686 research outputs found

    The Slider-Pinning Problem

    Get PDF
    A Laman mechanism is a flexible planar bar-and-joint framework with m ≤ 2n-3 edges and exactly k = 2n-m degrees of freedom. The slider-pinning problem is to eliminate all the degrees of freedom of a Laman mechanism, in an optimal fashion, by individually fixing x or y coordinates of vertices. We describe two easy to implement O(n2) time algorithms

    Slider-pinning Rigidity: a Maxwell-Laman-type Theorem

    Get PDF
    We define and study slider-pinning rigidity, giving a complete combinatorial characterization. This is done via direction-slider networks, which are a generalization of Whiteley's direction networks.Comment: Accepted, to appear in Discrete and Computational Geometr

    Static friction on the fly: velocity depinning transitions of lubricants in motion

    Full text link
    The dragging velocity of a model solid lubricant confined between sliding periodic substrates exhibits a phase transition between two regimes, respectively with quantized and with continuous lubricant center-of-mass velocity. The transition, occurring for increasing external driving force F_ext acting on the lubricant, displays a large hysteresis, and has the features of depinning transitions in static friction, only taking place on the fly. Although different in nature, this phenomenon appears isomorphic to a static Aubry depinning transition in a Frenkel-Kontorova model, the role of particles now taken by the moving kinks of the lubricant-substrate interface. We suggest a possible realization in 2D optical lattice experiments.Comment: 5 pages, 4 figures, revtex, in print in Phys. Rev. Let

    Modeling friction: From nanoscale to mesoscale

    Get PDF
    The physics of sliding friction is gaining impulse from nanoscale and mesoscale experiments, simulations, and theoretical modeling. This Colloquium reviews some recent developments in modeling and in atomistic simulation of friction, covering open-ended directions, unconventional nanofrictional systems, and unsolved problems.Comment: 26 pages, 14 figures, Rev. Mod. Phys. Colloquiu

    Dynamic Influence Networks for Rule-based Models

    Get PDF
    We introduce the Dynamic Influence Network (DIN), a novel visual analytics technique for representing and analyzing rule-based models of protein-protein interaction networks. Rule-based modeling has proved instrumental in developing biological models that are concise, comprehensible, easily extensible, and that mitigate the combinatorial complexity of multi-state and multi-component biological molecules. Our technique visualizes the dynamics of these rules as they evolve over time. Using the data produced by KaSim, an open source stochastic simulator of rule-based models written in the Kappa language, DINs provide a node-link diagram that represents the influence that each rule has on the other rules. That is, rather than representing individual biological components or types, we instead represent the rules about them (as nodes) and the current influence of these rules (as links). Using our interactive DIN-Viz software tool, researchers are able to query this dynamic network to find meaningful patterns about biological processes, and to identify salient aspects of complex rule-based models. To evaluate the effectiveness of our approach, we investigate a simulation of a circadian clock model that illustrates the oscillatory behavior of the KaiC protein phosphorylation cycle.Comment: Accepted to TVCG, in pres

    Lubricated friction between incommensurate substrates

    Full text link
    This paper is part of a study of the frictional dynamics of a confined solid lubricant film - modelled as a one-dimensional chain of interacting particles confined between two ideally incommensurate substrates, one of which is driven relative to the other through an attached spring moving at constant velocity. This model system is characterized by three inherent length scales; depending on the precise choice of incommensurability among them it displays a strikingly different tribological behavior. Contrary to two length-scale systems such as the standard Frenkel-Kontorova (FK) model, for large chain stiffness one finds that here the most favorable (lowest friction) sliding regime is achieved by chain-substrate incommensurabilities belonging to the class of non-quadratic irrational numbers (e.g., the spiral mean). The well-known golden mean (quadratic) incommensurability which slides best in the standard FK model shows instead higher kinetic-friction values. The underlying reason lies in the pinning properties of the lattice of solitons formed by the chain with the substrate having the closest periodicity, with the other slider.Comment: 14 pagine latex - elsart, including 4 figures, submitted to Tribology Internationa

    From Individual to Collective Pinning: Effect of Long-range Elastic Interactions

    Full text link
    We study the effect of long-range elastic interactions in the dynamical behavior of an elastic chain driven quasi-statically in a quenched random pinning potential and in the strong pinning limit. This is a generic situation occuring in solid friction, crack propagation, wetting front motion, ... Tuning the exponent of the algebraic decay of the elastic interaction with the distance is shown to give rise to three regimes: a Mean-Field (MF) regime, a Laplacian (L) regime and an intermediate regime where the critical exponents interpolate continuously between the MF and L limit cases. The effect of the driving mode on the avalanche statistics is also analyzed.Comment: 28 pages in RevTex, 17 figure

    Influence of substrate potential shape on the dynamics of a sliding lubricant chain

    Full text link
    We investigate the frictional sliding of an incommensurate chain of interacting particles confined in between two nonlinear on-site substrate potential profiles in relative motion. We focus here on the class of Remoissenet-Peyrard parametrized potentials VRP(x,s)V_{\rm RP}(x,s), whose shape can be varied continuously as a function of ss, recovering the sine-Gordon potential as particular case. The observed frictional dynamics of the system, crucially dependent on the mutual ratios of the three periodicities in the sandwich geometry, turns out to be significantly influenced also by the shape of the substrate potential. Specifically, variations of the shape parameter ss affects significantly and not trivially the existence and robustness of the recently reported velocity quantization phenomena [Vanossi {\it et al.}, Phys. Rev. Lett. 97, 056101 (2006)], where the chain center-of-mass velocity to the externally imposed relative velocity of the sliders stays pinned to exact "plateau" values for wide ranges of the dynamical parameters.Comment: 7 pages, 6 figure
    • …
    corecore