
“social robot”, “social humanoid”, “threat”, “attack”, and “vulnerability”. We also included
a single inflected variation of each term, “social robots”, “social humanoids”, “threats”,
“attacks”, and “vulnerabilities”. The first two terms (social robot and humanoid) will ensure
that our search results will have only studies relating to socially interactive robots [100].
The last three terms (threat, attack, and vulnerabilities) will ensure that our search results
only include studies focusing on the threat landscape, attack surface, and threat actors of
such socially interactive robots. We chose these keywords after conducting trial searches
with other keywords such as “companion robots”, “sentient robots”, and “public space
robots”. We identified two related studies during the preliminary searches [61,101], which
were used for testing the results of our final search string.

To ensure consistency of our search results across all five digital libraries, we con-
structed a search string, (“social robot” OR “social robots” OR “social humanoid” OR “social
humanoids”) AND (“attacks” OR “attack” OR “threat” OR “threats” OR “vulnerability”
OR “vulnerabilities”), for the search process. We searched all digital libraries on the 2nd of
August 2022, filtering the search results from January 2010 to December 2021. We began in
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2010 because, according to Google Ngram Viewer (https://books.google.com/ngrams/,
accessed 2 August 2022), that month saw a notable increase in the number of publications
on social robots. Although some relevant studies before January 2010 could be missing,
our primary focus is on the current research in this area, and ten years provide a good
timeframe due to the rapid pace of technological advancement in this field.

Filtering strategy. The guidelines [97] specify that a list of inclusion and exclusion
criteria should be prepared to aid the filtering of search results. Therefore, we generated
the following inclusion and exclusion criteria:

Inclusion criteria include four items:

1. Domain (I1): The main field must be socially interactive robots in public spaces. The
study must explicitly discuss threats, attacks, or vulnerabilities of social robots/humanoids.
Public space in this context refers to any location, indoor or outdoor, accessible to
the members of the public. Access to these public locations is the key to our usage of
public space in this study, not ownership. Also considered as public spaces for this
study are smart homes for elderly care, museums, playgrounds, libraries, medical
centers, or rehabilitation homes that may not be easily accessible to all members of
the public but allows visitors periodically.

2. Methods (I2): Empirical studies using quantitative, qualitative, or mixed method-
ologies. Such studies could be an interview, case studies, or experiments which
were observed in the field, laboratory, or public settings. We focused on empiri-
cal studies to ensure that our findings were backed with empirical evidence, not
philosophical opinions.

3. Type (I3): Study types were to include journal articles, conference papers, book
chapters, or magazine articles. These studies must be peer-reviewed.

4. Language (I4): English language only.

Exclusion criteria include eight items (E1–E8).

1. Irrelevant studies (E1): Studies outside the specified domain above. We also clas-
sified non-empirical studies that are related to the above domain as irrelevant to
this research.

2. Secondary studies (E2): All secondary studies in the form of reviews, surveys,
and SLRs.

3. Language (E3): Studies that are not in the English language.
4. Duplicate studies (E4): Studies duplicated in more than one digital library or ex-

tended papers.
5. Inaccessible studies (E5): All studies with access restrictions.
6. Short papers (E6): Work-in-progress and doctoral symposium presentations that are

less than four papers.
7. Front and back matter (E7): Search results containing all front matter like abstract

pages, title pages, table of contents, and so on; we also excluded all back matter like
index, bibliography, etc.

8. Papers that are not peer-reviewed (E8): All studies that did not undergo peer review
during snowballing.

Quality assessment strategy. We adopted the quality assessment strategy recommen-
dation of Kitchenham and Charters [97], focusing on the design, conduct, analysis, and
conclusion of the primary studies. The quality of the studies was ranked on a scale of 0 to
1 (No = 0, Partially = 0.5, Yes = 1). The quality assessment questions used for this study
are available online [99]. The total quality assessment score was a percentage, with 50%
being the least acceptable quality assessment score. We evaluated the quality of the papers
throughout the filtering and data extraction stage of this SLR.

Data extraction and synthesis. We developed a data extraction checklist (more details
are available online [99]) to aid the extraction of relevant data from the primary studies.
There are 24 fields in the list. In the first 13 fields (1–13), we extract data relating to the
RQs of group 1; the next two fields addressed group 2 RQs. Similarly, records 14–20

https://books.google.com/ngrams/
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extracted data addressing RQs of group 3, while in the last four fields (21–24), we extracted
information for group 4 RQs. In analyzing the research trends in this field, we intend to
extract information about the authors’ affiliations (sectors and countries). The sector refers
to academia, industry, or mixed, while the country is the country affiliation of the authors.
We also extracted data on the impacts of attacks based on the core security objectives of
confidentiality (disclosure), integrity (alteration), availability (destruction), and privacy
(privacy violation).

Evaluating the research protocol. The research protocol for this study was developed
based on well-known software engineering literature review guidelines, and two expert
researchers reviewed it. As input assessment and improvements were incorporated into
the final version, two authors conducted preliminary searches and testing utilizing the
research protocol. Before the review process started, meetings were held to discuss and
address all concerns and issues.

3.2. Conducting the Review

The four primary review activities include searching, filtering, snowballing, and qual-
ity assessment. We present a brief description of each exercise in the following subsections.

3.2.1. Searching

The first author (Researcher A) conducted the search process in August 2022, while
an experienced researcher (Researcher B) validated the results. The search operation
was performed using the research protocol search string and information source. For
easy reproducibility, we provide the URL links of the obtained results [99]. The data
were first extracted from the bibliographic databases using a reference manager (Zotero
(https://www.zotero.org/, version 6.0.9, accessed 2 August 2022)) and later exported
in CSV (Comma Separated Values) format to a spreadsheet application (Microsoft Excel
template). The search results obtained are presented in Table 1.

Table 1. Summary of Search results and excluded studies.

Database Search E1 E2 E3 E4 E5 E7 First Round

ACM Digital Library 243 191 10 1 11 17 13
IEEE Xplore 351 236 26 16 50 23

ScienceDirect 303 251 29 1 1 13 8
SpringerLink 495 353 101 1 1 13 26

Wiley Online Library 77 49 7 1 16 4

Total 1469 1080 173 2 19 12 109 74

3.2.2. Filtering

The filtering process was conducted in two rounds, using the inclusion and exclusion
criteria specified in the study’s research protocol. We assigned exclusion codes (E1–E8) to
justify the reason for excluding any paper.

The first step in the filtering operation was removing duplicate studies based on titles
and abstracts. Duplicate studies are studies that appeared as unique records more than once.
This was easily implemented in our spreadsheet template using conditional formatting.
The first occurrence of a duplicate study was retained, while the others were excluded. The
duplicate studies were mainly from past ACM/IEEE international conferences on human–
robot interactions. We found 19 duplicate studies (exclusion code E4). Next, 109 studies
were excluded, as they contained front matter and back matter like title pages, table of
contents, abstracts, indexes, posters, list of tables, etc. (exclusion code E7). Moreover,
173 studies were excluded as secondary studies (exclusion code E2). Two studies written in
other languages were also excluded (exclusion code E3). Exclusion code E1 is for irrelevant
studies, which amounted to 1080, as shown Table 1. Irrelevant studies are those papers
that could not provide answers to our research questions, or their application settings are

https://www.zotero.org/
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outside the scope of this study. This first filtering round involves reading each paper’s title,
keywords, and abstracts to assess if the study was irrelevant. At the end of the first round,
74 studies were included for full-text filtering, while we excluded 1395 studies, as shown in
Table 1.

The second round of the filtering operation involves full-text reading and a quality
assessment of the papers. We examined the included 74 studies using the full text to
ascertain if the study could answer any of our research questions. At the end of the second
round, only 13 papers met our inclusion criteria as primary studies. These included studies
were assigned a unique identifier number (PS01–PS13) for easy reference.

3.2.3. Snowballing

As specified in the guidelines [97], we screened the references and citations of the
included 13 studies for any additional relevant papers. This process is known as backward
and forward snowballing [102]. In backward snowballing, we used the reference list of the
included 13 papers from the publisher’s website. In forward snowballing, we consulted
their citations on Google Scholar (31 August 2022). The snowballing included three rounds.
In the first round, we examined 443 references and 282 citations of all 13 included studies
using our selection (inclusion/exclusion) and quality assessment criteria. We found seven
additional papers relevant to our study from the first round. We assigned a unique identifier
for these seven papers (PSA01–PSA07). In the second round of snowballing, we examined
240 references and 280 citations of the seven papers included in the first round. The second
round produced one paper (PSB01). In the final round, we examined the 18 references and
59 citations of PSB01 and found no study that met our inclusion/quality assessment criteria
(see details of snowballing summary in Table A2 of Appendix B). As a result, an additional
eight studies were identified as relevant, making for 21 total primary studies.

3.2.4. Quality Assessment

We assessed the quality of our primary studies based on the empirical research design,
conduct, data analysis and research conclusions drawn from the studies. Four quality
assessment questions assessed the design in terms of research aim, adequate measurement
of threats, clear definition of research measures, and authors’ introduction of bias during
the study. Three questions each assessed the conduct of the empirical research and its data
analysis. Finally, five questions considered the conclusions drawn from each empirical
study. The score assigned to each study is based on authors’ assessment of each paper. The
assessment score ranges from 70–93.3% (see details of quality assessment score in Table A3
of Appendix C). The results revealed that our primary studies are of good quality.

3.2.5. Data Extraction and Synthesis

We extracted relevant data from our primary studies to respond to our RQs. Each set
of extracted records consists of the following information: study ID, RQ, data, type of data,
and quotes. For instance, the second record on the extracted data reads as follows: PS01;
1.1; Robot under study; Pepper; “In this paper, we perform a thorough security assessment
over Pepper, a commercial human-shaped social robot by SoftBank Robotics”. In this case,
the study ID is PS01, the research question (RQ) is 1.1, the data extracted is on the robot
under study, while its type is Pepper, and the quotation stated was taken directly from the
full text. If a study reported more than one data type, another record was created to capture
it. For instance, there are six threat actor data records for PS01 because the study reported
six different types of threat actors (details are available online [99]).

4. Results

The first observation is that out of the 1469 papers retrieved using the search string,
only 21 empirical studies could answer at least one or more of our proposed research
questions in the domain of social robots in public spaces. The findings of our SLR are
presented below according to the RQ groups.
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4.1. Research Trends for Social Robots in Public Spaces
4.1.1. What Is the Research Trend of Empirical Studies on Social Robots in Public Spaces?

Our twenty-one primary studies consist of eight journal publications and thirteen
conference proceedings. A complete list of all primary studies showing authors, year of
publication, and titles is presented in Table 2.

Table 2. Summary of primary studies.

# IDs Ref. Authors Year Title C* AvgCˆ

1 PSA02 [103] Brščić, Dražen; Kidokoro, Hiroyuki;
Suehiro, Yoshitaka; Kanda, Takayuki 2015 Escaping from Children’s Abuse of

Social Robots 169 24

2 PS12 [104] Lin, Jiacheng; Li, Yang; Yang, Guanci 2021
FPGAN: Face de-identification method
with generative adversarial networks for
social robots

61 61

3 PS09 [105]
Zhang, Yin; Qian, Yongfeng; Wu, Di;
Hossain, M. Shamim; Ghoneim, Ahmed;
Chen, Min

2019 Emotion-aware multimedia
systems security 57 19

4 PSA05 [106] Aroyo, Alexander Mois; Rea, Francesco;
Sandini, Giulio; Sciutti, Alessandra 2018

Trust and Social Engineering in Human
Robot Interaction: Will a Robot Make You
Disclose Sensitive Information, Conform
to Its Recommendations or Gamble?

57 14

5 PS02 [107]
Tan, Xiang Zhi; Vázquez, Marynel; Carter,
Elizabeth J.; Morales, Cecilia G.;
Steinfeld, Aaron

2018 Inducing Bystander Interventions During
Robot Abuse with Social Mechanisms 50 13

6 PS01 [61] Giaretta, Alberto; De Donno, Michele;
Dragoni, Nicola 2018

Adding salt to Pepper: A structured
security assessment over a
humanoid robot

34 9

7 PSA06 [108]
Yang, Guanci; Yang, Jing; Sheng, Weihua;
Junior, Francisco Erivaldo Fernandes;
Li, Shaobo

2018
Convolutional Neural Network-Based
Embarrassing Situation Detection under
Camera for Social Robot in Smart Homes

34 9

8 PS07 [109] Fernandes, Francisco Erivaldo; Yang,
Guanci; Do, Ha Manh; Sheng, Weihua 2016 Detection of privacy-sensitive situations

for social robots in smart homes 31 5

9 PSA03 [110] Bhardwaj, Akashdeep; Avasthi, Vinay;
Goundar, Sam 2019 Cyber security attacks on robotic platforms 16 5

10 PS08 [111] Truong, Xuan-Tung; Yoong, Voo Nyuk;
Ngo, Trung-Dung 2014 Dynamic social zone for human safety in

human-robot shared workspaces 14 2

11 PS05 [112] Krupp, Margaret M.; Rueben, Matthew;
Grimm, Cindy M.; Smart, William D. 2017 A focus group study of privacy concerns

about telepresence robots 11 2

12 PSB01 [113] Yamada, Sachie; Kanda, Takayuki;
Tomita, Kanako 2020 An Escalating Model of Children’s

Robot Abuse 11 6

13 PS04 [114]
Olivato, Matteo; Cotugno, Omar; Brigato,
Lorenzo; Bloisi, Domenico; Farinelli,
Alessandro; Iocchi, Luca

2019
A comparative analysis of the use of
autoencoders for robot security
anomaly detection

5 2

14 PS10 [115]

Vulpe, Alexandru; Paikan, Ali;
Craciunescu, Razvan; Ziafati, Pouyan;
Kyriazakos, Sofoklis; Hemmer, Adrien;
Badonnel, Remi

2019 IoT Security Approaches in Social Robots
for Ambient Assisted Living Scenarios 5 2

15 PS11 [116]
Abate, Andrea F.; Bisogni, Carmen;
Cascone, Lucia; Castiglione, Aniello;
Costabile, Gerardo; Mercuri, Ilenia

2020
Social Robot Interactions for Social
Engineering: Opportunities and
Open Issues

5 3

16 PSA01 [117] Hochgeschwender, Nico; Cornelius, Gary;
Voos, Holger 2019 Arguing Security of Autonomous Robots 4 1

17 PS03 [118] Joosse, Michiel; Lohse, Manja; Berkel,
Niels Van; Sardar, Aziez; Evers, Vanessa 2021 Making Appearances: How Robots Should

Approach People 3 3

18 PS06 [119] Vasylkovskyi, Viktor; Guerreiro, Sérgio;
Sequeira, João Silva 2020 BlockRobot: Increasing privacy in human

robot interaction by using blockchain 3 2

19 PS13 [101] Mazzeo, Giovanni; Staffa, Mariacarla 2020 TROS: Protecting Humanoids ROS from
Privileged Attackers 2 1

20 PSA07 [120] Sanoubari, Elaheh; Young, James; Houston,
Andrew; Dautenhahn, Kerstin 2021

Can Robots Be Bullied? A Crowdsourced
Feasibility Study for Using Social Robots
in Anti-Bullying Interventions

1 1

21 PSA04 [121] Cui, Yuning; Sun, Yi; Luo, Jun; Huang,
Yonghui; Zhou, Yuxuan; Li, Xuelei 2021 MMPD: A Novel Malicious PDF File

Detector for Mobile Robots 0 0

C* = Citation as of 31 August 2022, Avg Cˆ = Average citation per year.
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As expected, there are more conference proceedings than journal publications because
conference proceedings are one of the most common ways of communicating research
findings. Figure 2 shows the distribution of the number of studies by (a) databases and
(b) publication year. IEEE Explore contributed the highest number of papers (52.4%),
consisting of three journal publications and eight conference proceedings. ACM contributed
five papers (23.8%), comprising one journal publication and four conference proceedings.
ScienceDirect and SpringerLink contributed two studies each. During our snowballing
operation, one journal publication was identified in another database (MDPI). These studies
were published by authors from 18 different countries, with fifteen studies from academic
research institutions, while six of them represent a collaboration between industry and
academia. China has the highest number of empirical research studes (five), followed by the
United States and Italy (four studies each), Denmark (three), and Japan and Luxembourg
(two studies each). There are 12 other countries that contributed one report each, as
presented in Table A4 of Appendix C. Figure 2b shows a growing interest in this research
domain from 2018, which was possibly affected by the movement restriction of COVID-19
in 2020 and 2021.

Figure 2. (a) Distribution of papers by database; (b) Distribution of papers by year.

Table 3 lists the social robots studied and their corresponding application domain.
Pepper by Softbank Robotics is the most studied social robot with four occurrences, while
Robovie2 and MAT social robots were studied in two papers each. Other social robots
such as NAO, Atlas, Cozmo, ICub, Eddie Platform, and AIWAC were studied in one paper
each. Two studies did not disclose the identity of the studied social robot for security
reasons. Moreover, social robots were customized in four studies by using a separate
camera and other sensors. The most studied application domains were health care (three)
and shopping malls (three), followed by offices (two), museums (two), and smart homes
(two). The remaining application domains were education (one), entertainment (one),
and playground (one). General human–social robot interaction application scenarios were
applied in five studies.

4.1.2. What Is the Citation Landscape of Studies on Social Robots in Public Spaces?

To understand the citation landscape of our primary studies, the citations were ex-
tracted from Google Scholar on 31 August 2022. The citation landscape was determined
by absolute citation and normalized citation per year, as suggested by Garousi and Fer-
nandes [122]. Citation rank can help readers and new researchers to pinpoint the most
influential research in a given field. It also gives an insight into our primary studies’ impact
(a measure of their quality). We provided this citation analysis as a guide and starting point
for interested researchers in this field. Table 2 lists the absolute citation and normalized
citation, and Figure 3a,b depicts the same information by year of publication. PSA02 is the
most cited paper, while PS12 has the highest normalized citation rating. Only one study
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(PSA04) published in 2020 had no citation yet when conducting this review. It suggests
that studies in this domain are attracting interest.

Table 3. List of primary studies, application domain, and social robot type employed.

# IDs Application Domain Social Robot

1 PS04 Education Pepper
2 PS02 Entertainment Cozmo
3 PS11 General Human–Social Robot Interaction Pepper
4 PSA07 General Human–Social Robot Interaction Atlas
5 PS12 General Human–Social Robot Interaction MAT *
6 PS13 General Human–Social Robot Interaction NAO
7 PSA03 General Human–Social Robot Interaction Not Stated (for security reasons)
8 PS09 Health Care (Health monitoring system) AIWAC
9 PS06 Health Care (Hospital) Blockrobot *

10 PS10 Health Care (Personalized rehabilitation and
coaching or ambient assisted living services) QT Robot

11 PS05 Home, Work, and Public PR-2 robot, Beam+ Telepresence robot, and
ALICE (Roboceptionist Kiosk)

12 PS03 Museum Nomad Scout
13 PSA01 Museum Pepper
14 PS04 Office guide and Shopping Mall Assistant Not Stated
15 PS08 Offices (Shared workplaces) Eddie platform *
16 PSA05 Playground Icub
17 PS01 Sales Stores Pepper
18 PSA02 Shopping Mall Robovie2
19 PSB01 Shopping Mall Robovie2
20 PS07 Smart homes ASCC Home Service Robot *
21 PSA06 Smart homes MAT *

* Social robots customized by authors.

Figure 3. Citation landscape of this study. (a) Absolute citation per paper; (b) Normalized citation
per paper.

Figure 4 illustrates the average number of authors in this domain. As one can see, the
number is four authors per study, which is consistent with the study conducted by Garousi
and Fernandes [122].

4.1.3. What Research Methods Are Employed in Studies on Social Robots in Public Spaces?

Quantitative research is the dominant research methodology adopted in the empirical
studies of social robots in public spaces (61.9%, PS01, PS03, PS04, PS06, PS07, PS08, PS09,
PS12, PS13, PSA01, PSA03, PSA04, PSA06), followed by mixed research (28.6%, PS10, PS11,
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PSA02, PSA05, PSA07, PSB01) and qualitative research (9.5%, PS02, PS05). The research
approaches were experiments (nineteen), observation (six), surveys and questionnaires
(four), use case (two), and one focus group (see details in Table A5 of Appendix C).

Figure 4. Average number of authors per year in the SLR domain.

4.2. Social Robot Threat Actors and Their Motives for Attack

This section reports the identified threat actors and their motives for the attack. Identi-
fying threat actors and their motives for attacks is essential for detecting, preventing, and
neutralizing any security threat.

4.2.1. Who Are the Reported Potential Threat Actors for Social Robots in Public Spaces?

Threat actors reported in the primary studies are classified as attackers (eleven),
hackers (seven), thieves (five), and users (eight). PS13 reported four types of user-related
threat actors (malicious, malevolent, root, and privileged user). Table 4 shows a description
of each of these general threat actors (using the NIST (https://csrc.nist.gov/glossary?
sortBy-lg=relevance&ipp-lg=100, accessed 20 August 2022) definition).

Table 4. General threat actor category commonly used in our primary studies.

Threat Actors Description IDs

Attacker
Anyone acting to compromise a social robot or to try

to take advantage of a social robot’s
known vulnerabilities

PS04, PS07, PS09, PS10, PSA06

Hacker Any unauthorized person who makes an attempt to
access a social robot or successfully does so PS01, PS04, PS05, PS10, PS13, PSA03, PSA04

Thief
Anyone who illegally obtains and utilizes another
person’s personal information or property, usually

for economic advantage, through fraud or deception
PS01, PS04, PS05, PS13, PSA01, PSA03

User A person or system process with access rights to a
social robot PS02, PS09, PS10, PS13, PSA06

Additionally, the classification proposed by Mavroeidis et al. [59] was used to group
our identified threat actors based on access (internal and external), intent (intentional
and non-intentional), and resources (individual, skill, groups, organization, and country).
Internal threat actors could be employees (insiders—PS01, PS13, PSA03), users, or others
(e.g., vendors as in PS06), while external actors could be competitors (PSA03), hackers, cyber
criminals (PSA03), state actors (PSA01, PSA03), organized criminals (PS05, PSA03), and so
on. An intentional actor could be an internal (e.g., disgruntled employee, as in PSA03) or
external threat (PS13, PSA01). An unexpected finding was to identify children (PS02, PSA02,
and PSA05) and social robots (PS03 and PS08) as threat actors. There are reports of children
abusing social robots and social robots violating/invading users’ privacy/preferences and
social norms. Finally, based on the resources, there are individuals (PSA01), wannabes

https://csrc.nist.gov/glossary?sortBy-lg=relevance&ipp-lg=100
https://csrc.nist.gov/glossary?sortBy-lg=relevance&ipp-lg=100
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(PSA03), trusted entities in the supply chain (PS06), non-government groups (PSA01),
state-level intelligence (PSA01), nation states (PSA03), academic research groups (PSA01),
and social engineers (PS11 and PSA05) (see details in Table A6 of Appendix D).

4.2.2. What Are the Reported Threat Actors’ Motives for Attack?

Understanding threat actors’ motives for attack allows effective security design against
such threats. The reasons for cyber-attacks on social robots in public spaces differ for
physical, social, and public-space-related attacks. In this review, seven motives were iden-
tified from an information security perspective: (i) gather information (reconnaissance),
(ii) gain/escalate user privileges, (iii) modify data (users’ or social robot’s operation data),
(iv) read (take or steal) data, (v) execute an unauthorized command, (vi) deny/disrupt
services/operation, (vii) damage/destroy assets or properties. The outcome/effects of
these attacks can be in the form of financial gain, reputational damage, business advantage,
embarrassment to users or business owners, blackmail, technological edge, business sabo-
tage, or property damage. It is sometimes difficult to differentiate the outcome from the
motive, as the effect is what the threat actor wants. Information gathering (reconnaissance)
is usually the first step in any cyber-attack [123]. The information gathered could be about
the operation of the social robot or users’ data (about 90%, i.e., 19 of 21 studies). Gaining
and escalating privileges (PS01, PS09, PS10, and PS13) are primarily targeted at social robots’
applications and software through various cyber-attacks. Modifying data was reported in
five studies (PS01, PS09, PS13, PSA01, and PSA03), while reading (taking or stealing) data
was reported in five studies (PS01, PS09, PS13, PSA01, and PSA03) (see details in Table A7
of Appendix D).

The reported motive for children’s robot abuse was curiosity, fun, and imitating other
children (PS02, PSA02, and PSB01). On physical attacks on humans by social robots, two
studies (PS08, PS10) reported malfunction (resulting from design failure or cyber-attack)
and inadequate cognitive/intelligent control systems of the social robot AI (PS10 and PS09).
The last reason is also valid for violating social norms when a cyber-attack is not involved
(usually due to poor social interaction design implementation of AI components).

The outcome/effects of an attack could be blackmail (PSA01, PSA03), individual/business
reputational damage (PSA03, PS04), physical harm to humans, or property damage (PS04,
PSA03). Industrial espionage may have a technical/business advantage as its motive
(PSA03). Nation state actors may want economic damage or to use acquired information as
a political weapon (PSA03, PSA01). Wannabes may want to show off their recently acquired
talent for recognition (PSA03). Cyber criminals/thieves (sometimes including disgruntled
employees) are strongly motivated by financial gains (PSA03). Competitors may be moti-
vated by technical/business advantages (PSA03). Terrorists may be motivated by property
damage or physical harm to humans because of a particular ideology (PS01, PS04).

4.3. Identifying Assets, Threats, and Vulnerabilities of Social Robots in Public Spaces

Identifying the valuable assets, their associated vulnerabilities, and the potential threat
that a threat actor can exploit is vital in risk analysis and management of social robots in
public places. This section presents reported assets, threats, and vulnerabilities.

4.3.1. What Are the Reported Assets (Sub-Components) of Social Robots in Public Spaces?

The asset classification is presented in Table 5. As expected, all primary studies
reported hardware and human components. About 81% (seventeen) of the studies reported
software components, while communication and cloud were reported by 38% (eight) and
33% (nine), respectively. Supply chain and AI were least represented, i.e., 19% (four) and
10% (two), respectively. However, a complete threat landscape should envisage threats that
these essential components can pose to the system. Therefore, more research is needed to
explore the practical role of AI and supply chain in this context.
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Table 5. Asset categories reported in this study.
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1 Software 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 21
2 Hardware 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 26
3 Communication 3 3 3 3 3 3 3 3 10
4 Human 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 26
5 Cloud 3 3 3 3 3 3 3 9
6 AI 3 3 3 3 5
7 Supply chain 3 3 3

4.3.2. What Are the Reported Threats?

Two directions of threat were identified in this study: (i) threats directed to the public
space by the social robot (SR2PS) and (ii) threats directed to the social robot by public
space actors (PS2SR). The public space in this context refers to the following components:
human and natural factors. Table 6 shows that about 86% (eighteen) of our primary studies
reported threats from social robots to public space, compared to 29% (six papers) that
reported threats from public space to social robots. Moreover, 14% (three) of these studies
investigated the threats in both directions. It suggests that more research is needed to
investigate social robots’ directed threats in public spaces. The threat direction also reveals
that more research exists on social robot threats to humans and public space than those
protecting social robots from public space factors. Insights and research in the other threat
direction could benefit investors, especially during risk assessment and management.

Table 6. Threat direction and categories.

Threat
Direction Threats Category * IDs

PS2SR P (robot abuse) PSA02, PS02, PSB01

SR2PS

P (human safety) SR2PS
P (robot abuse) PSA07
S PS03
C/Ps/S (personal space and touch) PS05
C/S (nakedness) PS07
C PS12, PSA04, PS06, PS10, PS09, PSA06
C/S (trust violation) PS11
C/Social (trust exploitation)/Ps PSA05
C/P (human safety)/Ps PSA01
C/P (human safety)/Ps/S PSA03

PS2SR and SR2PS
C PS04
C/P (human safety) PS01, PS13

* C = Cybersecurity, S = Social, Ps = Public space.

The reported threats were also categorized into cybersecurity, physical, social, and
public space by using MITRE CAPEC, i.e., software, hardware, communication, social
engineering, physical, and supply chain.

Physical threats cover threats to human safety (possibly resulting from social robot fail-
ure and design flaws without cyber-attack) and threats directed at social robots (e.g., robot
abuse, maltreatment, theft, vandalism, sabotage). This category differs from physical
cybersecurity attacks that cover excavation, interception, reverse engineering, bypassing
physical security, hardware integrity attack, physical hardware theft, and destruction [70].

Social threats surround threats associated with social robots not adhering to public
space social norms. It considers the threat of property damage or natural factors such as fire,
flood, weather/rain disrupting communication, war, and terrorism as public space threats.
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Table 6 lists the primary studies and their related threats: cybersecurity 67% (fourteen),
social 48% (ten), physical 29% (six), and public space 19% (four). Most studies reported
more than one threat (PS01, PS05, PS07, PS11, PS13, PSA01, PSA03, PSA05). Although it is
not surprising that most of the studies are focused on cybersecurity, other kinds of threats
were also identified. It suggests that physical, social, and public space threats should also
be considered because of their relevance in this domain.

4.3.3. What Are the Reported Vulnerabilities?

In this SLR, specific vulnerabilities (weaknesses or security policy violations) in exist-
ing social robot design and implementation were found. Table 7 presents a summary of
the vulnerabilities reported in the primary studies. Some of these vulnerabilities may be
well-known today; however, they were significant when reported (e.g., the use of a default
username and password and insecure communication over HTTP in PS01).

Table 7. Vulnerabilities reported in the primary studies.

IDs Category * Vulnerabilities

PS01 C Insecure social robot software design and lack of sound security assessment before deployment
PS02 P/S Inadequate social behavior approach in social robot design to attract bystanders during abuse
PS03 S Inadequate socially acceptable normative approach behavioral design for a robot in public spaces
PS04 C Insecure software design that cannot detect anomalous behavior in social robot logs
PS05 C Lack of complete stakeholder involvement in social robot privacy design research discussion
PS06 C Insecure software design for social robots to ensure data security
PS07 C Insecure software design to promote hardware security of sensors
PS08 P Inefficient safety design for social robot–human interaction in shared workspaces
PS09 C Inadequate security policy implementation of access control and authentication for emotional data
PS10 C Lack of dynamic, scalable, and decentralized security solutions for social robots
PS11 C/S Inadequate technical insights into how social robots can exploit human overtrust in social engineering
PS12 C Inadequate face de-identification solutions for social robots

PS13 C Inadequate hardware security design for the Linux kernel vulnerability that can easily be exploited
through physical contact with a social robot (e.g., inserting a USB pen drive)

PSA01 C Inadequate resources for secure social robot application design/development
PSA02 S Inadequate design solutions for predicting and avoiding social robot abuse among children
PSA03 C Insecure design and assessment of programmable robotic software platforms
PSA04 C Inadequate software security design against malicious pdf files accessed by social robots
PSA05 S Insufficient insights into how social robots can exploit human overtrust during social engineering
PSA06 C Inadequate software security design to mitigate data privacy leaks of social robot sensors
PSA07 S Insufficient anti-bullying program design using social robots
PSB01 P Insufficient knowledge of the process of children abusing social robots in public spaces

* C =Cybersecurity, S = Social, P = Physical.

4.4. Attack Surface of Social Robots in Public Spaces

This section reports attacks on social robots in public places, the attack scenarios,
impacts, and mitigation strategies proposed in the primary studies. It aims to provide an
overview of social robots’ attack surface in public spaces.

4.4.1. What Are the Reported Attacks on Social Robots in Public Spaces?

Attacks identified in this review are grouped into four categories. Cybersecurity
attacks received the greatest attention at 67% (fourteen, PS01, PS04, PS05, PS06, PS07,
PS10, PS11, PS12, PS13, PSA01, PSA03, PSA04, and PSA06), while 62% (thirteen, PS01,
PS02, PS05, PS08, PS11, PS13, PSA01, PSA02, PSA03, PSA05, PSA06, and PSA07) reported
physical attacks, compared to 24% (five, PS03, PS05, PS07, PS11, and PSA06) and 9.5% (two,
PS05 and PSA01) for social and public space attacks. Out of the primary studies, 48% (10)
reported more than one category of attack.

Of all the identified cybersecurity attacks (fourteen), software attacks accounted for
93% (thirteen), communication attacks 50% (seven), hardware attacks 43% (six), cloud
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services attacks (three), social engineering 14% (two), and AI attacks 4% (one). A compre-
hensive list of all attacks identified in this review is shown in Table A8 of Appendix D.

Cybersecurity attacks. Using the CAPEC mechanism of attack classification [124], all
cybersecurity attacks identified in primary studies were grouped into nine categories: (i) engaging
in deceptive interactions, (ii) abusing existing functionality, (iii) manipulating data struc-
tures, (iv) manipulating system resources, (iv) injecting unexpected items, (v) employing
probabilistic techniques, (vi) manipulating timing and state, (vii) collecting and analyzing
information, and (viii) subverting an access control.

1. Engaging in deceptive interactions. It includes spoofing and manipulating human
behaviors in social engineering. Variants of spoofing attacks include content, identity,
resource location, and action spoofing. Not all these variants of spoofing attacks were
identified in this review. Identity spoofing attacks include address resolution protocol
(ARP) spoofing (PS01), signature spoofing (cold boot attack PS13), DNS spoofing
(PSA04), and phishing (PS05, PS11, and PSA03). PS01 reported one account of an
action spoofing attack (clickjacking attack). Seven studies (PS01, PS05, PS07, PS11,
and PSA05) reported attacks related to manipulating human behavior, i.e., pretexting,
influencing perception, target influence via framing, influence via incentives, and
influence via psychological principles.

2. Abusing existing functionalities. It includes interface manipulation, flooding, excessive
allocation, resource leakage exposure, functionality abuse, communication channel
manipulation, sustained client engagement, protocol manipulation, and functionality
bypass attacks. Interface manipulation attacks exploiting unused ports were reported
in PS01. Flooding attacks resulting in distributed denial of service (DDoS) were also
reported (PS10, PS13, and PSA03). Likewise, resource leakage exposure attacks result-
ing from CPU in-use memory leaks (PS13) and communication channel manipulation
attacks in the form of man-in-the-middle attacks were reported (PS01, PS10, PS13,
and PSA03).

3. Manipulating data structures. It includes manipulating buffer, shared resource, pointer,
and input data. Buffer overflow and input data modification attacks were reported in
PS13 and PS09, respectively.

4. Manipulating system resources. It includes attacks on software/hardware integrity, infras-
tructure, file, configuration, obstruction, modification during manufacture/distribution,
malicious logic insertion, and contamination of resources. Some examples of attacks
were identified in this category, i.e., physical hacking (PS05, PS09, PS10, and PS11),
embedded (pdf) file manipulations (PSA04), obstruction attacks (jamming, blocking,
physical destruction, PS02, PS10, PS13, PSA03).

5. Injecting unexpected items. It comprises injection and code execution attacks. Injec-
tion attack variants include parameter, resource, code, command, hardware fault,
traffic, and object injection. Examples of reported attacks in the category include
code injection attacks (PS01, PS04, PS13) and code execution attacks (PS01, PSA03,
and PSA04).

6. Employing probabilistic techniques. It employs brute force and fuzzing. Brute force
attacks on passwords and encryption keys were reported in PS01, PS13, and PSA01.
Attacks resulting from unchanged the default administrators’ username/password
and dictionary brute force password attacks were also noted in PS01.

7. Manipulating timing and state. This class of attacks includes forced deadlock, leveraging
race conditions, and manipulating the state. Forced deadlock attacks can result in
denial of service (PS10, PS13, PSA03), while leveraging race conditions can result in a
time-of-use attack (PS13). Manipulating states can result in various types of malicious
code execution attacks (PS01, PSA03, PSA04).

8. Collecting and analyzing information. It includes excavation, interception, footprinting,
fingerprinting, reverse engineering, protocol analysis, and information elicitation.
Data excavation entails extracting data from both active and decommissioned devices
and users. Interception involves sniffing and eavesdropping attacks (PS10 and PS13).
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Footprinting is directed to system resources/services, while fingerprinting can involve
active and passive data collection above the system to detect its characteristics (PSA03).
Reverse engineering uses white and black box approaches to analyze the system’s
hardware components. Protocol analysis is directed at cryptographic protocols to
detect encryption keys. Information elicitation is a social engineering attack directed
at privileged users to obtain sensitive information (PS05 and PS11). In this review,
some studies reported collecting and analyzing information attacks as surveillance
(PS05, PS07, and PSA06).

9. Subverting access control. It includes exploits of trusted identifiers (PSA03), authentica-
tion abuse, authentication bypass (PSA01, PS09, PS13, and PSA03), exploit of trust in
client (PS06), privilege escalation (PS01, PS09, and PS13), bypassing physical security
(PS01), physical theft (PS05), and use of known domain credentials (PS01).

Physical attacks are safety-related attacks that harm humans or damage social robots.
A social robot under cyber-attack can cause physical harm to humans; however, physical
attacks in this context are most likely to result from system failures, malfunction, and
inefficient system design. Physical attacks on humans in this context could be physical
(PS01, PS08, PS13, PSA01, and PSA03) or psychological (PS01 and PS02). Physical attacks
on social robots identified include violence against social robots (physical abuse, PS02),
vandalism (PSA07), theft (PS05), bullying/maltreatment from children (PSA07), sabotaging
a social robot’s tasks (PSA07), verbal abuse (PS02), and obstructing a social robot’s path
(PSA02, PSA07, and PSB02).

Social attacks in this context refer to violations of social norms by social robots in pub-
lic spaces due to inefficiencies in AI system design. If social robots cannot adhere to social
norms during human interactions in public spaces, they may be viewed as social misfits.
Examples of identified social norm violation attacks include: (i) personal space violation
(PS03 and PS05), (ii) human trust exploitation (PS11 and PSA05), (iii) embarrassment to
humans (PSA06), (iv) human deception and manipulation (PS11), and (v) exploiting users’
preferences through targeted marketing (PS05).

Public space attacks in this study refer to damages to the environment resulting from
social robot interaction or negative influences of natural environmental factors (e.g., fire,
flood, rain, weather, wars) on the successful operation of the social robot in public spaces.
In this review, PSA03 reported incorporating fire, safety, water, and local news into the
robotic platform to prevent attacks related to natural environmental factors, while three
studies reported instances of property damages resulting from attacks caused by social
robots during interactions (PS05, PS13, and PSA01).

4.4.2. What Are the Reported Attack Scenarios for Social Robots in Public Spaces?

An attack scenario describes the steps and ways a threat actor will employ to exploit
a vulnerability in a particular attack successfully [125]. The attack scenarios reported in
the primary studies did not mention all the necessary steps. The template proposed by
ENISA [126] was used to present four different hypothetical attack scenarios, drawing
insights from primary studies in this SLR.

Table 8 shows “Attack Scenario 1” about social robot abuse by users, adapted from
four primary studies (PS05, PSA02, PSA07, and PSB01).

Table 8. Attack Scenario 1—Social robot abuse by users (PS05, PSA02, PSA07, and PSB01).

SOCIAL ROBOT ABUSE BY USERS
DESCRIPTION
Threat actors may physically abuse a robot during interaction in public spaces due to a lack of constant supervision in such
locations. Examples of such reported social robot abuse include (i) blocking the path of a social robot, (ii) hitting the social robots,
(iii) blocking the sensors (e.g., LIDAR, cameras) with spray paint or masking tape, (iv) verbally abusing the social robot, (v) placing
fake spoofing images/signs on the path of the social robot, (vi) vandalizing social robot components in a secluded location or
stealing the whole unit. Maltreatment of this nature could affect the smooth operation of the social robot, thereby leading to
physical damage and hindering service availability.
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Table 8. Cont.

SOCIAL ROBOT ABUSE BY USERS
IMPACT
Medium—High: Depending on the attack, the impact could be medium to high. It may have a medium effect in the case of verbal
abuse and physical obstruction of the social robot’s path, in which case the social robot could try an alternate route. However, it is
high in cases of physical damage to the robot or blocking critical sensors during social interaction.
EASE OF DETECTION CASCADE EFFECT RISK

Easy—Medium—Hard: Depending on the specific type of
attack and the public space setting of the social robot.

Medium—High: In minor abuse cases, the cascade effect risk
may be medium; however, in severe abuse scenarios, there may
be high risks.

ASSET AFFECTED STAKEHOLDERS INVOLVED
Hardware: Sensors, actuators, AI: AI model
Software: Recognition and motion planning algorithms

Social robot hardware designers, software developers, and AI
model developers. Social robot backend and frontend users.

ATTACK STEPS
1. Reconnaissance: Threat actors gather information about the navigation path of the social robot and plan how to obstruct the
social robot’s path using suitable means (physical obstacles or spoofing images/road signs).
2. Weaponization and delivery: Threat actors plant obstacles in the path of the social robot, causing the social robot to redirect
their way to isolated locations where masked threat actors could spray paints on sensors or use adhesive masking tape to cover
sensors (camera). Malicious actors could also attach explosives or tracking devices to social robots in such blind spot locations,
which could be used in other areas.
3. Action on Objectives: Threat actors could vandalize or steal the social robot at such a blind spot, use the attached tracking
devices to monitor the social robot or its users, or trigger the explosive in specific desired locations. The objective may be to
sabotage the smooth interaction of the social robot or disrupt service availability to users.
RECOVERY TIME/EFFORT GAPS AND CHALLENGES
Medium—High: In minor abuse scenarios, the recovering time
may be medium, but in severe abuse cases, it may require a high
recovery time.

(i) Authentication of unusual route changes, (ii) Detection of
spoofing images/road signs, (iii) Design of efficient and robust
AI model for social robots.

COUNTERMEASURES
(i) Incorporating redundancy in hardware sensor design, (ii) Incorporating adversarial examples in hardening AI model design,
(iii) Incorporating route validation during social robot navigation.

Table 9 shows “Attack Scenario 2” about social robot compromise resulting from
malicious file attachment access leading to malicious code execution adapted from two
primary studies (PS01 and PSA04).

Table 9. Attack Scenario 2—Social robot compromise through malicious file attachment (PS01
and PSA04).

SOCIAL ROBOT COMPROMISE
DESCRIPTION
Threat actors may replace a genuine file (pdf or jpeg) with malicious versions. During social robot interaction, users may require
information that is stored as pdf or jpeg files. Examples of such reported social robot compromise include (i) executing malicious
code during pdf file access (PSA04) and (ii) executing malicious code during jpeg file access (PS01). Malicious code execution can
result in software and application integrity attack in a social robot
IMPACT
High: Delivering a malicious file to a system is a key step towards the exploitation of other vulnerabilities. This attack’s impact is
high when no safeguards are in place.
EASE OF DETECTION CASCADE EFFECT RISK
Easy—Medium: There are several file scanning solutions that
can easily detect such malicious files.

Medium—High: If the malicious code is executed without
detection, the cascade effect risk will vary from medium to high.

ASSET AFFECTED STAKEHOLDERS INVOLVED
Software: Operating system and applications Software developers
ATTACK STEPS
1. Reconnaissance: Threat actors gather information about the frequently accessed files for a given social robot case.
2. Weaponization and delivery: Threat actors replace the genuine file with a malicious file having a fake file extension
(.jpeg or .pdf)
3. Action on Objectives: Once a social robot accesses a malicious file and malicious code execution is successful, threat actors
could install additional malicious codes (malware) that would aid their command and control of such a system and execute
their objectives.
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Table 9. Cont.

SOCIAL ROBOT COMPROMISE
RECOVERY TIME/EFFORT GAPS AND CHALLENGES
Medium—High: Depending on the stage and type of malicious
code executed, the recovering time/effort may vary from
medium to high.

(i) Authentication of files accessed by the social robot, (ii)
Automatic anomaly detection of malicious content, (iii) Input
validation for social robot interaction with users.

COUNTERMEASURES
(i) Incorporating third-party antivirus and antimalware solutions, (ii) Incorporating MIME-sniffing protection in social robot
software, (iii) Incorporating secure input validation for social robot applications interacting with users.

Table 10 shows “Attack Scenario 3” about social robot insiders. It was adapted from
three primary studies (PS01, PS13, and PSA04). It presents insights into how a threat actor
could exploit exposed communication ports as an external actor or an insider threat to
compromise the social robot software and hardware integrity (using a USB drive).

Table 10. Attack Scenario 3—Social robot compromise through exposed communication ports (PS01,
PS13, PSA04).

SOCIAL ROBOTS AS INSIDER THREAT
DESCRIPTION
Threat actors may exploit exposed communication ports of a social robot while operating in public spaces using a USB pen drive. A
malicious insider with authorized access may also want to compromise the system using the same means. Examples of such
reported compromise by social robot insiders include (i) compromising software and hardware integrity using a malicious USB
drive as an insider (PS01, PS13, and PSA03) and (ii) compromising social robot system integrity as an external user within
proximity, using the same means.
IMPACT
High: A complete hardware and software integrity compromise due to this type of attack would greatly impact the social
robot’s operation.
EASE OF DETECTION CASCADE EFFECT RISK
Medium-Hard: Depending on the safeguards and protection
in place.

High: For a successful social robot software and hardware
compromise, the cascade effect risk would be high.

ASSET AFFECTED STAKEHOLDERS INVOLVED
Hardware: Exposed communication ports.
Software: Operating system and applications.

Hardware designer/manufacturer, software developers, and
testing team

ATTACK STEPS
1. Reconnaissance: Threat actors gather information about physically exposed communication ports of the social robot during
interaction or usage. Malicious actors could also perform slow and difficult-to-detect vulnerability scans to detect active unused
resources, applications, or communication ports.
2. Weaponization and delivery: Threat actors could use other means to redirect the route of a social robot to an isolated location
and insert a compromised USB drive to attack the software integrity of the social robot.
3. Action on Objectives: Once a threat actor succeeds in delivering a payload through a USB drive, they can easily perform other
objectives, like installing malware, escalating privileges, etc.
RECOVERY TIME/EFFORT GAPS AND CHALLENGES

Medium–High: The recovery effort may be medium to high,
depending on the level of system compromise.

(i) Detection and mitigation against privileged and skilled
insider threats, (ii) Hardware-assisted trust execution
environment-based protection.

COUNTERMEASURES
(i) Disabling unused ports before social robot deployment, (ii) Adopting the least privilege security principles for users,
(iii) Ensuring the safe design of social robots without exposing their communication ports.

Table 11 shows “Attack Scenario 4” about how threat actors could hack a social robot
and use it for social engineering attacks. It was developed based on insights from six
related primary studies (PS01, PS05, PS07, PS11, and PSA05). Moreover, other attack-
related factors were considered, namely impact, ease of detection, cascade effect risk, assets
affected, stakeholders involved, attack steps, recovery time/effort, gaps and challenges,
and countermeasures. These additional attack-related factors emerged from the evaluation
of these attack scenarios in which social robots could be exploited for social engineering
attacks on humans.
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Table 11. Attack Scenario 4—Social robot exploited as a social engineer (PS01, PS05, PS07, PS11,
and PSA05).

SOCIAL ROBOTS EXPLOITED AS A SOCIAL ENGINEER
DESCRIPTION
Threat actors may exploit other social robot vulnerabilities and use them for social engineering and espionage attacks. Examples of
such reported social engineering attacks include (i) extracting sensitive information from users during interaction (PS01, PS07, and
PSA05), (ii) manipulating users’ preferences during purchase (PS05, PSA05), (iii) exploiting the trust of users (PS11, PSA05), and
(iv) spying on users (PS01, PS07). A hacked social robot could become a tool for corporate espionage and social engineering attacks.
IMPACT
High: The impact of a hacked robot as a tool for espionage and social engineering attacks could be very high, depending on the
threat actor’s objectives.
EASE OF DETECTION CASCADE EFFECT RISK
Medium-Hard: It may be challenging to detect an intelligent
attempt by social robots to extract sensitive information from
users, especially in low-awareness settings.

High: In the two scenarios above, the cascade effect risk is high

ASSET AFFECTED STAKEHOLDERS INVOLVED
Hardware: Sensors and actuators.
Software: Operating system and applications.

Hardware designer/manufacturer, software developers and
testing team

ATTACK STEPS
1. Reconnaissance: Threat actors gather information about the social robot, its operating environment, and its potential users.
Malicious actors then search for specific known vulnerabilities of the social robots and plan their attack strategy.
2. Weaponization and delivery: Threat actors could exploit any known vulnerability, install malware, escalate privilege, and gain
command and control access to the social robot.
3. Action on Objectives: Once a threat actor succeeds in the above steps, s/he could use the cameras of the social robot to spy on
users, control the social robot to extract information from the users using known algorithms (PS11), exploit users’ trust, and
influence users’ purchase preferences during interactions.
RECOVERY TIME/EFFORT GAPS AND CHALLENGES
Medium–High: The recovery effort may be medium to high,
depending on the level of system compromise.

(i) Detection and mitigation against social engineering attacks
for social robots in public spaces.

COUNTERMEASURES
(i) Creating user awareness, (ii) Ensuring robust and secure social robot design, (iii) Ensuring the least privileged security design.

4.4.3. What Are the Reported Attack Impacts of Social Robots in Public Spaces?

The impact of attacks on social robots in public spaces is presented from three perspec-
tives: (i) cybersecurity objectives, (ii) users, and (ii) organizations.

Impacts on cybersecurity objectives. There are three cybersecurity objectives pro-
posed by NIST [127]—confidentiality, integrity, and availability—to group attack impact
based on information security objectives. The opposites of these three security objectives in
information system security are disclosure, alteration, and destruction/denial (DAD). Loss
of integrity (alteration) was reported in four studies (PS01, PS13, PSA02, and PSA03) as
the impact of attacks on the information system. Disclosure (loss of confidentiality) was
reported in five studies (PS01, PS06, PS13. PSA03, and PSA05). Moreover, six studies (PS01,
PS02, PS06, PS13, PSA02, and PSA03) reported the loss of availability (destruction/denial
of service), and a violation of one or more security objectives above was reported as a
privacy violation and reported by four studies (PS06, PS07, PS12, and PS13).

Impacts on users and organizations. The impact of an attack on users and orga-
nizations could have different dimensions, such as physical, economic, psychological,
reputational, and societal [128]. The physical impact could include (i) loss of life (PSA03),
(ii) harm to users or employees (PS01, PS04, PS08, PS10, PSA02, and PSA03), (iii) dam-
age to properties and other assets (PS01, PS04, PSA02, PS08, PSA01, PS02, and PSA03),
(iv) physical loss of assets due to theft, (v) reduced performance or complete downtime of
an asset (PS01, PS02, PSA02, and PSA03), and (vi) a hacked social robot could be a vulnera-
bility source to other organizational assets (PS01). Economic impact includes financial loss
resulting from (i) income loss due to downtime, disrupted services, and unsatisfied cus-
tomers’ experience, (ii) repair, investigation, and public relations cost, (iii) ransom cost and
increase in insurance in premium due to an increase in perceived risk, (iv) loss in customers’
loyalty, goodwill, and brand depreciation, and (v) cost of regulatory sanctions/fines, claims
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for injuries and deaths, and so on (reported in PS10 and PSA01). Psychological impacts
on employees and customers of a museum were reported in PSA01, which could be in the
form of embarrassment, low satisfaction, or discomfort. Reputational damage was reported
in PS04 and PSA03. The societal impact of attacks on social robots in public spaces was not
identified in the primary studies; however, it is worth noting that any attack on humans
and organizations impacts our society.

4.4.4. What Are the Reported Attack Mitigations on Social Robots in Public Spaces?

Attack mitigation depends on the type of attack and the sub-component receiving
such an attack. About 14.3% (three studies, PS05, PS11, and PSA05) of the twenty-one
primary studies identified potential vulnerabilities in social robots, but they did not mention
a mitigation strategy against such attacks. PS05 discussed privacy concerns on social
robots using focus groups, but mitigations to these privacy concerns were not discussed.
PS11 and PSA05 reported how social robots could exploit humans in social engineering
attacks without proposing mitigations to such attacks (see more details of proposed attack
mitigations reported in Table A9 of Appendix D).

5. Discussion

This section discusses the implications of the findings based on previous literature, the
threats to the validity of our study, our proposed taxonomy for threat actors and landscape
in this domain, and our recommendations.

5.1. Implications of Our Findings

The threat landscape of social robots in public spaces is a transdisciplinary research
area involving social science (public space management), cognitive sciences, psychology,
Human–Computer Interaction (HCI), AI, computer science, robotics, and engineering
with rapidly growing interest [76]. This research field is not an extension of just one
discipline; it should draw insights from outside HRI to ensure successful implementation
and acceptance [129].

5.1.1. Research Trends of Social Robots in Public Spaces

This SLR shows that only 1.4% (21 out of 1469 papers) of the search results satisfied
the selection criteria for empirical research in social robots in public spaces, indicating
very little empirical research. Pepper and Nao, well-known commercial social robots,
were used in 23.8% (five) of studies, indicating a low adoption of actual social robots for
academic research. About 76% (16 studies) manually customized vision, navigation, AI,
and cloud services for the social robot used in their studies. Although the authors did
not state the reason for the low adoption of well-known commercial social robots in our
reviewed studies, one plausible explanation is the high cost of Pepper (about USD 20,000
for universities/organizations in 2021 [130]) and lack of technical expertise in integrating
AI and cloud services. Our study shows a growing interest in the field, as reported by
other existing literature [131,132]. However, there is a need for more funding and empirical
research on social robots in public spaces.

5.1.2. Threat Actors of Social Robots in Public Spaces

A technical description of the threat actors related to robots in public spaces will
inform security components design, enable interoperability, and eliminate ambiguity re-
sulting in a machine-understandable threat actor attribution/characterization that will
ensure automatic machine inference. The threat actors, motives for attacks, and attack
outcomes identified in our SLR are consistent with existing reports on cybersecurity
threats [46,57,93,109,133]. Our study also confirmed that a hacked social robot could be a
threat actor to humans. However, we observed that our primary studies did not report
some potential threat actors associated with supply chain, cloud services, and AI services.
A specific threat landscape in this context should cover all possible sources of threat actors;
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hence, a taxonomy of threat actors can benefit researchers and practitioners interested in
developing security mechanisms adapted to each type of threat in this context.

5.1.3. Identifying Assets, Threats, and Vulnerabilities of Social Robots in Public Spaces

In this SLR, we identified two threat directions, seven asset categories, four threat
groups, and 21 specific vulnerabilities addressed by our primary studies for social robots
in public spaces. The threat direction, as reported, incorporates social robots’ safety and
security, which is consistent with previous studies, e.g., Mayoral-Vilches [79] and Alzoka-
Kirschegen [49]. Our asset classification is in line with Mitre’s CAPEC attack domain
categorization [70] and the sub-component groups reported by Yaacoub et al. [71]; however,
our review complements those studies by including supply chain and AI as assets of a
robotics system, since the role of AI and the supply chain is indispensable for a successful
operation. The vulnerabilities discussed in this study are peculiar to the works of our
primary studies, as there are other known vulnerabilities that may not be reported in
this situation.

5.1.4. Attack Surface of Social Robots in Public Spaces

Traditionally, the attack surface is an enumeration of entry points to a system, compo-
nent, or environment. This study identified the assets and stakeholders of social robots in
public spaces and explored the attack surface based on attacks identified in the primary
studies and the mechanism of attacks proposed by Mitre [124]. Beyond cyber-attacks, other
categories of attacks were identified, e.g., physical, social, and public space attacks. A com-
plete risk assessment, of which threat landscape is an input, should anticipate all possible
threats and attacks. The four attack scenarios presented in this study aim to illustrate the
exploitation of vulnerabilities in this context. These scenarios are based on our SRL and
inspired by the ENISA report on the uptake of AI in autonomous driving [126].

5.2. Limitations and Threats to Validity

In this subsection, we present the limitations, threats to the validity of this study,
and measures taken to minimize such threats. Specifically, we considered the following
four threats to validity according to Claes et al. [134]: construct, internal, conclusion, and
external validity.

5.2.1. Construct Validity

Construct validity measures how closely this study actually investigates social robots’
threat landscape in public spaces. This threat emerges from a lack of empirical evidence
in this area. To minimize this threat, a search string consisting of relevant keywords
addressing the threat landscape of social robots in public spaces was formulated, tested, and
validated in our research protocol. We ensured that the focus of this review was on social
robots/humanoids and that studies addressing key aspects like threats, vulnerabilities, and
attacks were included in this review. We acknowledge the limitation of restricting our search
to five academic bibliographic databases; however, these databases were recommended
by Kitchenham and Charters [97] and adopted in previous reviews on this domain [98].
Additionally, we conducted a rigorous snowballing process to include additional relevant
studies in this field.

5.2.2. Internal Validity

Internal validity measures how trustworthy a study’s cause-and-effect relationships or
conclusions are. It can occur in research due to systematic errors and authors’ bias during
data extraction. To minimize internal validity, we ensured that our protocol was based on
well-established guidelines for performing SLRs [97]. Moreover, two researchers indepen-
dently conducted the initial search. However, there was a discrepancy on SpringerLink
(Researcher A obtained 252 while Researcher B obtained 495). We suspected this might
be due to differences in the access rights of each researcher. The results of Researcher B
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(495) were used for the review. We also observed slight variations in the search results
when the URLs were validated in September 2022. The search result for IEEE increased
by one, ACM increased by two, and ScienceDirect decreased by one. We developed a data
extraction form to ensure consistency in our data extraction process. We also removed
duplicate studies and evaluated the quality of all included studies.

5.2.3. External Validity

External validity measures the extent to which this study’s results are generalizable.
We acknowledge the limitation of restricting our primary studies’ selection to academic
databases; there is the possibility of missing research that is published in other databases,
including grey literature such as white papers, technical reports, or work in progress, which
were excluded from this study. Also noteworthy is the language restriction that excluded
studies in other languages that could have relevant research on this topic. In our attempt to
address the social robot’s domain, we may have omitted other relevant studies that did
not capture the keywords used to formulate the search string. Despite these limitations,
this SLR contributes to extending the knowledge of the social robot’s threat landscape in
public spaces.

5.3. Recommendations and Future Works

The following are our recommendations from the findings of this SLR:

1. Academic researchers and industrial practitioners should carry out further empirical
research to test and validate the threats proposed in this study. This will provide
valuable insights into the security of human–social robot interactions in public spaces.

2. Stakeholders in social robots in public spaces should develop a security framework to
guide social robot manufacturers, designers, developers, business organizations, and
users on the best practices in this field. This transdisciplinary task will require input
from all stakeholders.

3. Regulatory authorities should develop a regulatory standard and certification for
social robot stakeholders. The existing ISO 13482:2014 on robots, robotic devices, and
safety requirements for personal care robots do not fully address the needs of social
robots in public spaces [37]. Such standards will enable users and non-experts to
measure and ascertain the security level of social robots.

4. Social robot designers and developers should incorporate fail-safe, privacy-by-design,
and security-by-design concepts in social robot component development. Such design
could incorporate self-repair (or defective component isolation) capabilities for social
robots in public spaces.

5. Entrepreneurs and start-ups should be encouraged by stakeholders in the areas of
cloud computing and AI services. This will foster development and easy adoption of
the technology.

In future work, we will develop a security framework for social robots in public spaces.
Moreover, we will create a threat model for different use cases to test and validate such a
security framework.

6. Taxonomy for Threat Actors and Threat Landscape for Social Robots in
Public Spaces

By reviewing our primary studies and related works, we could not find any taxonomy
for the threat actors or landscape for social robots in public spaces. As a contribution to this
emerging domain, we propose a preliminary taxonomy for threat actors and landscapes
for social robots in public space based on the findings of this study and its related works.
A specific taxonomy will provide stakeholders (e.g., social robot designers, developers,
policymakers, and researchers) with a shared vocabulary for communicating attacks, issues,
improvements, and processes in this field.
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6.1. Taxonomy for Threat Actors of Social Robots in Public Spaces

The taxonomy for threat actors for social robots in public spaces proposed in this study
has four elements: internal, external, supply chain, and public space actors, as shown in
Figure 5.

Figure 5. Overview of taxonomy for threat actors of social robots in public spaces.

1. Internal threat actors include employees, authorized users, and other organization
staff with internal access. The insider threats posed by these actors could be intentional
or non-intentional (mistakes, recklessness, or inadequate training). A particular
example of an insider threat is authorized users under duress (e.g., a user whose loved
ones are kidnapped and compelled to compromise). Other people with inside access
who are potential threat actors could be vendors, cleaning staff, maintenance staff,
delivery agents, sales agents, and staff from other departments, among others.

2. External threat actors are those outside the organization, often without authorized
access to the social robot system or services. These actors could be physically present
within public spaces or in remote locations. Examples of external threat actors include
hackers, cyber criminals, state actors, competitors, organized crime, cyber terrorists,
and corporate spies, among others.

3. Supply chain threat actors create, develop, design, test, validate, distribute, or main-
tain social robots. Actors that previously or currently had access to any sub-component
of the social robot system, who can create a backdoor on hardware, software, storage,
AI, and communication, fit into this group. A direct attack on any of these actors
could have a strong implication for the security of social robots. This supply chain
taxonomy is aligned with ENISA’s threat landscape for supply chain attacks [135].

4. Public space threat actors could be humans (internal or external) or disasters (natural
or man-made) [136] that are within the physical vicinity of the social robot. Physical
proximity to the social robot is a key consideration for this group of actors. Disaster
threat actors in the public space could be fire, flood, earthquake, tsunami, volcanic
eruptions, tornadoes, and wars, among others. In contrast, human threat actors in a
public space context could be malicious humans (e.g., users, end users, bystanders,
passers-by, thieves, vandals, and saboteurs) within a public space of the social robot.
It is possible for a threat actor to belong to more than one group in this taxonomy.

Our proposed threat actor’s taxonomy agrees with previous studies in cybersecurity
and contributes specifically to social robots in the public space use context. Table 12 shows
a comparison of our taxonomy with related taxonomies. The focus of those taxonomies is
external threat actors and malicious/incompetent insiders.
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Table 12. Comparison of our proposed taxonomy with related works.

Threat Actor
Group Threat Actors in [48] [71] [137] [59] [88] This SLR

Supply Chain

Malicious/Incompetent hardware stakeholders 3 3

Malicious/Incompetent software stakeholders 3 3

Malicious/Incompetent cloud service providers 3

Malicious/Incompetent communication
service providers 3

Malicious/Incompetent AI model stakeholders 3

External

Competitor 3 3 3 3 3

Hackers/Cyber criminals 3 3 3 3 3

Cyber terrorists 3 3 3 3 3 3

State-sponsored actors 3 3 3 3 3 3

Corporate espionage group 3 3 3 3

Organized criminal groups (hacktivists and
hackers for hire) 3 3 3 3 3 3

Internal

Malicious/Incompetent insider (corrupt or
reckless or untrained employee/user) 3 3 3 3 3

Employees under duress from external attackers 3

Disgruntled employee 3 3 3 3

Public space

Natural factors (fire, flood, thunder,
earthquake, etc.) 3

Wars 3

Pandemics 3

Malicious end users/bystanders/passers-by 3

6.2. Taxonomy for Threat Landscape of Social Robots in Public Spaces

We proposed a threat landscape for social robots in public spaces based on insights
from this SLR and previous related works. Figure 6 depicts our proposed threat land-
scape, which is grouped into four categories: physical, cybersecurity, social, and public
space threats.

Figure 6. Overview of taxonomy for the threat landscape of social robots in public spaces.

1. Physical threats are safety-related threats to social robots and humans. Social robot
abuse, vandalism, sabotage, and theft are some physical threats directed at social
robots in public spaces. Social robots operating in public spaces pose the threat of phys-
ical/psychological harm and property (assets) and environmental damage to humans.

2. Social threat. Potential threats to personal space and legal/regulatory and social
norm violations fall under the social threat landscape.
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3. Public space threats. Strict regulations on sensitive data collection exist in the public
space domain. As with the case of threat actors, we considered disaster and human
threats affecting public space.

4. Cybersecurity threats can originate from different sources. Therefore, a taxonomy
based on Mitre’s CAPEC domain of attacks [70] is proposed. Moreover, it comple-
ments the proposal of Yaacoub et al. [71] on robotics cybersecurity, as it incorporates
specific aspects of threats to social robots in public spaces.

Figure 7 illustrates our proposed cybersecurity threat taxonomy. It has seven com-
ponents: hardware, software, communication, cloud services, AI services, human (social
engineering), and supply chain threats.

Figure 7. Overview of the cybersecurity threat landscape of social robots in public spaces.

1. Hardware threats are threats to sensors, actuators, electronic control units (ECUs),
social robot bodies (casing), and batteries. Li et al. presented a survey of hardware
trojan threats in [138], while Sidhu et al. [139] presented similar threats from an
IoT perspective.

2. Software threats are threats to operating systems, applications (including third-party
apps), utilities, and firmware (embedded software). Tuma et al. presented a systematic
review of software system threats in [140].

3. Supply chain threats, like threat actors, could arise from any of the following: supply
chains, hardware, software, communication, cloud services, and AI services. A
comprehensive analysis of supply chain threats is presented by ENISA in [135].

4. Human threats, also known as social engineering, include phishing, baiting, pretex-
ting, shoulder surfing, impersonation, dumpster diving, and so on. A comprehensive
systemization of knowledge on human threats is presented by Das et al. in [141].
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5. Communication network threats address two specific features of the communica-
tion systems of social robots in public spaces: wireless and mobility. According
to [142,143], the wireless communication networks expose them to (i) accidental
association, (ii) malicious association, (iii) ad hoc networks, (iv) non-traditional net-
works, (v) identity theft, (vi) adversary-in-the-middle, (vii) denial of service, and
(viii) network injection threats. According to [143], the mobile nature of social robots’
interactions in public space imposes the following threats: (i) inadequate physical secu-
rity control, (ii) use of untrusted networks/apps/contents/services, and (iii) insecure
interaction with other systems.

6. Cloud services, according to NIST SP 800-144 [144], introduce the following nine
threats: (i) governance, (ii) compliance, (iii) trust, (iv) architecture, (v) identity and
access management, (vi) software isolation, (vii) data protection, (viii) availability,
and (ix) incident response threats.

7. AI service threats, according to the AI threat landscape of Microsoft Corporation [60],
lead to intentional and unintentional failures. Intentional AI failure threats include
(i) perturbation attacks, (ii) poisoning attacks, (iii) model invasion, (iv) backdoor mod-
els, (v) model stealing, (vi) membership inference, (vii) reprogramming of the model,
(viii) adversarial examples in public spaces, and (ix) malicious model providers recov-
ering training data. Unintentional threats include (i) reward hacking, (ii) side effects,
(iii) distributional shifts, (iv) natural adversarial examples, (v) common corruption,
and (vi) incomplete testing of ML.

7. Conclusions

This study systematically reviews and analyses empirical studies on the threat land-
scape of social robots in public spaces. Specifically, this review aims to report (i) the
trend of empirical research in this field, (ii) the threat actors and their motives for attacks,
(iii) the assets, threats, and vulnerabilities of social robots in public spaces, and (iv) the
attack surface for this emerging domain. The initial search returned 1469 studies, and
then 21 empirical studies that satisfied the selection criteria were included in this review.
Our results reveal two threat directions, four threat categories, three research methods, ten
application domains, thirty-three threat actors, seven attack motives, eight attack outcomes,
seven asset groups, seven varieties of attacks, and four attack scenarios. Apart from well-
known cybersecurity threats, this review identified insights into physical, social, and public
space threats.

The findings of this study are significant to stakeholders interested in addressing the
security and privacy concerns of social robots in public spaces. Based on the findings,
a preliminary taxonomy for threat actors and the threat landscape of social robots in
public spaces was proposed. The threat actor taxonomy will enhance the development
of computer-understanding solutions for threat actors in social robotics. Moreover, the
proposed threat landscape will enrich the risk assessment, measurement, and management
of social robots in public spaces. The insights from other emerging sub-components of the
social robotics system, such as AI and cloud services, will provoke further research in these
directions. Future work will develop a threat model and security framework for a social
robot used in a water ferry to provide information to users.
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Appendix A

Table A1. List of typical sensors used in social robots.

Sensor Type Sensor Description with Robot Application Examples

Internal

Potentiometer
An internal position sensor, e.g., a rotary potentiometer, is used for shaft rotation measurement.
Masahiko et al. used a rotary potentiometer to measure the musculoskeletal stiffness of a humanoid
robot [145].

Optical
encoder

A shaft connected to a circular disc containing one or more tracks of alternating transparent and
opaque areas is used to measure rotational motion. Lang et al. employed an optical encoder and
other sensors for object pose estimation and localization in their mobile robot [146].

Tachometer It provides velocity feedback by measuring the motor rotating speed within the robot. Wang et al.
employed a tachometer in a camera wheel robot design [147].

Inertia Measurement Unit (IMU)
A module containing three accelerometers, three gyroscopes, and three magnetometers responsible
for robot gait/stability control [148]. Ding et al. employed an intelligent IMU for the gait event
detection of a robot [149].

Accelerometer It measures the change in speed of a robot. It can also be used in gait selection. Kunal et al. used
this sensor in the implementation of a 5 DoF robotic arm [150].

Gyroscope An angular motion detector or indicator. They measure the rate of rotation. Kim et al. employed a
gyroscope to design and control a sphere robot [151].

Range

Ultrasonic sensor
A sound wave measures the distance between the sensor and an object. They are used for
navigation and obstacle avoidance [152]. Liu et al. employed this sensor in their mobile robot
localization and navigation design [153].

RGB Depth Cameras

It consists of an RGB camera, a depth sensor and a multiarray microphone that produces both RGB
and depth video streams [40]. It is used in face recognition, face modeling, gesture recognition,
activity recognition, and navigation. Bagate et al. employed this sensor in human activity
recognition [154].

Time-of-flight (ToF) cameras and other
range sensors

ToF sensors use a single light pulse to measure the time it takes to travel from the sensor to the
object. Other range-sensing approaches include stereo cameras, interferometry, ToF in the
frequency domain, and hyper-depth cameras [40].

LiDAR
Light Imaging Detection and Ranging employs a laser scanning approach to generate a high-quality
3D image of the environment. Its application is limited by reflection from glass surfaces or water.
Sushrutha et al. employed LiDAR for low-drift state estimation of humanoid robots [155].

RADAR
Radio detection and ranging use radio waves to determine the distance and angle of an object
relative to a source. Modern CMOS mmWave radar sensors have mmWave detection capabilities.
Guo et al. developed an auditory sensor for social robots using radar [156].

Touch Tactile sensor

Tactile sensors are used for grasping, object manipulation, and detection. It involves the
measurement of pressure, temperature, texture, and acceleration. Human safety among robots will
require the complete coverage of robots with a tactile sensor. Different types of tactile sensor
designs include piezoresistive, capacitive, piezoelectric, optical, and magnetic sensors [157].
Avelino et al. employed tactile sensors in the natural handshake design of social robots [158].
Sun et al. developed a humanlike skin for robots [159]. This also covers research on robot pains and
reflexes [160].

Audio Microphone An audio sensor for detecting sounds. Virtually all humanoid robots have an inbuilt microphone or
microphone array [161].

Smell Electronic nose A device for gas and chemical detection similar to the human nose [162]. Eamsa-ard et al.
developed an electronic nose for smell detection and tracking in humanoids [163].

Taste Electronic tongue A device with a lipid/polymer membrane that can evaluate taste objectively. Yoshimatsu et al.
developed a taste sensor that can detect non-charged bitter substances [164].
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Table A1. Cont.

Sensor Type Sensor Description with Robot Application Examples

Vision

Visible Spectrum camera
Visible light spectrum cameras are used for the day vision of the robot. They are passive sensors
that do not generate their own energy. Guan et al. employed this type of camera for mobile robot
localization tasks [165].

Infrared
camera

Infrared cameras are suitable for night vision (absence of light) using thermal imaging. Milella et al.
employed an infrared camera for robotic ground mapping and estimation beyond visible light [41].

VCSEL

Vertical-cavity surface-emitting laser (VCSEL) is a special laser with emission perpendicular to its
top surface instead of its edge. It is used in 3D facial recognition and imaging due to its lower cost,
scalability, and stability [166]. Bajpai et al. employed VCSEL in their console design for humanoids
capable of real-time dynamics measurements at different speeds [167].

Position
GPS A Global Positioning System is used for robot navigation and localization. Zhang et al. employed

GPS in the path-planning design of firefighting robots [168].

Magnetic
sensors

Magnetic sensors are used for monitoring the robot’s motor movement and position. Qin et al.
employed a magnetic sensor array to design real-time robot gesture interaction [169].

Appendix B

Table A2. Summary of snowballing.

PS Ref Citations Backwards Forward Included ID

ROUND 1

PS01 27 34 0 1 1 PSA01
PS02 36 50 1 0 1 PSA02
PS03 53 3 0 0 0
PS04 9 5 0 0 0
PS05 36 12 0 0 0
PS06 31 3 0 0 0
PS07 32 31 0 0 0
PS08 21 14 0 0 0

PS09 29 57 0 2 2 PSA03–
PSA04

PS10 13 5 0 0 0
PS11 39 5 1 0 1 PSA05
PS12 71 61 1 0 1 PSA06
PS13 46 2 0 0 0

ROUND 2

PSA01 23 4 0 0 0
PSA02 25 169 0 1 1 PSB01
PSA03 36 1 0 0 0
PSA04 16 16 0 0 0
PSA05 44 0 0 0 0
PSA06 55 57 0 0 0
PSA07 41 34 0 0 0

ROUND 3

PSB01 18 59 0 0 0
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Appendix C

Table A3. Quality assessment score of our primary studies.

# ID

Q
A

S1

Q
A

S2

Q
A

S3

Q
A

S4

Q
A

S5

Q
A

S6

Q
A

S7

Q
A

S8

Q
A

S9

Q
A

S1
0

Q
A

S1
1

Q
A

S1
2

Q
A

S1
3

Q
A

S1
4

Q
A

S1
5

Total
(%)

1 PS01 1 1 1 1 1 1 1 1 1 1 1 0.5 1 0 1 90
2 PS02 1 1 1 0.5 1 1 1 1 1 1 0.5 0.5 1 0 1 83.3
3 PS03 1 0.5 1 0.5 1 1 1 1 1 1 0.5 0.5 1 0 1 80
4 PS04 1 1 1 0.5 1 1 1 1 1 1 1 0.5 1 0 1 86.7
5 PS05 1 0.5 1 0.5 1 1 1 1 1 1 0.5 0.5 0.5 0 1 76.7
6 PS06 1 1 1 0.5 1 1 0.5 1 0.5 0.5 1 0.5 0.5 0 1 73.3
7 PS07 1 0.5 0.5 0.5 0.5 1 1 1 0.5 1 0.5 0.5 1 0 1 70
8 PS08 1 0.5 1 0.5 0.5 1 1 1 0.5 1 0.5 0.5 1 0 1 73.3
9 PS09 1 1 1 0.5 1 0.5 1 1 1 1 0.5 0.5 0.5 0 1 767
10 PS10 1 1 1 0.5 1 1 0.5 1 1 1 0.5 0.5 0.5 0 1 76.7
11 PS11 1 0.5 1 0.5 1 1 1 0.5 1 1 0.5 0.5 0.5 0 1 73.3
12 PS12 1 1 1 1 0.5 1 1 1 1 1 0.5 0.5 0.5 1 1 86.7
13 PS13 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 93.3
14 PSA01 1 1 1 0.5 1 1 1 1 1 1 1 0.5 0.5 0 1 83.3
15 PSA02 1 0.5 1 0.5 0.5 1 1 1 1 1 0.5 0.5 0.5 0 1 73.3
16 PSA03 1 1 0.5 0.5 1 1 0.5 1 1 1 1 0.5 0.5 0 1 76.7
17 PSA04 1 0.5 1 0.5 1 1 1 1 1 0.5 0.5 0.5 0.5 0 1 73.3
18 PSA05 1 0.5 0.5 0.5 0.5 1 1 1 1 1 0.5 0.5 0.5 0 1 70
19 PSA06 1 1 1 0.5 0.5 1 1 1 1 1 0.5 0.5 0.5 0 1 76.7
20 PSA07 1 1 1 0.5 1 1 1 1 1 1 0.5 0.5 0.5 0 1 80
21 PSB01 1 0.5 1 0.5 0.5 1 1 1 1 1 0.5 0.5 0.5 0 1 73.3

Table A4. Overview of Country affiliation.

# ID Year Country of Research Affiliation

1 PS08 2014 Brunei Academia
2 PSA07 2021 Canada Academia
3 PS12 2021 China Academia
4 PSA04 2020 China Mixed
5 PS09 2019 China, Saudi Arabia, Egypt Academia
6 PSA06 2018 China, USA Academia
7 PS03 2021 Denmark, Netherlands Mixed
8 PSA01 2019 Germany, Luxembourg Academia
9 PSA03 2019 India, Oceania Academia
10 PS04 2019 Italy Academia
11 PS11 2020 Italy Mixed
12 PS13 2020 Italy Academia
13 PSA05 2018 Italy Academia
14 PSA02 2015 Japan Mixed
15 PSB01 2020 Japan Mixed
16 PS06 2020 Portugal Academia

17 PS10 2019 Romania, Luxembourg,
Denmark, France Mixed

18 PS01 2018 Sweden, Denmark Academia
19 PS02 2018 USA Academia
20 PS05 2017 USA Academia
21 PS07 2016 USA, China Academia
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Table A5. Overview of primary studies, research methods, and types.

Research Method Research Types IDs

Mixed

Experiment and use case PS10
Experiment and Observation PSA02, PS11, PSB01
Experiment, Questionnaire, and Observation PSA05
Observation (Crowdsourced study) and Survey PSA07

Qualitative
Focus Group PS05
Observation (Between-subject study) PS02

Quantitative

Experiment and Questionnaire PS03
Experiment and Online survey PS07

Experiment PS01, PS04, PS06, PS08, PS09, PS12, PS13,
PSA01, PSA03, PSA04, PSA06

Appendix D

Table A6. Summary of threat actors identified in this review.

Actors Description IDs

Academic research groups A team of researchers, usually from the same faculty, who are experts in the same field
and are collaborating on the problem or topic. PSA01

Adversaries A person, group, organization, or government that engages in a harmful activity or
intends to do so. PSA04

Centralized trusted
entities

A third party to whom an entity has entrusted the faithful performance of specific
services. An entity has the option to represent itself as a trustworthy party. PS06

Children A child who has not reached puberty or reached the legal age of maturity. PS02, PSA02, PSA05
Competitors An individual, group, or business that competes with others. PSA03

Cyber criminals An individual, group, or business that is involved in Internet-based criminal conduct or
illegal activities. PSA03

End users A user who is trusted and has the authority to use the services of a social robot. PS10

External attackers Any external party acting to compromise a social robot or try to take advantage of a
social robot’s known vulnerabilities. PS13, PSA01

Human actors A person or group responsible for harmful, prohibited, or anti-social behavior. PSA07
Illegal users A person or group that is not allowed by law to use the services of a social robot. PSA06

Insiders
A person or thing inside the security perimeter who has permission to use system
resources but who misuses them against the wishes of the people who gave them
to them.

PS01, PS13, PSA03

Invader A person or group that uses force or craft to take control of another person’s space or
resources without the owner’s consent. PSA06

Malevolent user A user who is creating harm or evil or wishing to do so. PS13

Malicious attacker A person, group, organization, or government that either intended to harm a social robot
or to steal personal data from it. PS01, PSA01, PSA03

Malicious user A person, group, organization, or government with access rights that either intended to
harm a social robot or to steal personal data from it. PS09, PS13

Motivated attacker An attacker with a specific motive. PS01
Non-government gangs A gang of criminals that collaborates. PSA01
Others
(Any attacker) Any other type of attacker. PS01

Privileged user A user who has been granted permission (and is therefore trusted) to carry out
security-related tasks that regular users are not permitted to do. PS13

Remote operator An operator interacting outside of a security perimeter with a social robot. PSA04

Root user A trusted user who has the authority to do security-related tasks that are not appropriate
for regular users. PS13

Skilled individual Someone possessing the skills required to do a task or job effectively. PSA01

Social engineers Someone who uses others’ confidence and trust to manipulate them into disclosing
private information, granting unwanted access, or committing fraud. PS11, PSA05

Social robots An intelligent robot capable of human social interaction while observing social norms. PS03, PS08
State level
intelligence A government group responsible for acquiring foreign or local information. PSA01

Unauthorized party A person or group that is not given logical or physical access to the social robot. PS10
Disgruntled staff A staffperson who is displeased, irritated, and disappointed regarding something. PSA03

Spy A person who covertly gathers and disseminates information about the social robot or
its users. PS07, PS13, PSA03

Wannabes A person who is unsuccessfully attempting to become famous. PS13
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Table A7. Motives for cyber-attacks identified in this study.

Description of Cyber-Attack Motive IDs

Information gathering (Reconnaissance)
Using port scanning to detect Pepper’s vulnerabilities PS01
Conducting surveillance on users through a social robot PS05
Retrieving users’ identity information through a recovery attack PS09
Gathering users’ data through sniffing attacks on communication between robots and cloud PS10
Using social robots for social engineering attacks to retrieve users’ background data PS11
Conducting cyber-espionage and surveillance on users through social robotic platforms PS13
Social robots’ sensors collect a lot of users’ sensitive data during interaction, which an attacker tries to access during
an attack PSA05

Exploiting human overtrust in social robots during a social engineering attack on users PSA05
Gaining/Escalating privileges

Gaining and escalating privileges due to unsecured plain-text communication between social robots and cloud PS01
Gaining access control privileges at the edge cloud due to inadequate security PS09
Gaining privileges through a man-in-the-middle attack on social robots PS10
Gaining and escalating super privileges through insider attack PS13

Modifying data
Modifying Pepper root password PS01
Maliciously falsifying social robot cloud data PS09
Tampering of social robot’s data-in-use located in DRAM memory due to insider attack privilege escalation PS13
Pepper social robot being accessed and misused by adversaries through insecure cloud-based interaction PSA01
Instances of cyber criminals exploiting robotic platforms to modify data PSA03

Read (Take/Steal) data
Stealing Pepper’s credentials and data PS01
Leakage of users’ identity data in the cloud PS09
Stealing and tampering of data resulting from root users’ privilege escalation PS13
Access to Pepper through its connection to the Internet and cloud services PSA01
Cyber criminals exploiting robotic platforms and stealing data PSA03

Execute unauthorized commands
Executing an arbitrary malicious code in Pepper through a MIME-sniffing attack PS01
Injecting malevolent data and commands to the social robot while exploiting ROS vulnerabilities PS13
Adversaries using malicious pdf attachments as an efficient weapon for executing codes in social robots PSA04

Deny/Disrupt services or operation
Publishing huge amounts of data to realize a DoS attack after a successful insider attack PS13
Flooding communication network with heavy traffic to result in a DDoS attack PSA03

Damage/Destroy assets or properties
Damage to assets and reputation of an organization or individual PS04
Causing damages in users’ homes PS13
Physical damage to museum’s valuable artifacts and other assets PSA01

Table A8. List of attacks identified in the primary studies.

IDs Reported Attack Attack Category

PS01 ARP Spoofing Cyber
PS10 Botnet Attack Cyber
PS13 Buffer overflow Cyber
PS01 Clickjacking attacks Cyber
PS13 Code injection attack Cyber
PS13 Code-reuse attack Cyber
PS13 Cold boot attack Cyber
PS06 Collision resistance attack Cyber
PS05 Damage to property Environment
PS09 Data leakage Cyber
PS09 Data modification Cyber
PS10 Data sniffing attack Cyber
PS04 Data Theft Cyber
PS10 DDoS attack Cyber
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Table A8. Cont.

IDs Reported Attack Attack Category

PS11 Deception Social,
PSA03 Denial of Service (DoS) attack Cyber
PS13 DoS Cyber
PS13 Eavesdropping Cyber
PSA06 Embarrassment and privacy violation Physical
PSA04 Embedded file attack Cyber
PS11 Espionage (recording video, taking pictures and conducting searches on users) Cyber
PS11 Exploiting human emotion Social, Cyber
PSA05 Exploiting human trust towards social robots Physical
PSA04 Form submission and URI attacks Cyber
PSA01 GPS sensor attacks Cyber
PS10 Hacking of Control Software Cyber
PS05 Hacking Cyber
PS09 Hacking Cyber
PS11 Hacking Cyber
PS08 Harm to humans resulting from robot failure Physical
PSA05 Human factor attacks Physical
PS12 Illegal authorization attacks Cyber
PS07 Information theft (Espionage) Cyber
PS05 Information theft Cyber
PS03 Invading personal space Social
PS13 Lago attack Cyber
PS01 Malicious code execution Cyber
PSA03 Malicious code execution Cyber
PSA04 Malicious code execution Cyber
PSA03 Malware attack Cyber
PS01 Malware attack Cyber
PS07 Malware attack Cyber
PSA04 Malware attack Cyber
PS07 Malware attack Cyber
PS01 Man-in-the-Middle Attack Cyber
PS10 Man-in-the-Middle Attack Cyber
PS13 Man-in-the-Middle Attack Cyber
PSA03 Man-in-the-Middle Attack Cyber
PS11 Manipulation tactics Cyber, Social
PS01 Meltdown and specter attacks Cyber
PS01 MIME-sniffing attack Cyber
PS13 Modifying Linux base attack Cyber
PSA04 pdf file attacks Cyber
PS11 Personal information extraction Cyber
PS05 Personal space violation Social
PS05 Phishing attacks (accounts and medical records) Cyber
PS11 Phishing attacks Cyber
PSA02 Physical (Harm to robot) Physical
PSA02 Physical (Obstructing robot path) Physical
PSA07 Physical (Obstructing robot path) Physical
PSB01 Physical (Obstructing robot path) Physical
PSA02 Physical (Psychological effects on humans) Physical
PS02 Physical abuse (Physical violence towards robot) Physical
PS13 Physical attacks that unpackage the CPU or any programming bug Cyber
PSA01 Physical damage to properties/environment Environment
PS01 Physical harm to human Physical
PS13 Physical harm to human Physical
PSA01 Physical harm to human Physical
PSA03 Physical harm to human Physical
PSA01 Psychological harm to human Physical



Computers 2022, 11, 181 38 of 45

Table A8. Cont.

IDs Reported Attack Attack Category

PS04 Remote Code Execution Cyber
PSA03 Remote Control Without Authentication Cyber
PS01 Remote Control Without Authentication Cyber
PS13 Replay Cyber
PSA07 Robot bullying Physical
PSA07 Robot mistreatment Physical
PSA07 Robot vandalism Physical
PSA07 Sabotaging robot tasks Physical
PS13 Side-channel attack Cyber
PS13 Sniffing (bus-sniffing attack) Cyber
PS07 Social engineering Cyber
PS13 Specter attack Cyber
PS04 Spoofing attack on user information Cyber
PS01 SSH dictionary brute-force attack Cyber
PS13 Stealing security certificates Cyber
PS07 Surveillance Cyber, Social
PSA06 Surveillance Cyber, Social
PS05 Surveillance Cyber
PS11 Theft (Stealing) Physical, Social
PS05 Theft Physical
PS02 Traffic analysis attack Cyber
PS11 Trust violation Social
PS05 User preference violation through targeted marketing Cyber
PS02 Verbal abuse towards a robot Physical
PSA07 Verbal violence towards robots Physical
PS01 XSS (Cross-site scripting) Cyber

Table A9. List of proposed attack mitigation reported in this study.

IDs Attack Attack Mitigation

PS01 Port Scanning attack Use of Portspoof software and running of automated
assessment tools

PS01 Security patches and updates-related attacks Software security analysis and updates

PS01 Insecure communication channel with
HTTP-related attacks Communication over secure channels using HTTPS

PS01 Insecure-password-management-related attacks Smarter access control mechanisms using blockchain
smart contracts

PS01 Brute-force password attacks IP blacklisting and setting upper bound for
simultaneous connections

PS01 Unverified inputs resulting in malicious code execution Adequate input validation
PS01 Man-in-the-Middle attacks Secure cryptographic certificate handling
PS01 Remote control without authentication Secure API design

PS02 Robot physical abuse by humans Bystander intervention and possible social robot
shutdown during abuse

PS03 Personal space invasion by social robots Use of audible sound when making an approach

PS04 Anomalous behaviors in robots resulting
from cyber-attacks

Intrusion detection and protection mechanism using
system logs

PS04 Attacks resulting from insecure policies in
robot development Awareness and enforcing strong security policies

PS06 Data privacy violation in social robots The use of BlockRobot with DAP based on
EOS Blockchain

PS07 Recording of users’ sensitive data (nakedness) Automatic nakedness detection and prevention in smart
homes using CNN

PS08 Physical harm to humans due to failure Dynamic Social Zone (DSZ) framework
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Table A9. Cont.

IDs Attack Attack Mitigation

PS09 Attacks resulting from identity
authentication limitations A secure identity authentication mechanism

PS09 Access-control-limitations-related attacks A polynomial-based access control system

PS09 Attacks exploiting communication payload
size and delay An efficient security policy

PS10 Cyber-attacks on socially assistive robots Secure IoT platform

PS12 Face visual privacy violation Facial privacy generative adversarial network (FPGAN)
model

PS13 An insider with root-privileges-related attack Hardware-assisted trusted execution
environment (HTEE)

PS13 Protection against return-oriented programming (ROP) Isolation feature of hardware-assisted trusted execution
environment (HTEE)

PSA01 Robot software development/testing vulnerabilities Robot application security process platform in
collaboration with security engineer

PSA02 Social robot abuse by children A planning technique for avoiding children abuse
PSA03 Cyber and physical attacks on robotic platforms A platform for monitoring and detection of attacks

PSA03 Public-space-factors-related attacks Platform with alerts for fire, safety, water, power, and
local news.

PSA04 Malicious code execution from pdf file access Mobile malicious pdf detector (MMPD) algorithm

PSA06 Recording of privacy-sensitive images of users A Real-time Object Detection Algorithm based on
Feature YOLO (RODA-FY)

PSB01 Robot abuse by children Recommended early stopping of abusive behaviors and
preventing children from imitating abusive behaviors
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103. Brščić, D.; Kidokoro, H.; Suehiro, Y.; Kanda, T. Escaping from Children’s Abuse of Social Robots. In Proceedings of the Tenth
Annual ACM/IEEE International Conference on Human-Robot Interaction, Portland, OR, USA, 2–5 March 2015; Association for
Computing Machinery: New York, NY, USA, 2015; pp. 59–66.

104. Lin, J.; Li, Y.; Yang, G. FPGAN: Face de-Identification Method with Generative Adversarial Networks for Social Robots. Neural
Netw. 2021, 133, 132–147. [CrossRef]

105. Zhang, Y.; Qian, Y.; Wu, D.; Hossain, M.S.; Ghoneim, A.; Chen, M. Emotion-Aware Multimedia Systems Security. IEEE Trans.
Multimed. 2019, 21, 617–624. [CrossRef]

106. Aroyo, A.M.; Rea, F.; Sandini, G.; Sciutti, A. Trust and Social Engineering in Human Robot Interaction: Will a Robot Make You
Disclose Sensitive Information, Conform to Its Recommendations or Gamble? IEEE Robot. Autom. Lett. 2018, 3, 3701–3708.
[CrossRef]

107. Tan, X.Z.; Vázquez, M.; Carter, E.J.; Morales, C.G.; Steinfeld, A. Inducing Bystander Interventions During Robot Abuse with
Social Mechanisms. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL,
USA, 5–8 March 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 169–177.

108. Yang, G.; Yang, J.; Sheng, W.; Junior, F.E.F.; Li, S. Convolutional Neural Network-Based Embarrassing Situation Detection under
Camera for Social Robot in Smart Homes. Sensors 2018, 18, 1530. [CrossRef]

109. Fernandes, F.E.; Yang, G.; Do, H.M.; Sheng, W. Detection of Privacy-Sensitive Situations for Social Robots in Smart Homes. In
Proceedings of the 2016 IEEE International Conference on Automation Science and Engineering (CASE), Fort Worth, TX, USA,
21–25 August 2016; pp. 727–732.

110. Bhardwaj, A.; Avasthi, V.; Goundar, S. Cyber Security Attacks on Robotic Platforms. Netw. Secur. 2019, 2019, 13–19. [CrossRef]
111. Truong, X.-T.; Yoong, V.N.; Ngo, T.-D. Dynamic Social Zone for Human Safety in Human-Robot Shared Workspaces. In

Proceedings of the 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Kuala Lumpur,
Malaysia, 12–15 November 2014; pp. 391–396.

112. Krupp, M.M.; Rueben, M.; Grimm, C.M.; Smart, W.D. A Focus Group Study of Privacy Concerns about Telepresence Robots.
In Proceedings of the 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN),
Lisbon, Portugal, 28 August–1 September 2017; pp. 1451–1458.

113. Yamada, S.; Kanda, T.; Tomita, K. An Escalating Model of Children’s Robot Abuse. In Proceedings of the 2020 15th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), Cambridge, UK, 23–26 March 2020; pp. 191–199.

114. Olivato, M.; Cotugno, O.; Brigato, L.; Bloisi, D.; Farinelli, A.; Iocchi, L. A Comparative Analysis on the Use of Autoencoders for
Robot Security Anomaly Detection. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Venetian Macao, Macau, 4–8 November 2019; pp. 984–989.

115. Vulpe, A.; Paikan, A.; Craciunescu, R.; Ziafati, P.; Kyriazakos, S.; Hemmer, A.; Badonnel, R. IoT Security Approaches in Social
Robots for Ambient Assisted Living Scenarios. In Proceedings of the 2019 22nd International Symposium on Wireless Personal
Multimedia Communications (WPMC), Lisbon, Portugal, 24–27 November 2019; pp. 1–6.

116. Abate, A.F.; Bisogni, C.; Cascone, L.; Castiglione, A.; Costabile, G.; Mercuri, I. Social Robot Interactions for Social Engineering:
Opportunities and Open Issues. In Proceedings of the 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing,
Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and
Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Online, 17–22 August 2020; pp. 539–547.

117. Hochgeschwender, N.; Cornelius, G.; Voos, H. Arguing Security of Autonomous Robots. In Proceedings of the 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 7791–7797.

118. Joosse, M.; Lohse, M.; Berkel, N.V.; Sardar, A.; Evers, V. Making Appearances: How Robots Should Approach People. ACM Trans.
Hum.-Robot Interact. 2021, 10, 1–24. [CrossRef]

119. Vasylkovskyi, V.; Guerreiro, S.; Sequeira, J.S. BlockRobot: Increasing Privacy in Human Robot Interaction by Using Blockchain.
In Proceedings of the 2020 IEEE International Conference on Blockchain (Blockchain), Virtual Event, 2–6 November 2020;
pp. 106–115.

120. Sanoubari, E.; Young, J.; Houston, A.; Dautenhahn, K. Can Robots Be Bullied? A Crowdsourced Feasibility Study for Using
Social Robots in Anti-Bullying Interventions. In Proceedings of the 2021 30th IEEE International Conference on Robot & Human
Interactive Communication (RO-MAN), Vancouver, BC, Canada, 8–12 August 2021; pp. 931–938.

http://doi.org/10.1007/s13369-019-04319-2
http://doi.org/10.17632/c28vkncvw2.1
http://doi.org/10.1016/S0921-8890(02)00372-X
http://doi.org/10.1007/s12369-019-00581-4
http://doi.org/10.1016/j.neunet.2020.09.001
http://doi.org/10.1109/TMM.2018.2882744
http://doi.org/10.1109/LRA.2018.2856272
http://doi.org/10.3390/s18051530
http://doi.org/10.1016/S1353-4858(19)30122-9
http://doi.org/10.1145/3385121


Computers 2022, 11, 181 44 of 45

121. Cui, Y.; Sun, Y.; Luo, J.; Huang, Y.; Zhou, Y.; Li, X. MMPD: A Novel Malicious PDF File Detector for Mobile Robots. IEEE Sens. J.
2020, 1, 17583–17592. [CrossRef]

122. Garousi, V.; Fernandes, J.M. Highly-Cited Papers in Software Engineering: The Top-100. Inf. Softw. Technol. 2016, 71, 108–128.
[CrossRef]

123. Lockheed Martin Cyber Kill Chain®. Available online: https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-
chain.html (accessed on 6 June 2022).

124. MITRE CAPEC: Mechanisms of Attack. Available online: https://capec.mitre.org/data/definitions/1000.html (accessed on
29 September 2022).

125. IGI Global What Is Attack Scenario|IGI Global. Available online: https://www.igi-global.com/dictionary/attack-scenario/59726
(accessed on 2 October 2022).

126. ENISA Cybersecurity Challenges in the Uptake of Artificial Intelligence in Autonomous Driving. Available online: https://www.
enisa.europa.eu/news/enisa-news/cybersecurity-challenges-in-the-uptake-of-artificial-intelligence-in-autonomous-driving (ac-
cessed on 1 October 2022).

127. NIST NIST Cybersecurity Framework Version 1.1. Available online: https://www.nist.gov/news-events/news/2018/04/nist-
releases-version-11-its-popular-cybersecurity-framework (accessed on 6 June 2022).

128. Agrafiotis, I.; Nurse, J.R.C.; Goldsmith, M.; Creese, S.; Upton, D. A Taxonomy of Cyber-Harms: Defining the Impacts of
Cyber-Attacks and Understanding How They Propagate. J. Cybersecurity 2018, 4, tyy006. [CrossRef]

129. Collins, E.C. Drawing Parallels in Human–Other Interactions: A Trans-Disciplinary Approach to Developing Human–Robot
Interaction Methodologies. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180433. [CrossRef] [PubMed]

130. Moon, M. SoftBank Reportedly Stopped the Production of Its Pepper Robots Last Year: The Robot Suffered from Weak Demand
According to Reuters and Nikkei. Available online: https://www.engadget.com/softbank-stopped-production-pepper-robots-
032616568.html (accessed on 8 October 2022).

131. Nocentini, O.; Fiorini, L.; Acerbi, G.; Sorrentino, A.; Mancioppi, G.; Cavallo, F. A Survey of Behavioral Models for Social Robots.
Robotics 2019, 8, 54. [CrossRef]

132. Johal, W. Research Trends in Social Robots for Learning. Curr. Robot. Rep. 2020, 1, 75–83. [CrossRef]
133. Kirschgens, L.A.; Ugarte, I.Z.; Uriarte, E.G.; Rosas, A.M.; Vilches, V.M. Robot Hazards: From Safety to Security. arXiv 2021,

arXiv:1806.06681.
134. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software Engineering; Springer:

Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-29043-5.
135. ENISA Threat Landscape for Supply Chain Attacks. Available online: https://www.enisa.europa.eu/publications/threat-

landscape-for-supply-chain-attacks (accessed on 6 June 2022).
136. Mohamed Shaluf, I. Disaster Types. Disaster Prev. Manag. Int. J. 2007, 16, 704–717. [CrossRef]
137. Jbair, M.; Ahmad, B.; Maple, C.; Harrison, R. Threat Modelling for Industrial Cyber Physical Systems in the Era of Smart

Manufacturing. Comput. Ind. 2022, 137, 103611. [CrossRef]
138. Li, H.; Liu, Q.; Zhang, J. A Survey of Hardware Trojan Threat and Defense. Integration 2016, 55, 426–437. [CrossRef]
139. Sidhu, S.; Mohd, B.J.; Hayajneh, T. Hardware Security in IoT Devices with Emphasis on Hardware Trojans. J. Sens. Actuator Netw.

2019, 8, 42. [CrossRef]
140. Tuma, K.; Calikli, G.; Scandariato, R. Threat Analysis of Software Systems: A Systematic Literature Review. J. Syst. Softw. 2018,

144, 275–294. [CrossRef]
141. Das, A.; Baki, S.; El Aassal, A.; Verma, R.; Dunbar, A. SoK: A Comprehensive Reexamination of Phishing Research From the

Security Perspective. IEEE Commun. Surv. Tutor. 2020, 22, 671–708. [CrossRef]
142. Choi, M.; Robles, R.J.; Hong, C.; Kim, T. Wireless Network Security: Vulnerabilities, Threats and Countermeasures. Int. J.

Multimed. Ubiquitous Eng. 2008, 3, 10.
143. Stallings, W.; Brown, L. Computer Security: Principles and Practice, 4th ed.; Pearson: New York, NY, USA, 2018; ISBN 978-0-13-479410-5.
144. NIST; Jansen, W.; Grance, T. Guidelines on Security and Privacy in Public Cloud Computing; NIST: Gaithersburg, MD, USA, 2011; p. 80.
145. Masahiko, O.; Nobuyuki, I.; Yuto, N.; Masayuki, I. Stiffness Readout in Musculo-Skeletal Humanoid Robot by Using Rotary

Potentiometer. In Proceedings of the 2010 IEEE SENSORS, Waikoloa, HI, USA, 1–4 November 2010; pp. 2329–2333.
146. Lang, H.; Wang, Y.; de Silva, C.W. Mobile Robot Localization and Object Pose Estimation Using Optical Encoder, Vision

and Laser Sensors. In Proceedings of the 2008 IEEE International Conference on Automation and Logistics, Qingdao, China,
1–3 September 2008; pp. 617–622.

147. Wang, Z.; Zhang, J. Calibration Method of Internal and External Parameters of Camera Wheel Tachometer Based on TagSLAM
Framework. In Proceedings of the International Conference on Signal Processing and Communication Technology (SPCT 2021),
Harbin, China, 23–25 December 2021; SPIE: Bellingham, WA, USA, 2022; Volume 12178, pp. 413–417.

148. Huang, Q.; Zhang, S. Applications of IMU in Humanoid Robot. In Humanoid Robotics: A Reference; Goswami, A., Vadakkepat, P.,
Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 1–23. ISBN 978-94-007-7194-9.

149. Ding, S.; Ouyang, X.; Liu, T.; Li, Z.; Yang, H. Gait Event Detection of a Lower Extremity Exoskeleton Robot by an Intelligent IMU.
IEEE Sens. J. 2018, 18, 9728–9735. [CrossRef]

150. Kunal, K.; Arfianto, A.Z.; Poetro, J.E.; Waseel, F.; Atmoko, R.A. Accelerometer Implementation as Feedback on 5 Degree of
Freedom Arm Robot. J. Robot. Control JRC 2020, 1, 31–34. [CrossRef]

http://doi.org/10.1109/JSEN.2020.3029083
http://doi.org/10.1016/j.infsof.2015.11.003
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://capec.mitre.org/data/definitions/1000.html
https://www.igi-global.com/dictionary/attack-scenario/59726
https://www.enisa.europa.eu/news/enisa-news/cybersecurity-challenges-in-the-uptake-of-artificial-intelligence-in-autonomous-driving
https://www.enisa.europa.eu/news/enisa-news/cybersecurity-challenges-in-the-uptake-of-artificial-intelligence-in-autonomous-driving
https://www.nist.gov/news-events/news/2018/04/nist-releases-version-11-its-popular-cybersecurity-framework
https://www.nist.gov/news-events/news/2018/04/nist-releases-version-11-its-popular-cybersecurity-framework
http://doi.org/10.1093/cybsec/tyy006
http://doi.org/10.1098/rstb.2018.0433
http://www.ncbi.nlm.nih.gov/pubmed/30853002
https://www.engadget.com/softbank-stopped-production-pepper-robots-032616568.html
https://www.engadget.com/softbank-stopped-production-pepper-robots-032616568.html
http://doi.org/10.3390/robotics8030054
http://doi.org/10.1007/s43154-020-00008-3
https://www.enisa.europa.eu/publications/threat-landscape-for-supply-chain-attacks
https://www.enisa.europa.eu/publications/threat-landscape-for-supply-chain-attacks
http://doi.org/10.1108/09653560710837019
http://doi.org/10.1016/j.compind.2022.103611
http://doi.org/10.1016/j.vlsi.2016.01.004
http://doi.org/10.3390/jsan8030042
http://doi.org/10.1016/j.jss.2018.06.073
http://doi.org/10.1109/COMST.2019.2957750
http://doi.org/10.1109/JSEN.2018.2871328
http://doi.org/10.18196/jrc.1107


Computers 2022, 11, 181 45 of 45

151. Kim, H.W.; Jung, S. Design and Control of a Sphere Robot Using a Control Moment Gyroscope Actuator for Navigation. Int. J.
Control Autom. Syst. 2020, 18, 3112–3120. [CrossRef]

152. Zhmud, V.A.; Kondratiev, N.O.; Kuznetsov, K.A.; Trubin, V.G.; Dimitrov, L.V. Application of Ultrasonic Sensor for Measuring
Distances in Robotics. J. Phys. Conf. Ser. 2018, 1015, 032189. [CrossRef]

153. Liu, Y.; Fan, R.; Yu, B.; Bocus, M.J.; Liu, M.; Ni, H.; Fan, J.; Mao, S. Mobile Robot Localisation and Navigation Using LEGO NXT
and Ultrasonic Sensor. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala
Lumpur, Malaysia, 12–15 December 2018; pp. 1088–1093.

154. Bagate, A.; Shah, M. Human Activity Recognition Using RGB-D Sensors. In Proceedings of the 2019 International Conference on
Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 902–905.

155. Sushrutha Raghavan, V.; Kanoulas, D.; Zhou, C.; Caldwell, D.G.; Tsagarakis, N.G. A Study on Low-Drift State Estimation
for Humanoid Locomotion, Using LiDAR and Kinematic-Inertial Data Fusion. In Proceedings of the 2018 IEEE-RAS 18th
International Conference on Humanoid Robots (Humanoids), Beijing, China, 6–9 November 2018; pp. 1–8.

156. Guo, H.; Pu, X.; Chen, J.; Meng, Y.; Yeh, M.-H.; Liu, G.; Tang, Q.; Chen, B.; Liu, D.; Qi, S.; et al. A Highly Sensitive, Self-Powered
Triboelectric Auditory Sensor for Social Robotics and Hearing Aids. Sci. Robot. 2018, 3, eaat2516. [CrossRef]

157. Natale, L.; Cannata, G. Tactile Sensing. In Humanoid Robotics: A Reference; Goswami, A., Vadakkepat, P., Eds.; Springer: Dordrecht,
The Netherlands, 2019; pp. 2539–2561. ISBN 978-94-007-6045-5.

158. Avelino, J.; Paulino, T.; Cardoso, C.; Nunes, R.; Moreno, P.; Bernardino, A. Towards Natural Handshakes for Social Robots:
Human-Aware Hand Grasps Using Tactile Sensors. Paladyn J. Behav. Robot. 2018, 9, 221–234. [CrossRef]

159. Sun, Q.-J.; Zhao, X.-H.; Zhou, Y.; Yeung, C.-C.; Wu, W.; Venkatesh, S.; Xu, Z.-X.; Wylie, J.J.; Li, W.-J.; Roy, V.A.L. Fingertip-Skin-
Inspired Highly Sensitive and Multifunctional Sensor with Hierarchically Structured Conductive Graphite/Polydimethylsiloxane
Foams. Adv. Funct. Mater. 2019, 29, 1808829. [CrossRef]

160. Chi, C.; Sun, X.; Xue, N.; Li, T.; Liu, C. Recent Progress in Technologies for Tactile Sensors. Sensors 2018, 18, 948. [CrossRef]
161. Huang, G.; Chen, J.; Benesty, J.; Cohen, I.; Zhao, X. Steerable Differential Beamformers with Planar Microphone Arrays. EURASIP

J. Audio Speech Music Process. 2020, 2020, 15. [CrossRef]
162. Karakaya, D.; Ulucan, O.; Turkan, M. A Comparative Study on Electronic Nose Data Analysis Tools. In Proceedings of the 2020

Innovations in Intelligent Systems and Applications Conference (ASYU), Istanbul, Turkey, 15–17 October 2020; pp. 1–5.
163. Eamsa-ard, T.; Seesaard, T.; Kerdcharoen, T. Wearable Sensor of Humanoid Robot-Based Textile Chemical Sensors for Odor

Detection and Tracking. In Proceedings of the 2018 International Conference on Engineering, Applied Sciences, and Technology
(ICEAST), Phuket, Thailand, 4–7 July 2018; pp. 1–4.

164. Yoshimatsu, J.; Toko, K.; Tahara, Y.; Ishida, M.; Habara, M.; Ikezaki, H.; Kojima, H.; Ikegami, S.; Yoshida, M.; Uchida, T.
Development of Taste Sensor to Detect Non-Charged Bitter Substances. Sensors 2020, 20, 3455. [CrossRef]

165. Guan, W.; Huang, L.; Hussain, B.; Yue, C.P. Robust Robotic Localization Using Visible Light Positioning and Inertial Fusion. IEEE
Sens. J. 2022, 22, 4882–4892. [CrossRef]

166. Cheng, H.-T.; Yang, Y.-C.; Liu, T.-H.; Wu, C.-H. Recent Advances in 850 Nm VCSELs for High-Speed Interconnects. Photonics
2022, 9, 107. [CrossRef]

167. Bajpai, R.; Tiwari, A.; Jain, A.; Joshi, D. A Novel Instrumented Outsole for Real-Time Foot Kinematic Measurements: Validation
Across Different Speeds and Simulated Foot Landing. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [CrossRef]

168. Zhang, Z. Path Planning of a Firefighting Robot Prototype Using GPS Navigation. In Proceedings of the 2020 3rd International
Conference on Robot Systems and Applications, Chengdu, China, 14–16 June 2020; Association for Computing Machinery: New
York, NY, USA, 2020; pp. 16–20.

169. Qin, K.; Chen, C.; Pu, X.; Tang, Q.; He, W.; Liu, Y.; Zeng, Q.; Liu, G.; Guo, H.; Hu, C. Magnetic Array Assisted Triboelectric
Nanogenerator Sensor for Real-Time Gesture Interaction. Nano-Micro Lett. 2021, 13, 51. [CrossRef] [PubMed]

http://doi.org/10.1007/s12555-019-0526-2
http://doi.org/10.1088/1742-6596/1015/3/032189
http://doi.org/10.1126/scirobotics.aat2516
http://doi.org/10.1515/pjbr-2018-0017
http://doi.org/10.1002/adfm.201808829
http://doi.org/10.3390/s18040948
http://doi.org/10.1186/s13636-020-00185-1
http://doi.org/10.3390/s20123455
http://doi.org/10.1109/JSEN.2021.3053342
http://doi.org/10.3390/photonics9020107
http://doi.org/10.1109/TIM.2022.3175265
http://doi.org/10.1007/s40820-020-00575-2
http://www.ncbi.nlm.nih.gov/pubmed/34138239

	Introduction 
	Background and Related Works 
	Key Concepts and Definitions 
	Social Robots and Their Sensors 
	Public Space 
	Assets and Vulnerabilities 
	Threats and Threat Landscape 
	Attacks and Attack Surface 
	Cybersecurity, Safety, and Privacy 

	Related Works 
	Cybersecurity Threat Actors 
	Safety and Social Errors in HRI 
	Social Robot Security 
	Cybersecurity Threat Landscape 
	Summary of Related Works 


	Methodology 
	Planning the Review 
	The Need for the Study 
	Developing and Evaluating the Research Protocol 

	Conducting the Review 
	Searching 
	Filtering 
	Snowballing 
	Quality Assessment 
	Data Extraction and Synthesis 


	Results 
	Research Trends for Social Robots in Public Spaces 
	What Is the Research Trend of Empirical Studies on Social Robots in Public Spaces? 
	What Is the Citation Landscape of Studies on Social Robots in Public Spaces? 
	What Research Methods Are Employed in Studies on Social Robots in Public Spaces? 

	Social Robot Threat Actors and Their Motives for Attack 
	Who Are the Reported Potential Threat Actors for Social Robots in Public Spaces? 
	What Are the Reported Threat Actors’ Motives for Attack? 

	Identifying Assets, Threats, and Vulnerabilities of Social Robots in Public Spaces 
	What Are the Reported Assets (Sub-Components) of Social Robots in Public Spaces? 
	What Are the Reported Threats? 
	What Are the Reported Vulnerabilities? 

	Attack Surface of Social Robots in Public Spaces 
	What Are the Reported Attacks on Social Robots in Public Spaces? 
	What Are the Reported Attack Scenarios for Social Robots in Public Spaces? 
	What Are the Reported Attack Impacts of Social Robots in Public Spaces? 
	What Are the Reported Attack Mitigations on Social Robots in Public Spaces? 


	Discussion 
	Implications of Our Findings 
	Research Trends of Social Robots in Public Spaces 
	Threat Actors of Social Robots in Public Spaces 
	Identifying Assets, Threats, and Vulnerabilities of Social Robots in Public Spaces 
	Attack Surface of Social Robots in Public Spaces 

	Limitations and Threats to Validity 
	Construct Validity 
	Internal Validity 
	External Validity 

	Recommendations and Future Works 

	Taxonomy for Threat Actors and Threat Landscape for Social Robots in Public Spaces 
	Taxonomy for Threat Actors of Social Robots in Public Spaces 
	Taxonomy for Threat Landscape of Social Robots in Public Spaces 

	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

